
Chapter 5

Dynamic Programming

Exercise 5.1 Write an algorithm to find the maximum value that can be obtained by an

appropriate placement of parentheses in the expression

x1/x2/x3/ . . . xn−1/xn,

where x1, x2, . . . , xn are positive rational numbers and “/” denotes division.

Answer: For 1 ≤ i ≤ j ≤ n, denote by Xi...j the subexpression xi/xi+1/ . . . /xj. Given a

full parenthesization P1...n of X1...n, let its cost c(P1...n) be the value obtained by performing

the division according to the order dictated by the parentheses. An optimal parenthesiza-

tion of X1...n is one that maximizes the above cost function.

Any full parenthesization P1...n of X1...n contains, at the outer level, parenthesizations

P1...k and Pk+1...n of the subsequences X1...k and Xk+1...n for a given value k, 1 ≤ k ≤ n−1.

Moreover, this property holds recursively for P1...k and Pk+1...n. The relation among the

costs of the above parenthesizations is the following:

c(P1...n) =
c(P1...k)

c(Pk+1...n)
.

The key observation upon which we will base our algorithm is that any maximizing (resp.,

minimizing) parenthesization P1...n must be formed by a parenthesization P1...k that max-

imizes (resp., minimizes) c for the string X1...k, and a parenthesization Pk+1...n that mini-

mizes (resp., maximizes) c for Xk+1...n, for some value k, 1 ≤ k ≤ n− 1. Indeed, if it were

not so, a better P1...k or Pk+1...n would immediately yield a better P1...n.

Let M [i, j] denote the cost of a maximizing parenthesization of Xi...j, 1 ≤ i ≤ j ≤ n,

and let m[i, j] denote the cost of a minimizing parenthesization of Xi...j. Based on the

1

above observations, we can write the following recurrence for m[i, j] and M [i, j]:

M [i, j] = m[i, j] = xi if i = j

M [i, j] = max

{
M [i, k]

m[k + 1, j]
: i ≤ k < j

}
if i < j

m[i, j] = min

{
m[i, k]

M [k + 1, j]
: i ≤ k < j

}
if i < j

The algorithm follows immediately from the above recurrence.

CHAIN DIVISION(x1, x2, . . . , xn)
for i← 1 to n do

M [i, i]← m[i, i]← xi

for `← 2 to n do {compute the values of M and m for substrings of length `}
for i← 1 to n− ` + 1 do

j ← i + l − 1
M [i, j]← 0
m[i, j]←∞
for k ← i to j − 1 do

t1 ←M [i, k]/m[k + 1, j]
t2 ← m[i, k]/M [k + 1, j]
{M [i, k], m[i, k], M [k + 1, j] and m[k + 1, j] already
available at this point}
if M [i, j] < t1 then M [i, j]← t1
if m[i, j] > t2 then m[i, j]← t2

return M [1, n]

The above algorithm computes the cost of an optimal parenthesization in O(n3) time.

If we are interested in actually determining the structure of the parenthesization, it is

sufficient to compute two additional tables, sM [1 . . . n, 1 . . . n] and sm[1 . . . n, 1 . . . n], with

sM [i, j] (resp., sm[i, j]) recording at which index k the maximizing (resp., minimizing)

parenthesization of Xi...j is split into optimal parenthesizations for Xi...k and Xk+1...j. Note

that sM and sm can be computed without increasing the running time of the algorithm. 2

Exercise 5.2 In Algorithm MATRIX CHAIN ORDER (CLRS, page 336), determine the

exact number of times that the following Line (Line 9) is executed:

do q ← m[i, k] + m[k + 1, j] + pi−1pkpi

Answer: Line 9 is executed once in each iteration of the innermost loop,

for k ← i to j − 1 do ...

