
Chapter 2

Algorithms for Integer Arithmetic

We will develop efficient algorithms for the main operations on nonnegative integers, start-

ing from the simple primitives of addition, subtraction, and multiplication by a power of

two and finally dealing with the more complex case of integer multiplication, for which we

will develop a divide-and-conquer algorithm which is faster than the elementary algorithm

based on sum of partial products.

We consider a nonnegative integer A as being represented by the string of bits forming

its binary representation:

A = an−1an−2 . . . a0,

with ai ∈ {0, 1}, for 0 ≤ i < n. For convenience, in the algorithms we will often assume

that bits at positions ≥ n are also defined, and conventionally set them to zero (i.e., ai = 0

for i ≥ n). For what concerns the implementation of basic integer operations, a natural

measure of the instance size is the number of bits needed to represent a single input, or, in

case of a fixed number of inputs, the number of bits needed to represent the largest one.

Finally, when computing the running time of an algorithm, we will assign unit cost to each

occurrence of a logical operator between bits: ∧ (and), ∨ (or), ¬ (not), and ⊕ (xor). We

will disregard the cost of all other instructions. Observe that in a more realistic cost model

with might want to assign unit cost to other basic instructions such as, for instance, bit

assignments.

2.1 Integer Addition

Le A = an−1an−2 . . . a0 and B = bm−1bm−2 . . . b0 be the two integers to be summed, and

assume that n ≥ m. Moreover, let S = A + B, with S = snsn−1 . . . s0 (observe that the

1



result of a sum may be one bit longer that the largest of the two operands).

An optimal, linear time summation algorithm can be obtained by simply implementing

the well-known elementary algorithm based on carry propagation. Recall that such algo-

rithm obtains each bit si of S, for 0 ≤ i < n, as a boolean function of three bits: ai, bi and

ci, where the latter bit represents the carry generated in position i, with c0 = 0 and ci+1

itself a function of ai, bi and ci. A simple logical synthesis by means of Karnaugh maps

suffices to determine the following analytic description for these two functions:


ci = 0 for i = 0,

si = ai ⊕ bi ⊕ ci for 0 ≤ i < n,

ci+1 = (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci) for 0 ≤ i < n,

si = ci for i = n.

The algorithm follows immediately from the above discussion:

SUM(A, B)
n← MAX(length(A), length(B))
c← 0
for i← 0 to n− 1 do

si ← ai xor bi xor c
c← (ai and bi) or (ai and c) or (bi and c)

sn ← c
return S

Observe that in the algorithm we have used a single bit-variable c, which iteratively stores

the carries are generated in sequence. The running time of the resulting algorithm is easily

established by observing that there are n iterations, and that in each iteration we execute

7 logical bit operations for a total running time

TSUM(n) = 7n ∈ Θ (n)

which is clearly optimal.

2.2 Integer Subtraction

Le A = an−1an−2 . . . a0 and B = bm−1bm−2 . . . b0 be, respectively, the minuend and the

subtrahend of the subtraction to be performed, that is, S = A − B. Observe that we are

working with nonnegative integers, therefore we assume that A ≥ B, which in turn implies

2



that n ≥ m. Observe that, unlike the case of addition, S cannot contain more than n

significant bits.

An optimal, linear time subtraction algorithm can be obtained by simply implementing

the well-known elementary algorithm based on borrowing. Recall that such algorithm

obtains each bit si of S, for 0 ≤ i < n, as a boolean function of three bits: ai, bi and pi,

where the latter bit represents the borrow generated in position i, with p0 = 0 and pi+1

itself a function of ai, bi and pi. A simple logical synthesis by means of Karnaugh maps

suffices to determine the following analytic description for these two functions:


pi = 0 for i = 0,

si = ai ⊕ bi ⊕ pi for 0 ≤ i < n,

pi+1 = (¬ai ∧ bi) ∨ (¬ai ∧ pi) ∨ (bi ∧ pi) for 0 ≤ i < n.

