
Chapter 3

Convolutions and the Discrete

Fourier Transform

3.1 The Cooley-Tukey Algorithm

Let n = pq, with p, q > 1. Given a vector x of size n, the Cooley-Tukey algorithm computes

DFTn(x) = Fnx in terms of the lower-order transforms DFTp and DFTq by performing

the following five steps:

1. Arrange x into a p× q matrix X, in row major order;

2. For 0 ≤ j ≤ q − 1, substitute column Xj of matrix X with DFTp(X
j) = FpX

j;

3. For 0 ≤ i ≤ p − 1, 0 ≤ j ≤ q − 1, multiply the (i, j)-th entry of the matrix by the

twiddle factor ωijn ;

4. For 0 ≤ i ≤ p− 1 substitute row Xi of matrix X with DFTq(Xi) = FqXi;

5. Read out y = DFTn(x) by enumerating the entries of the resulting matrix in column-

major order.

For n = 2k, the Cooley-Tukey algorithm yields the FFT(x) algorithm seen in class.

Indeed, let n = p × q, with p = n/2 and q = 2. Then, the first step creates the following

1

matrix with n/2 rows and 2 columns:

X =

x0 x1
...

...

x2i x2i+1

...
...

xn−2 xn−1

.

Observe that X0 = x[0] and X1 = x[1], in other words, the two columns separate the

even-indexed entries of x from the odd-indexed entries, as in the “Divide” step of FFT.

Step 2 of the Cooley-Tukey algorithm requires transforming the columns independently.

Therefore, if

y[0] = Fn/2x
[0] and y[1] = Fn/2x

[1]

we obtain

X =

y
[0]
0 y

[1]
0

...
...

y
[0]
i y

[1]
i

...
...

y
[0]
n/2−1 y

[1]
n/2−1

,

which corresponds to the “Recurse” step of FFT. In Step 3 (multiplication by the twiddle

factors), the i-th component of the second column X1 is multiplied by ωi·1n = ωin, yielding

X =

y
[0]
0 ωn

0y
[1]
1

...
...

y
[0]
i ωn

iy
[1]
i

...
...

y
[0]
n/2−1 ωn

n/2−1y
[1]
n/2−1

.

In Step 4, we transform each row (y
[0]
i , ωn

iy
[1]
i). Since

F2 =

 1 1

1 −1

 ,

2

the i-th row of X becomes 1 1

1 −1

 y
[0]
i

ωn
iy

[1]
i

 =

 y
[0]
i + ωn

iy
[1]
i

y
[0]
i − ωniy

[1]
i

 .
Finally, obtaining the components of y = Fnx in column major order amounts to say that,

for 0 ≤ i ≤ n/2− 1,

yi = y
[0]
i + ωn

iy
[1]
i and yi+n/2 = y

[0]
i − ωniy

[1]
i ,

which is exactly the recombination performed in the “Conquer” step of FFT.

Exercise 3.1 Let n = 12, p = 3, q = 4, and let x = (0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1). Com-

pute DFT12(x) by applying the Cooley-Tukey algorithm and showing the matrix at the

end of each step.

Answer: Let ω = ω12 = eπi/6 =
√

3/2 + i/2. On input x = (0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1),

the Cooley-Tukey algorithm executes as follows.

Step 1: Arrange x into a 3× 4 matrix, in row major order. We obtain:

X =

0 0 1 1

1 0 1 0

0 0 1 1

 .

Step 2: Transform columns. We must replace each column Xj with F3X
j, where F3 is

based on the third root ω3 = −1/2 + (
√

3/2)i. The result is:

X =

1 0 3 2

−1
2

+
√
3
2
i 0 0 1

2
−
√
3
2
i

−1
2
−
√
3
2
i 0 0 1

2
+
√
3
2
i

 .

Step 3: Multiply entry (i, j) by ωij. Note that the first column and the first row will be

left unchanged (multiplied by ω0 = 1), and there are several 0-entries in the matrix. In

fact, we only need to compute ω3 = eπi/2 = i and ω6 = eπi = −1. The resulting matrix is:

X =

1 0 3 2

−1
2

+
√
3
2
i 0 0

√
3
2

+ 1
2
i

−1
2
−
√
3
2
i 0 0 −1

2
−
√
3
2
i

 .

