Chapter 6

Greedy Algorithms

6.1 Storing the Huffman codeword tree T on a file

We briefly describe a possible way of storing a compact representation of the tree T' corre-
sponding to the optimal prefix code on a file. Such a representation is essential and must
be stored together with the encoding of a given text file so that a decompression routine
can reconstruct it and use it for decoding.

Define the preorder sequence pre(T') of a given full binary tree T as a string containing

all nodes of T ordered as follows:

1. If T is a single-node tree, then pre(T) = (root(T")), where root(T) denotes the only

node of T' (which is also its root).

2. If T' contains more than one node, let left(7T") and right(7") denote, respectively, its
left and right subtree (note that these subtrees are both nonempty since 7' is full).
Then pre(T') = (root(T), pre(left(T)), pre(right(7T)))

We will represent the codeword tree T in the file by means of its preorder sequence.
Recall that internal nodes do not have to carry any information, while for each leaf f we
must store the character char(f) associated with it. Therefore, in the preorder sequence,
we identify each internal node with a single bit, 0, while a leaf f is identified with the pair
of symbols 1, char(f). Under this representation, the preorder sequence associated to the
optimal tree T of figure 16.4.(b) (CLRS, page 387) is

(0,1, ASCII(a),0,0,1, ASCII(c), 1, ASCII(b), 0,0, 1, ASCII(f), 1, ASCII(e), 1, ASCII(d))
Note that, since the tree ¢ is full, in the sequence there are always n — 1 0’s and n pairs

1

1, char(f).
When decompressing, it is very simple to reconstruct 7' from pre(T"). Indeed, it is
sufficient to create the root node with the statement r «— new node() and then call the

following routine with parameter r:

BUILD_TREE(r)
b «— read()
if (b=0)
then
s < new _node()
left[r] « s
BUILD_TREE(left[r])
t «— new_node()
right[r] « ¢
BUILD_TREE(right[r])
else {b=1}
¢ « read()
char[r] « ASCII(c)
left[r] « right[r] < nil
return

Exercise 6.1 Let S = {[ay, 1], [az, b2], ..., [an, bn]} be a set of closed intervals on the real
line. We say that C' C S is a covering subset for S if, for any interval [a,b] € S, there
exists an interval [a’,0'] € C such that [a,b] C [d/,] (that is, a > o' and b < V).

(a) Write a greedy O(nlogn) algorithm that, on input S, returns a covering subset C*

of minimum size.
(b) Prove the greedy choice property for the above algorithm.

(c) Prove the optimal substructure property for the problem.

Answer:

(a) We first sort the intervals in nondecreasing order of their left endpoint. Ties are
broken as follows: if a; = a; then [a;, b;] precedes [a;, b;] in the sorted sequence if b; > b;.
Otherwise, if b; < b;, [a;, b;] precedes [a;, b;] (note that it cannot be the case that b; = b;
or the two intervals would be the same). In other words, ties are broken in favor of the
larger interval. Once the intervals are so sorted, we perform a linear scan of the intervals.

The greedy choice is to select the first interval. At the i-th iteration, let [ay, by] denote the

last interval that was selected. Interval [a;, b;] is discarded if it is contained in [ay, by], and
is selected otherwise.

We assume that the intervals are given in input stored into an array of records S, with
Sli].left = a; and S[i].right = b;. In the code, procedure SORT(S) performs the required
sorting of the intervals, so that, on its termination, S[i] stores the i-th interval of the sorted
sequence. Note that a trivial adaptation of MERGE_SORT suffices to yield an O(nlogn)
running time for SORT. The algorithm follows:

MIN_COVERING(S)
n « length(S)
SORT(S)
C[1] « S[1]
J 2
{ j stores the index of the first empty location in vector C' }
k—1
{ k stores the index of the last selected interval }
for i — 2 ton do
if S[i].right > S[k].right
then C[j] < S[i]
Je—J+1
k—1i
{ S[i] is now the last selected interval }
return C

The running time Ty_c(n) of MIN_.COVERING(S) is clearly dominated by the time re-
quired by the initial sort, hence Ty c(n) = O(nlogn).

(b) MIN_COVERING clearly exhibits the greedy choice property. In fact, every covering
subset must contain S[1], since by construction S[1] is not contained in any other interval

in S.

(c) Let S = {[a1,b1],[az,ba],...,[an,b,]} and assume that the intervals in S have been
renumbered so to comply with the ordering enforced by procedure SORT above. Let
C* = {[a1, 1]} UC” be a covering subset of minimum size for S. The optimal substructure
property that the algorithm MIN_COVERING exploits is the following: letting k& be the
maximum index such that b; < by, for 1 < j <k (note that a; > a; also holds, because
of the ordering), then C™ must be an optimal solution to S = S — {[a;,b;] : 1 < j < k}
(observe that S could be empty). To prove this, let us first prove that C” is indeed a

covering subset for S. If § =), then C" is clearly empty, since {[as,b;]} is a covering

3

subset for S. If S is not empty, then C” must be a covering subset for all intervals in S
not contained in [ay,by], since C* = {[ay,b,]} UC" is a covering subset. Therefore, C”
must contain [ayy1, bxs1], which is not covered by any other interval in S. Note, however,
that S might also contain intervals which are contained in [a1,b1]. Let [as,bs] be one of
such intervals. First note that it must be s > k + 1, since the interval is in S. Then, the

following chain of inequalities is easily established:
ar < agrr < ag < bs < by < by,

hence [as, bs] is covered by [ag 1, bri1] € C”. To finish the proof it suffices to observe that
if C" were not a covering subset of S of minimum size, then C* would not be a covering

subset of minimum size for S. O

Exercise 6.2 Let C' = {1,2,...,n} denote a set of n rectangular frames. Frame ¢ has
base d[i].b and height d[i].h. We say that Frame i encapsulates Frame j if d[i].b > d[j].b and
d[i].h > d[j].h. (Note that a frame encapsulates itself). An encapsulating subset C" C C'is
such that for each j € C' there exists ¢ € C’ such that i encapsulates j.

