CORSO DI LAUREA IN INGEGNERIA INFORMATICA

FONDAMENTTI DI
INFORMATICA II:

RACCOLTA DI ESERCIZI

GEPPINO PUCCI

A.A. 2001/2002

Chapter 1

Formal Specification of

Computational Problems

Problem

A computational problem 11 is a relation between a set Z (the set of instances) and a set S
(the set of solutions). Algebraically, we have

[ICZTxS.

As an additional constraint, we require that for any instance i € Z there is at least one

solution s € § such that (i, s) € II. We say that s is a solution to instance i of problem II.

Note: For a single ¢+ € 7 there could be two distinct solutions si, sy € S such that
(1,s1) € Il and (7, s9) € II. In general, there can be several solutions to the same problem

instance.

Examples

Integer Sum Let Z denote the set of all integers. Then

T = Zx2Z:
S = Z
I C IxS=(ZxZ)xZ

= {((a,b),c) : a,b,c € Z and ¢ = a + b}.

Graph Reachability A directed graph is a pair G = (V, E), with V C Z* and F C
V x V. V is the set of nodes of GG, while FE is the set of edges. A path in G is a sequence
T = (v1,V,...,0), k> 1, withv; € V, 1 < i <k and (vj,vj41) € E, 1 < j < k. Our

problem can be defined as follows:

T = {(G:(V,E),u,u):ng+,EngVandu,veV};

S = {(vl,vg,...,vk):kZl,Ui€Z+,1§i§k}U{e};

I = {({G,u,v),n): 7= {vi,v9,...,0) is a path in G with v; = u and vy = v}
U{({(G,u,v),€) : there is no path 7 in G from u to v}.

Size of a problem instance

The size of an instance is a reasonable measure of “how large” the instance is. The concept
of size can not be made completely formal and depends on the particular problem being
studied. For example, for Integer Sum, we can use the number of bits of the binary
representation of the two integers as the size of the instance; for Graph Reachability, the
most natural measure for the size of an instance is |V| + |F|; for Sorting it is natural to

take the number of items to be sorted as the size of the instance.

Algorithm

An algorithm is a well-defined, deterministic computational procedure that transforms a
given input into a unique output through a finite sequence of basic steps. Therefore, an
algorithm computes a function whose domain is the set of inputs and whose values are the
ouputs. An algorithm can be specified once we agree on a computational model, that is, an
abstraction of a computing device characterized by a rigorously defined set of basic steps.
A popular model of computation is the Random Access Machine (RAM), an abstraction
of a traditional, sequential computer and its instruction set.

Each basic step of the computational model can be associated with a cost. The running
time of an algorithm on a particular input is the global cost of the basic steps executed by
the algorithm on that input. To ease the analysis of the running time of an algorithm for a
particular problem, it is customary to identify a subset of “crucial” basic steps, which are
given unit cost, while the remaining basic steps are neglected by assigning them zero cost.
Particular care must be exercised in selecting the “crucial” steps, in particular, selection

must encompass all those steps whose number is roughly equal to the total number of steps

executed. When in doubt, it is advisable to assign unit cost to all steps. As an example,
the running time of a sorting algorithm is often evaluated by assigning unit cost uniquely
to comparison steps.

We say that an algorithm A solves a problem II C 7 x § if and only if A computes a
function f4 satisfying the following properties:

(a) domain(fa) D I;

(b) Vi€ T: (i, fad)) € IL.

Note: An algorithm associates a single solution to any problem instance, even when

multiple solutions exist.

Example

Consider the following “toy” problem:

Z = {1,2,3};
S = {a,b,c, d};
I = {(1,a),(1,0),(2¢),(3,d)}.

The following is an algorithm for II.

AH(.’E)
if x = 1 then return a
if = 2 then return ¢
if = 3 then return d
else return f

Algorithm Aj satisfies both Properties (a) and (b), therefore Ayp solves II. Note that
Ap does something more, since it returns f for any value of x different from 1, 2, or 3.
Therefore Ay also solves IT' = 7' x &', with Z' = {i : ¢ > 4} and &’ = {f}. This shows that
a single algorithm may solve more than one problem. In contrast, there may exist many
algorithms solving the same problem.

Exercise 1.1 We say that two algorithms A; and Ay are functionally distinct if the
functions f4, and f4,, respectively computed by the two algorithms, differ on at least one
input x € 7.

(a) How many functionally distinct algorithms may exist for the Integer Sum problem

seen in class?
(b) How many for the Graph Reachability problem seen in class?

Please, justify your answers.

Answer:

(a) No two functionally distinct algorithms may exist for Integer Sum, since there is a

unique solution for any instance.

(b) For Graph Reachability, there are infinitely many mutually distinct algorithms, since
there are infinitely many instances that admit more than one solution.

|

Exercise 1.2 Let U be a finite set. Given two arbitrary subsets of U, A, B C U, consider
the problem of returning an element v € AN B, if AN B # (), or returning € if AN B = ().
Cast this as a computational problem by specifying

(a) the set of instances Z;
(b) the set of solutions S;

(c) the appropriate relation II.

Answer:

(a) Let F(U) be the family of all subsets of U. Then T = F(U) x F(U).
(b) & = U U {¢} (note that we are assuming that e ¢ U.)

(c) Given (A4,B) € Z and y € S we have:
(A,B)lly<= (ye ANB)or [([ANB =10) and (y = ¢€)].
O

Exercise 1.3 Intuitively, the merging problem consists in combining two sorted sequences

(21,22, - -, Tp) and (Tymy1, Tmao, - - -, Z,) into one sorted sequence (Y1, Yo, -- -, Yn)-

(a)

(b)

Formally specify the sets Z and § and the relation I C Z x § for the merging
problem.

Give a reasonable measure for the size of an instance 7 € 7.

Answer:

(a)

(b)

Let U be a totally ordered universe set, and let SS be the set of Sorted Sequences of
elements of U, i.e.
SS ={(ar,a9,...,a;) €U* 10y <ay<...<ap, k€ ZT).

Then, Z =SS x §S and S = SS. Problem IT € 7 x S is specified as:

(((131,372, e axm)a ('Tm—l—laxm—l—Qa s 7:1:7),))) (ylayZa .- ayn)) € I

iff the two multisets (i.e., sets with possibly repeated elements)

{T1,%9, -, T, Tms1s Tma2y - - -, T} and {y1, 92, .-, Yn}

are equal.

Given ((x1,Z2,---,%m), (Tme1, Tma2,---,Tn)) € I as input, n is the most natural

measure of the input size.

|

Exercise 1.4 Give a formal characterization of the problem of sorting an arbitrary se-

quence of integers.

Exercise 1.5 Give a formal characterization of the problem of mergingtwo ordered se-

quences of integers.

Exercise 1.6 Give a formal characterization of the following problem. Given a sequence

of integers (z1, %o, ..., T,), determine whether there exist indices 7, j, with 1 <i # j < n,

such that z; = z;.

Chapter 2

Recurrence Relations and

Divide-and-Conquer Algorithms

Consider the following recurrence:

{ T(n)= s(n)T(f(n)) +w(n), forn > ny, (2.1.a)
T(n)= T, for n < ny.

In (2.1), n is a nonnegative integer variable, and ny and 7, are nonnegative integer con-
stants. Functions s(-), f(-) and w(-) are nondecreasing, nonnegative integer functions of n
(as a consequence, T'(+) is also a nondecreasing and nonnegative integer function). Finally,
f(n) < n for any n > ng. Regarding the integrality constraint, sometimes we will make
use of a slightly improper but simpler notation (e.g., f(n) = y/n instead of f(n) = [\/n].)

Equation (2.1) is often useful in the analysis of divide-and-conquer algorithms, where
a problem instance of size at most ng is solved directly, while an instance of size n > ng is

solved by

(i) decomposing the instance into s(n) instances of the same problem of size at most
f(n) < n each;

(ii) recursively, solving the s(n) smaller instances;

(iii) combining the solutions to the s(n) instances of size f(n) into a solution to the

instance of size n.

Here, w(n) is an upper bound to the overall running time of the decomposition and the
combination procedures. Also, Ty is an upper bound to the running time of the algorithm

on instances of size n < mny. With the given interpretation of ng, Ty, s(+), f(+), and w(-),

6

Equation (2.1) uniquely defines a function 7'(n), which represents an upper bound to the
running time complexity of the given algorithm for any problem instance of size n.

The following notation is useful to formulate the general solution of Equation (2.1).
We let f(O(n) = n, and for i > 0, f&)(n) = f(f@(n)). We also denote by f*(n,no) the
largest k such that f*)(n) > ng. (note that, if n < ng, f*(n,ng) is not defined.)

With the above notation, f()(n) is the size of a single problem instance at the (-th
level of recursion, ¢ = 0 corresponding to the initial call. Level £ = f*(n,ng) is the last
for which f®)(n) > ny and hence it is the last for which Equation (1.a) applies. At level
f*(n,ng) + 1, Equation (1.b) applies instead.

Thus, for 0 < ¢ < f*(n,ng), the work spent on a single problem instance at level £ is
w(f®(n)). For £ = f*(n,ny) + 1, the work per problem instance is Tp.

The instance at level 0 generates s(n) instances at level 1, each of which generates
s(f(n)) instances at level 2, each of which generates s(f®(n)) instances at level 3, ...,
each of which generates s(f"1)(n)) instances at level £. Therefore, the total number of
instances at level £ is

-1

s(n) - s(f(n) - s(FP(n) - ... s(f D (n) = I s(fP(n)), (2.2)

j=0

where if £ — 1 < 0 the value of (2.2) is assumed to be 1.
By combining the considerations of the last three paragraphs, we obtain the following

expression for the general solution of Equation (2.1):

T(n) = LG ([Hf;é S(f(j)(n))] w(f(e)(n))) +
4 [Hf G (fm(n))] To, forn >mny, (2.3.a)

T(n) = Ty, forn <ng. (2.3.b)

Exercise 2.1 Study Subsection 2-6 [lterated functions at p.40 of Cormen, Leiserson and
Rivest’s book and solve Cases (b) (f(n) =n —1, ng = 0), (¢) (f(n) = n/2, ng = 1), (e)
(f(n) = n'? ng = 2) and (f) (f(n) = n'/2, ng = 1) of the problem proposed there at the
end of the subsection. Observe the following correspondence between the notation f, (n)
adopted by Cormen, Leiserson and Rivest’s book and the notation f (n,ng) introduced

above:

*

fno(n) = f*(n,no) + 1.

Answer: For the sake of generality, we will consider our functions to be real-valued.

Moreover, the domain of f is R in cases b, ¢, and [0,00) C R in cases e, f.