(Observe the symmetry with addition.) The algorithm follows immediately from the above

discussion:

SUB(A, B)
n← length(A)
p← 0
for i← 0 to n− 1 do

si ← ai xor bi xor p
p← ((not ai) and bi) or ((not ai) and p) or (bi and p)

return S

As for SUM, the running time of SUB is immediately established. We have:

TSUB(n) = 9n ∈ Θ (n)

which is, again, optimal.

2.3 Multiplication by a power of two

When working with binary numbers it is well known that multiplication by a power of

two, P = A · 2k, is a simple operation, since the representation of P is simply obtained by

shifting the representation of A by k positions to the left and setting the k least significant

bits to zero. Let A = an−1an−2 . . . a0. Formally,

P = A2k = 2k
n−1∑
i=0

ai2
i

3



=
n−1∑
i=0

ai2
i+k

=

(
k−1∑
i=0

0 · 2i

)
+

(
n+k−1∑

i=k

ai−k · 2i

)

=
n+k−1∑

i=0

pi · 2i,

where, in the last formula, pi = 0 for 0 ≤ i < k, and pi = ai−k for k ≤ i < n + k. A simple

algorithm implementing this operation follows.

SHIFT(A, k)
n← length(A)
for i← 0 to k − 1 do

pi ← 0
for i← k to n + k − 1 do

pi ← ai−k

return P

Observe that under our cost model, the above algorithm has null complexity (which is

clearly optimal!). This is justifiable in actual machines, where shifts are performed much

more quickly than arithmetic/logic operations. In a model where bit assignments cost unit

time, however, the running time would become O (n + k), which is linear in the size of the

output, hence still optimal.

2.4 Integer Multiplication

We have finally come to the most complex operation of our basic suite for integer arithmetic:

general multiplication. We will first examine the elementary algorithm, whose quadratic

complexity is however rather far from optimal. Then, we discuss a simple divide-and-

conquer approach which does not yield a faster algorithm. Improving the inefficient divide-

and-conquer algorithm, using a trick devised by the Russian mathematician Karatsuba,

we finally succeed in reducing the asymptotic complexity to O
(
nlog2 3

)
= O (n1.58...). In

what follows, we assume that the numbers being multiplied have the same size. Minor

modifications are sufficient to deal with the more general case.

2.4.1 Elementary algorithm

As we did for addition and subtraction, let us start with the familiar elementary algorithm

for multiplication, which basically obtains the product P of two integers A = an−1an−2 . . . a0

4



and B = bn−1bn−2 . . . b0 by summing a number of partial products. More specifically, for

each “set bit” bi = 1 of the multiplicator B, we sum a partial product obtained by shifting

the multiplicand A by i positions to the left. The correctness of the above approach is

based on the following simple derivation:

P = AB = A
n−1∑
i=0

bi2
i

=
n−1∑
i=0

bi(A · 2i)

=
∑

{i:bi=1}
SHIFT(A, i).

The algorithm follows.

MUL(A, B)
n← length(B)
P ← 0
for i← 0 to n− 1 do

if bi = 1 then P ← SUM(P, SHIFT(A, i))
return P

Let us now evaluate the running time of the algorithm. Observe that in the iteration of

index i of the for loop, we perform an addition between two numbers of at most n + i bits

(this property can be easily proved by induction on i: we leave it to the reader). Therefore,

the ith iteration has cost TSUM(n + i) = 7(n + i), in the worst case. The total cost of the

algorithm is therefore

TMUL(n) =
n−1∑
i=0

7(n + i)

= 7n2 + 7n(n− 1)/2

= Θ
(
n2
)
.

We have obtained a quadratic algorithm! Since we are far from the natural linear lower-

bound on integer multiplication, we will now examine alternative strategies with the hope

of obtaining a better algorithm.