2

This loop is executed once in each iteration of the loop

for i← 1 to n− ` + 1 do ...,

which is in turn executed once in each iteration of the loop

for l← 2 to n do

Recall that j = i + `− 1. Therefore, the total number of times that Line 9 is executed is

T9(n) =
n∑

l=2

n−l+1∑
i=1

i+l−2∑
k=i

1

=
n∑

l=2

n−l+1∑
i=1

(l − 1)

=
n∑

l=2

(l − 1)(n− l + 1)

=
n∑

l=2

l(n− l + 1)−
n∑

l=2

(n− l + 1)

= (n + 1)
n∑

l=2

l −
n∑

l=2

l2 −
n−1∑
h=1

h (we set h = n− l + 1 in the second sum)

= (n + 1)

[
n(n + 1)

2
− 1

]
− n(n + 1)(2n + 1)

6
+ 1− (n− 1)n

2

=
n3 + 2n2 + n

2
− n− 1− 2n3 + 3n2 + n

6
+ 1− n2 − n

2

=
3n3 − 2n3

6
+

2n2 − n2 − n2

2
+

3n− 6n− n + 3n

6
− 1 + 1

=
n3 − n

6
.

Note that T9(n) = Θ(n3). 2

Exercise 5.3 Give an algorithm that uses the vector s computed by Algorithm MA-

TRIX CHAIN ORDER (CLR, page 306) to print the optimal parenthesization for the

matrix chain.

Answer: Let s be the array computed by MATRIX CHAIN ORDER. Recall that s[i, j]

stores the splitting index k of the optimal parenthesization of the subchain Ai..j of matrices

Ai, Ai+1, . . . , Aj, with 1 ≤ i ≤ k < j ≤ n. We can write the following recursive algorithm.

3

PRINT OPTIMAL PARENS(i, j)
if i = j

then print(’Ai’)
return

print(’(’)
k ← s[i, j]
PRINT OPTIMAL PARENS(i, k)
PRINT OPTIMAL PARENS(k + 1, j)
print(’)’)
return

Let us charge one time unit for any print statement, and let T (n) be the running time of

PRINT OPTIMAL PARENS(1, n). When n = 1, the above procedure simply prints A1.

When n > 1, the number of print statements is the number of print statements performed

by the two recursive calls plus 2. The size of the subinstances is s[1, n] and n − s[1, n],

respectively. We obtain the following recurrence T (n) = T (s[1, n]) + T (n− s[1, n]) + 2, n > 1,

T (1) = 1.

Let us prove by induction that T (n) = 3n − 2 (which is exactly the number of symbols

of a full parenthesization of A1A2 . . . An). The base case trivially holds. Assuming that

T (k) = 3k − 2, for 1 ≤ k < n, we obtain

T (n) = T (s[1, n]) + T (n− s[1, n]) + 2

= 3s[1, n]− 2 + 3(n− s[1, n])− 2 + 2

= 3n− 2,

and the inductive thesis follows. Therefore, PRINT OPTIMAL PARENS runs in linear

time. 2

Exercise 5.4 Given the string A = 〈a1, a2, . . . , an, we say that Ai..j = 〈ai, ai+1, . . . , aj〉 is

a palindrome substring of A if ai+h = aj−h, for 0 ≤ h ≤ j − i. (Intuitively, a palindrome

substring is one which is identical to its “mirror” image. For example, if A = accaba, then

both A1..4 = acca and A4..6 = aba are palindrome substrings of A.)

(a) Design a dynamic programming algorithm that determines the length of a longest

palindrome substring of a string A in O(n2) time and O(n2) space.

4

(b) Modify your algorithm so that it uses only O(n) space, while the running time remains

unaffected.

Answer:

(a) It is worth noting that there are no more than O(n2) substrings in a string of length

n (while there are exactly 2n subsequences). Therefore, we could scan each substring, check

for palindromicity and update the length of the longest palindrome substring discovered

so far. Since the palindromicity test takes time linear in the length of the substring, this

simple idea yields a Θ(n3) algorithm. However, we can use dynamic programming to devise

a much better algorithm. For 1 ≤ i ≤ j ≤ n, define

P [i, j] =

 true if Ai..j is a palindrome substring,

false otherwise.