(b) Note that fM(n) =n —1, f@(n) = fY(n) —1 =n — 2, and, in general, f@(n) =
fO(n) —1=mn—i If n <0, then f;(n) = 0. Otherwise, letting

fOMn)=n—-i<0,

we get 7 > n. Thus, the least i > 0 such that f®(n) =n —i < 0is [n]. Hence,

fg(n):{] ifn >0,

0 otherwise.

(c) Note that fM(n) = n/2, f@(n) = fH(n)/2 = n/2?%, and, in general, f%(n) =
f@Y(n)/2 =n/2'. If n <1, then f, (n) = 0. Otherwise, letting

fO(n) =n/2" <1,

we get n < 2°, whence i > log, n. Thus, the least i > 0 such that f@(n) =n/2' <1
is [log, n|. Hence,

£ (n) = { [logon| ifn > 1,

0 otherwise.

(e) Note that f(n) = n/2, f@(n) = (fM(n))/2 = n'/4, and, in general, f@(n) =
(f=D(n))Y/2 = pl/2" If n < 2, then f; (n) = 0. Otherwise, letting

f(i)(n) — 2 <2,

we get log, n'/% = log,n/2" < log,2 = 1. Therefore, we have 2¢ > log, n, whence
i > log,logyn. Thus, the least i > 0 such that f@(n) = n?" < 2 is [log, log, n].

Hence,

<« } [logylogyn] if n > 2,
f>(n) = { 0 otherwise.

(f) If n <1, then f, (n) = 0. Otherwise,
fO(n) = n'/? > 1,
for all 5. Thus, f; (n) is undefined. Hence,

f (n) = undefined ifn > 1,
!] o0 otherwise.

|

Exercise 2.2 Consider the recurrence T'(n) = 27T(%)+w(n), with T'(1) = T, an arbitrary

constant. Write the general solution. Specialize your formula in the following cases:

(a) w(n) =a (a constant); (c) w(n) =alogzn; (e) w(n)=an®;
(b) w(n) = alog, n; (d) w(n) = an; (f) w(n) =n/logyn
Answer:

T(n) = 27(35)+w(n)

k—1

= 2"T(n/2%) + 3" 2'w(n/2") k>1
=0
logo n—1

= 2\%"P(1) + Z 2'w(n/2")

log, n—1 ')
= nTo+ Y, 2w(n/2%).
=0
(a) w(n) =a (a constant).
logy n—1 logy n—1 .
ZQZ (n/2") = a Y 2
=0
= a(2°=" 1)
= a(n—-1)

Thus,
T(n) =nTy+a(n—1) = (a+ Ty)n — a.

(b) w(n) =alogy,n

logy, n—1 logy n—1 n
Z 2w(n/2) = a Y, 2'log, — 5
1=0

= aflogyn + 2(logyn — 1) + 2%(logyn — 2) +. ..
+ 210g2 n72.2 + 210g2 nfl_l]

= a|l4+14--+1+2+2+---+2422+22+.-. 4224

logs n logy n—1 logy n—2

log, n—2 log, n—2 log, n—1
— e 4 2 g2 2 g2 2082
\ > \—v_/

-~

2 1

[logy n—1 log, n—2 log, n—3 1

0
= a| > 24 > 24 > 2+ +>2+>2
1=0 1=0 1=0] 1=0

= a2 1)+ (2" 1) 4+ (22 - 1) + (2 1)

[ogy n

= a ZQi—loan]
i=1

= a [_21°g2 ntl 2 —log, n]

= a[2n —logyn —2].

Thus,
T(n) = nTy + a(2n — logyn — 2) = (Ty + 2a)n — alog, n — 2a.

(¢c) w(n)=alogn

logy n—1 logy n—1 n
Z 2w(n/2) = a Y, 2’10g22
1=0

= a[log2 n -+ 2 (10g2 n — 1)2 + 22(10g2 n— 2)2 + ..+ 2log2 n—1_12]

= afl+14+--+1424+2+---+2+42°+2°+... 42> ¢
10g‘é n (10g2;—1)2 (10g2;—2)2

_ log,n—2 log, n—2 log, n—1
— e 2962 -+ 2962 + 21082
22 1

10

Observing that

logy n—1
2
(logyn— i)’ = S (2% — 1),
k=1
the above expression can be written as
logy, n—1 logy n—1 logy n—2 log, n—3

Z Qw(n/2") = afl- >, 2243 > 2°+5 Y 2+
i=0 i=0 i=0

0
+ (2logyn — Z 2' + (2logyn — 1)-)y 2!
=0

= a[1(2"°" —1) + 3(21%" L 1) +5(208m2 1) +...
+ (2logy n — 3)(22 — 1) + (2logyn — 1)(2 — 1)]
= [1(2987) 4 3(2087 1) 4 520 2) 4
+ (2logy n — 3)2% + (2logy n — 1)2)
—(143+5+---+(2logyn —3) + (2logy,n — 1))]
= [1(298) 4 3(281) 4 5(20%n2) L ...
+ (2logy 7 — 3)2% + (2log, n — 1)2)] + log; n. (2.4)

Now,

1(2'82™) 4 3(2'82nl) 4 5(2108277%) 4 ... 4 (2log, n — 3)22 + (2logyn — 1)2
= 2(2'%82") 4 4(2'°8"71) 4 6(2!°82"7%) 4 ... 4 (2log, n — 2)2? + (2log, n)2
— [(2%E27) 4 (2oB2nL) 4 (QlBan=2) 4 ... 92 4 9]
= 2%(2lomn—1 4 9.9lgan—2 4 gologan3 L ... | 1o 1) — 2(20B2" — 1)
= 2*(2n —logyn —2) —2(n —1)
(see Point (b))
= 6n — 4log,n — 6. (2.5)

Substituting (1.11) into (1.10), we get

logyn—1

Z 2w(n/2") = a(6n — 4logy, n — 6 — logy n).
Therefore,
T(n) = nTy+ a(6n — 4log,n — 6 —logsn)

11

= (Ty + 6a)n — 4alog, n — alogyn — 6Ga.

Comment We have encountered Y7, iz?, ¥7, 3%z’ in Parts (b) and (c) above. The

following alternative approach can be used to evaluate series of the form S(k) = 7, iF2?,

for k=0,1,2,....
S(O) _ i . xm-}—l .’17)
= S
Note that
iS(O) = 4 ixz = iixi_l
dx dx \i= i=1 ’
therefore,
d
S(1) =x—S(0
(1) = 2--5(0)
In general,

d
1) =ox— > 0.
S(k+1) =z—S(k) k20

Hence, starting with (1.12), one can successively evaluate S(1), S(2), ...,

tion.
(d) w(n)=an.
logy n—1 logy n—1
ZQZ (n/2") ZCL22’2Z
= anlogyn.
Thus,

T (n) = anlogyn + nTp.

(e) w(n)=an’

logyn—1 logy n—1 . n2
Z 2w(n/2") = a 2% 2Z(ﬁ)
1=
logy n—1 1
_ 2
= an Z §
=0
1
2
= 2(1 — —
an”-2(n)
= 2an(n—1)

(2.6)

using this equa-

Thus,
T(n) = nTy + 2an* — 2an = 2an® + (Ty — 2a)n.

(f) w(n)=n/log,n

logy, n—1 logy, n—1 n 1
2w(n/2) = 2i(1)
Z ; 2'"logy(3)

logy n—1 1

=n Yy

i=0 10g2 (%)

logy n 1
-5
i=1 !

= n ln_log2 n+ 0(n),
since
log, (logon+1) = /110g2 m l dr < login RS <1+ /log2n %dm =1+ log, log, n.
i=1
Thus,

T(n) = nTy + nlnlog,n + O(n) = nlnlog, n + O(n).

|

Exercise 2.3 Solve the following recurrence when the parameter n is an integral power

of 3:
{ T(n) =6T(%) +n(n—1), n>1,
4

Answer: The following table summarizes all the relevant information obtained from the

recursion tree:

13

‘ level ‘ size work ‘ # problems ‘
0 n n?—n 1
n n? n
1 3 92 3 62
n n.__n
2 9 81 9 6
2
n n n 0
¢ 3 (5) — % 6
n n 2 n logg n—1
10g3 n— 1 gloggn—1 (310g3 n—l) - glogg n—1 6 Es
n logs n
10g3 n Mgz 4 6983

Using the information in the above table we can write:

T(n)

4. 6log3n +

o (

£=0
logg n—1
2
+n Z
£=0

1
4-n'tloss2 4 3p2 (1 = (2) - n) —n (28" —1)

3

4 . n1—|—10g32 + 377,2 _ 3n2—|—10g3 2—-1 n1—|—10g32 +n

3n? +n.

14

Exercise 2.4 Solve the following recurrence when the parameter n is a power of two:

3
T(n) = T(g)—l—ZnQ—i—Qlogn—l, n>1,
T1) = 1.

Answer: Let f(n) = 2n? + 2logn — 1. Then, for n > 1,
() = T(3)+ /)
n n
= 7(3)+1(5) 10

i—1

= T(%)—FZ]‘(%), for 1 < i <logn.
j_

For i = logn, we get

logn—1 n
Tn)=TQ1)+ > f (2—]>
j=0
We have:
logn—1 n 3 logn—1 _ logn—1 logn—1
> f(—j> = -n* > 4742) (logn—3j)— 1
=0 2 4 5 =0 =0
1
= n? (1 - —2> + (logn)(logn+ 1) — logn
n
= n?+log’n—1.
Therefore we have:
T(n) = n? +log’n. (2.7)
Since 12 +log®1 = 1, (1.13) holds for any value of n > 1. O

Exercise 2.5 (a) Solve the following recurrence when the parameter n is a power of two

and c and d are positive constants:

T(n) = 2T<g)+(\/§—1)c n, n > ng,
T(’I’Lo) = dno\/n_o

(b) Determine the value of ng which minimizes the solution.

15

Answer:

(a) For n > ny we have:

T(n) = 2T (g (\/5— 1)0 n

+(1+v2) (V2—-1)cyn

+ (1+\/§+ (\/§)Q> (V2-1)evn
= 2T (23) +(vV2-1) c\/ﬁg (\/é)'c

For i = logn/ny we get

log(n/no)—1

T(n) = dny/ng+ (\/5 - 1) cvn Z (\/i)k

= dn\/n_o—l-c(\/nzo—l)\/ﬁ

1
= (4 N SO
(Vng +c no) n—cyn
= ncoeff(ng) — cv/n.
(b) By taking the partial derivative of T'(n) with respect to \/ng we obtain

6T(n) dcoeff(ng) i_C
Symo Oymo mo

whence 5T(n)
n c
> 0iff > —
S g — 0=

for any value of the parameter n. Since ny has to be an integral power of two, the solution

iS minimized fOI‘ either
TLI = Inax {]_ 2 [loge/d] } or ’I’L” = Imax {]_ 2|—10g c/d] }
0) 0) I

depending on whether or not coeff(ng) < coeff(ng). O

16

Exercise 2.6 Solve the following recurrence when the parameter n is a power of four:

T(n) = 16T<E

4>+2n2, n>1,
T(1) = 0.