5



2.4.2 A simple divide-and-conquer approach

In what follows, we make the simplyfing assumption that n is a power of two. Let A =

an−1an−2 . . . a0 and B = bn−1bn−2 . . . b0 be the numbers that have to be multiplied. Split

in half the two representations as follows:

A = an−1 . . . an/2︸ ︷︷ ︸
A1

an/2−1 . . . a0︸ ︷︷ ︸
A0

and B = bn−1 . . . bn/2︸ ︷︷ ︸
B1

bn/2−1 . . . b0︸ ︷︷ ︸
B0

.

Consider now the four halfs A1, A0, B1, B0 as four integers whose representation is

A1 =
n/2−1∑

i=0

ai+n/22
i, A0 =

n/2−1∑
i=0

ai2
i, B1 =

n/2−1∑
i=0

bi+n/22
i, B0 =

n/2−1∑
i=0

bi2
i. (2.1)

Observe that

A =
n−1∑
i=0

ai2
i

=
n/2−1∑

i=0

ai2
i +

n−1∑
i=n/2

ai2
i

= A0 + 2n/2
n/2−1∑
j=0

aj+n/22
j

= A0 + 2n/2A1,

where the third passage is easily obtained by substituting j = i − n/2 as the index of

the second summation. Clearly, a similar derivation can be made for B. Observe that

we have expressed an n-bit number as a linear combination of the two n/2-bit numbers

corresponding to its two halves. This is crucial in setting up a recursive strategy. Indeed,

we have that

P = AB = (A0 + 2n/2A1)(B0 + 2n/2B1)

= A0B0 + 2n/2(A0B1 + A1B0) + 2nA1B1, (2.2)

therefore we can obtain P by a simple combination (based on sums and shifts) of the four

subproducts of the n/2-bit halves defined in Equation 2.1, and these subproducts can be

obtained recursively. As for the base case, observe that when n = 1 numbers A and B are

simply the bits a0 and b0, hence their product is ao ∧ b0. The algorithm follows.

6



RMUL(A, B)
n← length(A)
if n = 1

then return (a0 and b0)
A1 ← an−1 . . . an/2 A0 ← an/2−1 . . . a0

B1 ← bn−1 . . . bn/2 B0 ← bn/2−1 . . . b0

P00 ← RMUL(A0, B0) P01 ← RMUL(A0, B1)
P10 ← RMUL(A1, B0) P11 ← RMUL(A1, B1)
P01 ← SHIFT(SUM(P01, P10), n/2)
P11 ← SHIFT(P11, n)
return SUM(SUM(P00, P01), P11)

The correctness of RMUL follows immediately from induction and the decomposition of

Equation 2.2. Since the conquer phase consists of a constant number of calls to the SUM

and SHIFT subroutines on numbers whose size is at most 2n, and we execute four recursive

calls of size n/2, the running time obeys to the following recurrence:

TRMUL(n) =

 1 n = 1,

4TRMUL(n/2) + cn n > 1.
(2.3)

where c is a given constant (depending on the calls to SUM in the conquer). Since cn =

O
(
nlog2 4

)
, by appliying the Master Theorem (case 1) we obtain

TRMUL(n) = Θ
(
n2
)
.

Clearly, the new algorithm does not improve upon the running time of the elementary one.

In fact, in practice algorithm MUL is definitively preferable to RMUL, since there is no

overhead due to recursion. However, in the next subsection we will start from the recursive

framework which lead to RMUL and modify it cleverly to obtain a faster multiplication

algorithm.

2.4.3 Karatsuba’s Algorithm

In order to build an intuition on possible ways of improving RMUL, let us have a closer

look at its recurrence, specified in Equation 2.3. Since the recurrence falls in Case 1 of the

Master Theorem, it means that it is the large number of recursive calls that dominates the

running time, rather than the cost of the conquer phase. In other words, if we are able to

bring down the number of recursive calls, even at the expense of increasing the time for

the conquer phase, we will obtain a better algorithm.