3

Step 4: Transform rows. Similarly to Step 2, we replace each row Xi with F4Xi, where

F4 is based on the fourth root ω4 = i. The result is:

D =

6 −2− 2i 2 −2 + 2i

√
3−1
2

+ 1+
√
3

2
i 0 −1+

√
3

2
+
√
3−1
2
i −1 +

√
3i

−1−
√

3i −1+
√
3

2
+ 1−

√
3

2
i 0

√
3−1
2
− 1+

√
3

2
i

 .

Step 5: Read out the transform in column major order. We finally obtain:

DFT12(x) =(
6,

√
3− 1

2
+

1 +
√

3

2
i,−1−

√
3i,−2− 2i, 0,−1 +

√
3

2
+

1−
√

3

2
i,

2,−1 +
√

3

2
+

√
3− 1

2
i, 0,−2 + 2i,−1 +

√
3i,

√
3− 1

2
− 1 +

√
3

2
i

)
.

2

3.2 Linear and Cyclic Convolution

Let a and b be two arbitrary vectors of n components. The linear convolution of a and b,

denoted w = a ? b, is a vector of 2n− 1 components such that, for 0 ≤ i ≤ 2n− 1,

wi =
min{i,n−1}∑

j=max{0,i−n+1}
ajbi−j, (3.1)

where the lower and upper bounds in the summation are chosen in such a way that the

indices j and i−j always range between 0 and n−1. Recall that wi is the i-th coefficient of

the polynomial of degree bound 2n which is obtained by multiplying the two polynomials

whose coefficient representations are a and b. By evaluating the polynomials on the 2n

2n-th roots of unity, pointwise-multiplying the values and interpolating from the resulting

point representation vector, we obtain the following theorem:

Theorem 3.1 (Linear Convolution Theorem) Let a and b be two arbitrary vectors of

n components, and let w = a ? b. Then

(w|01) = DFT−12n (DFT 2n(a|0n)�DFT 2n(b|0n)) ,

where � denotes component-wise product, and (x|0k) denotes the vector obtained by padding

4

vector x with k zeroes.

Theorem (3.1) gives us a way to compute w in Θ(n log n) time by applying the FFT

algorithm.

Let us now introduce a new vector operator. For a and b, vectors of n components, we

define the cyclic convolution (also called wrapped convolution) of a and b, denoted a�? b,

as a vector z of n components such that, for 0 ≤ i ≤ n− 1,

zi =
n−1∑
j=0

ajb(i−j) mod n. (3.2)

Note the similarity between (3.1) and (3.2). However, recall that if a and b have n com-

ponents, then a ? b has 2n− 1 components, while a�? b has only n components.

Cyclic convolution can be thought of as a “wrapped” version of linear convolution. To

see this, note that, for 0 ≤ i ≤ n− 1,

zi =
i∑

j=0

ajbi−j +
n−1∑
j=i+1

ajbn+i−j (3.3)

(note that the second summation evaluates to zero for i = n − 1). To obtain zi, we start

by multiplying, a0 by bi, then a1 by bi−1 . . . until we multiply ai by b0. Then, we proceed

by “wrapping around” vector b and multiplying ai+1 by bn−1, ai+2 by bn−2 and so forth.

Observe the multiplication pattern of the ai’s and the bj’s in cyclic convolution:

z0 = a0b0 + a1bn−1 + . . . + an−2b2 + an−1b1

z1 = a0b1 + a1b0 + . . . + an−2b3 + an−1b2
...

zi = a0bi + a1bi−1 + . . . + an−2bi+2 + an−1bi+1

...

zn−1 = a0bn−1 + a1bn−2 + . . . + an−2b1 + an−1b0

5

We can write the above system as z = C(b)× a, where

C(b) =

b0 bn−1 . . . b2 b1

b1 b0 . . . b3 b2...
... . . .

...
...

bi bi−1 . . . bi+2 bi+1...
... . . .