Answer: The above recurrence can be solved in a number of standard ways. Here, we
choose to illustrate a trick (also applicable in other cases) that simplifies the recurrence.
Letting T'(n) = n?Q(n), we obtain T'(n/4) = (n?/16)Q(n/4), and T(1) = Q(1) = 0.
Therefore, the recurrence for T'(n) can be rewritten for Q(n) as follows:

Q(n) = Q(%) +2, n>1,

Q) = o

To solve for @), unfold the relation £ — 1 times to obtain:

Q) = Q(35) +2k.

4k

Letting k¥ = (1/2)log,n, we have Q(n/4%) = Q(1) = 0, whence Q(n) = 2k = logyn
Finally,
T(n) = n®log, n.

Exercise 2.7 Solve the following recurrence when the parameter n is a power of two:

T(n) = (logn)T (g) +1, n>1,
T1) = 1.

Answer:

T(n) =)T (n/2) +1
Y(log(n/2)T(n/4) +1) +1
Y(logn — 1)T(n/4) + 1+ logn
)

logn)(logn — 1)(logn — 2)T'(n/8) + 1 + logn + (logn)(logn — 1)

logn
logn

logn

(
(
(
(

= (ﬁ(logn —j)) T(n/2") +1 +§‘6 (f[(logn - k)) ,

j=0 k=0

17

for 2 < i <logn. For i =logn, T(n/2") = T(1) =1, and we get

T(n) = ng[_ (logn —j)+1+ Ogi— (ﬁ(logn—k))

j=0 7=0 \k=0
logn—2 (IOg TL)'
= (logn)!+1+ _
() jgo (logn —j —1)!
(logn)! (logn)! '8°C" (logn)!
B 0! (logn)! & k!
logn 1
= (logn)! | Y =
k=0 "
Since Y080 1/k! < 2, 1/k! = e we have T'(n) = O((logn)!). 0

Exercise 2.8

(a) Solve the following recurrence when the parameter n is a double power of two (i.e.,

n =22 for some i > 0).

{T(n):\/ﬁT(\/ﬁH—\/ﬁ—l, n>2

(b) Design a divide-and-conquer algorithm for the problem of finding the maximum of a
set of n = 22 numbers that performs a number of comparisons obeying to the above
recurrence.

Answer:

(a) Let us compute T(n) for small values of n = 22 e.g., n = 2,4 (: 221) , 16 (: 222),
256 (= 2%°).

2) =1

4) = 2-T(2)+2-1=2-1+2—-1=23

T(16) = 4-T(4)+4—1=4-3+4—1=15
T(256) = 16-T(16)+16—1=16-15+16 —1 =255

T
T
)
)

Based on the above values, we guess that T'(n) = n—1. Let us prove our guess by induction
on i > 0, where n = 2%, The base of the induction holds, since T (220) =T(2)=1=2-1.

18

Let us now assume that T’ (22k) = 22" _ 1 for all values k < i. For k = 4, we have:

() = ()" ((@)")+ ()"
= 22T (227 4277 -1
= 227 (27 -1+ —1
(inductive hypothesis)
= 221 .22" 1
= 27 1.

The inductive thesis follows.

(b) Let A[1.n] be an array of n = 2% numbers. A recursive algorithm SQRT_MAX

performing a number of comparisons obeying to the above recurrence is the following:

SQRT_MAX(A)
n < length(A)
ifn=2
then if A[1] > A[2]
then return A[1]
else return A[2]
for i + 1to /n
do TMP[i] + SQRT MAX (A[(i — 1) xy/n+1.i%x/n])
max < T M P[1]
for i + 2 to /n
do if max < T M PJi]
then max < T M PJi
return max

For n > 2, the above algorithm recursively determines the maxima for the sub-arrays

A[(i—l)*\/ﬁ+1..i*\/ﬁ], 1<i<+/n,

and then determines the overall maximum by performing /17 —1 comparisons among these
maxima. The correctness of the algorithm follows from the fact that the above sub-arrays
induce a partition of the n indices of the original array. Since ixy/n—((1 — 1) */n + 1)+1 =
V/n, for any 1 < i < y/n, the number 7T'(n) of comparisons performed by SQRT_MAX(A)
when length(A) = n is clearly given by the recurrence solved in Part (a). Therefore
T(n)=n-1. O

19

Exercise 2.9 Solve the following recurrence when the parameter n is 23" for some i > 0:

T(n) = n2/3T<n1/3) +n?? -1, n>2,
T2) = 1.

Answer: We have:

T(8) = 4-T(2)+4-1=4-(1+1)—1=7,
T(512) = 64-T(8)+64—1=064-(7+1)—1=511.

As in the previous exercise, we guess that T (231) = 2% — 1, for any i > 0 and prove our

guess by induction on 7. The basis is clearly true, since T (230) =1=2"—1. Fori >0

we have:
T (23i) _ (231)2/3 T ((23i)1/3) " (23i)2/3 1
= 23T (27) 4223 1
_ 22_31'71 (231'71 . 1) + 22_37;71 B 1
= 2% (27 —141) -1
_ 22_3i—1 .231'—1 1
_ (2(2+1)-3@'—1) 1
= 2% 1,
which completes our proof. O

Exercise 2.10 Solve the following recurrence when the parameter n is a power of two:

T(n) = w+n, n>1,

) = 2.

Answer: Let us compute T'(n), for small values of the parameter n, by “manually”

unfolding the recursion, so to get an idea of the form of the solution.

n=2: T(2)= T?(1)/2+2=4;
n=4: TA)= T*(2)/2+4=258;

20

n=8: T(8) = T?(4)/2+8 = 16.

The above values suggest that
T(n) =2n (2.8)

is a plausible guess. Let us now try to confirm our guess by using induction. Since
T(1) =2 =2-1, Relation (1.14) holds for the base. Assume now that 7'(n’) = 2n/, for any
power of two n’ < n. We have:

T? (n/2
T(n) = 7(;‘/)
2-n/2)?
CRIC
n
2
= —+n=2n,
n
therefore (1.14) holds for any power of two. O

Exercise 2.11 Develop a divide-and-conquer algorithm to compute the maximum and
the minimum of a sequence (a1, as, ..., a,). Analyze the number of comparisons. (To be
interesting, the algorithm should perform fewer than 2(n — 1) comparisons, which could
be achieved by simply computing maximum and minimum seperately.) Show a diagram of
the comparisons performed by your algorithm on input (7,4,5,2,1,6,3,8).

Answer: We divide S = (ai,a9,...,a,) into two sequences, S1 = (ai,az,...,0n/2)
and Sy = (an/241,Gn/2+2,-- -, 0,) Then max{S} = max{max{S;}, max{S,}}, min{S} =
min{min{S; }, min{S>}}. The algorithm is the following:

MAXMIN(S)
Let S ={a1,aq9,...,a,}
ifn=2
then if a; > a,
then return (a;, as)
else return (as,a;)
S1 {al, ag, ... ,an/z}
Sy {an/2+1, An /2425 -« -5 CLn}
(mazxy, ming) < MAXMIN(S;)
(maxe, ming) < MAXMIN(S,)
return (MAX(mazx;, mazs), MIN (min,, miny))

In the above algorithm, when the sequence S has two elements, say S = (a1, az), we simply

compare a; and ay to obtain max{S} and min{S}, thus requiring only one comparison. If

21

|S| > 2, the number of comparisons required to yield max{S} and min{S}, given max{S;},
min{S;}, max{Ss} and min{S,} is 2 (one to compute MAX(mazx;, mazx,) and one to

compute MIN(min;,miny)). Hence,

Tn) = 2T (2) +2, gn>z
1, if n =2.

n

T(n) = ﬂTQk

k -
>+ 2 k>1
1=1

- %nm+2@%”4—n

n n

= —4+2(=—-1
5 T2(5-1)
3n

= — =2
2
Diagram:
This diagram depicts a com-

parison between values a and

a @ b. The outputs z and y de-

note the maximum and mini-

mum value, respectively.

The following diagram shows the comparisons performed by the algorithm on input S =
(7,4,5,2,1,6,3,8).

P (7.5) [

. 1620 4.2) |, (7,8) [

1 we) b 6,8) [(21) | mins.
(3.8 [(1,3) |,

22

Observe that T'(8) = 22 — 2 = 10. After n/2 comparisons, there are n/2 — 1 comparisons
organized in a tree of minimum computations, and n/2 — 1 comparisons organized in a tree

of maximum computations. |

Exercise 2.12 On input two n X n matrices, Strassen’s multiplication algorithm leads to

a recurrence of the form

T(N) =77 (§)+aN/4, N>1,
T1) =1, N=1
where N = n? is the number of entries of the matrices.

(a) Show that the exact solution is

T(N) = (g + 1) N"% (%) N.

(b) Find (an approximation to) Ny such that T'(Ny) = Tpgr(Ny) when a = 15. Recall
that Tprp(N) = 2N%2? — N.

Answer:

(a) To verify the given solution, we can simply plug it into the recurrence equations:

(1) = 1%1(’%7(§+1>—1(§>

= Y12y,

a
3 3

l10g7
T(ﬂ) - (EH) (ﬁ) _aN
4 3 4 34

(a)N%log7 aN (a 1) N3lg7 gN

= (Z4+1) 20— 2 (=2 _ et
3+ 431087 12 3+ 7 12
N\ aN a Nz2le? gN aN
T(N) = 7TT'(— — =7 —+1 - -
(V) <4>+4 ((3+> 7 12)+4
a 1 TaN 3aN a 1 aN
— d 1 N—log?__ - (_ 1) N—log?___
(3+ > ’ 2 T2 T \ztH)” 3

However, we can also derive this solution from the recurrence solution given in class:

FH(N,No) e—1 " (N,No)
T(N) = ; (Hos(f‘”(N)))w(f“)(N))Jr £[s(fO(N)To.

23

For this problem, s(N) = 7,f(N) = 4,7, = L,w(N) = %, and Ny = 1. Thus,
f(N,Ny) = f(N,1) = log4N 1 = Zlog N — 1. Plugging these into the formula, we
get:

llogN-1 LiogN-1

- a N
S(M7)5he T
aN Llog N—

T(N)

1

210 ¢
— (Z) + 7% log N
=0

4 7 4
liogN
- ()
- 7 (5) 5o

a
3

- N%l°g7(9 1) _2n.
37" 3

(b) Let TDEF(NO) = T(N()) We have:

3/2 —
2N0 —NO —GNO _5N()
INY? _ 6N, T _
— + 4Ny =0
logo 7—2

Ny =3N, * +2=0.

