
Chapter 6

Greedy Algorithms

6.1 Storing the Huffman codeword tree T on a file

We briefly describe a possible way of storing a compact representation of the tree T corre-

sponding to the optimal prefix code on a file. Such a representation is essential and must

be stored together with the encoding of a given text file so that a decompression routine

can reconstruct it and use it for decoding.

Define the preorder sequence pre(T ) of a given full binary tree T as a string containing

all nodes of T ordered as follows:

1. If T is a single-node tree, then pre(T ) = 〈root(T )〉, where root(T ) denotes the only

node of T (which is also its root).

2. If T contains more than one node, let left(T ) and right(T ) denote, respectively, its

left and right subtree (note that these subtrees are both nonempty since T is full).

Then pre(T ) = 〈root(T ), pre(left(T )), pre(right(T ))〉

We will represent the codeword tree T in the file by means of its preorder sequence.

Recall that internal nodes do not have to carry any information, while for each leaf f we

must store the character char(f) associated with it. Therefore, in the preorder sequence,

we identify each internal node with a single bit, 0, while a leaf f is identified with the pair

of symbols 1, char(f). Under this representation, the preorder sequence associated to the

optimal tree T of figure 16.4.(b) (CLRS, page 387) is

〈0, 1, ASCII(a), 0, 0, 1, ASCII(c), 1, ASCII(b), 0, 0, 1, ASCII(f), 1, ASCII(e), 1, ASCII(d)〉

Note that, since the tree t is full, in the sequence there are always n − 1 0’s and n pairs

1



1, char(f).

When decompressing, it is very simple to reconstruct T from pre(T ). Indeed, it is

sufficient to create the root node with the statement r ← new node() and then call the

following routine with parameter r:

BUILD TREE(r)
b← read()
if (b = 0)

then
s← new node()
left[r]← s
BUILD TREE(left[r])
t← new node()
right[r]← t
BUILD TREE(right[r])

else { b = 1 }
c← read()
char[r]← ASCII(c)
left[r]← right[r]← nil

return

Exercise 6.1 Let S = {[a1, b1], [a2, b2], . . . , [an, bn]} be a set of closed intervals on the real

line. We say that C ⊆ S is a covering subset for S if, for any interval [a, b] ∈ S, there

exists an interval [a′, b′] ∈ C such that [a, b] ⊆ [a′, b′] (that is, a ≥ a′ and b ≤ b′).

(a) Write a greedy O(n log n) algorithm that, on input S, returns a covering subset C∗

of minimum size.

(b) Prove the greedy choice property for the above algorithm.

(c) Prove the optimal substructure property for the problem.

Answer:

(a) We first sort the intervals in nondecreasing order of their left endpoint. Ties are

broken as follows: if ai = aj then [ai, bi] precedes [aj, bj] in the sorted sequence if bi > bj.

Otherwise, if bi < bj, [aj, bj] precedes [ai, bi] (note that it cannot be the case that bi = bj

or the two intervals would be the same). In other words, ties are broken in favor of the

larger interval. Once the intervals are so sorted, we perform a linear scan of the intervals.

The greedy choice is to select the first interval. At the i-th iteration, let [ak, bk] denote the

2



last interval that was selected. Interval [ai, bi] is discarded if it is contained in [ak, bk], and

is selected otherwise.

We assume that the intervals are given in input stored into an array of records S, with

S[i].left = ai and S[i].right = bi. In the code, procedure SORT(S) performs the required

sorting of the intervals, so that, on its termination, S[i] stores the i-th interval of the sorted

sequence. Note that a trivial adaptation of MERGE SORT suffices to yield an O(n log n)

running time for SORT. The algorithm follows:

MIN COVERING(S)
n← length(S)
SORT(S)
C[1]← S[1]
j ← 2
{ j stores the index of the first empty location in vector C }

k ← 1
{ k stores the index of the last selected interval }
for i← 2 to n do

if S[i].right > S[k].right
then C[j]← S[i]
j ← j + 1
k ← i
{ S[i] is now the last selected interval }

return C

The running time TM C(n) of MIN COVERING(S) is clearly dominated by the time re-

quired by the initial sort, hence TM C(n) = O(n log n).

(b) MIN COVERING clearly exhibits the greedy choice property. In fact, every covering

subset must contain S[1], since by construction S[1] is not contained in any other interval

in S.

(c) Let S = {[a1, b1], [a2, b2], . . . , [an, bn]} and assume that the intervals in S have been

renumbered so to comply with the ordering enforced by procedure SORT above. Let

C? = {[a1, b1]}∪C
?

be a covering subset of minimum size for S. The optimal substructure

property that the algorithm MIN COVERING exploits is the following: letting k be the

maximum index such that bj ≤ b1, for 1 ≤ j ≤ k (note that aj ≥ a1 also holds, because

of the ordering), then C
?

must be an optimal solution to S = S − {[aj, bj] : 1 ≤ j ≤ k}
(observe that S could be empty). To prove this, let us first prove that C

?
is indeed a

covering subset for S. If S = ∅, then C
?

is clearly empty, since {[a1, b1]} is a covering

3



subset for S. If S is not empty, then C
?

must be a covering subset for all intervals in S

not contained in [a1, b1], since C? = {[a1, b1]} ∪ C
?

is a covering subset. Therefore, C
?

must contain [ak+1, bk+1], which is not covered by any other interval in S. Note, however,

that S might also contain intervals which are contained in [a1, b1]. Let [as, bs] be one of

such intervals. First note that it must be s > k + 1, since the interval is in S. Then, the

following chain of inequalities is easily established:

a1 ≤ ak+1 ≤ as ≤ bs ≤ b1 < bk+1,

hence [as, bs] is covered by [ak+1, bk+1] ∈ C
?
. To finish the proof it suffices to observe that

if C
?

were not a covering subset of S of minimum size, then C? would not be a covering

subset of minimum size for S. 2

Exercise 6.2 Let C = {1, 2, . . . , n} denote a set of n rectangular frames. Frame i has

base d[i].b and height d[i].h. We say that Frame i encapsulates Frame j if d[i].b ≥ d[j].b and

d[i].h ≥ d[j].h. (Note that a frame encapsulates itself). An encapsulating subset C ′ ⊆ C is

such that for each j ∈ C there exists i ∈ C ′ such that i encapsulates j.

