
Chapter 7

NP Completeness

Exercise 7.1 Show that an algorithm that makes at most a constant number of calls to

polynomial-time subroutines runs in polynomial time, but that a polynomial number of

calls to polynomial-time subroutines may result in an exponential-time algorithm.

Answer: Suppose without loss of generality that algorithm A consists of a sequence of calls

to subroutines S1, . . . , Sm, with each subroutine called once in that order. Assume that each

subroutine Si has a (polynomial) running time bounded by pi(n), with pi(n) ≤ p(n) = nk.

Note that A might call S1 on its input, then call S2 on the return value provided by S1,

and so on until Sm is called on the value provided by Sm−1. We show by induction that the

largest size of the return value and the worst-case running time of the i-th call are both

O(pi(n)), with

pi(n) =

i times︷ ︸︸ ︷
p(p(. . . (p(n)) . . .) = nki

.

For i = 1, the argument of S1 is of size at most n. Since S1 has running time O(p(n)),

its return value has also size O(p1(n)) = O(nk). Assume that the proposition holds for

any i < m, and consider the (i + 1)-th call. By the inductive hypothesis, the size of the

argument of Si+1 has size O(pi(n)). Since Si+1 has running time O(p(n)), the running time

of the (i + 1)-th call and the size of the return value are both O
(
(pi(n))k

)
= O(pi+1(n)).

The inductive thesis follows.

After the m-th call, we have taken time

O

(
m∑

i=1

pi(n)

)
= O (mpm(n)) = O

(
mnkm

)
,

which is polynomial for any constant k and m.

1

On the other hand, suppose that A simply makes n nested calls to a subroutine S, i.e.,

on input n, A computes

Sn(n) =

n times︷ ︸︸ ︷
S(S(. . . (S(n)) . . .).

Suppose that S takes linear time and that its return value is twice as long as its input.

It follows that the running time and the size of the return value of the i-th call are both

Θ(n2i). Therefore, the total running time is

Θ

(
n

n∑
i=1

2i

)
= Θ(n2n).

2

Exercise 7.2 Prove that the class NP of languages is closed under the following opera-

tions:

(a) Union of two languages.

(b) Intersection of two languages.

(c) Concatenation of two languages.

(d) Kleene star of a language.

Answer: Observe that we can re-state the definition of L ∈ NP as follows:

Definition A language L is in NP iff there exists a verification algorithm A, and polyno-

mials p, q such that:

• L = LA;

• ∀x ∈ L, ∃y such that |y| ≤ p(|x|) and A(x, y) = 1;

• A on input (x, y) halts in time ≤ q(|x|+ |y|).

In what follows we use the notation (p + q)(n) to denote the polynomial whose value on n

is p(n) + q(n).

(a) Let L1, L2 ∈ NP , with verification algorithms A1, A2 (i.e., L1 = LA1 , L2 = LA2), and

polynomial bounds p1, q1, and p2, q2, respectively.

Define a new verification algorithm A as follows:

2

A(x, y)
if A1(x, y) = 1

then return 1
else return A2(x, y)

Note that A(x, y) = 1 iff A1(x, y) = 1 or A2(x, y) = 1. We have:

1. L1 ∪ L2 ⊆ LA. Let x ∈ L1 ∪ L2. Then x ∈ L1 or x ∈ L2. If x ∈ L1, then ∃y
such that A1(x, y) = 1. Hence, A(x, y) = 1. Otherwise, if x ∈ L2, then ∃y such that

A2(x, y) = 1. Hence, A(x, y) = 1. Therefore x ∈ LA.

2. LA ⊆ L1 ∪ L2. Let x ∈ LA. Then ∃y such that A(x, y) = 1. This implies

that either A1(x, y) = 1 or A2(x, y) = 1, that is, x ∈ LA1 or x ∈ LA2 . Therefore

x ∈ LA1 ∪ LA2 = L1 ∪ L2.

3. ∀x ∈ LA,∃y such that A(x, y) = 1. If x ∈ L1, we have |y| ≤ p1(|x|). If x ∈ L2, we

have |y| ≤ p2(|x|). Threfore |y| ≤ p1(|x|) + p2(|x|) = (p1 + p2)(|x|).

4. A on (x, y) takes time O((q1 + q2)(|x|+ |y|)) and is therefore polynomially bounded.

This proves that L1 ∪ L2 ∈ NP .

(b) Let L1, L2 ∈ NP , with verification algorithms A1, A2, and polynomial bounds p1, q1

and p2, q2, respectively. Moreover, let # be a distinguished character not in the alphabet

of the certificates. Define a new verification algorithm A as follows:

A(x, y)
if y 6= y1#y2

then return 0
if A1(x, y1) = 1

then if A2(x, y2) = 1
then return 1

return 0

Note that A(x, y) = 1 iff y = y1#y2 and A1(x, y1) = A2(x, y2) = 1. We have:

1. L1 ∩ L2 ⊆ LA. Let x ∈ L1 ∩ L2. Then x ∈ L1 and x ∈ L2. Then, ∃y1, y2 such

that A1(x, y1) = 1 and A2(x, y2) = 1. This implies that A(x, y1#y2) = 1. Therefore

x ∈ LA.

2. LA ⊆ L1 ∩ L2. Let x ∈ LA. Then ∃y1#y2 such that A(x, y1#y2) = 1. This implies

that A1(x, y1) = 1 and A2(x, y2) = 1. Hence x ∈ LA1 and x ∈ LA2 . Therefore,

x ∈ L1 ∩ L2.

3

3. ∀x ∈ LA,∃y such that A(x, y) = 1. Moreover, since y = y1#y2, with |y1| ≤ p1(|x|)
and |y2| ≤ p2(|x|), we have |y| = |y1|+ |y2|+ 1 ≤ (p1 + p2)(|x|) + 1. Therefore |y| is
polynomially bounded.

4. A on (x, y) runs in time O((q1 + q2)(|x|+ |y|)).

This proves that L1 ∩ L2 ∈ NP .

(c) Given a string x, let xi...j denote the substring of x (of length j − i + 1) from the

ith to the jth character. Define xi...j = ε if i > j. Let L1, L2 ∈ NP , with verification

algorithms A1, A2, and polynomial bounds p1, q1 and p2, q2, respectively. Moreover, let #

be a distinguished character not in the alphabet of the certificates. Define a new verification

algorithm A as follows:

A(x, y)
if y 6= y1#y2

then return 0
for k ← 0 to |x|do

if A1(x1...k, y1) = 1 and A2(xk+1...|x|, y2) = 1
then return 1

return 0

Note that A(x, y) = 1 iff y = y1#y2 and ∃0 ≤ k ≤ |x| such that A1(x1...k, y1) = 1 and

A2(xk+1...|x|, y2) = 1. We have:

1. L1L2 ⊆ LA. Let x ∈ L1L2. Then ∃0 ≤ k ≤ |x| such that x1...k ∈ L1 and

xk+1...|x| ∈ L2. Hence, ∃y1, y2 such that A1(x1...k, y1) = 1 and A2(xk+1...|x|, y2) = 1.

