
The Longest Increasing Subsequence Problem

Given a string X = 〈x1, x2, . . . , xn〉 of n characters drawn from a totally ordered
alphabet, an Increasing Subsequence (IS) of X is a subsequence Z = 〈z1, z2, . . . , zk〉 of
X (that is, Z = 〈xi1 , xi2 , . . . , xik〉, with 1 ≤ i1 < i2 . . . < ik ≤ n) with zi < zi+1 for
1 ≤ i < k. Our goal is to design and analyze a dynamic programming algorithm that
returns a Longest Increasing Subsequence (LIS) of the input string X, denoted LIS(X).

We will develop two strategies, which are both based on subproblem spaces which
solve a more constrained problem on prefixes of X. The first subproblem space contains
n suproblems (one for each prefix) and yields a quadratic-time algorithm. In contrast,
the second subproblem space contains a quadratic number of subproblems, but yields
an algorithm whose running time is O(n log n).

1 A Quadratic Algorithm

For 1 ≤ i ≤ n, define LIS(Xi) as the longest among all those increasing subsequences
of prefix Xi which end with xi. (Observe that LIS(Xi) may be much shorter than
LIS(Xi).) Moreover, let `[i] be the length of a LIS(Xi). Clearly, the length of LIS(X) is
max{`[i] : 1 ≤ i ≤ n}, since any LIS(Xi) is just an increasing subsequence of X, hence
no larger than LIS(X), but also, if Z = LIS(X) = 〈xi1 , xi2 , . . . , xik〉, then Z must be a
LIS(Xik).

Let us now derive an optimal subtstructure property for the space {LIS(Xi) : 1 ≤
i ≤ n}. For 1 ≤ i ≤ n, define Si as the set {j : 1 ≤ j < i and xj < xi}. Then, the
following recurrence must hold:

`[i] =

{
1 if Si = ∅,
1 + max{`[j] : j ∈ Si} otherwise.

To show that the above relation holds, note that if Si = ∅, then all elements xj with
1 ≤ j < i are no smaller than xi, hence the only IS of Xi with last element xi is 〈xi〉.
When Si 6= ∅, consider a given LIS(Xi). Such a LIS has clearly length at least 2. Now,
if the penultimate element of such subsequence is xk, then k < i and xk < xi (by the
definition of increasing subsequence), therefore k ∈ Si. Moreover, all the first k − 1
elements of LIS(Xi) must form a LIS(Xk). If this were not the case, we could find an
increasing subsequence ending with xi longer than the LIS(Xi) itself, a contradiction.
Needless to say, LIS(Xk) must be the longest among all the LIS ending with elements
xj with j ∈ Si, or, again, we could obtain a longer LIS(Xi).

Observe that S1 = ∅, hence we have `[1] = 1 as a base case. The above relation
immediately yields a dynamic programming algorithm for the LIS problem. In the algo-
rithm, we maintain as additional information needed to reconstruct the LIS, a variable
end, storing the ending point of the longest LIS(Xi) found so far, a variable len, storing
the length of such subsequence, and finally a vector prev [i], 1 ≤ i ≤ n containing the
following information:

prev [i] =

{
0 if Si = ∅,
k if `[k] = max{`[j] : j ∈ Si}.

The pseudocode of the algorithm is the following:

LIS(X)
n← length(X)
len ← 1
end ← 1
`[1]← 1
prev [1]← 0
for i← 2 to n do

`[i]← 1
prev [i]← 0
for j ← 1 to i− 1 do

if (xj < xi) then
if (`[i] < 1 + `[j]) then

`[i]← 1 + `[j]
prev [i]← j

if (len < `[i]) then
len ← `[i]
end ← i

return len, end , prev

The running time T (n) of the above algorithm is upperbounded by the number of
iterations of the two nested loops needed to compute vectors ` and prev . Therefore

T (n) = Θ

 n∑
i=2

i−1∑
j=1

1


= Θ

(
n∑

i=2

(i− 1)

)
= Θ

(
n2
)

.

In order to print any LIS(Xi) using the information returned by the above algorithm,
we can proceed recursively as follows:

PRINT LIS(i, prev , X)
if (prev[i] 6= 0)

then PRINT LIS(prev[i], prev,X)
print(xi)
return

The LIS of X can be printed by invoking PRINT LIS(end , prev , X). The running time
of the printing algorithm is clearly upperbounded by the length of the LIS, which is in
turn at most n.

2 A Θ(n log n) Algorithm

The above algorithm is based on a subproblem space which, given a prefix Xi, constrains
the head of the optimal increasing subsequence to end with xi. Knowing the head of
the subsequence is important to be able to set up an optimal substructure property. We

wonder whether a less stringent constraint on the head of the subsequence may yield
a better algorithm. For instance, suppose that, for each i, with 1 ≤ i ≤ n, we set out
to compute the LIS(Xi) ending with the smallest last character (called head in what
follows) . In other words, we strengthen the subproblems by seeking a specific LIS(Xi),
namely, the one which is most likely to be extended further. Unfortunately, it is easy
to convince oneself that the resulting subproblem space does not feature a substructure
property that allows us to obtain the solution for Xi+1 given the solution for Xi. To
see this, assume that we have computed the smallest-head LIS Z = 〈z1, z2, . . . , zk〉 for
Xi. If zk < xi+1 then we can easily argue that the string 〈Z, xi+1〉 is the smallest-head
LIS for prefix Xi+1. However, if this is not the case, we cannot be sure that Z is also
the smallest-head LIS for Xi+1, since an increasing subsequence Z ′ of Xi of length k−1
may exist with z′k−1 < xi+1, whence 〈Z ′, xi+1〉 would be the smallest-head LIS for Xi+1.