By trial and error, we obtain 83616 < Ny < 83617. O

Exercise 2.13 For n a power of 2, we say that an n X n matrix M is repetitive if either

n =1 or, when n > 1, M has the form

A A
B A

where A and B are in turn (n/2) x (n/2) repetitive matrices.
(a) Design an efficient algorithm to multiply two repetitive matrices.

(b) Write the recurrence relation for the number 7'(n) of arithmetic operations that your

algorithm performs on n x n repetitive matrices.

(c) Solve the recurrence relation obtained at the previous point.

24

Answer:

(a) Let M; and M, be the two n X n repetitive matrices to be multiplied, and let

(A 4 c C
M1: andM2: .
B A D C
We have _
A Ax D 2-A
M1XM2: x O+ % x ¢ 5 (29)
AxD+Bx(C AxC+BxC

where X and + denote, respectively, row-by-column multiplication and matrix sum, and -
denotes multiplication by a scalar.

Since A, B, C, D are in turn repetitive matrices of size n/2 x n/2, Equation (1.15)
implies that three (recursive) row-by-column products of n/2 x n/2 repetitive matrices,
three sums of two n/2 x n/2 (general) matrices and one multiplication of an n/2 x n/2
(general) matrix by a scalar suffice to compute a row-by-column product of two n x n
repetitive matrices. Let SUM(X,Y’) be an algorithm that returns the sum of two n x n
matrices X and Y, and let SC_PROD(¢, X) be an algorithm that returns the scalar product
c- X. Clearly, we have Tsym(n) = Tsc_prop(n) = n? The algorithm for multiplying two

repetitive matrices is the following:

REP_MAT MULT(M;, M)
n < rows(M;)
if n = 1 then return M;[1,1] - M[1,1]
A<+ M[l.n/2,1.n/2]
B« M[(n/2+1)..n,1..n/2]
C + My[l..n/2,1..n/2]
D < Ms[(n/2+1)..n,1..n/2]
T1 +REP_MAT_MULT(4, C)
T2 < REP_MAT_MULT(A, D)
T3 < REP_MAT_MULT(B, C)
M[1.n/2,1..n/2] - SUM(T},T5)
M][l.n/2,(n/2+ 1)..n] + SC_PROD(2,T1)
M((n/2 +1)..n,1..n/2] < SUM(T%, T3)
M[(n/2+41)..n,(n/2 + 1)..n] + SUM(T1,T3)
return M

(b) To multiply two repetitive n x n matrices, we perform three recursive calls on n/2 x
n/2 matrices and then combine the results of the three calls using three sums of n/2 x n/2

25

matrices and one scalar product. Therefore, the total work is w(n) = 4 - (n?/4) = n?, and

we obtain the following recurrence:

T(n) = 3T (TL/2) + 3TSUM(n/2) + TSC_PROD (n/2)
= 3T (n/2) +n?, n>1, (2.10)
T(1) = 1

(c) In Recurrence (1.16), we have s(n) = 3, f@(n) = n/2', w(n) = n? Ty = 1 and
Ny = 1. Therefore,

logy n—1
T(TL) — Z 3€n2/4€ + 310g2n
£=0
logyn—1

=t Y (3/4) 4 nlow?
£=0

— 4n2 (1 - (3/4)10g2 n) + n10g23
— 4n? (1 — plos: 3—2) + plogz3

= 4n? — 3n'°e3

whence T'(n) = ©(n?). Let us prove that the above formula is correct. We have T'(1) =
1=4-1—23-1"823 TIf the formula holds for values of the parameter less than n, then

T(n) = 3T (n/2)+n?
= 3(4(n/2)? - 3(n/2)&%) + n?
= 3n? — 9n'°&23/3 4 n?

= 4p? — 3ploe23,

Observe that the sum of two repetitive matrices is a repetitive matrix and therefore
contains many repeated entries, which need to be computed only once. Indeed, to sum
two n X m repetitive matrices, we only have to compute two sums of n/2 x n/2 repetitive
matrices, with no extra arithmetic operations required for combining the results (we just
have to make repeated copies of matrix entries). Hence, when summing two repetitive
matrices,

{ Tsom(n) = 2Tsum (n/2), n> 1,
Tsum(1) = 1.

(An identical recurrence, with the same motivation, holds for Tsc_prop(n)). By unfolding

26

the above recurrence for n = 2*, we have

Tsum(n) (vesp., Tsc_prop(n)) = 2% - Tsum(1) (resp., Tsc_pron(1)) = n.

However, we cannot substitute these new running times for Tsyp(n) and Tsc_prop(n) in
Recurrence (1.16), since we really need to sum (or take scalar products of) general matrices
in the combining phase of REP_MAT_MULT. This is due to the fact that the product of
two repetitive matrices is not necessarily repetitive, therefore, matrix A x C' and matrix
Ax D, for instance, may contain an arbitrary number of distinct elements. Summing A x C
and A x D may entail as many as (n/2)? distinct scalar sums. O

Exercise 2.14 Let n be an even power of two, and let IT be the problem of merging \/n

sorted sequences, each containing /7 elements, into a single sorted sequence of n elements.
(a) Design and analyze an algorithm for IT that performs at most (n/2) logn comparisons.

(b) Use the algorithm for IT developed in Part (a) to sort a sequence of n elements in at

most nlogn comparisons.

(c) Knowing that a lower bound for sorting is n log n—-yn comparisons, for a fixed constant

v > 0, determine a lower bound on the number of comparisons needed to solve II.

Answer:

(a) Consider an input vector A[l..n] containing the concatenation of the \/n sorted se-
quences. We can use the standard MERGESORT algorithm, halting the recursion when
the subproblem size is s = y/n. Algorithm SQRT_SORT below assumes a global knowledge

of vector A:

SQRT_SORT(4, j)

if j —i+1=/length(A)
then return

middle < | (i + j)/2]

SQRT _SORT (i, middle)

SQRT_SORT (middle + 1, j)

MERGE(A, i, middle, j)

return

The outer call is clearly SQRT_SORT(1,length(A)). Recall that MERGE(:, middle, j)

performs at most j — i + 1 comparisons (one for each element of the resulting sorted

27

sub-array). Let n = length(A) and s = y/n. Then, the recurrence on the number of
comparisons Tsg(n) performed by SQRT_SORT (1, length(A)) is:

Tss(s) = 0 (2.11)

Tss(n) = 2-Tss (g) +n, n>s.

Unfolding £ — 1 times we have:

n

Tss(n) = 2kTSS (ﬁ) + k"fl,

whence, by setting k = log(n/s) = log+/n = (1/2)logn,

Tss(n) = (n/s)Tss(s) + (log(n/s)) - n
= (n/2)logn.

since Tgs(s) = Tss(y/n) = 0. Therefore, our algorithm meets the required bound on the

number of comparisons.

(b) Given n elements, we first group them into /n sets of size v/n and sort each group
using MERGESORT. Then we use SQRT_SORT to obtain the sorted sequence.

SORT(A)
n < length(A)
for i < 1 to /n do
MERGESORT(4, (i — 1) - v/n+ 1,i-/n)
SQRT_SORT(1,n)

return

By setting s = 1 in Recurrence (1.17), we observe that MERGESORT requires at most
Tus(m) = mlogm comparisons to sort a sequence of m numbers. Therefore the overall

number of comparisons performed by SORT(A) is

Ts(n) = +/nTus (\/ﬁ) + Tss(n)
vn - v/nlog/n+ (n/2)logn
= (n/2)logn+ (n/2)logn

= nlogn.

28

Essentially, SORT(A) coincides with MERGESORT, with the only difference that the
activity performed by MERGESORT is viewed as the cascade of two phases.

(c) In Part (b), we showed how to sort n elements by first sorting /n sequences of size
v/n, and then solving II. Let T4, (n) be the running time of any algorithm solving II. Since
we can separately sort the \/n sequences in (n/2) logn comparisons (calling MERGESORT
v/n times) it must be

(n/2)logn + Tay(n) > nlogn — 7,

or we would obtain an algorithm for sorting which beats the lower bound. Therefore

Tay(n) = (n/2)logn — 7.

Exercise 2.15

(a) Design an optimal divide-and-conquer algorithm which takes as input a vector of

N = 2" — 1 elements and outputs a heap containing the same elements.
(b) Write the recurrence associated with the algorithm of Part (a).

(c) Solve the recurrence of Part (b).

Answer:

(a) Let H be the input vector containing N = 2™ — 1 elements. Our algorithm works
directly on H as follows. We first (recursively) create two subheaps H; and H (note
that |[H,| = |Ho| = 2"! — 1) rooted at the two children of the root. These heaps are
stored according to the typical heap indexing scheme (i.e., if a node is stored at index i,
its children are found at indices 2i and 2i + 1) in the locations of H starting from index
2 for Hy, and index 3 for Hy. Then we “meld” H; and H, into a single heap by calling
HEAPIFY(H,1) (see Cormen, Leiserson and Rivest’s book, page 143) to extend the heap
property to the whole vector.

Algorithm R_BUILD_HEAP(7) implements the above strategy when the root of the
(sub)-heap is stored in H[i]. Clearly, the entire heap is built by calling R_ BUILD_HEAP(1).

29

R_BUILD_HEAP(7)

if 20 > (N +1)/2 then HEAPIFY (H,)
{ take care of last two levels }

return

R_BUILD_HEAP(2i)
R_BUILD_HEAP(2i + 1)

HEAPIFY (H, i)

return

The correctness of the above algorithm is easily shown by induction.

(b) Let S(i) be the set of array indices storing the subheap rooted at index i, for any
i > 0. We have S(i) = {i} U S(27) US(2i + 1), and S(27) N S(2¢ + 1) = . Moreover
|S(27)| = |S(2i + 1)|, whence |S(2i)| = |S(2: +1)| = (|S(i)| — 1)/2. As a consequence, the
recursive calls will work on a set of indices whose size is less than half the size of the one
associated with the outer call. This property is essential to guarantee that the algorithm
is efficient. Also, note the size of any subheap H built by our recursive algorithm is a
power of two minus one, therfore we can write the recurrence using the exponent as the

parameter. Recalling that HEAPIFY takes time ck on a heap with 2 — 1 nodes, we have:

T(k) = 2T(k—1)+ck, k> 1,

(1) = 1.
(c) We have:
T(k)y = 2T(k—1)+ck
= 22T (k—=2)4+c(k—1)) +ck
= 2'T(k — 1) +c§2?(k —9)
= 2k1+c]§2j(k—j)
We have:

k-2
Y 2(k—j)=3-2F"—k -2,
7=0

30

therefore, for any k£ > 1,
T(k) = (3c+1)281 — c(k + 2).

Note that T'(k) = O(2F), therefore the algorithm is linear in the number of elements of the
heap. O

Exercise 2.16 Consider an array storing the preorder sequence of a binary search tree

of distinct elements.

(a) Describe an efficient recursive algorithm that determines if a key = belongs to the

array.

