
Chapter 1

Formal Specification of

Computational Problems

Problem

A computational problem Π is a relation between a set I (the set of instances) and a set S
(the set of solutions). Algebraically, we have

Π ⊆ I × S.

As an additional constraint, we require that for any instance i ∈ I there is at least one

solution s ∈ S such that (i, s) ∈ Π. We say that s is a solution to instance i of problem Π.

Note: For a single i ∈ I there could be two distinct solutions s1, s2 ∈ S such that

(i, s1) ∈ Π and (i, s2) ∈ Π. In general, there can be several solutions to the same problem

instance.

Examples

Integer Sum Let Z denote the set of all integers. Then

I = Z × Z;

S = Z;

Π ⊆ I × S = (Z × Z)× Z

= {((a, b), c) : a, b, c ∈ Z and c = a + b}.

1

Graph Reachability A directed graph is a pair G = (V, E), with V ⊆ Z+ and E ⊆
V × V . V is the set of nodes of G, while E is the set of edges. A path in G is a sequence

π = 〈v1, v2, . . . , vk〉, k ≥ 1, with vi ∈ V , 1 ≤ i ≤ k and (vj, vj+1) ∈ E, 1 ≤ j < k. Our

problem can be defined as follows:

I =
{
〈G = (V, E), u, v〉 : V ⊆ Z+, E ⊆ V × V and u, v ∈ V

}
;

S =
{
〈v1, v2, . . . , vk〉 : k ≥ 1, vi ∈ Z+, 1 ≤ i ≤ k

}
∪ {ε};

Π = {(〈G, u, v〉, π) : π = 〈v1, v2, . . . , vk〉 is a path in G with v1 = u and vk = v}
∪ {(〈G, u, v〉, ε) : there is no path π in G from u to v} .

Size of a problem instance

The size of an instance is a reasonable measure of “how large” the instance is. The concept

of size can not be made completely formal and depends on the particular problem being

studied. For example, for Integer Sum, we can use the number of bits of the binary

representation of the two integers as the size of the instance; for Graph Reachability, the

most natural measure for the size of an instance is |V | + |E|; for Sorting it is natural to

take the number of items to be sorted as the size of the instance.

Algorithm

An algorithm is a well-defined, deterministic computational procedure that transforms a

given input into a unique output through a finite sequence of basic steps. Therefore, an

algorithm computes a function whose domain is the set of inputs and whose values are the

ouputs. An algorithm can be specified once we agree on a computational model, that is, an

abstraction of a computing device characterized by a rigorously defined set of basic steps.

A popular model of computation is the Random Access Machine (RAM), an abstraction

of a traditional, sequential computer and its instruction set.

Each basic step of the computational model can be associated with a cost. The running

time of an algorithm on a particular input is the global cost of the basic steps executed by

the algorithm on that input. To ease the analysis of the running time of an algorithm for a

particular problem, it is customary to identify a subset of “crucial” basic steps, which are

given unit cost, while the remaining basic steps are neglected by assigning them zero cost.

Particular care must be exercised in selecting the “crucial” steps, in particular, selection

must encompass all those steps whose number is roughly equal to the total number of steps

2

executed. When in doubt, it is advisable to assign unit cost to all steps. As an example,

the running time of a sorting algorithm is often evaluated by assigning unit cost uniquely

to comparison steps.

We say that an algorithm A solves a problem Π ⊆ I × S if and only if A computes a

function fA satisfying the following properties:

(a) domain(fA) ⊇ I;

(b) ∀i ∈ I : (i, fA(i)) ∈ Π.

Note: An algorithm associates a single solution to any problem instance, even when

multiple solutions exist.

Example

Consider the following “toy” problem:

I = {1, 2, 3};
S = {a, b, c, d};
Π = {(1, a), (1, b), (2, c), (3, d)}.

The following is an algorithm for Π.

AΠ(x)
if x = 1 then return a
if x = 2 then return c
if x = 3 then return d

else return f

Algorithm AΠ satisfies both Properties (a) and (b), therefore AΠ solves Π. Note that

AΠ does something more, since it returns f for any value of x different from 1, 2, or 3.

Therefore AΠ also solves Π′ = I ′×S ′, with I ′ = {i : i ≥ 4} and S ′ = {f}. This shows that

a single algorithm may solve more than one problem. In contrast, there may exist many

algorithms solving the same problem.

Exercise 1.1 We say that two algorithms A1 and A2 are functionally distinct if the

functions fA1 and fA2 , respectively computed by the two algorithms, differ on at least one

input x ∈ I.

3

(a) How many functionally distinct algorithms may exist for the Integer Sum problem

seen in class?

(b) How many for the Graph Reachability problem seen in class?

Please, justify your answers.

Answer:

(a) No two functionally distinct algorithms may exist for Integer Sum, since there is a

unique solution for any instance.

(b) For Graph Reachability , there are infinitely many mutually distinct algorithms, since

there are infinitely many instances that admit more than one solution.

2

Exercise 1.2 Let U be a finite set. Given two arbitrary subsets of U , A, B ⊆ U , consider

the problem of returning an element u ∈ A∩B, if A∩B 6= ∅, or returning ε if A∩B = ∅.
Cast this as a computational problem by specifying

(a) the set of instances I;

(b) the set of solutions S;

(c) the appropriate relation Π.

Answer:

(a) Let F(U) be the family of all subsets of U . Then I = F(U)×F(U).

(b) S = U ∪ {ε} (note that we are assuming that ε 6∈ U .)

(c) Given (A, B) ∈ I and y ∈ S we have:

(A, B) Π y ⇐⇒ (y ∈ A ∩B) or [(A ∩B = ∅) and (y = ε)] .

2

Exercise 1.3 Intuitively, the merging problem consists in combining two sorted sequences

(x1, x2, . . . , xm) and (xm+1, xm+2, . . . , xn) into one sorted sequence (y1, y2, . . . , yn).

4

(a) Formally specify the sets I and S and the relation Π ⊆ I × S for the merging

problem.

(b) Give a reasonable measure for the size of an instance i ∈ I.

Answer:

(a) Let U be a totally ordered universe set, and let SS be the set of Sorted Sequences of

elements of U , i.e.

SS = {(a1, a2, . . . , ak) ∈ Uk : a1 ≤ a2 ≤ . . . ≤ ak, k ∈ Z+}.

Then, I = SS × SS and S = SS. Problem Π ∈ I × S is specified as:

(((x1, x2, . . . , xm), (xm+1, xm+2, . . . , xn)) , (y1, y2, . . . , yn)) ∈ Π

iff the two multisets (i.e., sets with possibly repeated elements)

{x1, x2, . . . , xm, xm+1, xm+2, . . . , xn} and {y1, y2, . . . , yn}

are equal.

(b) Given ((x1, x2, . . . , xm), (xm+1, xm+2, . . . , xn)) ∈ I as input, n is the most natural

measure of the input size.

2

Exercise 1.4 Give a formal characterization of the problem of sorting an arbitrary se-

quence of integers.

Exercise 1.5 Give a formal characterization of the following problem. Given a sequence

of integers (x1, x2, . . . , xn), determine whether there exist indices i, j, with 1 ≤ i 6= j ≤ n,

such that xi = xj.

5

