
Chapter 2

Recurrence Relations and

Divide-and-Conquer Algorithms

Consider the following recurrence: T (n) = s(n)T (f(n)) + w(n), for n > n0,

T (n) = T0, for n ≤ n0.

(2.1.a)

(2.1.b)

In (2.1), n is a nonnegative integer variable, and n0 and T0 are nonnegative integer con-

stants. Functions s(·), f(·) and w(·) are nondecreasing, nonnegative integer functions of n

(as a consequence, T (·) is also a nondecreasing and nonnegative integer function). Finally,

f(n) < n for any n > n0.

Equation (2.1) is often useful in the analysis of divide-and-conquer algorithms, where

a problem instance of size at most n0 is solved directly, while an instance of size n > n0 is

solved by

(i) decomposing the instance into s(n) instances of the same problem of size (at most1)

f(n) < n each;

(ii) recursively, solving the s(n) smaller instances;

(iii) combining the solutions to the s(n) instances of size (at most) f(n) into a solution

to the instance of size n.

1Needless to say, whenever the quantities featured in the recurrence are upper bounds, the resulting
solution T (n) will be an upper bound to the running time, while exact values yield the exact running time
of the resulting algorithm.

1

Here, w(n) is (an upper bound to) the overall running time of the decomposition and the

combination procedures. Also, T0 is (an upper bound to) the running time of the algorithm

on instances of size n ≤ n0. With the given interpretation of n0, T0, s(·), f(·), and w(·),
Equation (2.1) uniquely defines a function T (n), which represents (an upper bound to) the

running time complexity of the given algorithm for any problem instance of size n.

The following notation is useful to formulate the general solution of Equation (2.1).

We let f (0)(n) = n, and for i > 0, f (i+1)(n) = f(f (i)(n)). We also denote by f ?(n, n0) the

largest k such that f (k)(n) > n0. Note that, if n ≤ n0, f
?(n, n0) would not be defined.

Conventionally, we set f ?(n, n0) = −1 for n ≤ n0.

With the above notation, f (`)(n) is the size of a single problem instance at the `-th

level of recursion, where ` = 0 corresponds to the initial call. Level ` = f ?(n, n0) is the

last for which f (`)(n) > n0 and hence it is the last level for which Equation (2.1.a) applies.

At level f ?(n, n0) + 1, Equation (2.1.b) applies instead.

Thus, for 0 ≤ ` ≤ f ?(n, n0), the work spent on a single problem instance at level ` is

w(f (`)(n)). For ` = f ?(n, n0) + 1, the work per problem instance is T0.

The instance at level 0 generates s(n) instances at level 1, each of which generates

s(f(n)) instances at level 2, each of which generates s(f (2)(n)) instances at level 3, . . .,

each of which generates s(f (`−1)(n)) instances at level `. Therefore, the total number of

instances at level ` is

s(n) · s(f(n)) · s(f (2)(n)) · . . . · s(f (`−1)(n)) =
`−1∏
j=0

s(f (j)(n)),

where if `− 1 < 0 the value the above product is conventionally taken to be 1.

By combining the considerations of the last three paragraphs, we obtain the following

expression for the general solution of Equation (2.1):

T (n) =
f?(n,n0)∑

`=0

`−1∏
j=0

s(f (j)(n))

w(f (`)(n))

+

f?(n,n0)∏
j=0

s(f (j)(n))

T0,
where, for f ?(n, n0) = −1, the value of the summation in the above expression is conven-

tionally assumed to be 0.

The correctness of the above derivation can be proved by induction on n as follows. Let

us start with the base case(s) n ≤ n0 and recall that, conventionally, we set f ?(n, n0) = −1

for n ≤ n0. Then, the closed formula correctlt yields T0, since the summation and the

product within evaluate to 0 and 1, respectively.

Assume now that the formula yields the correct value of T (k), for k < n and n > n0.

2

We have that T (n) = s(n)T (f(n)) + w(n), and, by the inductive hypothesis,

T (f(n)) =
f?(f(n),n0)∑

`=0

`−1∏
j=0

s(f (j+1)(n))

w(f (`+1)(n))

+

f?(f(n),n0)∏
j=0

s(f (j+1)(n))

T0.
Observe that, by the definition of f ?, in case f(n) ≤ n0, then f ?(f(n), n0) = −1, while

f ?(n, n0) = 0. Otherwise, the maximum index k for which f (k)(f(n)) > n0 is clearly one

less than the maximum index k for which f (k)(n) > n0, hence, in all cases, f ?(f(n), n0) =

f ?(n, n0)− 1. We have:

s(n)T (f(n))

= s(f (0)(n))


f?(n,n0)−1∑

`=0

`−1∏
j=0

s(f (j+1)(n))

w(f (`+1)(n))

+

f?(n,n0)−1∏
j=0

s(f (j+1)(n))

T0


= s(f (0)(n))


f?(n,n0)−1∑

`=0

 ∏̀
j′=1

s(f (j′)(n))

w(f (`+1)(n))

+

f?(n,n0)∏
j′=1

s(f (j′)(n))

T0


(by substituting j′ = j + 1 in the two products)

=
f?(n,n0)−1∑

`=0

 ∏̀
j′=0

s(f (j′)(n))

w(f (`+1)(n))

+

f?(n,n0)∏
j′=0

s(f (j′)(n))

T0
(by bringing s(f (0)(n)) within the two products)

=
f?(n,n0)∑
`′=1

`′−1∏
j′=0

s(f (j′)(n))

w(f (`′)(n))

+

f?(n,n0)∏
j′=0

s(f (j′)(n))

T0
(by substituting `′ = `+ 1 in the summation.)

Observe now that w(n) can be rewritten as
[∏0−1

j′=0 s(f
(j′)(n))

]
w(f (0)(n)), which is exactly

the term of the summation for `′ = 0. Therefore we obtain

T (n) = s(n)T (f(n))+w(n) =
f?(n,n0)∑
`′=0

`′−1∏
j′=0

s(f (j′)(n))

w(f (`′)(n))

+

f?(n,n0)∏
j′=0

s(f (j′)(n))

T0
and the inductive thesis follows.

3

Exercise 2.1 Determine f ∗(n, n0) for the following values of f(n) and n0: (a) (f(n) =

n− 1, n0 = 0), (b) (f(n) = n/2, n0 = 1), (c) (f(n) = n1/2, n0 = 2) and (d) (f(n) = n1/2,

n0 = 1).

Answer: Observe that function iteration is well defined also for real-valued functions.