So, A(x, y1#y2) = 1, i.e. x ∈ LA.

2. LA ⊆ L1L2. This is immediate from our definition of A.

3. ∀x ∈ LA, ∃y such that A(x, y) = 1 and |y| ≤ (p1 + p2)(|x|) + 1.

4. When running A on (x, y), there are at most |x|+1 executions of A1, each taking time

≤ q1(|x|+ |y|), and at most |x|+1 executions of A2, each taking time ≤ q2(|x|+ |y|).
So, A has a polynomial time bound O(|x|(q1 + q2)(|x|+ |y|)).

This proves that L1L2 ∈ NP .

4

(d) We can exploit the advantage of guessing the right certificate by encoding the sub-

string divisions of x in the certificate y. Namely, let #, & be distinguished characters not

in the alphabet of the certificates. A certificate for a string x in L? will be of type

y = y1#y2# . . . #yk#m1&m2& . . . &mk−1,

where 1 ≤ k ≤ |x|, m0 = 0 ≤ m1 ≤ . . . mk−1 ≤ mk = |x|, and, for any i, 1 ≤ i ≤ k, yi is a

potential certificate for xmi−1+1...mi
’s membership in L. Define a new verification algorithm

A as follows:

A(x, y)
for k ← 1 to |x|do

m0 ← 0, mk ← |x|
if y = y1#y2# . . . #yk#m1&m2& . . . &mk−1

then t← true
for i← 1 to k do

do t← t and A0(xmi−1+1...mi
, yi)

if t then return 1
return 0

A(x, y) = 1 iff ∃k, 1 ≤ k ≤ |x|, such that y = y1#y2# . . . #yk#m1&m2& . . . &mk−1 and,

for any i, 1 ≤ i ≤ k, A0(xmi−1...mi
, yi) = 1. We have:

1. L? ⊆ LA. Let x ∈ L?. Then there is a value k, 1 ≤ k ≤ |x|, such that x is the con-

catenation of strings xmi−1+1...mi
∈ L, for 1 ≤ i ≤ k. Then, for each such i there is a yi

such that A0(xmi−1...mi
, yi) = 1. Thus, if y = y1#y2# . . . #yk#m1&m2& · · ·&mk−1,

we have A(x, y) = 1. Therefore, x ∈ LA.

2. LA ⊆ L?. Let x ∈ LA. Then, there is a y = y1#y2# · · ·#yk#m1&m2& . . . &mk−1

such that A(x, y) = 1. By our definition of A, this implies that xmi−1...mi
∈ L for any

i, 1 ≤ i ≤ k. Therefore, x ∈ L?.

3. Since there are at most |x| yi’s, with |yi| ≤ p0(|x|), and at most |x| mi’s, with

|mi| ≤ log |x|, and at most 2|x| extra-characters in y, we have |y| = O(|x|(p0(|x|) +

log |x|+ 2)), which is polynomially bounded.

4. A on (x, y) runs A0 at most |x| times (because k ≤ |x|), each taking time ≤ q0(|x|+
|y|). Thus, A runs in time O(|x|q0(|x|+ |y|)), and is therefore polynomially bounded.

This proves that L? ∈ NP . 2

5

Exercise 7.3 Prove that <P is a transitive relation. That is, for L1, L2, L3 ⊆ {0, 1}?,

(L1 <P L2 and L2 <P L3)⇒ L1 <P L3.

Answer: Let f(x), g(x) denote the polynomial-time computable functions that reduce L1

to L2 and L2 to L3, respectively. Let h(x) = g(f(x)). For all strings x ∈ {0, 1}? we have:

x ∈ L1 iff f(x) ∈ L2

y = f(x) ∈ L2 iff g(y) = g(f(x)) ∈ L3

Hence

x ∈ L1 iff h(x) = g(f(x)) ∈ L3.

Note that h(x) = g(f(x)) is polynomial-time computable, since it is the composition of

two polynomial-time computable functions. This proves that L1 <P L3. 2

Exercise 7.4 We say that a function f is computable in quasi linear time Tf (n) if there

are nonnegative constants c and k such that Tf (n) ≤ cn(log n)k. Show that reducibility in

quasi linear time is a transitive relation.

Answer: Consider three languages L1, L2 and L3 such that L1 is reducible in quasi linear

time to L2, and L2 is reducible in quasi linear time to L3. By the definition of reduction,

there exist reduction functions f from L1 to L2 computable in quasi linear time Tf (n) ≤
cfn(log n)kf , and g from L2 to L3 computable in quasi linear time Tg(n) ≤ cgn(log n)kg . In

the previous exercise, we have shown that h(x) = g(f(x)) is a reduction function from L1

to L3. It remains to show that h(x) is computable in quasi linear time.

Let y = f(x) and h(x) = g(y). Let also |x| = n. We have |y| ≤ Tf (|x|) ≤ cfn(log n)kf .

Therefore, h(x) = g(y) can be computed in time

Th(n) ≤ Tf (n) + Tg(Tf (n))

= cfn(log n)kf + cg

(
cfn(log n)kf

) (
log

(
cfn(log n)kf

))kg

= (cgcf)n (log n)kf+kg (1 + o(1))

Therefore, there exist constants ch > cgcf and kh = kf +kg such that Th(n) ≤ chn(log n)kh .

This shows that L1 is reducible in quasi linear time to L3. 2

6

Exercise 7.5 Prove that L ≤P Lc iff Lc ≤P L.

Answer:

f reduces L to Lc ⇔ ∀x ∈ Σ? : x ∈ L iff f(x) ∈ Lc

⇔ ∀x ∈ Σ? : (x /∈ L) iff (f(x) /∈ Lc)

⇔ ∀x ∈ Σ? : x ∈ Lc iff f(x) ∈ L

⇔ f reduces Lc to L.

2

Exercise 7.6 Under the assumption that P 6= NP , prove or disprove the following

statements:

(a) {0, 1}? ∈ P .

(b) There are NP -complete languages that are regular. Recall that a regular language

is one which is accepted by a Deterministic Finite-State Automaton (DFSA).

(c) If L contains an NP -complete subset, then L is NP -complete.

(d) All NP -Complete problems can be solved in time O
(
2p(n)

)
, for some polynomial

p(n).

(e) The halting problem is NP -complete.

(f) The halting problem is NP -hard.

Answer:

(a) True {0, 1}? is decided by the following constant-time algorithm:

A{0,1}?(x)
return 1

(b) False Given a regular language L, any DFSA that accepts L yields a linear-time

decision algorithm AL for L. To see this, associate a distinct label to each state and use

conditional jumps to “simulate” transitions. On string x, we will perform exactly |x| jumps

before either accepting or rejecting, according to whether the last jump leads to a final or

a nonfinal state. This proves that for any regular language L, L ∈ P .

7

(c) False Counterexample: {0, 1}? ⊃ LSAT, but Point (a) proves that {0, 1}? ∈ P .