(b) Evaluate the running time of the algorithm as a function of the number of nodes n
and the depth d of the tree.

Answer:

(a) We devise an algorithm that “simulates” binary search on a binary search tree:

TREE_SEARCH(T, z)

if T' = nil then return “not found”

if root(7T") = x then return “found”

if z < root(T)
then return TREE_SEARCH (left(T), x)
else return TREE_SEARCH(right(T), x)

However, we are only given the preorder sequence p(T') of T, stored in a vector A, therefore
we have to find a way of identifying left and right subtrees as subsequences of p(7T').
It can be easily shown that for any tree 7', p(T') has the following recursive structure:

P(T) = ro0t(T) - p(left(T)) - p(right(T")),

(note that p(left(T")) (resp., p(right(T"))) is the empty string if left(T") (resp., right(7)) is
empty). Therefore the preorder sequence of a non empty left subtree starts soon after the
root, which is the first element of the sequence. In contrast, the preorder sequence of a
non empty right subtree terminates the sequence. In order to completely identify the two
sequences, we only have to determine the starting point in the array of p(right(7)). This
can be accomplished efficiently by performing a binary search on the vector, using the root

as the key:

31

FIND_RIGHT (A, k, root)

{ h and k are the lower and upper bounds of the

subvector where the search takes place}

if h > k then return h

middle < (h + k)div2

if root < A[middle]
then return FIND_RIGHT(h, middle — 1, root)
else return FIND _RIGHT (middle + 1, k, root)

The correctness of the above procedure is due to the fact that all the elements in p(left(T'))
(resp., p(right(7))) are smaller (resp., larger) than root(T).

We are now ready to give the required search procedure

ARRAY _SEARCH(3, j, x)
if i > j then return “not found” { empty subtree}
if A[i] = z then return “found”
right < FIND_RIGHT(i + 1, j, A[4])
if 2 < Ali
then return ARRAY SEARCH(i + 1,right — 1,)
else return ARRAY_SEARCH(right, j, z)

(b) If d is the depth of the tree, ARRAY SEARCH will perform at most d calls of
procedure FIND_RIGHT. Each of such calls takes time O(log|h—k|) = O(logn). Therefore
the overall running time is O(dlogn). Such algorithm is more efficient than a trivial scan

of the array for depths as large as O (ﬁ) O

Exercise 2.17 Assuming that n is a power of 4, solve the following recurrence:

T(1) =0
T(2) =2
T(n) =T (%) +27 (%) + 33 (n > 4).

Answer: The above recurrence could stem from a divide-and-conquer algorithm that, on
input an instance of size n, splits the instance into three subinstances of size n/2, n/4,
and n/4, respectively, and recombines the results performing 3n/2 work. We note that
the sum of the sizes of the subinstances is n, and that the work is linear in such sum.
This scenario is reminiscent of recurrences where the input instance is partitioned into a

constant number k of subinstances of equal size n/k and the split/combination work is

32

O(n), i.e., .
T'(n) = KT’ (E) +0(n). (2.12)

By applying the Master Theorem, we know that the above recurrence yields 7"(n) =
O(nlogn). Pursuing the analogy between our recurrence and Recurrence (1.18), let us try
to prove by induction that there exists a constant a > 0 such that 7'(n) < anlogn. We
have two base cases to cover, namely,

T(1) = 0

< a-1-logl =0,

which is true for any value of a, and

T2) = 2
< a-2-log2 =2a,

which is true if and only if @ > 1. Assume that our statement holds for powers of four

which are less than n. We then have:

T(n) = T (g) +oT (%) + gn

< ﬁ10 ﬁ+2210 ﬁ—l—§
= 0508y T aal0E TN

3
= ag(logn -1)+ ag(logn —-2)+ 3"

e 3.3
= anlogn 0n + 5n.

The thesis will follow if we make sure that
2an 2n ,

for which again it suffices to choose @ > 1. In conclusion, by picking a = 1, we have proved
that
T(n) < nlogn. (2.13)

By conducting a completely symmetric reasoning to the above, we can show that 7'(n) >

bnlogn for any constant b < 1. By picking b = 1 we then have:
T(n) > nlogn. (2.14)

33

By combining (1.19) and (1.20) we can then conclude that
T(n) = nlogn,

for any value of n > 1. Note that we obtained the ezact solution to our recurrence by
providing perfectly matching lower and upper bounds. Clearly, this is not always the case,
and for other recurrences in this class the best we can do is to determine the order of

magnitude of their solution. O

Exercise 2.18

(a) Let M be a square matrix with N = 4% elements. Prove that, if A, B and C are

@ X ‘/—ZN , the following relation holds between M and its inverse M !:

A=t —ATIBC!
0 c!

A B
0 C

M =

(b) Develop a divide-and-conquer algorithm for the inversion of an upper triangular
matrix (all the elements below the main diagonal are null).

(c) Write the recurrence relation for T'(N), defined as the number of scalar multiplica-
tions performed by the algorithm of Part (b). Assume that the multiplication of

square matrices is done according to the definition.

(d) Solve the recurrence of Part (c).

Exercise 2.19 Consider an algorithm A; solving a computational problem II in time
Ti(n) = nlogn. Suppose we can devise for the same problem a divide-and-conquer strategy
that, for n > 1, generates two instances of II of size n/2 with work w(n) = a, where a is a

constant greater than 4. Let n be a power of 2.

(a) Evaluate the running time of an algorithm A, based on the divide and conquer

strategy, under the assumption that 75(1) = 0.

(b) Consider an algorithm A using the divide-and-conquer strategy for n > ng and calling
instead A; for n < ng. Determine the running time 7'(n) of A (note that 7T'(n) will

be a function of ny).

(c) Find the value of ny that minimizes T'(n) (note that ny will be a function of a).

34

Exercise 2.20 Let f(n) = logn, and define, for any n > 2, log*n = f"(n, 1). Show that
log*n = o(loglogn).

Exercise 2.21 Solve the following recurrence when the parameter n is a double power of

two (i.e., n = 2%, for some i > 0).

{ T(n) = nT (Vn) n>2
4.

Exercise 2.22 Consider the following recurrence:

TO n S no,
T(n) = k
YF a4 T (lem]) + en n > ng,

where Tjy, ng, k, a1, as,...a, are positive integer constants, and ¢y, ca, ..., ¢ are positive
real constants less than one. Prove that if 3% | a;c; < 1 then T'(n) = O(n).

35

Chapter 3

Convolutions and the Discrete

Fourier Transform

3.1 Linear and Cyclic Convolution

Let a and b be two arbitrary vectors of n components. The linear convolution of a and b,
denoted w = a x b, is a vector of 2n — 1 components such that, for 0 < <2n —1,

w; = Zajbi,j. (31)
j=0

Recall that in the above definition we are implicitly assuming that ay, by = 0 for all indices
k such that £ > n — 1. If we want to be rid of such assumption, then we can write, for
0<2<2n—1,

min{i,n—1}

w; = Z ajbi_j, (32)

j=max{0,i—n+1}
where the bounds in the summation are chosen in such a way that the indices j and 7 — j
always range between 0 and n — 1. Recall that w; is the i-th coefficient of the polynomial
of degree bound 2n which is obtained by multiplying the two polynomials whose coefficient
representations are a and b. By evaluating the polynomials on the 2n 2n-th roots of unity,
pointwise-multiplying the values and interpolating from the resulting vector, we obtain the

following relation:
w = DFT,! (DFT5,(a|0) - DFT5,(b|0)), (3.3)

where - denotes component-wise product, and (a|0), (b|0) are obtained by padding @ and b

with n zeroes. Equation (2.3) gives us a way to compute w in O(nlogn) time by applying

36

the FF'T algorithm.
Let us now introduce a new vector operator. For a and b, vectors of n components, we
define the cyclic convolution (also called wrapped convolution) of a and b, denoted a® b,

as a vector z of n components such that, for 0 <i <n —1,
n—1
% = Z a’jb(i*j) mod n- (34)
=0

Note the similarity between (2.1) and (2.4). However, recall that if @ and b have n com-
ponents, then a x b has 2n — 1 components, while a® b has only n components.

Cyclic convolution can be thought of as a “wrapped” version of linear convolution. To
see this, note that, for 0 <:<n—1,

% n—1
Z; = Z ajbi_j + Z ajbn+i_]-. (35)
j=0 j=i+1
Therefore, to compute z;, we start by multiplying, ag by b;, then a; by b; 1 ... until we

multiply a; by by. (This is exactly what we do when computing the linear convolution of
a and b.) Then, we proceed by “wrapping around” vector b and multiplying a;,1 by b, 1,
@i+2 by b,_2 and so forth.

Observe the multiplication pattern of the a;’s and the b;’s in cyclic convolution:

20 = aobp + artbp_1 + ...+ ap_2by + ap_ib

Z1 = a0b1 + G,lb() + ... + an,2b3 + an,162

zi = aghy + abi.y 4+ ... + ap_obipr + ap_1big
Zno1 = apbp 1 + aiby 2 + ...+ ap2bi + ay 1bo

We can write the above system as w = C'(b) x a, where

bo bnfl cee b2 bl
bt by ... by b
b'z' bi'—l s bz+2 bz—|—1
| buy bues ... by by |

37

Note that the columns of C'(b) are obtained as consecutive cyclic right shifts of b. Matrix
C(b) is called a circulant matrix with first column b. A circulant matrix admits a very
compact representation, since the matrix is uniquely specified by its first column.

Note that computing w = a® b according to the definition takes ©(n?) time. However,
it turns out that we can use the FFT to compute cyclic convolutions in ©(nlogn) time.
We have:

Theorem 3.1 (Cyclic Convolution Theorem) Let a and b be two arbitrary vectors of

n components, and let z = a® b. Then
z = DFT,;' (DFT,(a) - DFT,(b)), (3.6)

where - denotes component-wise product.

Therefore, simply computing the DFT’s of @ and b with no padding, multiplying their

components and then taking the inverse DF'T gives us the cyclic convolution of a and b.

Proof: It suffices to show that DFT,(z) = DFT,(a) - DFT,(b). We have:
n—1)
(DFT,(a Z a;wy? and (DFT,(b)); =Y bywi¥,

therefore

(DFT,(a)); - (DFT,(b (Z ajw U) (Ti bkw;'f> — nz;;ni a;brwiCH). (3.7)

On the other hand, from Equation (2.5) we have:

(DFTn(z))Z = Z (Zas p—s T Z agb n+p— s)

s=p+1
n—1 n—1

= ZZCLS p— Sw1p+z Z a bn+p sw (38)
p=0 s=0 p=0 s=p+1

Let us now show that, for any 0 < ¢ < n — 1, Formulae (2.7) and (2.8) coincide. For this
purpose, it suffices to note that each term asb,,, with 0 < £, m < n — 1, appears only once

n (2.7), multiplied by wi“*™. In (2.8), if £ +m < n, then ab,, appears only once in
the first double summation, for p = £ 4+ m and s = ¢, and multiplied by w? = w ittm) - Tf
£+m > n, then azb,, appears only once in the second double summation, for p = /+m—n
and s = ¢, and multiplied by w? = @ittm—n) = iltEm),—in — jilt+m) The theorem

follows. O

38

The following is an immediate corollary of Equation (2.3) and Theorem 2.1.