Therefore, for the sake of generality, we will consider f(n) to be real-valued, with domain

< in cases (a) and (b), and [0,∞) in cases (c) and (d)

(a) Note that f (1)(n) = n − 1, f (2)(n) = f (1)(n) − 1 = n − 2, and, in general, f (i)(n) =

f (i−1)(n)− 1 = n− i. If n ≤ 0, then f
∗
(n, n0) = −1. Otherwise, letting

f (i)(n) = n− i > 0,

we get i < n. Thus, the largest i ≥ 0 such that f (i)(n) = n− i > 0 is dne− 1. Hence,

f ∗(n, 0) =

 dne − 1 if n > 0,

−1 otherwise.

(b) Note that f (1)(n) = n/2, f (2)(n) = f (1)(n)/2 = n/22, and, in general, f (i)(n) =

f (i−1)(n)/2 = n/2i. If n ≤ 1, then f ∗(n, 1) = −1. Otherwise, letting

f (i)(n) = n/2i > 1,

we get n > 2i, whence i < log2 n. Thus, the largest i ≥ 0 such that f (i)(n) = n/2i > 1

is dlog2 ne − 1. Hence,

f ∗(n, 1) =

 dlog2 ne − 1 if n > 1,

−1 otherwise.

(c) Note that f (1)(n) = n1/2, f (2)(n) = (f (1)(n))1/2 = n1/4, and, in general, f (i)(n) =

(f (i−1)(n))1/2 = n1/2i . If n ≤ 2, then f ∗(n, 2) = −1. Otherwise, letting

f (i)(n) = n2−i

> 2,

we get log2 n
1/2i = (log2 n)/2i > log2 2 = 1. Therefore, we have 2i < log2 n, whence

i < log2 log2 n. Thus, the largest i ≥ 0 such that f (i)(n) = n2−i
> 2 is dlog2 log2 ne−1.

4

Hence,

f ∗(n, 2) =

 dlog2 log2 ne − 1 if n > 2,

−1 otherwise.

(d) If n ≤ 1, then f ∗(n, 2) = −1. Otherwise,

f (i)(n) = n1/2i > 1,

for all i. Thus, f ∗(n, 1) is undefined, since there infinitely many values of i satisfying

f (i)(n) > 1. Hence,

f ∗(n, 1) =

 undefined if n > 1,

−1 otherwise.

Observe that the degeneracy in the latter case is due to the fact that we are assuming

that f(n) is a real-valued function which may return noninteger values. In fact, no such

phenomenon can be observed for integer-valued functions, where the value of f ∗(n, n0)

cannot be larger than n − n0, since each iteration of f must decrease the value of its

argument by at least one. 2

Exercise 2.2 Consider the recurrence T (n) = 2T (n
2
)+w(n), with T (1) = T0, an arbitrary

constant. Write the general solution. Specialize your formula in the following cases:

(a) w(n) = a (a constant);

(b) w(n) = alog2 n;

(c) w(n) = a log2
2 n;

(d) w(n) = an;

(e) w(n) = an2;

(f) w(n) = n/log2 n.

Answer:

T (n) = 2T (
n

2
) + w(n)

= 2kT (n/2k) +
k−1∑
i=0

2iw(n/2i) k ≥ 1

= 2log2 nT (1) +
log2 n−1∑

i=0

2iw(n/2i)

= nT0 +
log2 n−1∑

i=0

2iw(n/2i).

5

(a) w(n) = a (a constant).

log2 n−1∑
i=0

2iw(n/2i) = a
log2 n−1∑

i=0

2i

= a
(
2log2 n − 1

)
= a(n− 1)

Thus,

T (n) = nT0 + a(n− 1) = (a+ T0)n− a.

(b) w(n) = a log2 n.

log2 n−1∑
i=0

2iw(n/2i) = a
log2 n−1∑

i=0

2i log2

n

2i

= a[log2 n+ 2(log2 n− 1) + 22(log2 n− 2) + . . .

+ 2log2 n−2·2 + 2log2 n−1·1]

= a

1 + 1 + · · ·+ 1︸ ︷︷ ︸
log2 n

+ 2 + 2 + · · ·+ 2︸ ︷︷ ︸
log2 n−1

+ 22 + 22 + · · ·+ 22︸ ︷︷ ︸
log2 n−2

+

= · · ·+ 2log2 n−2 + 2log2 n−2︸ ︷︷ ︸
2

+ 2log2 n−1︸ ︷︷ ︸
1


= a

log2 n−1∑
i=0

2i +
log2 n−2∑

i=0

2i +
log2 n−3∑

i=0

2i + . . .+
1∑

i=0

2i +
0∑

i=0

2i


= a[(2log2 n − 1) + (2log2 n−1 − 1) + · · ·+ (22 − 1) + (2− 1)]

= a

log2 n∑
i=1

2i − log2 n


= a

[
2log2 n+1 − 2− log2 n

]
= a[2n− log2 n− 2].

Thus,

T (n) = nT0 + a(2n− log2 n− 2) = (T0 + 2a)n− alog2 n− 2a.

6

(c) w(n) = a log2
2 n.

log2 n−1∑
i=0

2iw(n/2i) = a
log2 n−1∑

i=0

2i log2
2

n

2i

= a[log2
2 n+ 21(log2 n− 1)2 + 22(log2 n− 2)2 + . . .+ 2log2 n−1·12]

= a

1 + 1 + · · ·+ 1︸ ︷︷ ︸
log2

2 n

+ 2 + 2 + · · ·+ 2︸ ︷︷ ︸
(log2 n−1)2

+ 22 + 22 + · · ·+ 22︸ ︷︷ ︸
(log2 n−2)2

+

= · · ·+ 2log2 n−2 + 2log2 n−2︸ ︷︷ ︸
22

+ 2log2 n−1︸ ︷︷ ︸
1


Observing that

(log2 n− i)
2 =

log2 n−i∑
k=1

(2k − 1),

the above expression can be written as

log2 n−1∑
i=0

2iw(n/2i) = a

1·
log2 n−1∑

i=0

2i + 3·
log2 n−2∑

i=0

2i + 5·
log2 n−3∑

i=0

2i + · · ·

+ (2log2 n− 3)·
1∑

i=0

2i + (2log2 n− 1)·
0∑

i=0

2i

]
= a[1(2log2 n − 1) + 3(2log2 n−1 − 1) + 5(2log2 n−2 − 1) + · · ·

+ (2log2 n− 3)(22 − 1) + (2log2 n− 1)(2− 1)]