(a) Design and analyze a greedy algorithm that, on input the vector d of sizes of a set
C' of n frames, returns a minimum size encapsulating subset ¢’ C C' in O(nlogn)

time.
(b) Prove the greedy choice property.

(c) Prove the optimal substructure property.

Answer: We first sort the entries of vector d in nonincreasing order of their d[-].b field.
Ties are broken as follows: if d[i].b = d[j].b then d[i] precedes d[j] in the sorted sequence
if d[i].h > d[j].h. In other words, ties are broken in favor of the higher frame. Once the
frames are so sorted, we perform a linear scan starting from the first frame in the sorted
order. The greedy choice is to select the first frame. At the beginning of the i-th iteration,
1 > 2, let j < 1 denote the last frame that was selected. Frame i is discarded if it is
encapsulated by frame j, and is selected otherwise.

In the code below, procedure SORT(d) performs the required sorting of the frames,
so that, on its termination, d[i] stores the i-th frame of the sorted sequence. Note that a
trivial adaptation of MERGE_SORT suffices to yield an O(nlogn) running time for SORT.
The algorithm follows:

MIN_ENCAPSULATING_SUBSET(d)

n « length(d)

SORT(d)

C'[1] < d[1]

k2

{ k stores the index of the first empty location in vector C” }
Je1

{ j stores the index of the last selected frame }

for + — 2 ton do

if d[i].h > d[j].h
then C'[k] « d]i]
kE—k+1
Je
{ i is now the last selected frame }
return C’

The running time Ty g_s(n) of MIN_.ENCAPSULATING_SUBSET(d) is clearly dominated
by the time required by the initial sort, hence Ty_g_s(n) = O(nlogn).
In the following, we assume that the frames in C' have been renumbered so to comply

with the ordering enforced by procedure SORT.

(b) Greedy Choice Consider an arbitrary optimal solution C* C C. Such subset must
contain a frame ¢ which encapsulates Frame 1. Then, either ¢ = 1, in which case C*
contains the greedy choice, or ¢ > 1 and (1) d[t].b > d[1].b and (2) d[t].h > d[1].h. In
the latter case, due to the sorting, both (1) and (2) must be equalities, hence all frames
encapsulated by Frame ¢ are also encapsulated by Frame 1. Therefore (C* — {t}) U {1} is

an optimal solution containing the greedy choice.

(c) Optimal Substructure Let C* = {1}UC" be an encapsulating subset of minimum
size for C' containing the greedy choice. The optimal substructure property featured by the
problem is the following: let 7 < n+ 1 be the maximum value such that d[i].h < d[1].h for
1 <i < j. Then C" must be an optimal solution to C = C' — {i : 1 < i < j} (observe that
C could be empty). To prove this, let us first prove that C” is indeed an encapsulating
subset for C. If C = @, then C" is clearly an encapsulating subset. If C is not empty,
then C” must be an encapsulating subset for all frames in C' which are not encapsulated
by Frame 1, since C* = {1} UC" is an encapsulating subset for C. Therefore, C* must
contain Frame j, which is not encapsulated by any other frame in C' (indeed, C” could

contain a frame 7’ with the same base and height as j, but then we can substitute j with

jin C" and proceed with the argument). Note, however, that C' might also contain frames
which are encapsulated by Frame 1. Let s be one of such frames. First note that it must
be s > j, since the frame is in C. Then, d[j].b > d[s].b (by the ordering) and

dlj].h > d[1].h > d[s].h,

hence Frame s is also encapsulated by j € C.
To finish the proof it suffices to observe that if C* were not an encapsulating subset of

C of minimum size, then C* would not be an encapsulating subset of C' of minimum size.
O

Exercise 6.3 Consider a variant of the Activity Selection Problem, where the input set
of intervals S = {[s1, f1), .-, [Sn, fn)} 18 sorted by non decreasing values of the s;’s, that
is, 51 < $o... < s,. As in the original problem, we want to determine a maximum set of

pairwise disjoint activities.
(a) Design an O(n) algorithm for the above problem.

(b) Prove that the greedy choice and the optimal substructure properties hold.

Exercise 6.4 Let X = {z1,25,..., 25} be a set of points on the real line.

(a) Design and analyze a greedy algorithm to determine a minimum cardinality set I of
closed intervals of unit length (that is, i = [a,b] € I = (b — a) = 1) such that, for
any x € X, there exists an interval ¢ € [which contains z.

(b) Prove that your algorithm has the greedy choice property.

(c) Prove that the problem enjoys the optimal substructure property.