(d) True For L ∈ NP , let AL be the polynomial-time algorithm verifying L and running

in time TA(|x| + |y|) ≤ c1(|x| + |y|)h, where |y| ≤ c2|x|k when x ∈ L. We can write the

following decision algorithm for L:

DECIDE L(x)
for each y ∈ {0, 1}?, |y| ≤ c2|x|k do

if AL(x, y) = 1 then return 1
return 0

DECIDE L(x) returns 1 if and only if there exists a “short” certificate for x, which is

the case if and only if x ∈ L. Therefore DECIDE L decides L. The running time of

DECIDE L(x) is O
(
|x|hk2c2|x|k

)
= O

(
2c2|x|k+|x|

)
= O

(
2p(|x|)

)
.

(e) False Recall that the halting problem corresponds to the following language:

LH = {y ∈ {0, 1}? : y = 〈M, x〉, M is a Turing machine which terminates on input x}.

We know that LH is an undecidable language. On the other hand, since NPC ⊆ NP , Point

(d) proves that any NP -Complete problem is decidable. Therefore the halting problem

cannot be NP -Complete.

(f) True Consider an arbitrary language L ∈ NP , and let DECIDE L be the exponential

decision algorithm for L developed in Point (d). Consider the following program, based

on DECIDE L:

AL(x)
if DECIDE L(x) = 1

then return 1
else while true do

{ loop forever }

AL either returns 1 or goes into an infinite loop. Let MAL
be a Turing Machine encoding

algorithm AL. Define the following function:

f(x) = 〈MAL
, x〉

Clearly, f is computable in polynomial time, since it takes constant time to encode the

Turing Machine and linear time to copy the input string. We now prove that f reduces L

8

to LH , the language of the halting problem. We have

x ∈ L ⇔ DECIDE L(x) = 1

⇔ AL(x) terminates

⇔ 〈MAL
, x〉 ∈ LH

We have proved that for any language L ∈ NP , L <P LH . Hence LH is NP -Hard. 2

Exercise 7.7 Suppose that someone gives you a polynomial-time algorithm to decide

formula satisfiability. Describe how to use this algorithm to find satisfying assignments in

polynomial time.

Answer: Let Φ(x1, ..., xm) be a boolean formula, and let SAT be a (rather unlikely)

subroutine deciding satisfiability in polynomial time O(p(n)), where n ≥ m is the size

of formula Φ. We can find a satisfying assignment to Φ (assuming that there is one,

which can be ascertained with one call to SAT) by iteratively finding a truth assignment

s(1) for x1, then finding an assignment s(2) for x2, and so on until we have an assign-

ment for all the variables. Our invariant will be that after the i-th iteration, the formula

Φ(s(1), . . . , s(i), xi+1, . . . , xm) (i.e., the formula where the variables x1, . . . , xi are substi-

tuted with the boolean constants s(1), . . . , s(i) ∈ {false, true}) is satisfiable.

The algorithm works as follows: having found assignments s(1), s(2), . . . , s(i−1) for the

first i−1 variables, we call SAT on Φ(s(1), . . . , s(i−1), false, xi+1, . . . , xm). If this formula

is satisfiable, then s(i) = false. If the formula is not satisfiable, then s(i) = true. In the

latest case, Φ(s(1), . . . , s(i − 1), true, xi+1, . . . , xm) must be satisfiable, because our loop

invariant/induction hypothesis tells us that Φ(s(1), . . . , s(i − 1), xi, . . . , xm) is satisfiable

(and Φ(s(1), . . . , s(i− 1), false, xi+1, . . . , xm) is not). The algorithm follows:

FIND ASSIGNMENT(Φ(x1, x2, . . . , xm))
if SAT(Φ(x1, x2, . . . , xm))= “no”

then return “formula is not satisfiable”
for i← 1 to m

do s[i]← false
if SAT(Φ(s[1], . . . , s[i], xi+1, . . . , xm)) = “no”

then s[i]← true
return s

At stage i, it takes polynomial time to prepare Φ(s(1), . . . , s(i), false, xi+2, . . . , xm); then

SAT takes time p(n) to decide the satisfiability of this formula. Since there are m = O(n)

iterations, the overall running time is polynomial. 2

9

Exercise 7.8 Consider the following decision problem:

BI SAT (DOUBLE SATISFIABILITY):

INSTANCE: 〈Φ(x1, x2, . . . , xn)〉, Φ is a boolean formula

QUESTION: Are there two distinct satisfying assignments for Φ?

Show that BI SAT is NP -Complete.

Answer: Let us first show that BI SAT ∈ NP . Consider the following straightforward

algorithm.

VERIFY BI SAT(x, y)
if x 6= 〈Φ(x1, x2, . . . , xn)〉

then return 0
if y 6= 〈(b1

1, b
1
2, . . . , b

1
n), (b2

1, b
2
2, . . . , b

2
n)〉

then return 0

{ the bj
i ’s are boolean values that form two

truth assignments for the variables of Φ }
same← true
for i← 1 to n do same← same and (b1

i = b2
i)

if same then return 0
{ truth assignments must be distinct}
if Φ(b1

1, b
1
2, . . . , b

1
n) and Φ(b2

1, b
2
2, . . . , b

2
n)

then return 1
return 0

The algorithm performs two evaluations of Φ plus some extra steps whose number is linear

in |〈Φ〉|. Since a boolean formula can be evaluated in time polynomial in its length,

VERIFY BI SAT verifies BI SAT in polynomial time.

The second step is to show that BI SAT is NP -Hard. We show that SAT <P BI SAT,

where SAT is the Boolean Formula Satisfiability problem.

Let Φ(x1, x2, . . . , xn) be a formula, and let xn+1 be a new variable. We define our

reduction function as follows:

f(〈Φ(x1, x2, . . . , xn)〉 = 〈Φ(x1, x2, . . . , xn) ∧ (xn+1 ∨ ¬xn+1)〉.

Let us show that

〈Φ(x1, x2, . . . , xn)〉 ∈ SAT⇔ f(〈Φ(x1, x2, . . . , xn)〉) ∈ BI SAT.

Suppose Φ(x1, x2, . . . , xn) ∈ SAT. Then there is a truth assignment (b1, b2, . . . , bn) to vari-

ables (x1, x2, . . . , xn) satisfying Φ(x1, x2, . . . , xn). Since (xn+1 ∨ ¬xn+1) is true for both

10

xn+1 = false and xn+1 = true, we have that f(Φ(x1, x2, . . . , xn)) is satisfied by the two as-

signments (b1, b2, . . . , bn, false) and (b1, b2, . . . , bn, true). Conversely, if f(Φ(x1, x2, . . . , xn))

has two satisfiying assignments (b1
1, . . . , b

1
n, b

1
n+1) and (b2

1, . . . , b
2
n, b

2
n+1) then Φ(x1, x2, . . . , xn)

is clearly satisfied by both assignments (b1
1, b

1
2, . . . , b

1
n) and (b2

1, b
2
2, . . . , b

2
n), since, in order

for Φ(x1, x2, . . . , xn) ∧ (xn+1 ∨ ¬xn+1) to be true, both operands Φ(x1, x2, . . . , xn) and

(xn+1 ∨ ¬xn+1) must be true.