= a[1(2log2 n) + 3(2log2 n−1) + 5(2log2 n−2) + · · ·
+ (2log2 n− 3)22 + (2log2 n− 1)2)

− (1 + 3 + 5 + · · ·+ (2log2 n− 3) + (2log2 n− 1))]

= a[1(2log2 n) + 3(2log2 n−1) + 5(2log2 n−2) + · · ·
+ (2log2 n− 3)22 + (2log2 n− 1)2)] + log2

2 n. (2.2)

Now,

1(2log2 n) + 3(2log2 n−1) + 5(2log2 n−2) + · · ·+ (2log2 n− 3)22 + (2log2 n− 1)2

= 2(2log2 n) + 4(2log2 n−1) + 6(2log2 n−2) + · · ·+ (2log2 n− 2)22 + (2log2 n)2

− [(2log2 n) + (2log2 n−1) + (2log2 n−2) + · · ·+ 22 + 2]

= 22(2log2 n−1 + 2·2log2 n−2 + 3·2log2 n−3 + · · ·+ log2 n·1)− 2(2log2 n − 1)

7

= 22(2n− log2 n− 2)− 2(n− 1)

(see Point (b))

= 6n− 4log2 n− 6. (2.3)

Substituting (2.3) into (2.2), we get

log2 n−1∑
i=0

2iw(n/2i) = a(6n− 4log2 n− 6− log2
2 n).

Therefore,

T (n) = nT0 + a(6n− 4log2 n− 6− log2
2 n)

= (T0 + 6a)n− 4alog2 n− a log2
2 n− 6a.

Comment We have encountered
∑m

i=1 ix
i,
∑m

i=1 i
2xi in Parts (b) and (c) above. The

following alternative approach can be used to evaluate series of the form S(k) =
∑m

i=1 i
kxi,

for k = 0, 1, 2,

S(0) =
m∑
i=1

xi =
xm+1 − x)

x− 1
. (2.4)

Note that
d

dx
S(0) =

d

dx

(
m∑
i=1

xi
)

=
m∑
i=1

ixi−1,

therefore,

S(1) = x
d

dx
S(0).

In general,

S(k + 1) = x
d

dx
S(k) k ≥ 0.

Hence, starting with (2.4), one can successively evaluate S(1), S(2), . . ., using this equation.

(d) w(n) = an.

log2 n−1∑
i=0

2iw(n/2i) = a
log2 n−1∑

i=0

2i(
n

2i
)

= anlog2 n.

8

Thus,

T (n) = anlog2 n+ nT0.

(e) w(n) = an2.

log2 n−1∑
i=0

2iw(n/2i) = a
log2 n−1∑

i=0

2i(
n2

22i
)

= an2
log2 n−1∑

i=0

1

2i

= an2·2(1− 1

n
)

= 2an(n− 1).

Thus,

T (n) = nT0 + 2an2 − 2an = 2an2 + (T0 − 2a)n.

(f) w(n) = n/log2 n.

log2 n−1∑
i=0

2iw(n/2i) =
log2 n−1∑

i=0

2i(
n

2i
)

1

log2(
n
2i

)

= n
log2 n−1∑

i=0

1

log2(
n
2i

)

= n
log2 n∑
i=1

(
1

i

)
= n ln log2 n+O(n),

since

loge (log2 n+ 1) =
∫ log2 n+1

1

1

x
dx ≤

log2 n∑
i=1

1

i
≤ 1 +

∫ log2 n

1

1

x
dx = 1 + loge log2 n.

Thus,

T (n) = nT0 + n ln log2 n+O(n) = n ln log2 n+O(n).

2

Exercise 2.3 Solve the following recurrence when the parameter n is an integral power

9

of 3:  T (n) = 6T (n
3
) + n(n− 1), n > 1,

T (1) = 4.

Answer: The following table summarizes all the relevant information obtained from the

recursion tree:

level size work # problems

0 n n2 − n 1

1 n
3

n2

9
− n

3
6

2 n
9

n2

81
− n

9
62

...
...

...
...

` n
3`

(
n
3`

)2
− n

3`
6`

...
...

...
...

log3 n− 1 n
3log3 n−1

(
n

3log3 n−1

)2
− n

3log3 n−1 6log3 n−1

log3 n
n

3log3 n 4 6log3 n

Using the information in the above table we can write:

T (n) = 4 · 6log3 n +
log3 n−1∑

`=0

6`

[(
n

3`

)2

− n

3`

]

= 4 · n1+log3 2 + n2
log3 n−1∑

`=0

(
6

9

)`

− n
log3 n−1∑

`=0

2`

= 4 · n1+log3 2 + 3n2

(
1−

(
2

3

)log3 n
)
− n

(
2log3 n − 1

)
= 4 · n1+log3 2 + 3n2 − 3n2+log3 2−1 − n1+log3 2 + n

= 3n2 + n.

2

10

Exercise 2.4 Solve the following recurrence when the parameter n is a power of two:

T (n) = T
(
n

2

)
+

3

4
n2 + 2 log n− 1, n > 1,

T (1) = 1.

Answer: Let f(n) = 3
4
n2 + 2 log n− 1. Then, for n > 1,

T (n) = T
(
n

2

)
+ f(n)

= T
(
n

4

)
+ f

(
n

2

)
+ f(n)

...

= T
(
n

2i

)
+

i−1∑
j=0

f
(
n

2j

)
, for 1 ≤ i ≤ log n.

For i = log n, we get

T (n) = T (1) +
logn−1∑
j=0

f
(
n

2j

)
.

We have:

logn−1∑
j=0

f
(
n

2j

)
=

3

4
n2

logn−1∑
j=0

4−j + 2
logn−1∑
j=0

(log n− j)−
logn−1∑
j=0

1

= n2
(

1− 1

n2

)
+ (log n)(log n+ 1)− log n

= n2 + log2 n− 1.

Therefore we have:

T (n) = n2 + log2 n. (2.5)

Since 12 + log2 1 = 1, (2.5) holds for any value of n ≥ 1. 2

Exercise 2.5 (a) Solve the following recurrence when the parameter n is a power of two

and c and d are positive constants:

T (n) = 2T
(
n

2

)
+
(√

2− 1
)
c
√
n, n > n0,

T (n0) = dn0

√
n0.

(b) Determine the value of n0 which minimizes the solution.

11

Answer:

(a) For n > n0 we have:

T (n) = 2T
(
n

2

)
+
(√

2− 1
)
c
√
n

= 22T
(
n

22

)
+
(
1 +
√

2
) (√

2− 1
)
c
√
n

= 23T
(
n

23

)
+
(

1 +
√

2 +
(√

2
)2) (√

2− 1
)
c
√
n

...