Corollary 3.1 Let a and b be two arbitrary vectors of n components. Then
axb=(al0)® (b|0),

where (al0) and (b|0) are vectors of 2n components.

Corollary 2.1 gives us a way to compute w = a x b through a cyclic convolution. In what
follows, we investigate the inverse relation: in particular, we will write 2 = a® b as a
function of w.

Recall that

% n—1
Zi= DTt D Tintieg
=0 j=i+1

= it (3.9)

for 0 < i <n— 1. Note that z2_, = 0. By making the bounds in the summation explicit,

we can rewrite (2.2) as

Y0 TiYings for 0 <i<m—1,
Wi = (3.10)
o Ty, forn <i<2n—2.
From (2.9) and (2.10) it immediately follows that 2. | = w,_, therefore z,, | = w, ;. For
0 <i<n—2 we have:

Zi = W
n—1
2 _
= Z ZjYn+i—j
j=i+1
n—1
= D TYn)—
i= (+n)-
—n+1
= Wiqn-

Therefore, for 0 <1 < n —2, 2; = w; + Wiin.

im/4

Exercise 3.1 The complex number w =€ ? + # is an 8-th principal root of unity

in the complex field.

39

(a) Compute w® fori=10,1,2,3,4,5,6,7,8,9.

(b) Write the Fourier transform matrix Fy = [w%] for 4,5 =0,1,...,7.

(1/8)[w
(d) Compute X = Fgz, for x = (1,0, 1,

(c) Write Fy' = i) for 4,5 =0,1,--,7.

~1,0,0,—1,1).

(e) Let & = (0,0,1,0,0,0,0,0) and y = (0,0,0,0,1,0,0,0). Compute the cyclic convo-
lution z = ® y using the definition.

(f) Repeat (e) using the cyclic convolution theorem.

Answer:

(a) Observe that, since w® = w® =1, w" = W ™48 Let d = § We have:

Imaginary
Ww=1 w! = (d + di)
w2:(d+dz) =d*+25i—d* =i
w=w (d+dz)—dz+dz =—d+di
wt=wd(d+ di) = —d* + (di)* = -1
Ww=wt(d+di) = —d—di
Wb = wi(d + di) =—d?* — 2d*i—
—(di)? = —i
wi=w (d+dz):—di—di2:d—di
ws =w'(d+ di) = d*> — (di)? =
W =wd(d+ di) = d+ di = w?
(b)
[w® w® W WO Wb W Wb WO
WO w w? oW Wt WS Wt W
W0 w? Wt Wb Wd w0 w2
W WP Wb w? w2 W W8 2!
Fy = WO wt Wl wl? Wit W20 24 28
W0 WP w0 1B 20 25 B0 35
W0 Wh w12 1B 24 B0 36 42
W0 Wl Wl W2 W W 12 9

(c)

(d)

X

1 1 1 1 1 1 1 1
1 (d+di) i (=d+di) =1 (=d—di) —i (d—di)
1 1 —1 —1 1 1 -1 —1
|1 (=d+di) —i (d+di) -1 (d—=-di) i (—d-—di)
o 1 -1 1 -1 1 —1 1 —1
1 —(d-=di) i (d—di) -1 (d+di) —i (—d+ di)
1 —1 —1 1 1 —1 -1 1
|1 (d—di) —i (—=d—di) -1 (—=d+di) i (d+ di)
r w—O LU_O w—O w—O w—O LU_O w—O w—O T
w—O L()_l w—2 w—3 w—4 Ld_5 w—6 w—?
w—O w—2 w—4 w—6 w—8 w—lO w—12 w—14
8F—1 . w*O w*?’ w*ﬁ w*Q w712 w715 w718 w721
8 - w*O w74 w78 w712 w716 w720 w724 w728
w—O Ld_5 w—lO w—15 w—20 Ld_25 w—SO w—35
w—O (.d_6 w—12 w—18 w—24 Ld_30 w—36 w—42
UJ_O w—? w—14 w—21 w—28 w—35 w—42 w—49
[1 1 1 1 1 1 1 1
1 (d—=di) —i (—d—di) =1 (=d+di) i (d+di)
1 —1 -1 1 1 —1 -1 1
|1 (=d—di) i (d—di) -1 (d+di) —i (—d+di)
o 1 —1 1 —1 1 —1 1 —1
1 —(d-=di) —i (d+di) -1 (d—di) i (—d-—di)
1 i o 1 i -1 -
1 (d+di) i (—=d+di) -1 (=d—di) —i (d— di)
1] 1+0+1—-14+0+0—1+1
0 140+i—(—d+di)+0+0— (—i) + (d — di)
1 1404+ (-1) = (=) +04+0—(=1)+ (—2)
-1 140+ (—%)—(d+di) +04+0—i+ (—d — di)
= Fg L= Fg - =
0 140+1—-(-1)+04+0—-1+(-1)
0 1+04+¢—(d—di) +0+0— (—i) + (—d + di)
~1 140+ (=1) —i+0+0—(=1) +3
1 | 140+ (i) — (—d — di) + 0+ 0 — i + (d + di)

41

1
(14 2d) + (2 — 2d)i

1
_ (1—2d)+ (-2 —2d)i
1
(1—2d)+ (2 +2d)i
1

| (1+2d) + (—2 + 2d)i |

(e) Letn =8. Since only z, and y4 are nonzero, the only way 2;(i—) mod » can be nonzero
is when [= 2 and i = 6 (we get the value of [directly; for ¢, from (i — [) mod n = 4, we
get (i — 2) mod n = 4, which implies ¢ = 6). Thus, zg = 2oy, = 1, while all the other z;’s

are zZero.

(f) First, we note that, since « and y have only one nonzero element each, and that the
element is a 1, Fyx is column 2 of Fg and Fgy is column 4 of F3. Now, from the definition
of Fy, we know that [Fg);j = w"7; thus, the i-th element of Fyx - Fyy is w"*™"* = w"5. But
this is exactly column 6 of Fg. Therefore, multiplying Fy * by Fyx - Fyy we obtain the
column 6 of the identity matrix, namely (00000010), exactly the answer in Part (e). O

Exercise 3.2 Given a vector € = (29, Z1,...,Z, 1), the circulant matrix C(x) is an nxn
matrix whose first column is &, while the remaining columns are obtained as consecutive

cyclic right shifts of & . Design and analyze efficient algorithms for the following problems:
(a) Determining the product of two circulant matrices.
(b) Determining a solution (if any) to the linear system C(x)y = b.
(c) Determining whether C'(x) is invertible and, if so, computing its inverse.

Answer: Note that

Lo Tp-1 "7 T2 I
T Zo rer XT3 i)
C(%) == ’
ITpn—2 ZTpn-3 - Lo Tn-1
L Tp-1 Tp—2 - I1 o]

therefore [C(x)]ij = Z(i—j) mod n, for 0 < i,j <n—1.

42

(a) Let C(x) and C(y) be two circulant matrices. By the definition of row-by-column
product we have, for 0 <i,7 <n—1,

n—1

[Clz) x Cy)l;; = ;}[C(w)]is[C(y)]sj

= Z L(i—s) mod nY(s—j) mod n-
s=0
Let £ = (i — s) mod n. Note that when s varies between 0 and n — 1, so does k. Moreover,

s = (i — k) mod n. By substituting s with & in the above summation we obtain:

n—1
[C(w) X C(y)]z] = Z TEY((i—k) mod n—j) mod n
k=0

n—1

= Z TkY((i—j) mod n—k) mod n
k=0

= (il:@ y)(ifj) mod n-

This suffices to show that the product of C'(x) and C(y) yields a circulant matrix C(z),
with z = x® y. If circulant matrices are represented by storing only their first column,
then the representation of their product can be computed in O(nlogn) time using the FFT
algorithm.

(b) Consider the system
C(x) xy=b, (3.11)

where & and b are arbitrary complex vectors and y is the vector of the unknowns. Observe
that

n—1
[C(:B) X y]l = Z Z(i—k) mod nYk
k=0
= (y®)i

Let F, be the Fourier matrix of order n, and let X, Y, B denote, respectively, F,x, F,,y
and F,b. By the cyclic convolution theorem, System 2.11 is equivalent to the following
system

X .Y =B,

43

where - denotes component-wise product. Note that such system consists of n equations,
one for each component of the (unknown) vector Y. For 0 < i < n — 1, the i-th equation
is

XiY; = B;, (3.12)
hence it contains the single unknown Y;. Therefore it immediately follows that

1. The system has one and only solution iff X; #£ 0, for 0 <7 <n — 1.
2. The system has no solution iff there exists an index ¢ such that X; = 0 and B; # 0.

3. The system has infinite solutions iff for each index ¢ such that X; = 0, then B; = 0,

and at least one such index exists.

By the equivalence of Systems 2.12 and 2.11, the above considerations also apply to our
original system. Note that X and B can be computed in O(nlogn) time using the FFT
algorithm, and that the subsequent test (as specified in Points 1..3 above) can be performed
in additional O(n) time.

Consider the case when at least one solution exists and define Y as

0 otherwise,

7. { Bi/X; it X;#0
for 0 < < n—1. Then, a solution to System 2.11 can be computed in O(nlogn) time as
y=F,Y.

(c) By a well known theorem in linear algebra, C(z) is invertible if and only if the linear

system
Cx)y=>

has one and only solution y € C”, for any given vector b € C™. By the results in Part
(b), we can therefore conclude that C(x) is invertible if and only if X; = (F,x); # 0 for
0 <4 < n—1. Such condition can clearly be tested in O(nlogn) time using the FFT
algorithm to compute X and a linear scan to test that X; # 0, for 0 <¢ < n —1.
Let us now prove that [C'(x)]™! is itself a circulant matrix. To see this, consider the
system
[C(z)]y = (1,0,...,0). (3.13)

Since C(z) is invertible, System (2.13) has one and only solution g such that

Consider now the circulant matrix C (7). We have
Clz) x C(@) =C (z@7) =C((1,0,...,0)) = I,

where I, is the n x n identity matrix. Therefore

by the uniqueness of the inverse matrix. As shown in Part (b), System (2.13) can be solved
in time O(nlogn), therefore the inverse of C'(x) can be computed within the same time
bound. 0

Exercise 3.3 Given the sequence
a = (a_(n_l), A_(n—2);+«+50-1,00,01,--.,0n_2, an_l) X
the Toeplitz matrix M = T(a) is an n X n matrix of elements m;; = a,_;, for 4,j =

0,1,...,n—1.