...
...

bn−1 bn−2 . . . b1 b0

Note that the columns of C(b) are obtained as consecutive cyclic right shifts of b. Matrix

C(b) is called a circulant matrix with first column b. A circulant matrix admits a very

compact representation, since the matrix is uniquely specified by its first column.

Note that computing w = a�? b according to the definition takes Θ(n2) time. However,

it turns out that we can use the FFT to compute cyclic convolutions in Θ(n log n) time.

We have:

Theorem 3.2 (Cyclic Convolution Theorem) Let a and b be two arbitrary vectors of

n components, and let z = a�? b. Then

z = DFT−1n (DFT n(a)�DFT n(b)) , (3.4)

where � denotes component-wise product.

Therefore, simply computing the DFT’s of a and b with no padding, multiplying their

components and then taking the inverse DFT gives us the cyclic convolution of a and b.

Proof: It suffices to show that DFTn(z) = DFT n(a)�DFT n(b). We have:

(DFTn(a))i =
n−1∑
j=0

ajω
ij
n and (DFTn(b))i =

n−1∑
k=0

bkω
ik
n ,

therefore

(DFTn(a))i · (DFTn(b))i =

n−1∑
j=0

ajω
ij
n

(n−1∑
k=0

bkω
ik
n

)
=

n−1∑
j=0

n−1∑
k=0

ajbkω
i(j+k)
n . (3.5)

On the other hand, from Equation (3.3) we have:

(DFTn(z))i =
n−1∑
p=0

 p∑
s=0

asbp−s +
n−1∑
s=p+1

asbn+p−s

ωipn

6

=
n−1∑
p=0

p∑
s=0

asbp−sω
ip
n +

n−1∑
p=0

n−1∑
s=p+1

asbn+p−sω
ip
n . (3.6)

Let us now show that, for any 0 ≤ i ≤ n − 1, Formulae (3.5) and (3.6) coincide. For this

purpose, it suffices to note that each term a`bm, with 0 ≤ `,m ≤ n− 1, appears only once

in (3.5), multiplied by ωi(`+m)
n . In (3.6), if ` + m < n, then a`bm appears only once in

the first double summation, for p = ` + m and s = `, and multiplied by ωipn = ωi(`+m)
n . If

`+m ≥ n, then a`bm appears only once in the second double summation, for p = `+m−n
and s = `, and multiplied by ωipn = ωi(`+m−n)n = ωi(`+m)

n ω−inn = ωi(`+m)
n . The theorem

follows. 2

The following are immediate corollaries of Theorems 3.1 and 3.2.

Corollary 3.1 Let a and b be two arbitrary vectors of n components. Then

(a ? b|01) = (a|0n)�? (b|0n).

Corollary 3.2 Let a and b be two arbitrary vectors of n components. Then

a�? b = b�? a = C(b)× a = C(a)× b

Corollary 3.1 gives us a way to compute w = a ? b through a cyclic convolution. In

what follows, we investigate the inverse relation: in particular, we will write z = a�? b as

a function of w.

Recall that

zi =
i∑

j=0

ajbi−j +
n−1∑
j=i+1

ajbn+i−j

= z1i + z2i , (3.7)

for 0 ≤ i ≤ n− 1. Note that z2n−1 = 0. By making the bounds in the summation explicit,

we can rewrite (3.1) as

wi =

∑i
j=0 ajbi−j, for 0 ≤ i ≤ n− 1,

∑n−1
j=i−n+1 ajbi−j, for n ≤ i ≤ 2n− 2.

(3.8)

From (3.7) and (3.8) it immediately follows that z1n−1 = wn−1, therefore zn−1 = wn−1. For

7

0 ≤ i ≤ n− 2 we have:

z1i = wi

z2i =
n−1∑
j=i+1

ajbn+i−j

=
n−1∑

j = (i + n)−
−n + 1

ajb(i+n)−j

= wi+n.

Therefore, for 0 ≤ i ≤ n− 2, zi = wi + wi+n.

