
General Polynomial Interpolation in Quadratic Time

Problem Let A(x) be a polynomial of degree-bound n, and let (x,y) an n-point
representation of A(x). Use Lagrange’s formula:

A(x) =
n−1∑
k=0

yk

[ ∏n−1
j=0,j 6=k(x− xj)∏n−1
j=0,j 6=k(xk − xj)

]
(1)

to devise an algorithm to compute the vector a of coefficients of A(x) in O(n2) time.

Solution: In order to compute a = (a0, a1, . . . , an−1), we perform the following steps,
which derive a from Formula (1).

1. Compute the coefficient vector q = (q0, q1, . . . , qn) of the (n + 1)-degree bound
polynomial

Q(x) =
n−1∏
j=0

(x− xj).

2. For 0 ≤ k ≤ n− 1, obtain the coefficient vector q(k) = (q(k)
0 , q

(k)
1 , . . . , q

(k)
n−1) of the

n-degree bound polynomial

Q(k)(x) =
n−1∏

j=0,j 6=k

(x− xj) = Q(x)/(x− xk).

3. For 0 ≤ k ≤ n− 1, evaluate Q(k)(x) on xk. Let zk = Q(k)(xk).

4. By observing that Formula (1) implies that

A(x) =
n−1∑
k=0

yk

zk
Q(k)(x),

for 0 ≤ i ≤ n− 1, obtain ai as

ai =
n−1∑
k=0

ykq
(k)
i

zk
.

Let us now give the details for implementing the four steps described above.

Step 1 We can design a simple divide-and-conquer algorithm for computing Q(x)
based on the following property. For the base case n = 1 we observe that q = (q0, q1) =
(−x0, 1). For n > 1, assume that we have (recursively) computed the coefficients q′ of

Q′(x) =
n−2∏
j=0

(x− xj),



that is, we have solved the sub-instance of size n− 1 consisting of multiplying the first
n − 1 degree-one polynomials. Then, for 0 ≤ i ≤ n we can obtain the coefficient qi of
Q(x) = Q′(x)(x− xn−1) as

qi =


−q′0xn−1 i = 0,
q′n−1 i = n,
q′i−1 − q′ixn−1 0 < i < n.

(2)

Note that the above formula is a simple mathematical transcription of the elementary
algorithm for multiplying two polynomials by cross-multiplying their component mono-
mials and summing together the coefficients of the resulting monomials of equal degree.
The algorithm is

COMPUTE Q(x)
n← length(x)
if n = 1 then return (−x0, 1)
? x′ = (x0, x1, . . . xn−2) ?
q′ ← COMPUTE Q(x′)
q0 ← −q′0xn−1

qn ← q′n−1

for i← 1 to n− 1 do
qi ← q′i−1 − q′ixn−1

return q

The time complexity T (n) of the above algorithm, whose correctness follows from For-
mula (2), obeys the recurrence

T (n) =

{
1 n = 1,
T (n− 1) + cn n > 1,

for a suitable constant c > 1. It is easy to check that T (n) = Θ(n2).

Step 2 Let us fix k, with 0 ≤ k ≤ n− 1, and consider Q(k)(x) = Q(x)/(x−xk). Since

Q(x) = Q(k)(x)(x− xk) (3)

we can obtain a simple linear system of equations on the (unknown) coefficients (q(k)
0 , q

(k)
1 ,

. . . , q
(k)
n−1) of Q(k)(x) by imposing equality of the coefficients of the monomials of same

degree of the two polynomial expressions at the left and right side of Equation (3). We
have:

qn = q
(k)
n−1

qn−1 = q
(k)
n−2 − xkq

(k)
n−1

...
qn−i = q

(k)
n−i−1 − xkq

(k)
n−i, for 2 ≤ i ≤ n− 1

...



We can solve the above simple system of n equations to compute the unknowns q
(k)
i ,

0 ≤ i ≤ n − 1. This can be easily done by first setting q
(k)
n−1 = qn and then obtaining

q
(k)
n−2 as a function of qn−1 and q

(k)
n−1, q

(k)
n−3 as a function of qn−2 and q

(k)
n−2, and so on for

all the other indices. (Note that this approach is similar to the one at the base of the
standard grade-school polynomial division algorithm).

The algorithm implementing the above argument is the following:

DIVIDE(q, xk)
n← length(q)− 1
q′n−1 ← qn

for i← 2 to n do
q′n−i ← qn−i+1 + xkq

′
n−i+1

return q′

The loop body is executed (n− 1) times, so the running time is Θ(n). Observe that we
need to invoke algorithm DIVIDE n times (one for each input (q, xk), 0 ≤ k ≤ n − 1),
hence Step 2 requires a total of O(n2) time.

Step 3 and Step 4 Recall that algorithm HORNER(a, x) (seen in class), evaluates a
polynomial A(x) of degree bound n and coefficient representation a on x in O(n) time.
By calling HORNER n times again on inputs (q(k), xk), for 0 ≤ k ≤ n − 1, we obtain
the necessary values zk = Q(k)(xk) in time O(n2). At this point, for 0 ≤ i ≤ n − 1,
we obtain the values ai by accumulating the entries ykq

(k)
i /zk as specified in Step 4.

Overall, the accumulations also require O(n2) time.
We are ready to give the code for the entire interpolation process. We will make use

of the subroutines developed above for the single steps.

INTERPOLATE(x,y)
n← length(x)
q ← COMPUTE Q(x)
for i← 0 to n− 1 do ai ← 0
for k ← 0 to n− 1 do

q′ ← DIVIDE(q, xk)
zk ← HORNER(q′, xk)
for i← 0 to n− 1 do

ai ← ai + ykq
′
i/zk

return a

By combining the analyses for the single steps discussed above we can argue that Algo-
rithm INTERPOLATE correctly computes the coefficient vector a in overall time O(n2)
and O(n) space. 2


