
16.1 An activity-selection problem 375

fashion, rather than the bottom-up manner typically used in dynamic programming.
To solve the subproblem Si j , we choose the activity am in Si j with the earliest finish
time and add to this solution the set of activities used in an optimal solution to the
subproblem Smj . Because we know that, having chosen am , we will certainly be
using a solution to Smj in our optimal solution to Si j , we do not need to solve Smj

before solving Si j . To solve Si j , we can first choose am as the activity in Si j with
the earliest finish time and then solve Smj .

Note also that there is a pattern to the subproblems that we solve. Our original
problem is S = S0,n+1. Suppose that we choose am1 as the activity in S0,n+1 with the
earliest finish time. (Since we have sorted activities by monotonically increasing
finish times and f0 = 0, we must have m1 = 1.) Our next subproblem is Sm1,n+1.
Now suppose that we choose am2 as the activity in Sm1,n+1 with the earliest finish
time. (It is not necessarily the case that m2 = 2.) Our next subproblem is Sm2,n+1.
Continuing, we see that each subproblem will be of the form Smi ,n+1 for some
activity number mi . In other words, each subproblem consists of the last activities
to finish, and the number of such activities varies from subproblem to subproblem.

There is also a pattern to the activities that we choose. Because we always
choose the activity with the earliest finish time in Smi ,n+1, the finish times of the
activities chosen over all subproblems will be strictly increasing over time. More-
over, we can consider each activity just once overall, in monotonically increasing
order of finish times.

The activity am that we choose when solving a subproblem is always the one
with the earliest finish time that can be legally scheduled. The activity picked is
thus a “greedy” choice in the sense that, intuitively, it leaves as much opportunity
as possible for the remaining activities to be scheduled. That is, the greedy choice
is the one that maximizes the amount of unscheduled time remaining.

A recursive greedy algorithm

Now that we have seen how to streamline our dynamic-programming solution, and
how to treat it as a top-down method, we are ready to see an algorithm that works
in a purely greedy, top-down fashion. We give a straightforward, recursive solution
as the procedure RECURSIVE-ACTIVITY-SELECTOR. It takes the start and finish
times of the activities, represented as arrays s and f , as well as the indices i and n
that define the subproblem Si,n+1 it is to solve. (The parameter n indexes the last
actual activity an in the subproblem, and not the fictitious activity an+1, which is
also in the subproblem.) It returns a maximum-size set of mutually compatible
activities in Si,n+1. We assume that the n input activities are ordered by mono-
tonically increasing finish time, according to equation (16.1). If not, we can sort
them into this order in O(n lg n) time, breaking ties arbitrarily. The initial call is
RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, n).



376 Chapter 16 Greedy Algorithms

RECURSIVE-ACTIVITY-SELECTOR(s, f, i, n)

1 m ← i + 1
2 while m ≤ n and sm < fi ✄ Find the first activity in Si,n+1.
3 do m ← m + 1
4 if m ≤ n
5 then return {am} ∪ RECURSIVE-ACTIVITY-SELECTOR(s, f, m, n)

6 else return ∅
Figure 16.1 shows the operation of the algorithm. In a given recursive call

RECURSIVE-ACTIVITY-SELECTOR(s, f, i, n), the while loop of lines 2–3 looks
for the first activity in Si,n+1. The loop examines ai+1, ai+2, . . . , an , until it finds
the first activity am that is compatible with ai ; such an activity has sm ≥ fi . If
the loop terminates because it finds such an activity, the procedure returns in line 5
the union of {am} and the maximum-size subset of Sm,n+1 returned by the recursive
call RECURSIVE-ACTIVITY-SELECTOR(s, f, m, n). Alternatively, the loop may
terminate because m > n, in which case we have examined all activities without
finding one that is compatible with ai . In this case, Si,n+1 = ∅, and so the procedure
returns ∅ in line 6.

Assuming that the activities have already been sorted by finish times, the running
time of the call RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, n) is �(n), which we
can see as follows. Over all recursive calls, each activity is examined exactly once
in the while loop test of line 2. In particular, activity ak is examined in the last call
made in which i < k.