3.3 Bluestein’s Technique

Let n ≥ 1 be an arbitrary integer (not necessarily a power of two). Given a complex vector

x = (x0, x1, . . . , xn−1), let y = DFTn(x), that is,

yi =
n−1∑
k=0

xkω
ik
n , for 0 ≤ i ≤ n− 1. (3.9)

Bluestein’s technique reduces the computation of y to a cyclic convolution between two

vectors of size m = Θ(n), with m a power of two, where the two vectors can be easily

determined in Θ(n) time. Observe that this reduction immediately yields an algorithm to

compute y = DFTn(x) in time Θ(n log n) through the Cyclic Convolution Theorem and

the FFT algorithm for vector sizes that are integer powers of two.

We proceed as follows. Let β be one of the two square roots of ωn (e.g., take the

root whose polar representation is eiπ/n)1. Since (i − k)2 = i2 + k2 − 2ik, we have that

ωikn = β2ik = βi
2
βk

2
β−(i−k)

2
, hence we can rewrite equation (3.9) as

yiβ
−i2 =

n−1∑
k=0

(
xkβ

k2
)
β−(i−k)

2

. (3.10)

Let us now define ak = xkβ
k2 and bk = β−k

2
, for 0 ≤ k ≤ n − 1. Also, let m =

1As an aside, it is important to observe that taking powers or roots in the complex field, is computa-
tionally very fast when complex numbers are given in polar representation. In particular, taking powers
or roots of numbers with unit modulus ρ = 1 amounts to perform simple arithmetic operations (products
or divisions) on the second coordinate θ.

8

2dlog2(2n−1)e. Observe that m is the smallest power of two greater or equal to 2n− 1, hence

2n− 1 ≤ m ≤ 2(2n− 1) ≤ 4n. We can define the following two vectors of size m:

a′ = (a0, a1, . . . , an−1|0m−n)

b′ = (b0, b1, . . . , bn−1|0m−(2n−1)|bn−1, . . . , b2, b1).

Let z = a′�? b′, and consider the first n components of z. For 0 ≤ i ≤ n− 1 we have:

zi =
m−1∑
k=0

[a′]k[b
′](i−k) mod m

=
n−1∑
k=0

ak[b
′](i−k) mod m (3.11)

=
i∑

k=0

akbi−k +
n−1∑
k=i+1

akbk−i (3.12)

=
i∑

k=0

xkβ
k2β−(i−k)

2

+
n−1∑
k=i+1

xkβ
k2β−(k−i)

2

=
n−1∑
k=0

xkβ
k2β−(i−k)

2

(3.13)

= yiβ
−i2 , (3.14)

where Equality (3.11) follows from the fact that [a′]k = ak for 0 ≤ k ≤ n−1, and [a′]k = 0

for n ≤ k ≤ m − 1; Equality (3.12) follows from the fact that [b′](i−k) mod m = b(i−k), if

0 ≤ i − k ≤ n − 1, and [b′](i−k) mod m = [b′]m+(i−k) = bk−i, if −(n − 1) ≤ i − k < 0;

Equality (3.13) holds since β−(k−i)
2

= β−(i−k)
2
, for any 0 ≤ i, k ≤ n − 1; and finally,

Equality (3.14) immediately follows from Equality (3.10).

Putting it all together, in order to compute y = DFTn(x), we first compute the vectors

a′ and b′ in O(n) time and then obtain their cyclic convolution z = a′�? b′. Observe that

this is a convolution between vectors of size m = Θ(n), a power of two, and can thus

be computed through the Cyclic Convolution Theorem and the FFT algorithm in time

Θ(n log n). Once we have zi = yiβ
−i2 , for 0 ≤ i ≤ n, we can finally compute y in

additional Θ(n) time as

yi = ziβ
i2 , for 0 ≤ i ≤ n− 1.

The overall time is still Θ(n log n).

9

3.4 Circulant Matrices

Given a vector a = (a0, a1, . . . , an−1), the circulant matrix C(a) is an n× n matrix whose

first column is a, while the remaining columns are obtained as consecutive cyclic right

shifts of a . In this subsection we design and analyze efficient algorithms for the following

problems:

(a) Determining the product of two circulant matrices.

(b) Determining a solution (if any) to the linear system C(a)x = b.

(c) Determining whether C(a) is invertible and, if so, computing its inverse.

Note that

C(a) =

a0 an−1 · · · a2 a1

a1 a0 · · · a3 a2
...