Finally, note that f creates a new variable xn+1 and computes the encoding of the new

formula. Such activity can be accomplished in time polynomial in |〈Φ(x1, x2, . . . , xn)〉|. 2

Exercise 7.9 Consider the following decision problem:

M SAT (MAJORITY SATISFIABILITY):

INSTANCE: 〈Φ(x1, x2, . . . , xn)〉, Φ is a boolean formula

QUESTION: Is Φ(x1, x2, . . . , xn) true for more than a half of the pos-

sible 2n input assignments?

Show that M SAT is NP-hard.

Answer: We show that SAT <P M SAT. Given a formula Φ(x1, x2, . . . , xn), define

f(〈Φ(x1, x2, . . . , xn)〉) = 〈Φ′(x1, x2, . . . , xn, xn+1)〉,
with Φ′(x1, x2, . . . , xn, xn+1) = Φ(x1, x2, . . . , xn) ∨ xn+1.

Note that f is trivially computable in time polynomial in |〈Φ(x1, x2, . . . , xn)〉|.
Let us show that f reduces SAT to M SAT. First note that Φ′ is satisfied by any of

the 2n assignments (x1, x2, . . . , xn, true). If Φ ∈ SAT, then there exists an assignment

(x̄1, x̄2, . . . , x̄n) such that Φ(x̄1, x̄2, . . . , x̄n) = true. Then, Φ′ is also satisfied by the assign-

ment (x̄1, x̄2, . . . , x̄n, false), for a total of at least 2n + 1 = 2n+1/2 + 1 satisfying assign-

ments, therefore f(〈Φ〉) ∈ M SAT. Vice versa, if Φ is not satisfiable, then the assignments

(x1, x2, . . . , xn, true) are all and only those satisfying Φ′. Since these are 2n < 2n+1/2 + 1,

f(〈Φ〉) 6∈ M SAT. 2

Exercise 7.10 Consider the following decision problem:

0-1 IP (0-1 INTEGER PROGRAMMING):

INSTANCE: 〈A, b〉, where A is an integer m × n matrix and b is an

integer m-vector.

11

QUESTION: Is there an n-vector x with components in {0, 1} such

that (Ax)i ≥ bi, for 1 ≤ i ≤ m?

Prove that 0-1 IP is NP -complete.

Answer: A certificate for an instance (A, b) of 0-1 IP is clearly a 0-1 cols(A)-vector x.

Here is the verification algorithm:

VERIFY IP(a, y)
if (a 6= 〈A, b〉) or (y 6= 〈x〉)

then return 0
m← rows(A)
n← cols(A)
if (length(b) 6= m) or (length(x) 6= n)

then return 0
for i← 1 to m do

for j ← 1 to n do
if (ai,j, bi noninteger) or (xj /∈ {0, 1})

then return 0
c← MAT VEC MULT(A, x)
for i← 1 to m do

if ci < bi then return 0
return 1

VERIFY IP(a, y) is a legal verification algorithm for 0-1 IP, since it returns 1 if and only

if a is a well-formed encoding 〈A, b〉 of an instance of IP, y is a well formed encoding of

a 0-1 cols(A)-vector x, and Ax ≥ b. Moreover, since matrix-vector multiplication can be

performed in polynomial time, the algorithm is clearly polynomial.

To show 0-1 IP is NP-hard, we show that 3-CNF-SAT ≤P 0-1 IP. Let Φ(x1, x2, . . . xn) =

C1 ∧ C2 ∧ · · · ∧ Ck be a boolean formula in 3-CNF made of k clauses. Without loss of

generality, in what follows we assume than no clause Cj contains both xi and xi, since in

this case Cj is a tautology and can be eliminated from Φ without affecting the value of

the formula on any of the assignments. We will say that xi = 1 if xi is assigned the value

true, and xi = 0 if xi is assigned the value false. If a boolean variable has value xj = α,

with α ∈ {0, 1}, then the value of xj is (1− α). With this convention, a 0-1 n-vector can

be seen as a truth assignment to the n boolean variables of Φ.

From our instance Φ of 3-CNF-SAT, we build an instance (A, b) of 0-1 IP in the following

way:

• A is a k× n matrix, where row i is built from clause Ci of Φ in the following way: if

boolean variable xj does not appear in Ci, then ai,j = 0. If xj is a literal in Ci, then

ai,j = 1. If xj is a literal in Ci, then ai,j = −1.

12

• b is a k-vector such that bi = 1− |{negative literals in Ci}|.

Given the above definition of A and b, for 1 ≤ i ≤ k, the i-th inequality (Ax)i ≥ bi can be

rewritten as follows: ∑
xj∈Ci

xj +
∑

xj∈Ci

(1− xj) ≥ 1. (7.1)

Assume now that Φ is satisfiable. Then there must exist a truth assignment to the n

variables such that satisfies all clauses. Let (t1, t2, . . . , tn) be the 0-1 n-vector corresponding

to such assignment. Then, the sum of the values α1
i , α

2
i , α

3
i of the three literals in each

clause Ci dictated by the tj’s is at least 1. Hence, all inequalities are satisfied at the same

time by setting xj = 1 if tj = true, and xj = 0 otherwise. Vice versa, any 0-1 n-vector

(x1, x2, . . . , xn) satisfying all the k inequalities yields a satisfying truth assignment for Φ.

Hence, f is a reduction from 3-CNF-SAT to IP. 2

Exercise 7.11 Consider the following decision problem:

DF (DISTINCT FORMULAE):

INSTANCE: 〈Φ(x1, x2, . . . , xn), Ψ(x1, x2, . . . , xn)〉,
with Φ(x1, x2, . . . , xn) and Ψ(x1, x2, . . . , xn) boolean for-

mulae.

QUESTION: Is there a truth assignment (b1, b2, . . . , bn) such that

Φ(b1, b2, . . . , bn) 6= Ψ(b1, b2, . . . , bn)?

Show that DF is NP-complete.

Answer: We first show that DF ∈ NP . A candidate certificate for DF is a truth as-

signment to the n variables. The verification algorithm VERIFY DF first checks whether

its first input x = 〈Φ(x1, x2, . . . , xn), Ψ(x1, x2, . . . , xn)〉, that is, x is a well-formed encod-

ing of an instance of DF; then checks that its second input encodes a truth assignment

(b1, b2, . . . , bn). If this is the case, then the algorithm checks whether Φ(b1, b2, . . . , bn) 6=
Ψ(b1, b2, . . . , bn). The running time of VERIFY DF is clearly polynomial in the size of its

inputs. For brevity, we omit the code of the algorithm.

In order to show that DF is NP -Hard, we provide a polynomial-time reduction from

SAT to DF. Recall that an instance of SAT is 〈Φ(x1, x2, . . . , xn)〉 and the question is

whether Φ is satisfiable, that is, whether there is a truth assignment (b1, b2, . . . , bn) such

that Φ(b1, b2, . . . , bn) = true. Our reduction function is the following:

f (〈Φ(x1, x2, . . . , xn)〉) = 〈Φ(x1, x2, . . . , xn), Ψ(x1, x2, . . . , xn) = x1 ∧ ¬x1〉.