(a) Let & = (xg,21,...,2, 1). Describe an algorithm which computes M« in O(nlogn)

time.

(b) Based on Part (a), give an upper bound on the cost of multiplying two Toeplitz

matrices.
Answer:
(a) We have
Qo a1 o G (p-2) A -(n-1)
a1 Gy a1 Tt A—(n—2)
M =T(a) =
an72 e s e "' "' a’fl
| Gp—1 Gp—2 - ai Qo i

Observe that all the elements on a fixed diagonal are the same. By the definition of

matrix-vector product we obtain:

n—1 n—1
(Mz); = Z MipZy = Z Gi—gTg, fori=0,1,...,n—1.
k=0 k=0

45

Note that the i-th element of the product is obtained by summing all the products a,z;
with » + s = 4. This fact immediately reminds us of convolution between a and x. To
simplify the computation of indices, let us rename a as @ = (o, G1, - - -, Gon_2)- Note that
Gj = a_(p—1)4j, for 0 < j < 2n — 2. The linear convolution ¢ = @ % = will have 3n — 2
components, namely

min{j,n—1}

Cj: Zajkaka fOI‘jZO,l,...,3n—3.
k=max{0,j—2n+2}

Forn—1<j <2n — 2, we have

n—1 n—1
Cj = D GjkTk =) O(n-1)+j-kTk-
k=0 k=0
Let 1 = —(n — 1) + j in the above formula. Note that when j varies between n — 1 and

2n — 2, ¢ varies between 0 and n — 1. We have

n—1
Cit(n—1) = Z Qi T = (MZB)Z (314)

k=0
Equation (2.14) establishes the required relation between Toeplitz matrix - vector mul-
tiplication and linear convolution. Since @ x « is an O(nlogn) operation, we obtain a

multiplication algorithm whose running time is within the required bound.

(b) The product C = A x B of two n X n matrices can be seen as n matrix-vector
multiplications between A and each column of B, with any such product providing a
distinct column of C. By employing the algorithm developed in Part (a), we can perform
matrix-matrix multiplication in O(n?logn) time, provided that A is a Toeplitz matrix

(note that no restriction on B is necessary). a

Exercise 3.4 Design and analyze an efficient algorithm to compute the k-th power of a

polynomial p(x) of degree-bound n.

Answer: Let ® be any associative operation defined on a semiring R. For any € R, the

problem of computing
k times

W =70z0 -0z

can be approached as follows. Define d = |logk| + 1 (d is the number of binary digits

46

needed to represent k), and let kg, k1, ..., ks 1 be such that

d-1
k= Z kZQZ, with k; € {O, 1},]€d_1 =1.

1=0

Then
x(k) — x(kOQO) @ :L-(k121) @ x(k222) @ . @ x(kd—IQd_l)

These considerations suggest the following algorithm to compute z(*):

EXPONENTIATE(z, k)

d+ |logk] +1

h <k

z + eg {ew is the identity element w.r.t. ® in R}

Yy

fort<0tod—1
do ki < h mod 2 {during the i-th iteration, ki = k;}
h < h div 2 {now, h has binary representation kq_1...k;y1}
ifki=1thenz+ 20y

yyoy{y=2*"}
return 2z
Let a be the coefficient representation of p(x). The above algorithm applies to our
case when z = a and ® = x, that is, ® represents linear convolution between two vectors
of size ny and ny, for any ni,ns > 0 (to see that linear convolution is an associative
operation, think of it as performing polynomial multiplication). In order to analyze the
time complexity of EXPONENTIATE in this case, we have to take into account the growth

in size of the vectors resulting from applying the operator x. We have the following facts:

1. Since 229 = 2@ % 22" we have that size(x(Zi)) < 2 - size (x(QH)), for i > 1,
while size(x(20)) = size(z) = n. By unfolding the recurrence, we have that at the

beginning of the i-th iteration, 7 > 0,

size(y) = size (.’L‘(Zi)) < 2'n.

2. Note that e, is the scalar 1, therefore, at the beginning of the 0-th iteration, size(z) =
1. For 7 > 1, at the beginning of the ¢-th iteration we have that

i—1 4 -1
size(z) <) size (x(zj)) <n) 2 <2n.
j=0 Jj=0

47

Therefore, the bulk of the work done during the i-th iteration of the algorithm consists

of computing two convolutions on vectors of size O(2'n).

Since linear convolution can

be computed in time O(mlogm) on inputs of size m, it follows that the i-th iteration of

EXPONENTIATE takes time

T;

0 (n2i log(nQi))
0 ((n logn)2" + m’2i) :

Recalling that d = |logk| + 1, the overall time complexity is

T

Exercise 3.5 (The Cooley-Tukey FFT Algorithm)

|

Let n = pqg, with p,q > 1.

Given a vector x of size n, the Cooley-Tukey FFT algorithm computes DFT,(x) = F,x

by performing the following five steps:

1. Arrange x into a p X ¢ matrix, in row major order;

2. For 0 < j < ¢ — 1, substitute column X7 of the resulting matrix with DFT,(X?) =

F,X7;

3. For0<i<p—1,0<j<q— 1, multiply the (4, j)-th entry of the matrix by w%;

pq’

4. For 0 <14 < p — 1 substitute row X; of the resulting matrix with DFT,(X;) = F, X;;

5. Read out DFT,(x) by enumerating the entries of the resulting matrix in colum-major

order.

Let n=12,p=3,¢g=4,and let z = (0,0,1,1,1,0,1,0,0,0,1,1). Compute DFTi5(x)
by applying the Cooley-Tukey algorithm and showing the array at the end of each step.

Answer: Let w = wip = ¢™/® =+/3/2+i/2. On input & = (0,0,1,1,1,0,1,0,0,0,1,1),
the Cooley-Tukey algorithm executes as follows.

48

Step 1: Arrange x into a 3 X 4 matriz, in row major order. We obtain:

I
o = O
o O O
e S -

1
0
1

Step 2: Transform columns. We must replace each column X7 with F3X7, where Fj is
based on the third root wy = w* = —1/2 + (v/3/2)i. The result is:

2

+ ~
e

+

N N

o~
o O O
S O W
N N
SRR
SN

Step 3: Multiply entry (i,7) by w”. Note that the first column and the first row will be

left unchanged (multiplied by w® = 1), and there are several 0-entries in the matrix. In

fact, we only need to compute w® = ¢™? = i and w® = €™ = —1. The array has now
become:
1 0 3 2
— 1., V3, V3 1.
oo b

Step 4: Transform rows. Similarly to Step 2, we replace each row X; with F,X;, where

3

F} is based on the fourth root ws = w® = 4. The result is:

6 ~2 2 2 ~2+2i
D = | Y3l L5 0 L8 Bl 1+ VB

Step 5: Read out the transform in column major order. We finally obtain:

DFTy(z) =
3-1 1+V3 1+v3 1-V3
&VF + *“[@—1—¢$;Q—2@Q— LK VF@
2 2 2 2
1+v3 V3-1 3—1 1+3
z—'gJi+J; @Q—2+%;4+V@@¢; - 2¢}>.

49

Exercise 3.6 (Bluestein’s technique) Let n > 1 be an arbitrary integer (not neces-
sarily a power of two). Given a complex vector = (zg, Z1,...,%,_1), let X = DFT,(x),
that is,

n?

n—1
X, = Zka““ for0<i<n-—1.
k=0

If B = \/wy, then wit = g%k = 5=(=k7" 57 6K hence

n—1

Xiﬁ_i2 — Z (.Tkﬁkz) B—(i—k)Q‘

k=0

(a) Show that, if ay = 8%, b, = 57, and ¢, = X,B87*, for 0 < k < n — 1, and if
m > 2n — 1, then ¢y, c1,...,c,_1 are the first n terms of the cyclic convolution of

(CL(), A1y.--yQp_1, Om—n) and (b(), bl, ceey bn—la Om—(Qn—l)’ bn—la ceey bz, bl)

(b) Using the result of Part (a) and the cyclic convolution theorem, argue that X =
DFT,(x) can be computed in O(nlogn) time for any value of n.

Answer:

(a) Let a = (ao, ai,...,0p_-1, Om—n), l~) = (bo, bl, ceey bn—l, 0m—(2n—1)’ bn—l, Cee bz, bl) and
let ¢ = a® b. By the definition of cyclic convolution, we have, for 0 < i <n —1,

m—1
G = Zakb(i—k)modm

k=0
n—=1

= Za'kb(i—k)modm (315)
k=0
i n—1

= Zakbi,k-l— Z akbk,i (316)
k=0 k=i+1
i n—1

_ kaﬁkzﬁ—(z—k)2+ Y xkﬁlﬁﬁ—(k—zﬁ
k=0 k=i+1
n—1

= Y aptp (3.17)
k=0

20

Equality (2.15) comes from the fact that

~ Qg 1fk§n—1,
ap = .
0 ifk>n-—1.

Equality (2.16) comes from the fact that

IN) . Z;(i—k):bi—ky 1f0§z—k§n—1,
(=Bymodm =8 ik =brg, if—(n—1)<i—Fk<0.

Equality (2.17) holds since ~*=9* = 3=(-%* for any 0 < i,k < n — 1. Finally, Equal-
ity (2.18) immediately follows from the definition of the ¢;’s. Hence, we have shown that
G=cfor0<i<n-—1.

(b) We choose m to be the power of two closest to, but greater than 2n — 1. Then, we
apply the strategy developed in Part (a) to first compute the vectors @ and b in O(n) time
and then obtain their cyclic convolution ¢ = a® b. Since the size of the vectors is now a

power of two, we can employ the FFT algorithm to compute ¢ as
&= DFT," (DFTn(@) - DFT,(b))

in O(mlogm) time. Subsequently, we obtain ¢ by simply picking the first n—1 components

of €. Once we have ¢, we can finally compute X in additional O(n) time as
Xi:czﬂza, for0<i:<n-—1.

Let us summarize the time taken. Since 2n < m < 4n, we have O(mlogm) = O(nlogn).
Therefore, the overall time is: O(n) + O(nlogn) + O(n) = O(nlogn). O

Exercise 3.7 Consider the linear convolution u * &, where both sequences have length
n and w = (1,1,...,1). Design an algorithm that performs the above operation in time

O(n).

Answer: Let w = u xx. Recall that w has 2n — 1 components and that
min{n—1,i}

w; = Z UjTi—j

j=max{0,i—n+1}

51

;:oxj if0<i<n-1,
= (3.19)

Ty ifn<i<2n-2.

From (2.19) we can easily derive the following two recurrences.