...
...

...
...

an−2 an−3 · · · a0 an−1

an−1 an−2 · · · a1 a0

,

therefore [C(a)]ij = a(i−j) mod n, for 0 ≤ i, j ≤ n− 1.

(a) Let C(a) and C(b) be two circulant matrices. By the definition of row-by-column

product we have, for 0 ≤ i, j ≤ n− 1,

[C(a)× C(b)]ij =
n−1∑
s=0

[C(a)]is[C(b)]sj

=
n−1∑
s=0

a(i−s) mod nb(s−j) mod n.

Let k = (i− s) mod n. Note that when s varies between 0 and n− 1, so does k. Moreover,

s = (i− k) mod n. By substituting s with k in the above summation we obtain:

[C(a)× C(b)]ij =
n−1∑
k=0

akb((i−k) mod n−j) mod n

=
n−1∑
k=0

akb((i−j) mod n−k) mod n

= (a�? b)(i−j) mod n.

10

This suffices to show that the product of C(a) and C(b) yields a circulant matrix C(z),

with z = a�? b. If circulant matrices are represented by storing only their first column,

then the representation of their product can be computed in O(n log n) time using the FFT

algorithm.

(b) Consider the system

C(a)× x = b, (3.15)

where a and b are arbitrary complex vectors and x is the vector of the unknowns. Observe

that

[C(a)× x]i =
n−1∑
k=0

a(i−k) mod nxk

= (a�? x)i.

Let Fn be the Fourier matrix of order n, and let A, X, B denote, respectively, Fna, Fnx

and Fnb. By the cyclic convolution theorem, System 3.15 is equivalent to the following

system

A�X = B,

where � denotes component-wise product. Note that such system consists of n equations,

one for each component of the (unknown) vector X. For 0 ≤ i ≤ n− 1, the i-th equation

is

AiXi = Bi, (3.16)

hence it contains the single unknown Xi. Therefore it immediately follows that

1. The system has one and only solution iff Ai 6= 0, for 0 ≤ i ≤ n− 1.

2. The system has no solution iff there exists an index i such that Ai = 0 and Bi 6= 0.

3. The system has infinite solutions iff for each index i such that Ai = 0, then Bi = 0,

and at least one such index exists.

By the equivalence of Systems 3.16 and 3.15, the above considerations also apply to our

original system. Note that A and B can be computed in O(n log n) time using the FFT

algorithm, and that the subsequent test (as specified in Points 1..3 above) can be performed

in additional O(n) time.

11

Consider the case when at least one solution exists and define X as

X i =

 Bi/Ai if Ai 6= 0

0 otherwise,

for 0 ≤ i ≤ n− 1. Then, a solution to System 3.15 can be computed in O(n log n) time as

x = F−1n X.

(c) By a well known theorem in linear algebra, C(a) is invertible if and only if the linear

system

C(a)x = b

has one and only solution x ∈ Cn, for any given vector b ∈ Cn. By the results in Part

(b), we can therefore conclude that C(a) is invertible if and only if Ai = (Fna)i 6= 0 for

0 ≤ i ≤ n − 1. Such condition can clearly be tested in O(n log n) time using the FFT

algorithm to compute A and a linear scan to test that Ai 6= 0, for 0 ≤ i ≤ n− 1.

Let us now prove that [C(a)]−1 is itself a circulant matrix. To see this, consider the

system

[C(a)]x = (1, 0, . . . , 0). (3.17)

Since C(a) is invertible, System (3.17) has one and only solution x such that

[C(a)]x = x�? a = (1, 0, . . . , 0).

Consider now the circulant matrix C (x). We have

C(a)× C (x) = C
(
a�? x

)
= C((1, 0, . . . , 0)) = In,

where In is the n× n identity matrix. Therefore

[C(a)]−1 = C (x)

by the uniqueness of the inverse matrix. As shown in Part (b), System (3.17) can be solved

in time O(n log n), therefore the inverse of C(a), can be computed within the same time.