13

Note that the second formula in f (〈Φ(x1, x2, . . . , xn)〉) is a contradiction, therefore its

evaluation yields false on all truth assignments.

Clearly, f is computable in polynomial time. It remains to show that f is indeed

a reduction. Assume that 〈Φ(x1, x2, . . . , xn)〉 ∈ SAT. Then there is a truth assignment

(b1, b2, . . . , bn) such that Φ(b1, b2, . . . , bn) = true. On such assignment, we have

true = Φ(b1, b2, . . . , bn) 6= Ψ(b1, b2, . . . , bn) = false,

hence f (〈Φ(x1, x2, . . . , xn)〉)∈DF. Vice versa, if 〈Φ(x1, x2, . . . , xn)〉 /∈ SAT, then

Φ(b1, b2, . . . , bn) = Ψ(b1, b2, . . . , bn) = false,

on all truth assignments (b1, b2, . . . , bn). Therefore f (〈Φ(x1, x2, . . . , xn)〉) /∈DF. 2

Exercise 7.12 Consider the following problem:

TWO-CLIQUE :

INSTANCE: 〈G, h, k〉, with G an undirected graph and h, k > 0.

QUESTION: Does G contain two disjoint cliques of size h and k?

(a) Show that TWO-CLIQUE is in NP .

(b) Show that TWO-CLIQUE is NP -hard.

Answer:

(a) Consider the following verification algorithm A.

A(x, y)
if x 6= 〈G = (V, E), h, k〉, h, k > 0

then return 0
if y 6= 〈U1, U2〉, U1, U2 ⊂ V

then return 0
if |U1| = h and |U2| = k and U1 ∩ U2 = ∅

then if IS CLIQUE(G, U1) and IS CLIQUE(G, U2)
then return 1

return 0

Subroutine IS CLIQUE(G, U) checks the adjacency list of G to make sure that U is a

clique. Clearly, LA = TWO-CLIQUE. The length of an accepting certificate y is clearly

O(|V |) = O(|x|). Finally, IS CLIQUE(G, U) can clearly be implemented in polynomial

time, therefore A is polynomial.

14

(b) Let us consider the following reduction function f from CLIQUE to TWO-CLIQUE.

f(〈G = (V, E), h〉) = 〈G′ = (V ∪ {u}, E), h, 1〉,

where 〈G = (V, E), h〉 is a CLIQUE instance and u /∈ V . Note that u is an isolated node

in G′.

Let us first prove that f is indeed a reduction. If 〈G = (V, E), h〉 ∈ CLIQUE then there

is a subset K of V which forms an h-clique. Now, K is also an h-clique in G′, and {u} is a

1-clique in G′ disjoint from K. Therefore 〈G′, h, 1〉 = f(〈G, h〉) ∈ TWO-CLIQUE. Consider

now the case f(〈G, h〉) ∈ TWO-CLIQUE. If h = 1, then clearly 〈G, h〉 ∈ CLIQUE. Let

now h > 1. Then there is an h-clique K in (V ∪ {u}, E). Since u is not adjacent to any

other vertex in V , u is not contained in the h-clique. Therefore K is also an h-clique in

G. So 〈G, h〉 ∈ CLIQUE. Finally, f simply copies G and adds an extra node, therefore f

is computable in linear time. 2

Exercise 7.13 Consider the following decision problems:

OMC (ODD-MAX-CLIQUE):

INSTANCE: 〈G = (V, E)〉, with G an undirected graph.

QUESTION: Is the maximum clique size odd?

EMC (EVEN-MAX-CLIQUE):

INSTANCE: 〈G = (V, E)〉, with G an undirected graph.

QUESTION: Is the maximum clique size even?

(a) Show that OMC <
P

EMC.

(b) Show that if EMC is NP-complete then OMC is NP-complete.

Answer:

(a) Let G = (V, E) be an undirected graph, and let G′ = (V ′, E ′) be defined as follows:

V ′ = V ∪ {α}, α /∈ V ;

E ′ = E ∪ {{α, v} : v ∈ V } .

15

Let now f(〈G〉) = 〈G′〉. Clearly, f(〈G〉) can be computed in time polynomial in |V | and

|E|. Let M ⊆ V be a max-clique for G, and M ′ ⊆ V ′ be a max-clique for G′. Then, the

following two claims hold:

1. α ∈M ′.

If this were not the case, since {α, u} ∈ E ′ for each u ∈ M ′, M ′ ∪ {α} would be a

clique of size strictly greater than M ′, a contradiction.

2. |M ′| = |M |+ 1.

By Claim 1, α ∈M ′ and M ′ − {α} is a clique for G. Hence

|M | ≥ |M ′| − 1.

M ∪ {α} is a clique for G′. Hence

|M ′| ≥ |M |+ 1

From Claim 1 and Claim 2 we conclude that G has an odd max clique iff G′ has an even

max clique. This proves that f reduces OMC to EMC. Therefore OMC <
P

EMC.

(b) Suppose that EMC is NP-complete. Then, from Part (a) it follows that OMC ∈
NP. Therefore, it is sufficient to show that EMC <

P
OMC, which requires an identical

argument to the one used in Part (a), since function f also reduces EMC to OMC. 2

Exercise 7.14 Consider the following decision problem:

IS (INDEPENDENT SET):

INSTANCE: 〈G = (V, E), k〉, with G an undirected graph, and k > 0.

QUESTION: Is there a subset S ⊆ V , |S| = k, with {u, v} /∈ E for

each u, v ∈ S ?

(a) Show that IS is NP -Complete.

(b) Assume that you are given an O(|V | + |E|) algorithm for IS. Show how to use the

algorithm to determine the maximum size of an independent set in time O((|V | +
|E|) log |V |).

Answer: In order to prove that IS ∈ NP , consider the following verification algorithm A.

16

A(x, y)
if x 6= 〈G = (V, E), k〉, k > 0

then return 0
if y 6= 〈U〉, U ⊆ V

then return 0
if |U | = k

then if IS INDEPENDENT(G, U)
then return 1

return 0

Subroutine IS INDEPENDENT(G, U) checks the adjacency list of G to make sure that

U is an independent set. Clearly, LA = IS. The length of an accepting certificate y

is O(|V |) = O(|x|). Finally, IS INDEPENDENT(G, U) can clearly be implemented in

polynomial time, therefore A is polynomial.

Next we show that CLIQUE <P IS, hence IS is NP -hard. Consider the following

transformation:

f (〈G = (V, E), k〉) = 〈Gc = (V, Ec), k〉,

where Ec = {{u, v} : u 6= v ∈ V and {u, v} /∈ E}. Then:

1. Since there is an edge (u, v) in Gc if and only if (u, v) /∈ E, Gc can be determined

by checking all the pairs of vertices in O(|V |2) time. Therefore f is computable in

polynomial time.