= 2iT
(
n

2i

)
+
(√

2− 1
)
c
√
n

i−1∑
k=0

(√
2
)k
.

For i = log n/n0 we get

T (n) = dn
√
n0 +

(√
2− 1

)
c
√
n

log(n/n0)−1∑
k=0

(√
2
)k

= dn
√
n0 + c

(√
n

n0

− 1

)
√
n

=

(
d
√
n0 + c

1
√
n0

)
n− c

√
n

= ncoeff(n0)− c
√
n.

(b) By taking the partial derivative of T (n) with respect to
√
n0 we obtain

δT (n)

δ
√
n0

=
δcoeff(n0)

δ
√
n0

= d− c

n0

,

whence
δT (n)

δ
√
n0

≥ 0 iff n0 ≥
c

d
,

for any value of the parameter n. Since n0 has to be an integral power of two, the solution

is minimized for either

n′0 = max
{

1, 2blog c/dc
}

or n′′0 = max
{

1, 2dlog c/de
}
,

depending on whether or not coeff(n′0) ≤ coeff(n′′0). 2

12

Exercise 2.6 Solve the following recurrence when the parameter n is a power of four:

T (n) = 16 T
(
n

4

)
+ 2 n2, n > 1,

T (1) = 0.

Answer: The above recurrence can be solved in a number of standard ways. Here, we

choose to illustrate a trick (also applicable in other cases) that simplifies the recurrence.

Letting T (n) = n2Q(n), we obtain T (n/4) = (n2/16)Q(n/4), and T (1) = Q(1) = 0.

Therefore, the recurrence for T (n) can be rewritten for Q(n) as follows:

Q(n) = Q
(
n

4

)
+ 2, n > 1,

Q(1) = 0.

To solve for Q, unfold the relation k − 1 times to obtain:

Q(n) = Q
(
n

4k

)
+ 2k.

Letting k = (1/2) log2 n, we have Q(n/4k) = Q(1) = 0, whence Q(n) = 2k = log2 n.

Finally,

T (n) = n2 log2 n.

2

Exercise 2.7 Solve the following recurrence when the parameter n is a power of two:

T (n) = (log n)T
(
n

2

)
+ 1, n > 1,

T (1) = 1.

Answer:

T (n) = (log n)T (n/2) + 1

= (log n)(log(n/2)T (n/4) + 1) + 1

= (log n)(log n− 1)T (n/4) + 1 + log n

= (log n)(log n− 1)(log n− 2)T (n/8) + 1 + log n+ (log n)(log n− 1)
...

=

i−1∏
j=0

(log n− j)

T (n/2i) + 1 +
i−2∑
j=0

 j∏
k=0

(log n− k)

 ,
13

for 2 ≤ i ≤ log n. For i = log n, T (n/2i) = T (1) = 1, and we get

T (n) =
logn−1∏
j=0

(log n− j) + 1 +
logn−2∑
j=0

 j∏
k=0

(log n− k)


= (log n)! + 1 +

logn−2∑
j=0

(log n)!

(log n− j − 1)!

=
(log n)!

0!
+

(log n)!

(log n)!
+

logn−1∑
k=1

(log n)!

k!

= (log n)!

logn∑
k=0

1

k!


Since

∑logn
k=0 1/k! <

∑∞
k=0 1/k! = e we have T (n) = O((log n)!). 2

Exercise 2.8

(a) Solve the following recurrence when the parameter n is a double power of two (i.e.,

n = 22i , for some i ≥ 0). T (n) =
√
nT (
√
n) +

√
n− 1, n > 2

T (2) = 1.

(b) Design a divide-and-conquer algorithm for the problem of finding the maximum of a

set of n = 22i numbers that performs a number of comparisons obeying to the above

recurrence.

Answer:

(a) Let us compute T (n) for small values of n = 22i , e.g., n = 2, 4
(
= 221

)
, 16

(
= 222

)
,

256
(
= 223

)
.

T (2) = 1

T (4) = 2 · T (2) + 2− 1 = 2 · 1 + 2− 1 = 3

T (16) = 4 · T (4) + 4− 1 = 4 · 3 + 4− 1 = 15

T (256) = 16 · T (16) + 16− 1 = 16 · 15 + 16− 1 = 255

Based on the above values, we guess that T (n) = n−1. Let us prove our guess by induction

on i ≥ 0, where n = 22i . The base of the induction holds, since T
(
220
)

= T (2) = 1 = 2−1.

14

Let us now assume that T
(
22k
)

= 22k − 1 for all values k < i. For k = i, we have:

T
(
22i
)

=
(
22i
)1/2
· T

((
22i
)1/2)

+
(
22i
)1/2
− 1

= 22i−1 · T
(
22i−1

)
+ 22i−1 − 1

= 22i−1 ·
(
22i−1 − 1

)
+ 22i−1 − 1

(inductive hypothesis)

= 22i−1 · 22i−1 − 1

= 22i − 1.

The inductive thesis follows.

(b) Let A[1..n] be an array of n = 22i numbers. A recursive algorithm SQRT MAX

performing a number of comparisons obeying to the above recurrence is the following:

SQRT MAX(A)
n← length(A)
if n = 2
then if A[1] ≥ A[2]

then return A[1]
else return A[2]

for i← 1 to
√
n

do TMP [i]← SQRT MAX (A [(i− 1) ∗
√
n+ 1 .. i ∗

√
n])

max← TMP [1]
for i← 2 to

√
n

do if max < TMP [i]
then max← TMP [i]

return max

For n > 2, the above algorithm recursively determines the maxima for the sub-arrays

A
[

(i− 1) ∗
√
n+ 1 .. i ∗

√
n
]
, 1 ≤ i ≤

√
n,

and then determines the overall maximum by performing
√
n−1 comparisons among these

maxima. The correctness of the algorithm follows from the fact that the above sub-arrays

induce a partition of the n indices of the original array. Since i∗
√
n−((i− 1) ∗

√
n+ 1)+1 =

√
n, for any 1 ≤ i ≤

√
n, the number T (n) of comparisons performed by SQRT MAX(A)

when length(A) = n is clearly given by the recurrence solved in Part (a). Therefore

T (n) = n− 1. 2

15

Exercise 2.9 Solve the following recurrence when the parameter n is 23i , for some i ≥ 0:

T (n) = n2/3T
(
n1/3

)
+ n2/3 − 1, n > 2,

T (2) = 1.