12

3.5 Transforms of (n, k)-sparse vectors

Let n and k be powers of two, with 1 ≤ k ≤ n. We say that a vector x = (x0, x1, . . . , xn−1)

is (n, k)-sparse if xi = 0 for i mod k 6= 0, with 0 ≤ i ≤ n − 1. In this section, we design

and analyze an algorithm which, on input an (n, k)-sparse vector x, returns DFTn(x) in

O
(
n+ n

k
log n

k

)
time, where the cost model assigns unit time to arithmetic operations and

assignments between complex scalars.

We follow a approach different from the one seen in class (which used the Cooley-Tukey

algorithm to determine the structure of the transform of an (n, k)-sparse vector) and,

rather, modify the recursive FFT algorithm to suit the special structure of an (n, k)-sparse

vector. Let 1 < k ≤ n, and let x[0] = (x0, x2, . . . , xn−2) and x[1] = (x1, x3, . . . , xn−1) be the

two n/2-vectors containing, respectively, the even-indexed and odd-indexed components

of x. The immediate observation upon which we can base our algorithm is the following:

if x is (n, k)-sparse, then x[0] is (n/2, k/2)-sparse, while x[1] is the null vector. To see

this, observe that, for 0 ≤ i ≤ n/2 − 1, x
[0]
i = 0 for 2i mod k 6= 0, and the latter implies

that i mod (k/2) 6= 0, while x
[1]
i = x2i+1 = 0, since no odd index can be a multiple of

k > 1, a power of two. Recall that the FFT algorithm computes DFTn(x) by recursively

computing DFTn/2(x
[0]) and DFTn/2(x

[1]) and then performing another Θ(n) additional

operations. When invoked on an (n, k)-sparse vector with k > 1, the algorithm can save

one recursive call, since only DFTn/2(x
[0]) must be computed. Moreover the recombination

work becomes straightforward. When k = 1, there is no special structure of the vector and

the standard FFT algorithm is executed instead. The algorithm follows.

SPARSE FFT(x, k)
n← length(x)
if k = 1 then return FFT(x)
x[0] ← (x0, x2, . . . , xn−2)
y[0] ← SPARSE FFT(x[0], k/2)
for i← 0 to n/2− 1 do

yi ← y
[0]
i

yi+n/2 ← y
[0]
i

return y

Note that at each recursive step, y is obtained as the concatenation of y[0] with itself. It

follows that the DFTn of an (n, k)-sparse vector is the k-fold repetition of the DFTn/k of

the vector containing its n/k components of index ki, with i = 0, 1, n/k − 1.

The correctness of the above algorithm follows from the correctness of the FFT algo-

rithm and the observations made above. As for its running time, we can write the following

13

recurrence in n and k:

T (n, k) = T

(
n

2
,
k

2

)
+ n, n ≥ k > 1,

T (n, 1) = Θ(n log n).

By iterating the above recurrence we obtain:

T (n, k) = T

(
n

2
,
k

2

)
+ n

= T

(
n

4
,
k

4

)
+ n+

n

2
...

= T
(
n

k
, 1
)

+ n
log k−1∑
i=0

2−i

= O
(
n

k
log

n

k
+ n

)
.

As a last observation, observe that the work in the above recurrence is completely due to

assignments, while aroithmetic operations account for the work at the (single) leave. As

a consequence, if the cost model did not charge assignments, the running time (i.e., the

number of scalar complex arithmetic operations) would be Θ((n/k/ log(n/k)).

Exercise 3.2 The complex number ω = eiπ/4 =
√
2
2

+ i
√
2

2
is an 8-th principal root of unity

in the complex field.

(a) Compute ωi for i = 0, 1, 2, 3, 4, 5, 6, 7.

(b) Write the Fourier transform matrix F8 = [ωij] for i, j = 0, 1, . . . , 7.

(c) Write F−18 = (1/8)[ω−ij] for i, j = 0, 1, · · · , 7.

(d) Compute X = F8x, for x = (1, 0, 1,−1, 0, 0,−1, 1).

(e) Let x = (0, 0, 1, 0, 0, 0, 0, 0) and y = (0, 0, 0, 0, 1, 0, 0, 0). Compute the cyclic convo-

lution z = x�? y using the definition.