2. If G contains a clique U ⊆ V of size k, then no pair of vertices in U will be connected

by an edge in Gc. Therefore U is an IS of size k for Gc.

3. If Gc has an IS U of size k, then any pair of distinct vertices in U will be connected

by an edge in G, therefore U is a clique of size k for G.

(b) Let DECIDE IS(〈G = (V, E), k〉) be our (unlikely) O(|V | + |E|) algorithm that de-

cides IS. Based on DECIDE IS, we can write the following recursive algorithm:

MAX SIZE(〈G = (V, E)〉, i, j)
if i = j then return i
middle ← d(i + j)/2e
if DECIDE IS(〈G = (V, E),middle〉)

then return MAX SIZE(〈G = (V, E)〉,middle, j)
else return MAX SIZE(〈G = (V, E)〉, i,middle− 1)

17

When we call MAX SIZE(〈G = (V, E)〉, 1, |V |), we basically perform a binary search on

all possible cardinalities of an independent set. The correctness of the algorithm follows

from the observation that there is an independent set of size h iff the size of the maximum

independent set is ≥ h. Therefore a binary search approach can be applied, yieding the

desired running time of O((|V |+ |E|) log |V |). 2

Exercise 7.15 A problem closely related to problem IS, defined in the previous exercise,

is the following. Given an undirected graph G = (V, E), a maximal independent set is

an indepent set S such that, for each v ∈ V − S, S ∪ {v} is not independent. That is, S

cannot be “upgraded” to a larger independent set.

(a) Give an example of a graph where there is a maximal independent set of size much

smaller than the size of the maximum independent set.

(b) Show that the problem of determining a maximal independent set can be solved in

polynomial time.

Answer:

(a) Consider the following “star” graph:

v v v
v v v
v v v

v
�

�
�

�
�

�@
@

@
@

@
@

Clearly, the node at the center of the star makes a maximal independent set by itself, since

all other nodes are connected to it. However, the maximum independent set contains eight

nodes. Note that the above example can be generalized to yield a discrepancy of Θ(|V |)
between the size of a a maximal and a maximum independent set, for any value of |V |.

(b) We build our maximal independent set S incrementally as follows. We start from

the empty set and perform a linear scan the nodes. We add a new node v to S if S ∪ {v}
is still independent. The algorithm follows.

18

GREEDY MAXIMAL INDEPENDENT SET(G = (V, E))
n← |V |
S ← ∅
for i← 1 to n do

indep← true
for each u ∈ Adj[vi] do

if u ∈ S
then indep← false

if indep
then S ← S ∪ {vi}

return S

The set S returned by the above algorithm is an independent set by construction. Let us

now prove that S is maximal. Assume, for the sake of contradiction, that S is not maximal.

Then, there is a node vi ∈ V − S such that S ∪ {vi} is an independent set. Note that vi

was not added to S, therefore, at the end of the i-th iteration of the outer loop, variable

indep was false. This means that there was a node u ∈ S such that u ∈ Adj[vi], which

contradicts the hypothesis that S ∪ {vi} is an independent set.

Note that the outer loop is executed |V | times. During iteration i, we execute the inner

loop |Adj[vi]| times, for a total of Θ(|E|) iterations altogether. In each iteration, the check

u ∈ S can be performed in O(log |S|) time (using –say– a binary search tree to store S).

Since |S| ≤ |V |, the running time of the above algorithm is then O(|V |+ |E| log |V |). 2

Exercise 7.16 Given undirected graphs G1 = (V (G1), E(G1)) and G2 = (V (G2, E(G2)),

we say that G1 is isomorphic to G2 if there is a one-to-one function π : V (G1)→ V (G2) such

that {u, v} ∈ E(G1) iff {π(u), π(v)} ∈ E(G2). Consider the following decision problem:

SI (SUBGRAPH ISOMORPHISM):

INSTANCE: 〈G = (V (G), E(G)), H = (V (H), E(H))〉, with G and H

undirected graphs

QUESTION: Does H contain a subgraph H ′ = (V (H ′), E(H ′)), with

V (H ′) ⊆ V (H) and E(H ′) ⊆ E(H)) that is isomorphic

to G?

Show that SI is NP-complete.

Answer: SI is clearly in NP . Given a string x = 〈G, H〉 ∈ SI, a certificate y for SI is

〈H ′ = (V (H ′), E(H ′), π〉. Note that π can be represented as a sequence of |V (G)| pairs

(u, π(u)), with u ∈ V (G), therefore the encoding of y is polynomial in the size of the

19

instance. On input 〈x, y〉, the verifier first checks that the encodings for the instance and

the certificate are well-formed, then checks that H ′ is indeed a subgraph of H with |V (G)|
nodes, and finally checks that for any edge (u, v) in E(G), edge (π(u), π(v)) is in E(H ′)

and viceversa. These checks clearly take time polynomial in the size of 〈x, y〉. The code of

the algorithm is omitted for the sake of brevity.

In order to show that SI is NP -Hard, we show that CLIQUE <P SI. Recall that an

instance of CLIQUE is 〈G, k〉 and the question is whether G contains a complete subgraph

of size k. Let Ck be the graph ({1, 2, . . . , k}, {{u, v} : 1 ≤ u 6= v ≤ k}), that is, Ck is the

complete graph built on vertices V (Ck) = {1, 2, . . . , k}. Our reduction function is

f (〈G, k〉) = 〈Ck, G〉.

Clearly, f is computable in polynomial time. To see that f reduces CLIQUE to SI, note that

if G contains a complete subgraph with k nodes, then such subgraph is clearly isomorphic

to Ck (all complete graphs with the same number of nodes are isomorphic). Viceversa, if

G contains a subgraph isomorphic to Ck, then such subgraph is itself a clique of k nodes (a

complete graph can only be isomorphic to another complete graph). This suffices to show

that CLIQUE <P SI, and the claim follows. 2

Exercise 7.17 Consider the following decision problem:

HS (HITTING SET):

INSTANCE: 〈n, m,C1, C2, . . . , Cm, k〉, with Ci ⊆ {1, 2, . . . , n} for 1 ≤
i ≤ m, and k ≤ n.

QUESTION: Is there a subset S ′ ⊆ {1, 2, . . . , n} with |S ′| = k and

such that S ′ ∩ Ci 6= ∅, for 1 ≤ i ≤ m?

Show that HS is NP-complete.

Answer: A candidate certificate for HS is a subset S ′ ⊆ {1, 2, . . . , n}. The verifi-

cation algorithm first checks whether its first input x is a well-formed encoding x =

〈n, m,C1, C2, . . . , Cm, k〉 of an instance of HS; then checks that its second input encodes

a subset of {1, 2, . . . , n} of cardinality k. If this is the case, the algorithm proceeds to

check whether S ′ ∩ Ci 6= ∅, for 1 ≤ i ≤ m. Each such test can clearly be accomplished in

polynomial time. Therefore HS ∈ NP .