Clearly, P [i, i] = true , while P [i, i+1]⇔ ai = ai+1, for 1 ≤ i ≤ n−1. It is also immediate

to see that for j − i + 1 ≥ 3 (i.e., for strings of length at least 3), we have

P [i, j]⇔ (P [i + 1, j − 1] and ai = aj) . (5.1)

Note that in order to obtain a well defined recurrence, we need to explicitly initialize two

distinct diagonals of the boolean array P [i, j], since the recurrence for entry [i, j] uses the

value [i− 1, j − 1], which is two diagonals away from [i, j] (in other words, for a substring

of length `, we need to know the status of a substring of length `− 2).

The following algorithm is immediately obtained from the above considerations.

LONGEST PALINDROME SUBSTRING(A)
n← length(A)
max← 1
for i← 1 to n− 1 do

P [i, i]← true
{ note that P [n, n] will be never used below }
if ai = ai+1

then P [i, i + 1]← true;
max← 2

else P [i, i + 1]← false

(the algorithm continues on next page ...)

5

for `← 3 to n do
{ check the substrings of length ` }

for i← 1 to n− ` + 1 do
j ← i + `− 1
if (P [i + 1, j − 1] and ai = aj)
{ P [i + 1, j − 1] already available at this point }
then P [i, j]← true

max← `
else P [i, j]← false

return max

Since the algorithm performs a constant number of operations for each of the Θ(n2) sub-

strings of A, it takes O(n2) time, while the space needed to store the table P [i, j] is clearly

O(n2).

(b) Note that by the `-th iteration of the outer for loop, we only need values P [i, j] with

j − i + 1 = `− 2 (needed for iteration `), `− 1 (needed for iteration ` + 1), or `, (the ones

that we are computing). These are the values of P on diagonals ` − 2 and ` − 1 and `.

Therefore, at any time in the algorithm, it is sufficent to store no more than 3n entries of

P . The algorithm above can be easily modified as follows.

LINEAR SPACE LPS(A)
n← length(A)
max← 1
for i← 1 to n− 1 do

P [i, 1]← true
{ P is an array with only 3 columns }
if ai = ai+1

then P [i, 2]← true
max← 2

else P [i, 2]← false
for `← 3 to n do
{ check the substrings of length ` }

for i← 1 to n− ` + 1 do
if (P [i + 1, 1] and ai = ai+`−1)

then P [i, 3]← true
max← `

else P [i, 3]← false
P [i, 1]← P [i, 2]
P [i, 2]← P [i, 3]
{ shift relevant entries one column left }

return max

6

We can further improve the above algorithm so that it uses only two column vectors.

In fact, after we check for palindromicity of the substring of length ` starting at i, we

could first save P [i, 2] into P [i, 1] (which is not needed anymore) and then store the newly

computed value directly in P [i, 2], rather than P [i, 3]. However, the given algorithm is

sufficient to achieve linear space, with a running time which is is no more than three times

the running time of the algorithm of Part (a), whose space requirement was Θ(n2). 2

Exercise 5.5 Given a string of arbitrary itegers Z = 〈z1, z2, . . . , zk〉 let weight(Z) =∑k
i=1 zi (note that weigth(ε) = 0). Given two integer strings X = 〈x1, x2, . . . , xm〉 e Y =

〈y1, y2, . . . , yn〉, design a dynamic programming algorithm to determine a Maximum-Weight

Common Subsequence (MWCS) Z of X and Y .

Answer: Let Z = 〈z1, z2, . . . zk〉 be a MWCS of X and Y , with Z = 〈xj1 , xj2 , . . . xjk
〉 =

〈yh1 , yh2 , . . . yhk
〉, with 1 ≤ j1 < j2 < . . . < jk ≤ m and 1 ≤ h1 < h2 < . . . < hk ≤ n. Note

that for 1 ≤ i ≤ k, it must be zi ≥ 0, or otherwise Z ′ = 〈z1, . . . zi−1, zi+1, . . . zk〉 (which is a

CS of X and Y) would have a higher weight than Z. Furthermore, we can assume without

loss of generality that zi 6= 0, since otherwise we can simply remove zi, so that Z ′ remains

an MWCS of X and Y . We can prove the following optimal substructure property:

1. If xm = yn ≤ 0, then Z is an MWCS of Xm−1 and Yn−1.

Proof: Since Z contains only numbers greater than zero, it must be jk < m and

hk < n. Hence Z is a CS of Xm−1 and Yn−1. Clearly, it must be an MWCS of Xm−1

and Yn−1, or otherwise an MWCS of Xm−1 and Yn−1 would also be a CS of X and Y

heavier than Z.