7



Karatsuba’s algorithm implements the above intuition by bringing down the number

of recursive calls down to three, at the expense of performing more work in the divide and

conquer phases of the algorithm. The combined cost of the divide and conquer phases

remains linear but exhibits a rather larger constant than the one associated to algorithm

RMUL.

Karatsuba’s way of decomposing P = AB into a linear combination of smaller prod-

ucts is the following. Let A1, A0, B1, B0 be the four numbers obtained by halving the

representation of A and B, as illustrated in Equation 2.1, and consider the following three

products:

U = (A0 + A1) · (B0 + B1) V = A1B1 W = A0B0

Observe that while V and W appeared as subproducts in Equation 2.2, U is a new sub-

product obtained by multiplying the sums of the two halves of each operand. The crucial

idea behind the algorithm is the following: we can obtain the same decomposition of Equa-

tion 2.2 as a linear combination of subproducts U , V , W . To this aim, it is sufficient to

observe that

U − V −W = (A0 + A1) · (B0 + B1)− A1B1 − A0B0

= A0B1 + A1B0

hence

P = AB = A0B0 + 2n/2(A0B1 + A1B0) + 2nA1B1

= W + 2n/2(U − V −W ) + 2nV (2.4)

Note that the conquer phase implied by Equation 2.4 performs a constant number of sums

and subtractions on operands of linear size, hence its total cost is still linear (with a higher

constant than before).

Before writing the code of the new algorithm, let us make sure that we have obtained

a better algorithm and that there are no “hidden” problems with the above approach. At

a first glance, everything seems to work: by keeping the same base case of RMUL, the

running time of an algorithm implementing the above approach seems to comply with the

recurrence:

T (n) =

 1 n = 1,

3T (n/2) + kn n > 1,

where k is a constant depending on the sums and subtractions executed both in the divide

8



and in the conquer phase of the algorithm. By the Master Theorem, the recurrence would

yield a running time T (n) = Θ
(
nlog2 3

)
= Θ (n1.584...) which is asymptotically much better

than Θ (n2). However, there are two minor problems that have to be fixed, in order to

obtain a working algorithm:

1. Recall that the sum of two numbers of n/2 bits may yield a result with n/2 + 1

significant bits: this implies that, even if we start with operands whose size is a

power of two, we generate subinstances whose size is not necessarly a power of two.

In turn, this implies that we end up generating instances of different sizes. Consider,

for instance, the case n = 8: we generate an instance of size 8/2+1 = 5 (to obtain U)

and two instances of size 8/2 = 4 (for V and W ). In turn, the instance of size 5 would

generate an instance of size d5/2e+ 1 = 4 (U), an instance of size d5/2e = 3 and an

instance of size b5/2c = 2 (V and W ). In general, the size of the three instances, in

the worst case, is dn/2e+ 1, dn/2e and bn/2c. Finally, note that Equation 2.2 must

be re-written to account for odd values of n. By letting A0 and B0 be of size bn/2c
we obtain:

P = AB = A0B0 + 2bn/2c(A0B1 + A1B0) + 22bn/2cA1B1,

= W + 2bn/2c(U − V −W ) + 22bn/2cV (2.5)

2. Because of these new instance sizes, the divide phase may fail to generate subinstances

whose size is strictly smaller than the size of the input instance: indeed, for n ≤ 3 we

have dn/2e+1 ≥ n. In order to fix this problem, we have to increase the value n0 for

which the base case applies, and solve the instances of size at most n0 nonrecursively,

for instance using algorithm MUL. Clearly, it suffices to choose n0 = 3.

