General Polynomial Interpolation in Quadratic Time

Problem Let $A(x)$ be a polynomial of degree-bound n, and let $(\boldsymbol{x}, \boldsymbol{y})$ an n-point representation of $A(x)$. Use Lagrange's formula:

$$
\begin{equation*}
A(x)=\sum_{k=0}^{n-1} y_{k}\left[\frac{\prod_{j=0, j \neq k}^{n-1}\left(x-x_{j}\right)}{\prod_{j=0, j \neq k}^{n-1}\left(x_{k}-x_{j}\right)}\right] \tag{1}
\end{equation*}
$$

to devise an algorithm to compute the vector \boldsymbol{a} of coefficients of $A(x)$ in $O\left(n^{2}\right)$ time.

Solution: In order to compute $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, we perform the following steps, which derive \boldsymbol{a} from Formula (1).

1. Compute the coefficient vector $\boldsymbol{q}=\left(q_{0}, q_{1}, \ldots, q_{n}\right)$ of the $(n+1)$-degree bound polynomial

$$
Q(x)=\prod_{j=0}^{n-1}\left(x-x_{j}\right)
$$

2. For $0 \leq k \leq n-1$, obtain the coefficient vector $\boldsymbol{q}^{(k)}=\left(q_{0}^{(k)}, q_{1}^{(k)}, \ldots, q_{n-1}^{(k)}\right)$ of the n-degree bound polynomial

$$
Q^{(k)}(x)=\prod_{j=0, j \neq k}^{n-1}\left(x-x_{j}\right)=Q(x) /\left(x-x_{k}\right)
$$

3. For $0 \leq k \leq n-1$, evaluate $Q^{(k)}(x)$ on x_{k}. Let $z_{k}=Q^{(k)}\left(x_{k}\right)$.
4. By observing that Formula (1) implies that

$$
A(x)=\sum_{k=0}^{n-1} \frac{y_{k}}{z_{k}} Q^{(k)}(x)
$$

for $0 \leq i \leq n-1$, obtain a_{i} as

$$
a_{i}=\sum_{k=0}^{n-1} \frac{y_{k} q_{i}^{(k)}}{z_{k}}
$$

Let us now give the details for implementing the four steps described above.

Step 1 We can design a simple divide-and-conquer algorithm for computing $Q(x)$ based on the following property. For the base case $n=1$ we observe that $\boldsymbol{q}=\left(q_{0}, q_{1}\right)=$ $\left(-x_{0}, 1\right)$. For $n>1$, assume that we have (recursively) computed the coefficients $\boldsymbol{q}^{\boldsymbol{\prime}}$ of

$$
Q^{\prime}(x)=\prod_{j=0}^{n-2}\left(x-x_{j}\right)
$$

that is, we have solved the sub-instance of size $n-1$ consisting of multiplying the first $n-1$ degree-one polynomials. Then, for $0 \leq i \leq n$ we can obtain the coefficient q_{i} of $Q(x)=Q^{\prime}(x)\left(x-x_{n-1}\right)$ as

$$
q_{i}= \begin{cases}-q_{0}^{\prime} x_{n-1} & i=0 \tag{2}\\ q_{n-1}^{\prime} & i=n \\ q_{i-1}^{\prime}-q_{i}^{\prime} x_{n-1} & 0<i<n\end{cases}
$$

Note that the above formula is a simple mathematical transcription of the elementary algorithm for multiplying two polynomials by cross-multiplying their component monomials and summing together the coefficients of the resulting monomials of equal degree. The algorithm is

```
COMPUTE_Q \((\boldsymbol{x})\)
\(n \leftarrow\) length \((\boldsymbol{x})\)
if \(n=1\) then return \(\left(-x_{0}, 1\right)\)
\(\star \boldsymbol{x}^{\prime}=\left(x_{0}, x_{1}, \ldots x_{n-2}\right) \star\)
\(\boldsymbol{q}^{\boldsymbol{\prime}} \leftarrow\) COMPUTE_Q \(\left(\boldsymbol{x}^{\boldsymbol{\prime}}\right)\)
\(q_{0} \leftarrow-q_{0}^{\prime} x_{n-1}\)
\(q_{n} \leftarrow q_{n-1}^{\prime}\)
for \(i \leftarrow 1\) to \(n-1\) do
    \(q_{i} \leftarrow q_{i-1}^{\prime}-q_{i}^{\prime} x_{n-1}\)
return \(\boldsymbol{q}\)
```

The time complexity $T(n)$ of the above algorithm, whose correctness follows from Formula (2), obeys the recurrence

$$
T(n)= \begin{cases}1 & n=1 \\ T(n-1)+c n & n>1\end{cases}
$$

for a suitable constant $c>1$. It is easy to check that $T(n)=\Theta\left(n^{2}\right)$.