In order to show that HS is NP -Hard, we exhibit a reduction from VERTEX COVER

(VC) to HS. Recall that an instance of VC is 〈G = (V, E), k〉 and the question is whether V

contains a subset V ′ of size k such that each edge in E has at least one of its endpoints in V ′.

20

Let π : V → {1, 2, . . . , |V |} be an arbitrary one-to-one function from V to {1, 2, . . . , |V |}.
Our reduction function is the following:

f (〈G = (V, E), k〉) = 〈|V |, |E|, C1, C2, . . . , C|E|, k〉,

where Ci = {π(u), π(v)} iff the i-th edge in E is {u, v}.
Clearly, f is computable in polynomial time. To show that f reduces VC to HS, it is

sufficient to observe that, by construction, G contains a vertex cover V ′ with k nodes if

and only if π(V ′) ⊆ {1, 2, . . . , |V |} has nonempty intersection with all the Ci’s. The proof

follows since |π(V ′)| = |V ′| = k. 2

Exercise 7.18 Let L1 and L2 be two NP-Hard Languages, and assume that there exist

a polynomial time reduction function f from SAT to L1 with the further property that for

any x ∈ {0, 1}?, f(x) /∈ L2. Show that L1 ∪ L2 is also NP-Hard.

Answer: It is sufficient to prove that under the stated hypotheses, f also reduces SAT

to L1 ∪ L2. Indeed, if x ∈ SAT, then f(x) ∈ L1, since f reduces SAT to L1, hence

f(x) ∈ L1 ∪ L2. Vice versa, if f(x) ∈ L1 ∪ L2, it must be that f(x) ∈ L1 (since f(x) /∈ L2

from the hypothesis), hence x ∈ SAT (again, since f reduces SAT to L1). Observe that the

hypothesis L2 ∈ NPH is not used in the above argument, hence the result holds regardless

of the complexity of accepting language L2. 2

Exercise 7.19 Consider the following decision problem:

VERTEX COVER or INDEPENDENT SET (VCoIS):

INSTANCE: 〈G = (V, E), h, k〉, G undirected graph, 1 ≤ h, k ≤ |V |.

QUESTION: Does G contain a vertex cover of size h or an independent

set of size k?

Show that VCoIS is NP -Hard.

Answer: Consider the following straightforward reduction from VERTEX COVER (V C):

f(〈G = (V, E), h〉) = 〈G′ = G, h, |V |〉.

Clearly, f is computable in polynomial (in fact, linear) time. Let us now show that f is a

valid reduction from VC to CoVC. If 〈G = (V, E), h〉 ∈ VC, then G has a vertex-cover V̂

of size h. Since G′ = G the same holds for G′, hence 〈G′ = G, h, |V |〉 = f(〈G, h〉) ∈ CoVC.

Viceversa, if 〈G, h〉 6∈ VC, we first observe that E cannot be empty (since a graph made of

21

all isolated vertices admits vertex covers of any size). Clearly, G′ = G does not have a vertex

cover of size h. Moreover, G′ cannot have an independent set of size |V |, since such a large

independent set implies that E = ∅. It follows that 〈G′ = G, h, |V |〉 = f(〈G, h〉) /∈ CoVC.

We have proved that f is a valid polynomial-time reduction from VC to VCoIS, hence the

latter problem is NP-Hard. 2

Exercise 7.20 Given an undirected graph G = (V, E), a dominating set D ⊆ V of G is

a subset of vertices such that, for each nonisolated node v ∈ V (that is, each node v which

is the endpoint of at least an edge), D contains v or one of its neighbors. Formally:

∀v ∈ V : v nonisolated⇒ (v ∈ D) ∨ (∃{u, v} ∈ E : u ∈ D).

Consider the following decision problem:

DOMINATING SET:

ISTANZA: 〈G = (V, E), k〉, k ≤ |V |
DOMANDA: Is there a dominating set D ⊆ V with |D| = k?

We want to show that DOMINATING SET is NP-Hard. Consider the follwing reduction

f from VERTEX COVER: given 〈G = (V, E), h〉, for each edge {u, v} ∈ E add a new nod

to the graph, call it zuv and two new edges connecting zuv to u e v. Let also k = h.

1. Show x ∈ VERTEX COVER⇒ f(x) ∈ DOMINATING SET.

2. Show f(x) ∈ DOMINATING SET⇒ x ∈ VERTEX COVER.

Answer: The suggested reduction is f(〈G = (V, E), k〉) = 〈G′ = (V ′, E ′), h〉, where

1. V ′ = V ∪{zuv : {u, v} ∈ E}. (For each edge {u, v} ∈ E we add a new node zuv to V ′

. . .)

2. E ′ = E ∪ {{u, zuv}, {v, zuv} : {u, v} ∈ E}. (. . . and connect zu,v to u and v only.)

3. h = k (We look for a Dominating Set of G′ as large as the Vertex Cover of G).

G′ has |V | + |E| nodes and 3|E| edges, hence f can be computed in linear time in |〈G =

(V, E), k〉|.
(Point 1) If x = 〈G = (V, E), k〉 ∈ VERTEX COVER, there exists a subset V̂ ⊆ V of

size k such that each edge {u, v} ∈ E has at least one endpoint in V̂ . We now show

that V̂ ⊆ V ′ is also a dominating set of G′. Consider any non-isolated node y ∈ V ′. If

y ∈ V ′ ∩ V , then there exists an edge {u, y} ∈ E. Since V̂ is a vertex-cover, either y ∈ V̂

22

or u ∈ V̂ . If y 6∈ V ′∩V , then there exists an edge {u, v} ∈ E such that y = zu,v, and y has

u and v as neighbors. Again, one of these latter two nodes must be in V̂ , since {u, v} ∈ E.

The two cases together show that the dominating set condition holds for all non-isolated

nodes, hence V̂ is a dominating set in G′ of size k. Therefore f(x) = 〈G′ = (V ′, E ′), k〉 ∈
DOMINATING SET.

(Point 2)If f(x) = 〈G′ = (V ′, E ′), k〉 ∈ DOMINATING SET, there exists a dominating

set D ⊆ V ′ of size k. Observe that D may contain nodes zu,v 6∈ V , so we cannot claim

directly that D is a vertex cover in G. However, we may substitute each node zu,v ∈ D

with one of the two nodes u or v and still obtain a dominating set D′ ⊆ V of size at

most k, since zu,v can only be used to dominate itself, u or v, and the same task can be

accomplished by either u or v. Consider now an arbitrary {u, v} ∈ E. D′ must contain

either u or v or otherwise the domination condition would not hold for zu,v 6∈ D′. Therefore

D′ is a vertex cover for G of size ≤ k, which in turn implies that there is a vertex cover

in G of size k (which can be obtained by adding k − |D′| arbitrary nodes in V to D′).

Therefore x = 〈G = (V, E), k〉 ∈ VERTEX COVER. 2

Exercise 7.21 Given an undirected graph G(V, E) with |V | > 0 even, and a subset

V ′ ⊂ V , with |V ′| = |V |/2, the edge set BG(V ′) = {{u, v}∈E : (u∈V ′)∧ (v∈V −V ′)} is a

cut called bisection of G with respect to V ′. Consider the following decision problems:

MIN-BISECTION:

I: 〈G = (V, E), k〉,
|V | > 0 even, 0 ≤ k ≤ |V |2/4

D: ∃V ′ ⊂ V, |V ′| = |V |/2 :

|BG(V ′)| ≤ k?