Answer: We have:

T (8) = 4 · T (2) + 4− 1 = 4 · (1 + 1)− 1 = 7,

T (512) = 64 · T (8) + 64− 1 = 64 · (7 + 1)− 1 = 511.

As in the previous exercise, we guess that T
(
23i
)

= 23i − 1, for any i ≥ 0 and prove our

guess by induction on i. The basis is clearly true, since T
(
230
)

= 1 = 230 − 1. For i > 0

we have:

T
(
23i
)

=
(
23i
)2/3
· T

((
23i
)1/3)

+
(
23i
)2/3
− 1

= 22·3i−1

T
(
23i−1

)
+ 22·3i−1 − 1

= 22·3i−1
(
23i−1 − 1

)
+ 22·3i−1 − 1

= 22·3i−1 ·
(
23i−1 − 1 + 1

)
− 1

= 22·3i−1 · 23i−1 − 1

=
(
2(2+1)·3i−1

)
− 1

= 23i − 1,

which completes our proof. 2

Exercise 2.10 Solve the following recurrence when the parameter n is a power of two:

T (n) =
T 2 (n/2)

n
+ n, n > 1,

T (1) = 2.

Answer: Let us compute T (n), for small values of the parameter n, by “manually”

unfolding the recursion, so to get an idea of the form of the solution.

n = 1 : T (1) = 2;

n = 2 : T (2) = T 2(1)/2 + 2 = 4;

n = 4 : T (4) = T 2(2)/2 + 4 = 8;

16

n = 8 : T (8) = T 2(4)/2 + 8 = 16.

The above values suggest that

T (n) = 2n (2.6)

is a plausible guess. Let us now try to confirm our guess by using induction. Since

T (1) = 2 = 2 · 1, Relation (2.6) holds for the base. Assume now that T (n′) = 2n′, for any

power of two n′ < n. We have:

T (n) =
T 2 (n/2)

2
+ n

=
(2 · n/2)2

n
+ n

=
n2

n
+ n = 2n,

therefore (2.6) holds for any power of two. 2

Exercise 2.11 Develop a divide-and-conquer algorithm to compute the maximum and

the minimum of a sequence (a1, a2, . . . , an). Analyze the number of comparisons. (To be

interesting, the algorithm should perform fewer than 2(n − 1) comparisons, which could

be achieved by simply computing maximum and minimum seperately.) Show a diagram of

the comparisons performed by your algorithm on input (7,4,5,2,1,6,3,8).

Answer: We divide S = (a1, a2, . . . , an) into two sequences, S1 = (a1, a2, . . . , an/2)

and S2 = (an/2+1, an/2+2, . . . , an) Then max{S} = max{max{S1}, max{S2}}, min{S} =

min{min{S1}, min{S2}}. The algorithm is the following:

MAXMIN(S)
Let S = {a1, a2, . . . , an}

if n = 2
then if a1 ≥ a2

then return (a1, a2)
else return (a2, a1)

S1 ← {a1, a2, . . . , an/2}
S2 ← {an/2+1, an/2+2, . . . , an}
(max1,min1)←MAXMIN(S1)
(max2,min2)←MAXMIN(S2)
return (MAX(max1,max2),MIN(min1,min2))

In the above algorithm, when the sequence S has two elements, say S = (a1, a2), we simply

compare a1 and a2 to obtain max{S} and min{S}, thus requiring only one comparison. If

17

|S| > 2, the number of comparisons required to yield max{S} and min{S}, given max{S1},
min{S1}, max{S2} and min{S2} is 2 (one to compute MAX(max1,max2) and one to

compute MIN(min1,min2)). Hence,

T (n) =

 2T
(
n
2

)
+ 2, if n > 2,

1, if n = 2.

T (n) = 2kT
(
n

2k

)
+

k∑
i=1

2i, k ≥ 1

=
n

2
T (2) + 2(2log2 n−1 − 1)

=
n

2
+ 2(

n

2
− 1)

=
3n

2
− 2.

Diagram:

(a, b)-
-

b

a

-
-

y

x

This diagram depicts a com-

parison between values a and

b. The outputs x and y de-

note the maximum and mini-

mum value, respectively.

The following diagram shows the comparisons performed by the algorithm on input S =

(7, 4, 5, 2, 1, 6, 3, 8).

-
-

-
-

-
-

-
-

8

3

3

8

6

1

1

6

2

5

2

5

4

7

4

7

(3,8)

(1,6)

(5,2)

(7,4)

-

-

�
�
�
�
��A

A
A
A
AU

-

-

�
�
�
�
��A

A
A
A
AU

(1,3)

(6,8)

(4,2)

(7,5)

1

8

2

7

-
�
�
�
�
��A

A
A
A
AU

-

(2,1)

(7,8)

-min 1

-max 8

18

Observe that T (8) = 3·8
2
− 2 = 10. After n/2 comparisons, there are n/2− 1 comparisons

organized in a tree of minimum computations, and n/2−1 comparisons organized in a tree

of maximum computations. 2

Exercise 2.12 On input two n×n matrices, Strassen’s multiplication algorithm leads to

a recurrence of the form T (N) = 7T
(
N
4

)
+ aN/4, N > 1,

T (1) = 1, N = 1,

where N = n2 is the number of entries of the matrices.

(a) Show that the exact solution is

T (N) =
(
a

3
+ 1

)
N

log2 7

2 −
(
a

3

)
N.

(b) Find (an approximation to) N0 such that T (N0) = TDEF (N0) when a = 15. Recall

that TDEF (N) = 2N3/2 −N.

Answer:

(a) To verify the given solution, we can simply plug it into the recurrence equations:

T (1) = 1
1
2
log 7

(
a

3
+ 1

)
− 1

(
a

3

)
=

a

3
+ 1− a

3
= 1.

T
(
N

4

)
=

(
a

3
+ 1

)(
N

4

) 1
2
log 7

− a

3

N

4

=
(
a

3
+ 1

)
N

1
2
log 7

4
1
2
log 7
− aN

12
=
(
a

3
+ 1

)
N

1
2
log 7

7
− aN

12
.

T (N) = 7T
(
N

4

)
+
aN

4
= 7

(a
3

+ 1
)
N

1
2
log 7

7
− aN

12

+
aN

4

=
(
a

3
+ 1

)
N

1
2
log 7 − 7aN

12
+

3aN

12
=
(
a

3
+ 1

)
N

1
2
log 7 − aN

3
.

