
Chapter 2

Recurrence Relations and

Divide-and-Conquer Algorithms

Consider the following recurrence:

8
<

:
T (n) = s(n)T (f(n)) + w(n), for n > n0,

T (n) = T0, for n  n0.

(2.1.a)

(2.1.b)

In (2.1), n is a nonnegative integer variable, and n0 and T0 are nonnegative integer con-

stants. Functions s(·), f(·) and w(·) are nondecreasing, nonnegative integer functions of n

(as a consequence, T (·) is also a nondecreasing and nonnegative integer function). Finally,

f(n) < n for any n > n0.

Equation (2.1) is often useful in the analysis of divide-and-conquer algorithms, where

a problem instance of size at most n0 is solved directly, while an instance of size n > n0 is

solved by

(i) decomposing the instance into s(n) instances of the same problem of size (at most1)

f(n) < n each;

(ii) recursively, solving the s(n) smaller instances;

(iii) combining the solutions to the s(n) instances of size (at most) f(n) into a solution

to the instance of size n.

1Needless to say, whenever the quantities featured in the recurrence are upper bounds, the resulting
solution T (n) will be an upper bound to the running time, while exact values yield the exact running time
of the resulting algorithm.

1



Here, w(n) is (an upper bound to) the overall running time of the decomposition and the

combination procedures. Also, T0 is (an upper bound to) the running time of the algorithm

on instances of size n  n0. With the given interpretation of n0, T0, s(·), f(·), and w(·),
Equation (2.1) uniquely defines a function T (n), which represents (an upper bound to) the

running time complexity of the given algorithm for any problem instance of size n.

The following notation is useful to formulate the general solution of Equation (2.1).

We let f (0)(n) = n, and for i > 0, f (i+1)(n) = f(f (i)(n)). We also denote by f ?(n, n0) the

largest k such that f (k)(n) > n0. Note that, if n  n0, f ?(n, n0) would not be defined.

Conventionally, we set f ?(n, n0) = �1 for n  n0.

With the above notation, f (`)(n) is the size of a single problem instance at the `-th

level of recursion, where ` = 0 corresponds to the initial call. Level ` = f ?(n, n0) is the

last for which f (`)(n) > n0 and hence it is the last level for which Equation (2.1.a) applies.

At level f ?(n, n0) + 1, Equation (2.1.b) applies instead.

Thus, for 0  `  f ?(n, n0), the work spent on a single problem instance at level ` is

w(f (`)(n)). For ` = f ?(n, n0) + 1, the work per problem instance is T0.

The instance at level 0 generates s(n) instances at level 1, each of which generates

s(f(n)) instances at level 2, each of which generates s(f (2)(n)) instances at level 3, . . .,

each of which generates s(f (`�1)(n)) instances at level `. Therefore, the total number of

instances at level ` is

s(n) · s(f(n)) · s(f (2)(n)) · . . . · s(f (`�1)(n)) =
`�1Y

j=0

s(f (j)(n)),

where if `� 1 < 0 the value the above product is conventionally taken to be 1.

By combining the considerations of the last three paragraphs, we obtain the following

expression for the general solution of Equation (2.1):

T (n) =
f?

(n,n0)X

`=0

0

@

2

4
`�1Y

j=0

s(f (j)(n))

3

5w(f (`)(n))

1

A+

2

4
f?

(n,n0)Y

j=0

s(f (j)(n))

3

5T0,

where, for f ?(n, n0) = �1, the value of the summation in the above expression is conven-

tionally assumed to be 0.

The correctness of the above derivation can be proved by induction on n as follows. Let

us start with the base case(s) n  n0 and recall that, conventionally, we set f ?(n, n0) = �1

for n  n0. Then, the closed formula correctlt yields T0, since the summation and the

product within evaluate to 0 and 1, respectively.

Assume now that the formula yields the correct value of T (k), for k < n and n > n0.

2



We have that T (n) = s(n)T (f(n)) + w(n), and, by the inductive hypothesis,

T (f(n)) =
f?

(f(n),n0)X

`=0

0

@

2

4
`�1Y

j=0

s(f (j+1)(n))

3

5w(f (`+1)(n))

1

A+

2

4
f?

(f(n),n0)Y

j=0

s(f (j+1)(n))

3

5T0.

Observe that, by the definition of f ?, in case f(n)  n0, then f ?(f(n), n0) = �1, while

f ?(n, n0) = 0. Otherwise, the maximum index k for which f (k)(f(n)) > n0 is clearly one

less than the maximum index k for which f (k)(n) > n0, hence, in all cases, f ?(f(n), n0) =

f ?(n, n0)� 1. We have:

s(n)T (f(n))

= s(f (0)(n))

8
<

:

f?
(n,n0)�1X

`=0

0

@

2

4
`�1Y

j=0

s(f (j+1)(n))

3

5w(f (`+1)(n))

1

A+

2

4
f?

(n,n0)�1Y

j=0

s(f (j+1)(n))

3

5T0

9
=

;

= s(f (0)(n))

8
<

:

f?
(n,n0)�1X

`=0

0

@

2

4
Ỳ

j0=1

s(f (j0)(n))

3

5w(f (`+1)(n))

1

A+

2

4
f?

(n,n0)Y

j0=1

s(f (j0)(n))

3

5T0

9
=

;

(by substituting j0 = j + 1 in the two products)

=
f?

(n,n0)�1X

`=0

0

@

2

4
Ỳ

j0=0

s(f (j0)(n))

3

5w(f (`+1)(n))

1

A+

2

4
f?

(n,n0)Y

j0=0

s(f (j0)(n))

3

5T0

(by bringing s(f (0)(n)) within the two products)

=
f?

(n,n0)X

`0=1

0

@

2

4
`0�1Y

j0=0

s(f (j0)(n))

3

5w(f (`0)(n))

1

A+

2

4
f?

(n,n0)Y

j0=0

s(f (j0)(n))

3

5T0

(by substituting `0 = `+ 1 in the summation.)

Observe now that w(n) can be rewritten as
hQ

0�1

j0=0
s(f (j0)(n))

i
w(f (0)(n)), which is exactly

the term of the summation for `0 = 0. Therefore we obtain

T (n) = s(n)T (f(n))+w(n) =
f?

(n,n0)X

`0=0

0

@

2

4
`0�1Y

j0=0

s(f (j0)(n))

3

5w(f (`0)(n))

1

A+

2

4
f?

(n,n0)Y

j0=0

s(f (j0)(n))

3

5T0

and the inductive thesis follows.

3