An iterative greedy algorithm

We easily can convert our recursive procedure to an iterative one. The procedure
RECURSIVE-ACTIVITY-SELECTOR is almost “tail recursive” (see Problem 7-4):
it ends with a recursive call to itself followed by a union operation. It is usu-
ally a straightforward task to transform a tail-recursive procedure to an iterative
form; in fact, some compilers for certain programming languages perform this task
automatically. As written, RECURSIVE-ACTIVITY-SELECTOR works for subprob-
lems Si,n+1, i.e., subproblems that consist of the last activities to finish.

The procedure GREEDY-ACTIVITY-SELECTOR is an iterative version of the pro-
cedure RECURSIVE-ACTIVITY-SELECTOR. It also assumes that the input activi-
ties are ordered by monotonically increasing finish time. It collects selected activ-
ities into a set A and returns this set when it is done.



16.1 An activity-selection problem 377

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
time

2 3 5

3 0 6

4 5 7

5 3 8

6 5 9

7 6 10

8 8 11

9 8 12

10 2 13

11 12 14

1 1 4

k sk fk

a1

a2

a1

a3

a1

a4

a1 a4

a5

a1 a4

a6

a1 a4

a7

a1 a4

a8

a1 a4 a8

a9

a1 a4 a8

a10

a1 a4 a8

a11

a1 a4 a8 a11

0 – 0

a1

a0

a0

RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, 11)

RECURSIVE-ACTIVITY-SELECTOR(s, f, 1, 11)

RECURSIVE-ACTIVITY-SELECTOR(s, f, 4, 11)

RECURSIVE-ACTIVITY-SELECTOR(s, f, 8, 11)

m = 1

m = 4

m = 8

m = 11

12 ∞ –
RECURSIVE-ACTIVITY-SELECTOR(s, f, 11, 11)

Figure 16.1 The operation of RECURSIVE-ACTIVITY-SELECTOR on the 11 activities given earlier.
Activities considered in each recursive call appear between horizontal lines. The fictitious activity a0
finishes at time 0, and in the initial call, RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, 11), activity a1
is selected. In each recursive call, the activities that have already been selected are shaded, and
the activity shown in white is being considered. If the starting time of an activity occurs before
the finish time of the most recently added activity (the arrow between them points left), it is re-
jected. Otherwise (the arrow points directly up or to the right), it is selected. The last recursive call,
RECURSIVE-ACTIVITY-SELECTOR(s, f, 11, 11), returns ∅. The resulting set of selected activities
is {a1, a4, a8, a11}.



378 Chapter 16 Greedy Algorithms

GREEDY-ACTIVITY-SELECTOR(s, f )

1 n← length[s]
2 A← {a1}
3 i ← 1
4 for m ← 2 to n
5 do if sm ≥ fi

6 then A← A ∪ {am}
7 i ← m
8 return A

The procedure works as follows. The variable i indexes the most recent addition
to A, corresponding to the activity ai in the recursive version. Since the activities
are considered in order of monotonically increasing finish time, fi is always the
maximum finish time of any activity in A. That is,

fi = max { fk : ak ∈ A} . (16.4)

Lines 2–3 select activity a1, initialize A to contain just this activity, and initialize i
to index this activity. The for loop of lines 4–7 finds the earliest activity to finish
in Si,n+1. The loop considers each activity am in turn and adds am to A if it is
compatible with all previously selected activities; such an activity is the earliest
to finish in Si,n+1. To see if activity am is compatible with every activity currently
in A, it suffices by equation (16.4) to check (line 5) that its start time sm is not earlier
than the finish time fi of the activity most recently added to A. If activity am is
compatible, then lines 6–7 add activity am to A and set i to m. The set A returned
by the call GREEDY-ACTIVITY-SELECTOR(s, f ) is precisely the set returned by
the call RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, n).

Like the recursive version, GREEDY-ACTIVITY-SELECTOR schedules a set of n
activities in �(n) time, assuming that the activities were already sorted initially by
their finish times.

Exercises

16.1-1
Give a dynamic-programming algorithm for the activity-selection problem, based
on the recurrence (16.3). Have your algorithm compute the sizes c[i, j ] as defined
above and also produce the maximum-size subset A of activities. Assume that the
inputs have been sorted as in equation (16.1). Compare the running time of your
solution to the running time of GREEDY-ACTIVITY-SELECTOR.

16.1-2
Suppose that instead of always selecting the first activity to finish, we instead select
the last activity to start that is compatible with all previously selected activities. De-