However, we can also derive this solution from the recurrence solution given in class:

T (N) =
f
∗
(N,N0)∑
l=0

(
`−1∏
j=0

s(f (j)(N)))w(f (`)(N)) +
f
∗
(N,N0)∏
`=0

s(f (`)(N))T0.

19

For this problem, s(N) = 7, f(N) = N
4
, T0 = 1, w(N) = aN

4
, and N0 = 1. Thus,

f
∗
(N,N0) = f

∗
(N, 1) = log4N − 1 = 1

2
logN − 1. Plugging these into the formula, we

get:

T (N) =

1
2
logN−1∑
`=0

`−1∏
j=0

7

 a

4

N

4`
+

1
2
logN−1∏
`=0

7

=
aN

4

1
2
logN−1∑
`=0

(
7

4

)`

+ 7
1
2
logN

=
aN

4

4

3

7
1
2
logN

N
− 1

+ 7
1
2
logN

= 7
1
2
logN

(
a

3
+ 1

)
− a

3
N

= N
1
2
log 7

(
a

3
+ 1

)
− a

3
N.

(b) Let TDEF (N0) = T (N0). We have:

2N
3/2
0 −N0 = 6N

log2 7

2
0 − 5N0

2N
3/2
0 − 6N

log2 7

2
0 + 4N0 = 0

N
1/2
0 − 3N

log2 7−2

2
0 + 2 = 0.

By trial and error, we obtain 83616 < N0 < 83617. 2

Exercise 2.13 For n a power of 2, we say that an n× n matrix M is repetitive if either

n = 1 or, when n > 1, M has the form

M =

 A A

B A

 ,
where A and B are in turn (n/2)× (n/2) repetitive matrices.

(a) Design an efficient algorithm to multiply two repetitive matrices.

(b) Write the recurrence relation for the number T (n) of arithmetic operations that your

algorithm performs on n× n repetitive matrices.

(c) Solve the recurrence relation obtained at the previous point.

20

Answer:

(a) Let M1 and M2 be the two n× n repetitive matrices to be multiplied, and let

M1 =

 A A

B A

 and M2 =

 C C

D C

 .
We have

M1 ×M2 =

 A× C + A×D 2 · A× C
A×D +B × C A× C +B × C

 , (2.7)

where × and + denote, respectively, row-by-column multiplication and matrix sum, and ·
denotes multiplication by a scalar.

Since A, B, C, D are in turn repetitive matrices of size n/2 × n/2, Equation (2.7)

implies that three (recursive) row-by-column products of n/2 × n/2 repetitive matrices,

three sums of two n/2 × n/2 (general) matrices and one multiplication of an n/2 × n/2
(general) matrix by a scalar suffice to compute a row-by-column product of two n × n

repetitive matrices. Let SUM(X, Y) be an algorithm that returns the sum of two n × n
matrices X and Y , and let SC PROD(c,X) be an algorithm that returns the scalar product

c · X. Clearly, we have TSUM(n) = TSC PROD(n) = n2 The algorithm for multiplying two

repetitive matrices is the following:

REP MAT MULT(M1,M2)
n← rows(M1)
if n = 1 then return M1[1, 1] ·M2[1, 1]
A←M1[1..n/2, 1..n/2]
B ←M1[(n/2 + 1)..n, 1..n/2]
C ←M2[1..n/2, 1..n/2]
D ←M2[(n/2 + 1)..n, 1..n/2]
T1←REP MAT MULT(A,C)
T2←REP MAT MULT(A,D)
T3←REP MAT MULT(B,C)
M [1..n/2, 1..n/2]← SUM(T1, T2)
M [1..n/2, (n/2 + 1)..n]← SC PROD(2, T1)
M [(n/2 + 1)..n, 1..n/2]← SUM(T2, T3)
M [(n/2 + 1)..n, (n/2 + 1)..n]← SUM(T1, T3)

return M

(b) To multiply two repetitive n×n matrices, we perform three recursive calls on n/2×
n/2 matrices and then combine the results of the three calls using three sums of n/2×n/2

21

matrices and one scalar product. Therefore, the total work is w(n) = 4 · (n2/4) = n2, and

we obtain the following recurrence:


T (n) = 3T (n/2) + 3TSUM(n/2) + TSC PROD(n/2)

= 3T (n/2) + n2, n > 1,

T (1) = 1.

(2.8)

(c) In Recurrence (2.8), we have s(n) = 3, f (i)(n) = n/2i, w(n) = n2, T0 = 1 and N0 = 1.

Therefore,

T (n) =
log2 n−1∑

`=0

3`n2/4` + 3log2 n

= n2
log2 n−1∑

`=0

(3/4)` + nlog2 3

= 4n2
(
1− (3/4)log2 n

)
+ nlog2 3

= 4n2
(
1− nlog2 3−2

)
+ nlog2 3

= 4n2 − 3nlog2 3,

whence T (n) = Θ(n2). Let us prove that the above formula is correct. We have T (1) =

1 = 4 · 1− 3 · 1log2 3. If the formula holds for values of the parameter less than n, then

T (n) = 3T (n/2) + n2

= 3
(
4(n/2)2 − 3(n/2)log2 3

)
+ n2

= 3n2 − 9nlog2 3/3 + n2

= 4n2 − 3nlog2 3.

Observe that the sum of two repetitive matrices is a repetitive matrix and therefore

contains many repeated entries, which need to be computed only once. Indeed, to sum

two n× n repetitive matrices, we only have to compute two sums of n/2× n/2 repetitive

matrices, with no extra arithmetic operations required for combining the results (we just

have to make repeated copies of matrix entries). Hence, when summing two repetitive

matrices,  TSUM(n) = 2TSUM (n/2) , n > 1,

TSUM(1) = 1.

(An identical recurrence, with the same motivation, holds for TSC PROD(n)). By unfolding

22

the above recurrence for n = 2k, we have

TSUM(n) (resp., TSC PROD(n)) = 2k · TSUM(1) (resp., TSC PROD(1)) = n.

However, we cannot substitute these new running times for TSUM(n) and TSC PROD(n) in

Recurrence (2.8), since we really need to sum (or take scalar products of) general matrices

in the combining phase of REP MAT MULT. This is due to the fact that the product of

two repetitive matrices is not necessarily repetitive, therefore, matrix A × C and matrix

A×D, for instance, may contain an arbitrary number of distinct elements. Summing A×C
and A×D may entail as many as (n/2)2 distinct scalar sums. 2

Exercise 2.14 Let n be an even power of two, and let Π be the problem of merging
√
n

sorted sequences, each containing
√
n elements, into a single sorted sequence of n elements.