We are now ready to give the code for Karatsuba’s algorithm:

KMUL(A, B)
n← length(A)
if n ≤ 3

then return MUL(A, B)
A1 ← an−1 . . . abn/2c A0 ← abn/2c−1 . . . a0

B1 ← bn−1 . . . bbn/2c B0 ← bbn/2c−1 . . . b0

Ā← SUM(A1, A0)
B̄ ← SUM(B1, B0)
U ← KMUL(Ā, B̄) V ← KMUL(A1, B1) W ← KMUL(A0, B0)
U ← SHIFT(SUB(U, SUM(V, W )), bn/2c)
V ← SHIFT(V, 2bn/2c)
return SUM(SUM(U, V ), W )

9



The correctness of KMUL follows from induction and from the considerations made above.

Indeed, in the base case n ≤ 3 KMUL is correct since algorithm MUL is correct. For

n > 3, the divide phase correctly generates instances of size smaller than n, while the

conquer phase performs the merge correctly as prescribed by Equation 2.5.

The running time of the above algorithm obeys the following recurrence:

TKMUL(n) =

 k1 n ≤ 3,

TKMUL(dn/2e+ 1) + TKMUL(dn/2e) + TKMUL(bn/2c) + k2n n > 3,

were k1 and k2 are two constants. Note that this recurrence is nonstandard and cannot

be handled by the Master Theorem. As a simple consequence of the Master Theorem,

however, we obtain the lower bound TKMUL(n) = Ω
(
nlog2 3

)
(we leave the proof to the

reader). To obtain a matching upper bound, consider the recursion tree associated to the

recurrence. The tree is ternary but, unfortunately, it is not necessarily complete and the

sizes of the subinstances at a given level are not all the same. However, we can easily prove

by induction that the maximum subinstance size s` at level ` ≥ 0 of the tree satisfies the

inequality s` ≤ n/2` + 3. The base case ` = 0 is trivial, since the size of the instance at

the root is n ≤ n + 3. If the bound holds at level `− 1, at level ` we have:

s` ≤ ds`−1/2e+ 1

≤ (s`−1 + 1)/2 + 1

≤ (n/2`−1 + 3 + 1)/2 + 1

= n/2` + 3.

The above bound also helps us bound the number of levels in the tree, since sdlog2 ne ≤ 4.

This is all we need to obtain an upper bound, since the real recursion tree surely yields a

smaller time than a complete, ternary tree with all the leaves at level dlog2 ne + 1, where

the size of the 3` instances at level ` ≤ dlog2 ne is s`, and contributes time k2s`, while

leaves at level dlog2 ne+ 1 contribute time k1 . Putting it all together, we obtain:

TKMUL(n) ≤
dlog2 ne∑

`=0

3`k2s`︸ ︷︷ ︸
internal nodes

+ 3dlog2 ne+1k1︸ ︷︷ ︸
leaves

≤
dlog2 ne∑

`=0

3`k2(n/2` + 3) + k13
log2 n+2

≤ ((9/2)k2 + (27/2)k2 + 9k1)n
log2 3

10



= 9(2k2 + k1)n
log2 3

= O
(
nlog2 3

)
.

We have shown that TKMUL(n) is both Ω
(
nlog2 3

)
and O

(
nlog2 3

)
, hence it follows that

TKMUL(n) = Θ
(
nlog2 3

)
.

Although asymptotically faster, the large constants hidden in the running time of al-

gorithm KMUL make it superior to algorithm MUL only for relatively large integers. This

situation is even worse in practice, since it is much more complex to obtain a good im-

plementation of recursive KMUL than iterative MUL. However, nowadays cryptographic

applications require extremely large integers whose representation is often thousands of

bits long. For such applications, a clever implementation of KMUL outperforms MUL.

Karatsuba’s algorithm is not the fastest algorithm known for integer multiplication.

A more complex algorithm due to Swiss scientists Schönhage and Strassen, based on a

sophisticated application of the Fast Fourier Transform, attains an O (n log n log log n)

running time. As for Karatsuba, the Schönhage-Strassen algorithm features large constants

in the running time, hence its application is again limited to very large instances.

11