Step 2 Let us fix k, with $0 \leq k \leq n-1$, and consider $Q^{(k)}(x)=Q(x) /\left(x-x_{k}\right)$. Since

$$
\begin{equation*}
Q(x)=Q^{(k)}(x)\left(x-x_{k}\right) \tag{3}
\end{equation*}
$$

we can obtain a simple linear system of equations on the (unknown) coefficients $\left(q_{0}^{(k)}, q_{1}^{(k)}\right.$, $\left.\ldots, q_{n-1}^{(k)}\right)$ of $Q^{(k)}(x)$ by imposing equality of the coefficients of the monomials of same degree of the two polynomial expressions at the left and right side of Equation (3). We have:

$$
\begin{aligned}
q_{n} & =q_{n-1}^{(k)} \\
q_{n-1} & =q_{n-2}^{(k)}-x_{k} q_{n-1}^{(k)} \\
\vdots & \\
q_{n-i} & =q_{n-i-1}^{(k)}-x_{k} q_{n-i}^{(k)}, \text { for } 2 \leq i \leq n-1
\end{aligned}
$$

We can solve the above simple system of n equations to compute the unknowns $q_{i}^{(k)}$, $0 \leq i \leq n-1$. This can be easily done by first setting $q_{n-1}^{(k)}=q_{n}$ and then obtaining $q_{n-2}^{(k)}$ as a function of q_{n-1} and $q_{n-1}^{(k)}, q_{n-3}^{(k)}$ as a function of q_{n-2} and $q_{n-2}^{(k)}$, and so on for all the other indices. (Note that this approach is similar to the one at the base of the standard grade-school polynomial division algorithm).

The algorithm implementing the above argument is the following:

```
DIVIDE \(\left(\boldsymbol{q}, x_{k}\right)\)
\(n \leftarrow \operatorname{length}(\boldsymbol{q})-1\)
\(q_{n-1}^{\prime} \leftarrow q_{n}\)
for \(i \leftarrow 2\) to \(n\) do
    \(q_{n-i}^{\prime} \leftarrow q_{n-i+1}+x_{k} q_{n-i+1}^{\prime}\)
return \(q^{\prime}\)
```

The loop body is executed ($n-1$) times, so the running time is $\Theta(n)$. Observe that we need to invoke algorithm DIVIDE n times (one for each input (\boldsymbol{q}, x_{k}), $0 \leq k \leq n-1$), hence Step 2 requires a total of $O\left(n^{2}\right)$ time.

Step 3 and Step 4 Recall that algorithm $\operatorname{HORNER}(\boldsymbol{a}, x)$ (seen in class), evaluates a polynomial $A(x)$ of degree bound n and coefficient representation \boldsymbol{a} on x in $O(n)$ time. By calling HORNER n times again on inputs $\left(\boldsymbol{q}^{(k)}, x_{k}\right)$, for $0 \leq k \leq n-1$, we obtain the necessary values $z_{k}=Q^{(k)}\left(x_{k}\right)$ in time $O\left(n^{2}\right)$. At this point, for $0 \leq i \leq n-1$, we obtain the values a_{i} by accumulating the entries $y_{k} q_{i}^{(k)} / z_{k}$ as specified in Step 4. Overall, the accumulations also require $O\left(n^{2}\right)$ time.

We are ready to give the code for the entire interpolation process. We will make use of the subroutines developed above for the single steps.

```
INTERPOLATE \((\boldsymbol{x}, \boldsymbol{y})\)
\(n \leftarrow \operatorname{length}(\boldsymbol{x})\)
\(\boldsymbol{q} \leftarrow\) COMPUTE_Q \((\boldsymbol{x})\)
for \(i \leftarrow 0\) to \(n-1\) do \(a_{i} \leftarrow 0\)
for \(k \leftarrow 0\) to \(n-1\) do
    \(\boldsymbol{q}^{\prime} \leftarrow \operatorname{DIVIDE}\left(\boldsymbol{q}, x_{k}\right)\)
    \(z_{k} \leftarrow \operatorname{HORNER}\left(\boldsymbol{q}^{\prime}, x_{k}\right)\)
    for \(i \leftarrow 0\) to \(n-1\) do
            \(a_{i} \leftarrow a_{i}+y_{k} q_{i}^{\prime} / z_{k}\)
return \(\boldsymbol{a}\)
```

By combining the analyses for the single steps discussed above we can argue that Algorithm INTERPOLATE correctly computes the coefficient vector \boldsymbol{a} in overall time $O\left(n^{2}\right)$ and $O(n)$ space.