(a) Design and analyze an algorithm for Π that performs at most (n/2) log n comparisons.

(b) Use the algorithm for Π developed in Part (a) to sort a sequence of n elements in at

most n log n comparisons.

(c) Knowing that a lower bound for sorting is n log n−γn comparisons, for a fixed constant

γ > 0, determine a lower bound on the number of comparisons needed to solve Π.

Answer:

(a) Consider an input vector A[1..n] containing the concatenation of the
√
n sorted se-

quences. We can use the standard MERGESORT algorithm, halting the recursion when

the subproblem size is s =
√
n. Algorithm SQRT SORT below assumes a global knowledge

of vector A:

SQRT SORT(i, j)

if j − i+ 1 =
√

length(A)

then return
middle ← b(i+ j)/2c
SQRT SORT(i,middle)
SQRT SORT(middle + 1, j)
MERGE(A, i,middle, j)
return

The outer call is clearly SQRT SORT(1, length(A)). Recall that MERGE(i,middle, j)

performs at most j − i + 1 comparisons (one for each element of the resulting sorted

23

sub-array). Let n = length(A) and s =
√
n. Then, the recurrence on the number of

comparisons TSS(n) performed by SQRT SORT(1, length(A)) is:

TSS(s) = 0 (2.9)

TSS(n) = 2 · TSS
(
n

2

)
+ n, n > s.

Unfolding k − 1 times we have:

TSS(n) = 2kTSS

(
n

2k

)
+ kn,

whence, by setting k = log(n/s) = log
√
n = (1/2) log n,

TSS(n) = (n/s)TSS(s) + (log(n/s)) · n
= (n/2) log n.

since TSS(s) = TSS(
√
n) = 0. Therefore, our algorithm meets the required bound on the

number of comparisons.

(b) Given n elements, we first group them into
√
n sets of size

√
n and sort each group

using MERGESORT. Then we use SQRT SORT to obtain the sorted sequence.

SORT(A)
n← length(A)
for i← 1 to

√
n do

MERGESORT(A, (i− 1) ·
√
n+ 1, i ·

√
n)

SQRT SORT(1, n)
return

By setting s = 1 in Recurrence (2.9), we observe that MERGESORT requires at most

TMS(m) = m logm comparisons to sort a sequence of m numbers. Therefore the overall

number of comparisons performed by SORT(A) is

TS(n) =
√
nTMS

(√
n
)

+ TSS(n)

=
√
n ·
√
n log

√
n+ (n/2) log n

= (n/2) log n+ (n/2) log n

= n log n.

Essentially, SORT(A) coincides with MERGESORT, with the only difference that the

24

activity performed by MERGESORT is viewed as the cascade of two phases.

(c) In Part (b), we showed how to sort n elements by first sorting
√
n sequences of size

√
n, and then solving Π. Let TAΠ

(n) be the running time of any algorithm solving Π. Since

we can separately sort the
√
n sequences in (n/2) log n comparisons (calling MERGESORT

√
n times) it must be

(n/2) log n+ TAΠ
(n) ≥ n log n− γ,

or we would obtain an algorithm for sorting which beats the lower bound. Therefore

TAΠ
(n) ≥ (n/2) log n− γ.

2

Exercise 2.15

(a) Design an optimal divide-and-conquer algorithm which takes as input a vector of

N = 2n − 1 elements and outputs a heap containing the same elements.

(b) Write the recurrence associated with the algorithm of Part (a).

(c) Solve the recurrence of Part (b).

Answer:

(a) Let H be the input vector containing N = 2n − 1 elements. Our algorithm works

directly on H as follows. We first (recursively) create two subheaps H1 and H2 (note

that |H1| = |H2| = 2n−1 − 1) rooted at the two children of the root. These heaps are

stored according to the typical heap indexing scheme (i.e., if a node is stored at index i,

its children are found at indices 2i and 2i + 1) in the locations of H starting from index

2 for H1, and index 3 for H2. Then we “meld” H1 and H2 into a single heap by calling

HEAPIFY(H, 1) (see Cormen, Leiserson and Rivest’s book, page 143) to extend the heap

property to the whole vector.

Algorithm R BUILD HEAP(i) implements the above strategy when the root of the

(sub)-heap is stored in H[i]. Clearly, the entire heap is built by calling R BUILD HEAP(1).

25

R BUILD HEAP(i)
if 2i ≥ (N + 1)/2 then HEAPIFY(H, i)
{ take care of last two levels }
return
R BUILD HEAP(2i)
R BUILD HEAP(2i+ 1)
HEAPIFY(H, i)
return

The correctness of the above algorithm is easily shown by induction.

(b) Let S(i) be the set of array indices storing the subheap rooted at index i, for any

i ≥ 0. We have S(i) = {i} ∪ S(2i) ∪ S(2i + 1), and S(2i) ∩ S(2i + 1) = ∅. Moreover

|S(2i)| = |S(2i+ 1)|, whence |S(2i)| = |S(2i+ 1)| = (|S(i)| − 1)/2. As a consequence, the

recursive calls will work on a set of indices whose size is less than half the size of the one

associated with the outer call. This property is essential to guarantee that the algorithm

is efficient. Also, note the size of any subheap H built by our recursive algorithm is a

power of two minus one, therfore we can write the recurrence using the exponent as the

parameter. Recalling that HEAPIFY takes time ck on a heap with 2k − 1 nodes, we have:

T (k) = 2T (k − 1) + ck, k > 1,

T (1) = 1.

(c) We have:

T (k) = 2T (k − 1) + ck

= 2(2T (k − 2) + c(k − 1)) + ck
...

= 2iT (k − i) + c
i−1∑
j=0

2j(k − j)

...

= 2k−1 + c
k−2∑
j=0

2j(k − j)

We have:
k−2∑
j=0

2j(k − j) = 3 · 2k−1 − k − 2,

26

therefore, for any k ≥ 1,

T (k) = (3c+ 1)2k−1 − c(k + 2).

Note that T (k) = O(2k), therefore the algorithm is linear in the number of elements of the

heap. 2

Exercise 2.16 Consider an array storing the preorder sequence of a binary search tree

of distinct elements.

(a) Describe an efficient recursive algorithm that determines if a key x belongs to the

array.

(b) Evaluate the running time of the algorithm as a function of the number of nodes n

and the depth d of the tree.