(a) Design and analyze a greedy algorithm that, on input the vector d of sizes of a set

C of n frames, returns a minimum size encapsulating subset C ′ ⊆ C in O(n log n)

time.

(b) Prove the greedy choice property.

(c) Prove the optimal substructure property.

Answer: We first sort the entries of vector d in nonincreasing order of their d[·].b field.

Ties are broken as follows: if d[i].b = d[j].b then d[i] precedes d[j] in the sorted sequence

if d[i].h ≥ d[j].h. In other words, ties are broken in favor of the higher frame. Once the

frames are so sorted, we perform a linear scan starting from the first frame in the sorted

order. The greedy choice is to select the first frame. At the beginning of the i-th iteration,

i ≥ 2, let j < i denote the last frame that was selected. Frame i is discarded if it is

encapsulated by frame j, and is selected otherwise.

In the code below, procedure SORT(d) performs the required sorting of the frames,

so that, on its termination, d[i] stores the i-th frame of the sorted sequence. Note that a

trivial adaptation of MERGE SORT suffices to yield an O(n log n) running time for SORT.

The algorithm follows:

4



MIN ENCAPSULATING SUBSET(d)
n← length(d)
SORT(d)
C ′[1]← d[1]
k ← 2
{ k stores the index of the first empty location in vector C ′ }
j ← 1
{ j stores the index of the last selected frame }
for i← 2 to n do

if d[i].h > d[j].h
then C ′[k]← d[i]
k ← k + 1
j ← i
{ i is now the last selected frame }

return C ′

The running time TM E S(n) of MIN ENCAPSULATING SUBSET(d) is clearly dominated

by the time required by the initial sort, hence TM E S(n) = O(n log n).

In the following, we assume that the frames in C have been renumbered so to comply

with the ordering enforced by procedure SORT.

(b) Greedy Choice Consider an arbitrary optimal solution C? ⊆ C. Such subset must

contain a frame t which encapsulates Frame 1. Then, either t = 1, in which case C?

contains the greedy choice, or t > 1 and (1) d[t].b ≥ d[1].b and (2) d[t].h ≥ d[1].h. In

the latter case, due to the sorting, both (1) and (2) must be equalities, hence all frames

encapsulated by Frame t are also encapsulated by Frame 1. Therefore (C? − {t}) ∪ {1} is

an optimal solution containing the greedy choice.

(c) Optimal Substructure Let C? = {1}∪C
?

be an encapsulating subset of minimum

size for C containing the greedy choice. The optimal substructure property featured by the

problem is the following: let j ≤ n + 1 be the maximum value such that d[i].h ≤ d[1].h for

1 ≤ i < j. Then C
?

must be an optimal solution to C = C − {i : 1 ≤ i < j} (observe that

C could be empty). To prove this, let us first prove that C
?

is indeed an encapsulating

subset for C. If C = ∅, then C
?

is clearly an encapsulating subset. If C is not empty,

then C
?

must be an encapsulating subset for all frames in C which are not encapsulated

by Frame 1, since C? = {1} ∪ C
?

is an encapsulating subset for C. Therefore, C
?

must

contain Frame j, which is not encapsulated by any other frame in C (indeed, C
?

could

contain a frame j′ with the same base and height as j, but then we can substitute j′ with

5



j in C
?

and proceed with the argument). Note, however, that C might also contain frames

which are encapsulated by Frame 1. Let s be one of such frames. First note that it must

be s ≥ j, since the frame is in C. Then, d[j].b ≥ d[s].b (by the ordering) and

d[j].h > d[1].h ≥ d[s].h,

hence Frame s is also encapsulated by j ∈ C
?
.

To finish the proof it suffices to observe that if C
?

were not an encapsulating subset of

C of minimum size, then C? would not be an encapsulating subset of C of minimum size.

2

Exercise 6.3 Consider a variant of the Activity Selection Problem, where the input set

of intervals S = {[s1, f1), ..., [sn, fn)} is sorted by non decreasing values of the si’s, that

is, s1 ≤ s2... ≤ sn. As in the original problem, we want to determine a maximum set of

pairwise disjoint activities.

(a) Design an O(n) algorithm for the above problem.

(b) Prove that the greedy choice and the optimal substructure properties hold.

Exercise 6.4 Let X = {x1, x2, . . . , xN} be a set of points on the real line.

(a) Design and analyze a greedy algorithm to determine a minimum cardinality set I of

closed intervals of unit length (that is, i = [a, b] ∈ I ⇒ (b − a) = 1) such that, for

any x ∈ X, there exists an interval i ∈ I which contains x.

(b) Prove that your algorithm has the greedy choice property.

(c) Prove that the problem enjoys the optimal substructure property.

6