(f) Repeat (e) using the cyclic convolution theorem.

Answer:

14

(a) Let d =
√
2
2

. We have:

ω0 = 1 ω1 = (d+ di)
ω2 = (d+ di)2 = d2 + 21

2
i− d2 = i

ω3 = ω2(d+ di) = di+ di2 = −d+ di
ω4 = ω3(d+ di) = −d2 + (di)2 = −1
ω5 = ω4(d+ di) = −d− di
ω6 = ω5(d+ di) =−d2 − 2d2i−

−(di)2 = −i
ω7 = ω6(d+ di) = −di− di2 = d− di

-ω0 = ω8
�
�
�
���
ω16

ω2

@
@

@
@@I

ω3

�ω4

�
�

�
��	

ω5

?
ω6

@
@
@
@@R
ω7

6

Imaginary

- Real

For higher powers ωr with r > 7, recall that ωr = ωr mod 8.

(b)

F8 =

ω0 ω0 ω0 ω0 ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7

ω0 ω2 ω4 ω6 ω8 ω10 ω12 ω14

ω0 ω3 ω6 ω9 ω12 ω15 ω18 ω21

ω0 ω4 ω8 ω12 ω16 ω20 ω24 ω28

ω0 ω5 ω10 ω15 ω20 ω25 ω30 ω35

ω0 ω6 ω12 ω18 ω24 ω30 ω36 ω42

ω0 ω7 ω14 ω21 ω28 ω35 ω42 ω49

=

1 1 1 1 1 1 1 1
1 (d+ di) i (−d+ di) −1 (−d− di) −i (d− di)
1 i −1 −i 1 i −1 −i
1 (−d+ di) −i (d+ di) −1 (d− di) i (−d− di)
1 −1 1 −1 1 −1 1 −1
1 −(d− di) i (d− di) −1 (d+ di) −i (−d+ di)
1 −i −1 i 1 −i −1 i
1 (d− di) −i (−d− di) −1 (−d+ di) i (d+ di)

15

(c)

F−18 =
1

8

ω−0 ω−0 ω−0 ω−0 ω−0 ω−0 ω−0 ω−0

ω−0 ω−1 ω−2 ω−3 ω−4 ω−5 ω−6 ω−7

ω−0 ω−2 ω−4 ω−6 ω−8 ω−10 ω−12 ω−14

ω−0 ω−3 ω−6 ω−9 ω−12 ω−15 ω−18 ω−21

ω−0 ω−4 ω−8 ω−12 ω−16 ω−20 ω−24 ω−28

ω−0 ω−5 ω−10 ω−15 ω−20 ω−25 ω−30 ω−35

ω−0 ω−6 ω−12 ω−18 ω−24 ω−30 ω−36 ω−42

ω−0 ω−7 ω−14 ω−21 ω−28 ω−35 ω−42 ω−49

=
1

8

1 1 1 1 1 1 1 1
1 (d− di) −i (−d− di) −1 (−d+ di) i (d+ di)
1 −i −1 i 1 −i −1 i
1 (−d− di) i (d− di) −1 (d+ di) −i (−d+ di)
1 −1 1 −1 1 −1 1 −1
1 −(d− di) −i (d+ di) −1 (d− di) i (−d− di)
1 i −1 −i 1 i −1 −i
1 (d+ di) i (−d+ di) −1 (−d− di) −i (d− di)

(d)

X = F8 · x = F8 ·

1

0

1

−1

0

0

−1

1

=

1 + 0 + 1− 1 + 0 + 0− 1 + 1

1 + 0 + i− (−d+ di) + 0 + 0− (−i) + (d− di)
1 + 0 + (−1)− (−i) + 0 + 0− (−1) + (−i)
1 + 0 + (−i)− (d+ di) + 0 + 0− i+ (−d− di)
1 + 0 + 1− (−1) + 0 + 0− 1 + (−1)

1 + 0 + i− (d− di) + 0 + 0− (−i) + (−d+ di)

1 + 0 + (−1)− i+ 0 + 0− (−1) + i

1 + 0 + (−i)− (−d− di) + 0 + 0− i+ (d+ di)

=

1

(1 + 2d) + (2− 2d)i

1

(1− 2d) + (−2− 2d)i

1

(1− 2d) + (2 + 2d)i

1

(1 + 2d) + (−2 + 2d)i

16

(e) Let n = 8. Since only x2 and y4 are nonzero, the only way xly(i−l) mod n can be nonzero

is when l = 2 and i = 6 (we get the value of l directly; for i, from (i − l) mod n = 4, we

get (i − 2) mod n = 4, which implies i = 6). Thus, z6 = x2y4 = 1, while all the other zi’s

are zero.