2. If xm = yn > 0, then zk = xm and Zk−1 is an MWCS of Xm−1 and Yn−1.

Proof: If zk 6= xm = yn, it must be jk < m and hk < n. But then Z ′ = 〈< Z, xm〉
is still a CS of X and Y with weight xm + weight(Z) > weight(Z), a contradiction.

Also, Zk−1 is a CS of Xm−1 and Yn−1. By arguing as above we claim that it must be

the one of maximum weight.

3. If xm 6= yn then Z is the sequence of maximum weight between an MWCS of Xm and

Yn−1 and an MWCS of Xm−1 and Yn.

Proof: Since xm 6= yn, either jk < m or hk < n. Hence Z must be either an MWCS

of Xm−1 and Y (first case) or an MWCS of X and Yn−1 (second case). Clearly, Z

must be the sequence of largest weight among the two.

7

Let W [i, j] be the weight of an MWCS of Xi and Yj, with 0 ≤ i ≤ m and 0 ≤ j ≤ n. The

above property implies the following recurrence for W [i, j].

W [i, j] =

0 i = 0 or j = 0,

W [i− 1, j − 1] if xi = yj ≤ 0,

xi + W [i− 1, j − 1] if xi = yj > 0,

max{W [i− 1, j], W [i, j − 1]} otherwise.

The bottom-up computation of the above recurrence can be performed as follows:

MWCS(X, Y)
m← length(X)
n← length(Y)
for i← 0 to m do W [i, 0]← 0
for j ← 1 to n do W [0, j]← 0
for i← 1 to m do

for j ← 1 to n do
if (xi = yj)

then if (xi ≤ 0)
then W [i, j]← W [i− 1, j − 1]
else W [i, j]← xi + W [i− 1, j − 1]

else W [i, j]← MAX(W [i, j − 1], W [i− 1, j])
return W [m, n]

The correctness of the above algorithm follows from the optimal substructure property and

from the fact that the values W [i− 1, j − 1], W [i, j − 1] and W [i− 1, j] have already been

computed when W [i, j] is being computed. The algorithm’s running time is clearly Θ(mn).

2

Exercise 5.6 Design and analyze a dynamic programming algorithm which, on input

two nonnegative integers n and k, with n ≥ k, outputs
(

n
k

)
in O(nk) time. (Hint: Prove

that for 0 < k < n,
(

n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
.)

Exercise 5.7 Design and analyze a dynamic programming algorithm which, on input a

string X determines the minimum number p of palindrome substrings of X: Y1, Y2, . . . , Yp

such that X = 〈Y1, Y2, . . . , Yp〉.

Exercise 5.8 Given two strings X and Y , a third string Z is a common superstring of

X and Y , if X and Y are both subsequences of Z. (Example: if X = sos and Y = soia,

then Z = sosia is a common superstring of X and Y .) Design and analyze a dynamic

8

programming algorithm which, given as input two strings X and Y , returns the length of

the Shortest Common Superstring (SCS) of X and Y and additional information needed

to print the SCS. The algorithm must run in time Θ(|X||Y |). (Hint: Use an approach

similar to the one used to compute the LCS of two strings.)

Exercise 5.9 Given a string X = 〈x1, x2, . . . , xn〉 of n integers, a Spaced Monotonically

Increasing Subsequence (SMIS) of X is a subsequence Z = 〈xj1 , xj2 , . . . , xjk
〉, with xji

<

xji+1
and ji+1 ≥ ji + 2, for 1 ≤ i < k. Design and analyze a dynamic programming

algorithm that returns a Longest SMIS (LSMIS) of the input string X in time Θ(n2).

9

