
Chapter 3

Hybrid Algorithms

The idea behind the design of hybrid algorithms is very simple. Assume that, for a given

computational problem Π, we are given two algorithms, a recursive algorithm A1 and

another algorithm A2 (usually iterative, although not necessarily so). Let A1 be asymp-

totically faster than A2, with the former exhibiting higher constants in its running time

than the latter. We can create a recursive hybrid algorithm H by modifying the code of

A1 in the base case as follows: we introduce a new value of the instance size, say n0, under

which we solve directly using algorithm A2. The remaining code stays unchanged, apart

from substituting recursive calls to A1 with recursive calls to H. Therefore the code for H

will look as follows:

H(i)
if size(i) ≤ n0

then return A2(i)
? DIVIDE step of A1 ?
? RECURSE step of A1 (but using H for the calls)?
? CONQUER step of A1 ?

Our objective in designing H is to obtain the best from both algorithms, namely, keeping

the asymptotic behaviour of A1 but lowering its constants thanks to the use of A2 on

smaller instances.

Note that in the code above, the “switching point” n0 between the application of the

two algorithms is a parameter whose actual value must be determined and fixed by the

analysis, so to minimize the running time of the hybrid algorithm. In what follows, we will

discuss how to proceed analytically to obtain the best choice of n0 for the case of square

matrix multiplication, where we can obtain a hybrid algorithm from Strassen’s algorithm

and the naive, iterative algorithm based on the definition.

1



3.1 Matrix Multiplication

The hybrid algorithm H-SMUL for matrix multiplication obtained from Strassen’s algo-

rithm SMUL and definition-based algorithm MUL is:

H-SMUL(A, B)
n← rows(A)
if n ≤ n0

then return MUL(A, B)
? DIVIDE step of SMUL ?
? RECURSE step of SMUL (but using H-SMUL for the calls) ?
? CONQUER step of SMUL ?

Recall that, when n is a power of two, the respective running times TS(n) and TM(n) of

SMUL and MUL are

TS(n) = 7nlog2 7 − 6n2

TM(n) = 2n3 − n2

hence SMUL features a better asympotic complexity but rather larger constants than MUL.

In fact, the first value of n (power of two) for which SMUL is faster than MUL is as high as

1024! Let us now formulate a recurrence T (n, n0) to evaluate the running time of algorithm

H-SMUL.

T (n, n0) =

 2n3 − n2 n ≤ n0

7T (n/2, n0) + (9/2)n2 n > n0

Observe that this recurrence has two parameters: n and n0. Since Strassen’s algorithm

only works for matrices which are a power of two, it is reasonable to assume that also n0

be a power of two. Let us now proceed to determine an analytic solution to the above

recurrence as a function of its two parameters. From the recursion tree associated with

the recurrence, we can collect the following information for values of n > n0, given below

in tabular form for convenience:

tree level instance size # nodes in level work per node

0 n 1 (9/2)n2

...
...

...
...

` n/2` 7` (9/2)(n2/4`)
...

...
...

...
log2(n/n0) n0 (n/n0)

log2 7 2n0
3 − n0

2

2



In the above table, the expression for the last level is obtained by observing that the

leaves are at a level ˆ̀ such that n/2
ˆ̀
= n0, whence ˆ̀ = log(n/n0) (from now on, we omit

the base 2 of the logarithm for brevity). By summing over all levels the component-wise

product of the last two columns of the table, we obtain:

T (n, n0) = (9/2)n2

log(n/n0)−1∑
`=0

(7/4)`

+ (n/n0)
log 7(2n0

3 − n0
2)

= 6n2
(
(7/4)log(n/n0) − 1

)
+ nlog 7 (2n0 − 1)

n0
log 7−2

= 6n2

((
n

n0

)log(7)−2

− 1

)
+ nlog 7 (2n0 − 1)

n0
log 7−2

= nlog 7 2n0 + 5

n0
log 7−2

− 6n2.

Observe that T (n, 1) = 7nlog 7 − 6n2 = TS(n), while T (n, n) = 2n3 − n2 = TM(n), which

is to be expected, since the choice n0 = 1 yields an algorithm which is identical to SMUL,

while choosing n0 = n implies that we always invoke MUL. Also, observe that different

values of n0 yield different values of the multiplicative constant in the leading term of

T (n, n0).

In order to determine an optimal value for n0, we study the sign of the partial derivative

of T (n, n0) with respect to n0. Easy calculations show that

δT (n, n0)

δn0

=
nlog 7

n0
log 7−1

(2(3− log 7)n0 − 5(log 7− 2))

whence
δT (n, n0)

δn0

≥ 0⇔ n0 ≥
5(log 7− 2)

2(3− log 7)
' 10.48 . . .

Since we have to pick a value of n0 which is a power of two, we check T (n, n0) choosing

for n0 the powers of two immediately smaller and larger than 10.48, and pick the value

yielding the smallest running time. It turns out that the best switching point is n0 = 8,

which yields a running time for H-SMUL

T (n, 8) ' 3.92nlog 7 − 6n2.

Observe that we have succeeded in almost halving the multiplicative constant of the leading

term over TS(n).

3



Recall that our cost model disregards a number of aspects of a real machine that

make multiplicative constants not particularly significant. This means that the above

analysis guarantees that the running time of Strassen’s algorithm can be improved through

hybridization only in principle, but cannot give the most appropriate value of n0 for a real

implementation. In fact, on different machines the best algorithm is likely to be obtained

with respect to different values of n0. Therefore, when implementing the algorithm in

practice, the above analysis must be complemented with a number of experiments aiming

at determining the best switching point empirically.

Exercise 3.1 Let n be a power of 2. Consider an algorithm A1 solving a computational

problem Π in time T1(n) = n2. Suppose that we can devise, for the same problem, a

divide-and-conquer algorithm A2 that, for n > 1, generates two instances of Π of size n/2,

with divide and conquer phases requiring time w(n) = 8n.

(a) Evaluate the running time T2(n) of algorithm A2 under the assumption that T2(1) =

0.

(b) Consider the hybrid algorithm H obtained from A2 and A1, and let n0 be the switch-

ing point between the two algorithms. Determine the running time T (n, n0) of H.

(c) Find the value of n0 that minimizes T (n, n0) What is the running time of the resulting

hybrid algorithm? (Hint: Pay attention with the derivative of log2 n0.)

4