The above line of reasoning suggests that in order to be able to set up an optimal
substructure property based on increasing subsequences of smallest head, we need to
compute, for each prefix Xi, 1 ≤ i ≤ n, its increasing subsequences of smallest head
of any length. More formally, given a string X of length n, and a prefix Xi, with
1 ≤ i ≤ n, for 1 ≤ k ≤ n we say that a subsequence Zk,i of Xi is a Smallest-Head
Subsequence of Xi of length k, denoted Zk,i = SH(k, i), if Zk,i = 〈zk,i

1 , zk,i
2 , . . . , zk,i

k 〉
is an increasing subsequence of Xi of length k with smallest value of zk,i

k , if one such
subsequence exists. In case no such subsequence exists, we set conventionally Zk,i = ε
and zk,i

k = ∞. Our subproblem space will then be {SH(k, i) : 1 ≤ k, i ≤ n}. Observe
that LIS(X) = argmax{|SH(k, n)| : 1 ≤ k ≤ n} and that the subproblem space features
n2 subproblems.

Let us fix a given value i, with 1 ≤ i ≤ n. One important property of the subproblem
space defined above is the following. Let Zk,i = SH(k, i) and Zk+1,i = SH(k+1, i), with
Zk,i, Zk+1,i 6= ε. Then, zk,i

k < zk+1,i
k+1 . Indeed, if this were not the case, the sequence

〈zk+1,i
1 , zk+1,i

2 , . . . , zk+1,i
k 〉 would be an increasing sequence of length k with head zk+1,i

k

smaller than zk,i
k , which is impossible since Zk,i = SH(k, i). In words, the heads of

the nonempty SH sequences for a prefix Xi are increasing with k. We will crucially
exploit this property to obtain a faster algorithm, regardless of the large number of
subproblems.

Let us now derive an optimal substructure property for the newly defined subproblem
space. As a base case, observe that Z1,1 = SH(1, 1) = 〈x1〉, while Zk,1 = ε for 2 ≤ k < n.
For 1 ≤ i < n, and 1 ≤ k ≤ n, let Zk,i = SH(k, i), and let zk,i

k denote its head (recall
that we set zk,i

k =∞ if Zk,i = ε). We have:

Zk,i+1 = SH(k, i + 1) =


SH(k, i) if zk,i

k ≤ xi+1

〈SH(k − 1, i), xi+1〉 if (zk,i
k > xi+1) ∧ (zk−1,i

k−1 < xi+1)
SH(k, i) if (zk,i

k ≥ xi+1) ∧ (zk−1,i
k−1 ≥ xi+1)

The proof of the above property is very simple. If zk,i
k ≤ xi+1, then the extra character

xi+1 is of no use to create a smaller-head SH(k, i + 1), and the same argument applies
to the case (zk,i

k ≥ xi+1) and (zk−1,i
k−1 ≥ xi+1), since any increasing subsequence of

length k − 1 has a head no smaller than xi+1, hence none can be appended with xi+1

to create a better increasing sequence of length k for Xi+1. However, if zk,i
k > xi+1

and zk−1,i
k−1 < xi+1, then we can construct the sequence 〈SH(k − 1, i), xi+1〉 which has a

smaller head than SH(k, i) and is indeed optimal. Notice that the above property also

encompasses the case where SH(k, i) = ε and hence zk,i
k =∞. When this extreme case

applies, we have that |LIS(Xi+1| = |LIS(Xi)|+ 1.
Observe that under the above substructure property, since the heads of the SH

sequences are ordered, when switching from prefix Xi to prefix Xi+1 only a single
subproblem SH(k̄, i+ 1) may have a different optimal solution from SH(k̄, i). Also, such
a subproblem can be spotted in a logarithmic number of comparisons by maintaining
the heads of the SH’s and performing a binary search of the value xi+1 on such heads.

The code below implements the above strategy. In the code, we use vector Z[1..n]
to keep the heads of the SH’s. In particular, after iteration i, Z[k] contains zk,i

k . The
code utilizes subroutine BIN SEARCH(Z, x) (whose code is omitted for brevity), which
returns the (only) index k̄ such that Z[k̄ − 1] < x and Z[k̄] ≥ x (where, for uniformity,
we set Z[0] = −∞).

LIS(X)
n← length(X)
Z[1]← x1

for k ← 2 to n do
Z[k]←∞

for i← 2 to n do
k̄ ← BIN SEARCH(Z, xi)
Z[k̄]← xi

`← 0
while ((` < n) and (Z[` + 1] <∞)) do

`← ` + 1
return `

Observe that the above algorithm, whose correctness follows from the optimal substruc-
ture property proved beforehand, only computes the length ` of LIS(X). The reader
can easily modify the code to keep additional information needed to reconstruct the se-
quence. Specifically, we need to keep, at each iteration i and for each value Z[k] <∞, the
index ik such that Z[k] = zk,i

k = xik (these can be easily stored in a vector index[1..n]).
Then, it suffices to keep an extra vector prev[1..n] which, after iteration i, carries the
following information: if j = index[k], then prev[j] is the index of the character pre-
ceeding the head xj in SH(k, i). Clearly, at iteration i, prev is updated by setting
prev[i] = index[k̄ − 1]. Then, at the end of the n-th iteration, if index[`] = t, then the
LIS can be obtained as 〈. . . xprev[prev[t]], xprev[t], xt〉.

The running time of the above algorithm is clearly dominated by the n calls to
subroutine BIN SEARCH, for a total running time T (n) = O(n log n).