(f) First, we note that, since x and y have only one nonzero element each, and that the

element is a 1, F8x is column 2 of F8 and F8y is column 4 of F8. Now, from the definition

of F8, we know that [F8]ij = ωi·j; thus, the i-th element of F8x · F8y is ωi·2+i·4 = ωi·6. But

this is exactly column 6 of F8! Therefore, multiplying F−18 by F8x · F8y we obtain the

column 6 of the identity matrix, namely (0 0 0 0 0 0 1 0), exactly the answer in Part (e). 2

Exercise 3.3 Consider the linear convolution u ? x, where both sequences have length

n and u = (1, 1, . . . , 1). Design an algorithm that performs the above operation in time

O(n).

Answer: Let w = u ? x. Recall that w has 2n− 1 components and that

wi =
min{n−1,i}∑

j=max{0,i−n+1}
ujxi−j

=

∑i
j=0 xj if 0 ≤ i ≤ n− 1,

∑n−1
j=i−n+1 xj if n ≤ i ≤ 2n− 2.

(3.18)

From (3.18) we can easily derive the following two recurrences. w0 = x0

wi = wi−1 + xi, 1 ≤ i ≤ n− 1.

 w2n−2 = xn−1

w2n−2−i = w2n−2−i+1 + xn−1−i, n− 1 ≥ i ≥ 1.

(Note that both recurrences compute wn−1). The algorithm is the following:

UNIT LIN CONV(x)
n← length(x)
z0 ← x0
z2n−2 ← xn−1
for i← 1 to n− 1 do

zi ← zi−1 + xi
z2n−2−i ← z2n−2−i+1 + xn−1−i

return z

The program performs exactly 2n− 2 additions and therefore runs in linear time. 2

17

Exercise 3.4 Let n = pq. Let x = (x0, x1, . . . , xn−1) be a periodic sequence of period q,

that is, xi+q = xi, for i = 0, 1, . . . , n − 1 − q. Let X = (X0, X1, . . . , Xn−1) = Fx. Prove

that Xk = 0 unless k is a multiple of p. (Hint: base your argument on the Cooley-Tukey

algorithm introduced in Section 3.1).

Exercise 3.5 Consider the following equation system

x�? x = b,

where x = (x0, x1, . . . , xn−1) is a vector of complex unknowns and b = (b0, b1, . . . , bn−1) is

a given vector of complex numbers.

(a) How many solutions has the system? In case the number of solutions is a function

of b, derive this function.

(b) Give an O(n log n) algorithm that, on input b, outputs one solution to the system,

if one exists.

Exercise 3.6 The complex number ω3 = −1/2 + i
√

3/2 is the principal third root of the

unity in the complex field.

(a) Evaluate ωi3 for i = 0, 1, 2, 3, 4.

(b) Write the Fourier matrix F3.

(c) Write F−13

(d) Let x = (0, 1, 2). Let y be the cyclic convolution of 8 vectors all equal to x.

Compute y.

Exercise 3.7 Let (X0, X1, . . . , Xn−1) = DFTn(x0, x1, . . . , xn−1). Consider now the vector

(Y0, Y1, . . . , Y2n−1) = DFT2n(x0, 0, x1, 0, . . . , xn−1, 0). Write the Yk’s as a function of the

Xi’s.

Exercise 3.8 Let m and n be two integers, with m � n a multiple of n. Describe and

analyze an algorithm to multiply the two polynomials p(x) = am−1x
m−1 + am−2x

m−2 +

· · ·+ a0 and q(x) = bn−1x
n−1 + bn−2x

n−2 + · · ·+ b0 in time O(m log n).

18