Answer:

(a) We devise an algorithm that “simulates” binary search on a binary search tree:

TREE SEARCH(T, x)
if T = nil then return “not found”
if root(T) = x then return “found”
if x < root(T)

then return TREE SEARCH(left(T), x)
else return TREE SEARCH(right(T), x)

However, we are only given the preorder sequence p(T) of T , stored in a vector A, therefore

we have to find a way of identifying left and right subtrees as subsequences of p(T).

It can be easily shown that for any tree T , p(T) has the following recursive structure:

p(T) = root(T) · p(left(T)) · p(right(T)),

(note that p(left(T)) (resp., p(right(T))) is the empty string if left(T) (resp., right(T)) is

empty). Therefore the preorder sequence of a non empty left subtree starts soon after the

root, which is the first element of the sequence. In contrast, the preorder sequence of a

non empty right subtree terminates the sequence. In order to completely identify the two

sequences, we only have to determine the starting point in the array of p(right(T)). This

can be accomplished efficiently by performing a binary search on the vector, using the root

as the key:

27

FIND RIGHT(h, k, root)
{ h and k are the lower and upper bounds of the
subvector where the search takes place}
if h > k then return h
middle← (h+ k)div2
if root < A[middle]

then return FIND RIGHT(h,middle− 1, root)
else return FIND RIGHT(middle + 1, k, root)

The correctness of the above procedure is due to the fact that all the elements in p(left(T))

(resp., p(right(T))) are smaller (resp., larger) than root(T).

We are now ready to give the required search procedure

ARRAY SEARCH(i, j, x)
if i > j then return “not found” { empty subtree}
if A[i] = x then return “found”
right← FIND RIGHT(i+ 1, j, A[i])
if x < A[i]

then return ARRAY SEARCH(i+ 1, right− 1, x)
else return ARRAY SEARCH(right, j, x)

(b) If d is the depth of the tree, ARRAY SEARCH will perform at most d calls of

procedure FIND RIGHT. Each of such calls takes time O(log |h−k|) = O(log n). Therefore

the overall running time is O(d log n). Such algorithm is more efficient than a trivial scan

of the array for depths as large as O
(

n
logN

)
. 2

Exercise 2.17 Assuming that n is a power of 4, solve the following recurrence:


T (1) = 0

T (2) = 2

T (n) = T
(
n
2

)
+ 2T

(
n
4

)
+ 3n

2
(n ≥ 4).

Answer: The above recurrence could stem from a divide-and-conquer algorithm that, on

input an instance of size n, splits the instance into three subinstances of size n/2, n/4,

and n/4, respectively, and recombines the results performing 3n/2 work. We note that

the sum of the sizes of the subinstances is n, and that the work is linear in such sum.

This scenario is reminiscent of recurrences where the input instance is partitioned into a

constant number k of subinstances of equal size n/k and the split/combination work is

28

Θ(n), i.e.,

T ′(n) = kT ′
(
n

k

)
+ Θ(n). (2.10)

By applying the Master Theorem, we know that the above recurrence yields T ′(n) =

Θ(n log n). Pursuing the analogy between our recurrence and Recurrence (2.10), let us try

to prove by induction that there exists a constant a > 0 such that T (n) ≤ an log n. We

have two base cases to cover, namely,

T (1) = 0

≤ a · 1 · log 1 = 0,

which is true for any value of a, and

T (2) = 2

≤ a · 2 · log 2 = 2a,

which is true if and only if a ≥ 1. Assume that our statement holds for powers of four

which are less than n. We then have:

T (n) = T
(
n

2

)
+ 2T

(
n

4

)
+

3

2
n

≤ a
n

2
log

n

2
+ 2a

n

4
log

n

4
+

3

2
n

= a
n

2
(log n− 1) + a

n

2
(log n− 2) +

3

2
n

= an log n− 3

2
an+

3

2
n.

The thesis will follow if we make sure that

−3

2
an+

3

2
n ≤ 0,

for which again it suffices to choose a ≥ 1. In conclusion, by picking a = 1, we have proved

that

T (n) ≤ n log n. (2.11)

By conducting a completely symmetric reasoning to the above, we can show that T (n) ≥
bn log n for any constant b ≤ 1. By picking b = 1 we then have:

T (n) ≥ n log n. (2.12)

29

By combining (2.11) and (2.12) we can then conclude that

T (n) = n log n,

for any value of n ≥ 1. Note that we obtained the exact solution to our recurrence by

providing perfectly matching lower and upper bounds. Clearly, this is not always the case,

and for other recurrences in this class the best we can do is to determine the order of

magnitude of their solution. 2

Exercise 2.18

(a) Let M be a square matrix with N = 4k elements. Prove that, if A, B and C are
√
N
2
×
√
N
2

, the following relation holds between M and its inverse M−1:

M =

 A B

0 C

 M−1 =

 A−1 −A−1BC−1

0 C−1

 .
(b) Develop a divide-and-conquer algorithm for the inversion of an upper triangular

matrix (all the elements below the main diagonal are null).

(c) Write the recurrence relation for T (N), defined as the number of scalar multiplica-

tions performed by the algorithm of Part (b). Assume that the multiplication of

square matrices is done according to the definition.

(d) Solve the recurrence of Part (c).

Exercise 2.19 Consider an algorithm A1 solving a computational problem Π in time

T1(n) = n log n. Suppose we can devise for the same problem a divide-and-conquer strategy

that, for n > 1, generates two instances of Π of size n/2 with work w(n) = a, where a is a

constant greater than 4. Let n be a power of 2.

(a) Evaluate the running time of an algorithm A2 based on the divide and conquer

strategy, under the assumption that T2(1) = 0.

(b) Consider an algorithm A using the divide-and-conquer strategy for n > n0 and calling

instead A1 for n ≤ n0. Determine the running time T (n) of A (note that T (n) will

be a function of n0).

(c) Find the value of n0 that minimizes T (n) (note that n0 will be a function of a).

30

Exercise 2.20 Let f(n) = log n, and define, for any n ≥ 2, log? n = f
?
(n, 1). Show that

log? n = o(log log n).

Exercise 2.21 Solve the following recurrence when the parameter n is a double power of

two (i.e., n = 22i , for some i ≥ 0). T (n) = nT (
√
n) n > 2

T (2) = 4.

Exercise 2.22 Consider the following recurrence:

T (n) =

 T0 n ≤ n0,∑k
i=1 aiT (bcinc) + cn n > n0,

where T0, n0, k, a1, a2, . . . ak are positive integer constants, and c1, c2, . . . , ck are positive

real constants less than one. Prove that if
∑k

i=1 aici < 1 then T (n) = O(n).

31