MAX-BISECTION:

I: 〈G = (V, E), k〉,
|V | > 0 even, 0 ≤ k ≤ |V |2/4

D: ∃V ′ ⊂ V, |V ′| = |V |/2 :

|BG(V ′)| ≥ k?

Show that MIN-BISECTION <P MAX-BISECTION

Answer: Let G = (V, E) be an undirected graph with |V | > 0 even, and let V ′ ⊂ V with

|V ′| = |V |/2. It is immediate to argue that BGc(V ′) = |V |2/4−BG(V ′) since the set of all

possible (undirected) edges between V ′ and V − V ′ contains exactly |V |2/4 elements, and

each such edge is either in BG(V ′) or in BGc(V ′). Therefore G has a bisection of size at

most k if and only if Gc has a bisection of size at least |V |2/4 − k. This proves that the

function

f(〈G = (V, E), k〉) = 〈Gc = (V, Ec), |V |2/4− k〉

which is clearly computable in polinomial (at most quadratic) time, reduces MIN-BISECTION

to MAX-BISECTION. Observe that the same function also reduces MAX-BISECTION to

23

MIN-BISECTION. 2

Exercise 7.22 Considerthe following decision problem:

NOT-ALL-EQUAL 4-CNF-SAT (NAE-4-CNF-SAT):

I: 〈Φ(x1, x2, . . . , xn) = C1 ∧ C2 ∧ · · · ∧ Cm〉, Φ in 4-CNF.

D: Does there exist a truth assignment b ∈ {0, 1}n under which each clause of Φ

contains at least one true and one false literal?

Show that NAE-4-CNF-SAT is NP-Hard.

Answer: Our reduction f is from 3-CNF-SAT and is defined as follows. Let

Φ(x1, . . . , xn) = C1 ∧ · · · ∧ Cm

be the 3-CNF-SAT instance. Then

f(Φ) =< Φ′(x1, . . . , xn, xn+1) = C ′
1 ∧ C ′

2 ∧ · · · ∧ C ′
m〉, with C ′

i = Ci ∨ xn+1, 1 ≤ i ≤ m.

Function f is clearly computable in polynomial (indeed, linear) time. Let us now show

that f is a valid reduction. Assume that Φ(x1, . . . , xn) ∈ 3-CNF-SAT. Then, there exists

a truth assignment b ∈ {0, 1}n which satisfies Φ. Since Φ is a CNF formula, this implies

that under b each clause contains a true literal. But then, under b′ = (b|0), each clause in

Φ′ has one true literal and one false one (xn+1), hence f(〈Φ〉) = Φ′ ∈ NAE-4-CNF-SAT.

Vice versa, let Φ′ ∈ NAE-4-CNF-SAT, and let b′ be the truth assignment under which

each clause in Φ′ has one true literal and one false one. If b′n+1 = 0, then it must be

that Φ(b′1, . . . , b
′
n) = 1, since each clause must also contain a true literal under b′, hence

〈Φ〉 ∈ 3-CNF-SAT. If b′n+1 = 1, then consider b′′ = (¬b′1, . . . ,¬b′n, 0), and observe that

under b′′ each clause in Φ′ still has one false literal and one true literal (which must

necessarily be one of the original literals of Φ). Then again Φ(b′′1, . . . , b
′′
n) = 1, whence

〈Φ〉 ∈ 3-CNF-SAT. 2

Exercise 7.23 Given a language L ∈ NP , consider the following three cases.

(a) L = Σ∗

(b) L 6= ∅, Σ∗ is accepted by a DFSA.

(c) L contains an NP -complete subset.

24

Under the assumption P 6= NP , decide, for each of the above cases, whether 1) L is NP -

complete or 2) L is not NP -complete or 3) L might be NP -complete or not. Redo the

exercise under the assumption P = NP .

Exercise 7.24 Let L1, L2 ∈ {0, 1}
?
. Under the assumption that P 6= NP , prove or

disprove the following propositions:

(a) L1 ∈ P ⇒ Lc
1 ∈ NP .

(b) L1 <
P

L2 ⇔ Lc
1 <P Lc

2.

(c) L1 <
P

LSAT ⇒ L1 ∈ NPC.

(d) L1 <
P

LSAT ⇒ L1 ∈ NP .

(e) L1 <
P

L2 and L2 <
P

L1 ⇒ L1, L2 ∈ P .

(f) A reduction function f is a one-to-one correspondence.

(g) If we restricted the input set of CLIQUE to graphs G = (V, E) of degree at most 7,

then the resulting subproblem would be in P .

(h) If there is an algorithm for CLIQUE with running time NO(log N), then every other

problem in NP has an algorithm with a running time of the same form.

Exercise 7.25 Consider the following decision problem:

BF SAT (BALANCED FORMULA SATISFIABILITY):

INSTANCE: 〈Φ(x1, x2, . . . , x2n)〉, Φ is a boolean formula

QUESTION: Is there a satisfying assignment in which exactly n vari-

ables have value false?

Prove that BF SAT is NP-Complete.

Exercise 7.26 Consider the following decision problem:

NCBF (NON CONSTANT BOOLEAN FORMULA):

INSTANCE: 〈Φ(x1, x2, . . . , xn)〉, Φ is a boolean formula

QUESTION: Is Φ(x1, x2, . . . , xn) a non constant function? (i.e., Φ 6≡
false and Φ 6≡ true)

Show that NCBF is NP -Complete.

25

Exercise 7.27 Consider the following decision problem:

CoH (CLIQUE or HAMILTONIAN):

INSTANCE: 〈G = (V, E), k〉, with G an undirected graph and k > 0

QUESTION: Does G contain either a clique of size k or a hamiltonian

circuit?

Show that CoH is NP -Complete.

Exercise 7.28 Consider the following decision problem:

RH (ROOT-HAMILTONIAN):

INSTANCE: 〈G = (V, E)〉, with G an undirected graph

QUESTION: Does G contain a simple cycle of length at least
⌈√
|V |

⌉
?

Show that RH is NP -Complete.

Exercise 7.29 Given an undirected graph G, recall that a hamiltonian path is a simple

path that touches all nodes of G. Consider the following two problems:

HP (HAMILTONIAN PATH):

INSTANCE: 〈G = (V, E)〉, with G an undirected graph

QUESTION: Does G contain a hamiltonian path?

k-P (k-PATH):

INSTANCE: 〈G, u, v, k〉, with G = (V, E) an undirected graph, u 6=
v ∈ V and k > 0

QUESTION: Does G contain a simple path containing at least k edges

from u to v ?

(a) Show that HP is NP -Complete.

(b) Show that k-P is NP -Complete.

(c) Show that HP and k-P are both in P when the graph G is restricted to be acyclic.

26