Wo = T Won—2 = Tn—1
w; = wi—1+T; 1<i<n-—1 Won—2—i = Won—2-i41 + Tp-1-5, Nn—1>1>1.
(Note that both recurrences compute w, _1). The algorithm is the following:

UNIT_LIN_.CONV(z)
n < length(x)
20 < Xp
Zop—2 < Tp—1
fori+ 1ton—1do
Zi < 21T x;
Zop—2—i ¥ Zop—2-i+1 + Tp-1-4
return z

The program performs exactly 2n — 2 additions and therefore runs in linear time. a

Exercise 3.8 Consider the problem of computing the cyclic convolution ® y of the

vectors € = (Lo, Z1,---,Zn_1) and Y = (Yo, Y1, - -, Yn—1)-

(a) Evaluate the running time of an algorithm based on the definition of cyclic convolu-

tion when exactly k entries of and k entries of y are nonzero.

(b) Compare your solution to Point (a) with an FFT-based solution and discuss for which

values of £ and n the former yields a more efficient algorithm than the latter.

(c) Repeat the argument for (a) and (b) when & divides n and the nonzero elements of

x and y have indices which are an integer multiple of n/k.
Answer:

(a) Recall that for 0 <i<n—1,

n—1

Zi = (CE@ y)l = Z T5Y(i—j) mod n-
j=0

52

Fix two indices r, s, with 0 < r,s < n — 1, such that z,,y, # 0. Since the equation

i—rmodn=s

has a unique solution in {0,1,...,n — 1}:
<n-1
_ r+ S r+s_.n (3.20)
r+s—n otherwise,

each pair of nonzero indices will contribute exactly to a component of z. Therefore we can

write the following algorithm:

DEF_CONV(z, y)
r<0;s+0
for i1 < 1 to k do
while z, =0dor«+r+1
while y, =0do s+ s+1
Tj < (T‘, x?‘)a Y < (S,ys)
r «{ @tahdsyg-eantain the k pairs (indez,value)
corresponding to nonzero entries of « and y }
fori<0ton—1doz «+0
for i <+ 1 to k do
for j « 1to k do
let 7; = (r,7,) ; let 7; = (s,9s)
ifr+s<n-1
then z, ., < 2,15 + T,ys
else Rr4s—n — Zr4s—n + TrYs
{ perform the nonzero products and update
the corresponding component of z }
return z

The correctness of the above algorithm follows directly from Equation (2.20). As for its
running time, the extraction of the nonzero indices and the initialization of z take O(n)
time altogether, while the actual computation of the z;’s requires O(k?) time, for a total
time

TDEF(’I'L, k) =0 (TL + k2) .
(b) If the k£ nonzero components of and y have arbitrary indices, there is no general

way of exploiting the sparseness of the vectors when computing their discrete Fourier trans-

forms, therefore the FFT-based convolution algorithm requires Trpr(n, k) = O(nlogn)

93

time, regardless of k. Since

O (n + k2) =O(nlogn) iff k=0 (\/nlogn) ,

the algorithm developed in Part (a) asymptotically outperforms the FFT-based algorithm

fork=o0 (\/nlogn).

(c) Any algorithm based on the definition has to compute at least k* products and
initialize the n components of z = & y, therefore the complexity stays Q(n + k%) when
the nonzero components have indices rn/k, with 0 < r < k — 1. In contrast, the FFT-
based algorithm can be improved by only operating on the sub-vectors © and g of nonzero
components. To see that this approach is correct, consider the Cooley-Tukey algorithm
(Exercise 2.5) to compute F,,x in terms of transforms of order k¥ and n/k (the argument

for F,y is identical). The steps of the algorithm are the following:

1. Put x in a k X n/k array, in row major order. Note that the first column is &, while

the other columns are all zero.
2. Transform colums. We only have to transform Z (the first column).

3. Multiply entry (i,7) by (w,)”. The only nonzero elements are in positions (4, j) with
7 = 0. Thus, this step can be skipped.

4. Transform rows. The i-th row of the matrix has a single nonzero element as its first
component, (FyZ);. Therefore its tranform is a vector with all components equal to
(FyE);.

5. Read out the transform in colum major order. Note that the resulting vector is an
n/k-fold repetition of F}Z.

After computing F,x and F,y, we perform component-wise product and then compute
the inverse transform. By the convolution theorem, the end result is z = x® y. Since
the component-wise product still yields a periodic vector, its reverse transform z has only
k nonzero components at positions rn/k, with 0 < r < k£ — 1. This can be easily seen
by applying the Cooley-Tukey algorithm again, this time folding the vector in an n/k x k
array. Then, all rows are identical and transforming the columns leaves only the first row

with nonzero elements. Moreover, the r-th nonzero element of z is (F,;1 (BT - Fky)) .
T

o4

Note that after extracting the nonzero components of and y, we only need to operate

on vectors of size k. Therefore the running time of the algorithm is

In this case, the FFT-based algorithm always outperforms the algorithm based on the
definition. 0

Exercise 3.9 Show that both linear and cyclic convolution are commutative and asso-

ciative operators.

Exercise 3.10 Let n =pq. Let x = (xo, z1,-..,%,_1) be a periodic sequence of period g,
that is, ;4 = z;, for i = 0,1,...,n — 1 —¢. Let X = (X, Xy,...,X,_1) = Fz. Prove
that X} = 0 unless k is a multiple of p. (Hint: base your argument on the Cooley-Tukey

algorithm introduced in Exercise 2.5).

Exercise 3.11 Consider the following equation system
T T =1y,

where & = (zg, 1, ...,%, 1) is a vector of complex unknowns and y = (Yo, Y1, .- -, Yn_1) 18

a given vector of complex numbers.

(a) How many solutions has the system? In case the number of solutions is a function
of y, derive this function.

(b) Give an O(nlogn) algorithm that, on input y, outputs one solution to the system,

if one exists.

Exercise 3.12 The complex number ws = —1/2 + z\/§/2 is the principal third root of
the unity in the complex field.

(a) Evaluate i for i =0,1,2,3,4.
(b) Write the Fourier matrix Fj.
(c) Write Fy*

(d) Let = (0,1,2). Let y be the cyclic convolution of 8 vectors all equal to x.
Compute y.

95

Exercise 3.13 Let (Xo, X1,...,X, 1) = DFT,(z¢,21,...,2Z, 1). Consider now the vec-
tor (Yo, Y1,..., Yo, 1) = DFTy,(x,0,21,0,...,2, 1,0). Write the Y;’s as a function of
the X,”S.

Exercise 3.14 Let m and n be two integers, with m > n a multiple of n. Describe and
analyze an algorithm to multiply the two polynomials p(z) = Gpn_12™ " + Gpm_sx™ 2 +
-+ ag and q(z) = by 12" + by 92" 2 + - -+ + by in time O(mlogn).

Exercise 3.15 Let x be a complex vector. For o # 0 an arbitrary complex number, let
A be the symmetric n x n Vandermonde matrix whose (7, 7)-th element is a;; = o/, for
0 <14,j <n—1. Using the ideas of Bluestein’s technique (Exercise 2.6), show how to apply
the results of Exercise 2.3 to compute the product Az in O(nlogn) time. (Hint: rewrite
Ax as Tz, where T is a Toeplitz matrix and z is a suitable complex vector.

26

Chapter 4
Dynamic Programming

Exercise 4.1 Design and analyze an algorithm to determine the minimum value achiev-

able by a full parenthesization of the following expression, given in input:
A= a101a202 e an_lOn_lan,
where a; is a positive integer, for 1 <7 <nand O; € {+,-},for 1 <j<n-—-1.

Answer: For1 <i<j<n,let A; ; =a;0;a41...0;_1a;, and let m[i, j] be the minimum
value attained by a full parenthesization of A; ;. Since both + and - are minimized when
their operands are minimized, such minimizing parenthesization must embed, at the outer
level, two minimizing parenthesizations of A; , and Ay, ;, respectively, for some k, i <

k < j. Therefore, we can write the following recurrence for mli, j|:

m[i,j]={ ” '

min{m[i, k| Oy mlk +1,j] : i < k < j} 1< 7,
The algorithm follows.

MINIMIZE(A)
n < [length(A)/2]
for i + 1 to n do mli,i] < q;
for / <2 ton do
{ process subexpressions of increasing length ...}

o7

fori<1ton—-¢+1do
{ starting at a;...}
j—i1+£4-1
{ ... and ending at a; }
mli, j] < oo
for k+itoj—1do
t < m[i, k] Op m[k + 1, j]
if t <mji, j]
then mli, j| <t
return m|1,n]

The above algorithm consists of three nested loops of O(n) iterations each, for a total of
O(n?) time. O

Exercise 4.2 Write an algorithm to find the maximum value that can be obtained by an

appropriate placement of parentheses in the expression

x1/xo/23/ .. Ty 1/ T,
where x1, s, ..., T, are positive rational numbers and “/” denotes division.

Answer: For 1 <i < j < n, denote by X; ; the subexpression z;/x;+1/.../x;. Given a
full parenthesization P;_, of X;_,, let its cost ¢(P;.) be the value obtained by performing
the division according to the order dictated by the parentheses. An optimal parenthesiza-
tion of X _, is one that maximizes the above cost function.

Any full parenthesization P;_, of X;_, contains, at the outer level, parenthesizations
P1..x and Py, of the subsequences X _x and Xy, , for a given value k£, 1 < k < n-—1.
Moreover, this property holds recursively for Py, and Pgy1.,. The relation among the

costs of the above parenthesizations is the following:

_c(Prk)
c(Pr.n) = Prirn)

The key observation upon which we will base our algorithm is that any maximizing (resp.,
minimizing) parenthesization P,._, must be formed by a parenthesization P;_j that maz-
imizes (resp., minimizes) c for the string X, and a parenthesization Py 1., that mini-
mizes (resp., mazimizes) ¢ for Xyy1. ,, for some value k, 1 < k <n — 1. Indeed, if it were

not so, a better Py or Pii1.., would immediately yield a better P;_,.

o8

Let M[i, j] denote the cost of a maximizing parenthesization of X; ;, 1 <i < j < n,
and let m[i, j| denote the cost of a minimizing parenthesization of X; ;. Based on the

above observations, we can write the following recurrence for mli, j| and M[i, j]:

M = — - i<k f

(2, 7] maX{m[k—i—l,j] i< <]} ifi<j

miij] = mind —"EL o b o
= Mk+1,5 ="~ J

The algorithm follows immediately from the above recurrence.

CHAIN_DIVISION(z1, z2, . - . , Tp,)
for ; <~ 1ton do
M{i, 1] < mli,i] < z;
for ¢ < 2 to n do {compute the values of M and m for substrings of length ¢}
fori<1ton—/¢+1do
j—i+1—-1
Mli, j] + 0
mli, j] + oo
for k+—itoj—1do
ty < MIi, k]/mlk + 1,]
to < mli, k|/M[k + 1, j]
{M[i, k], m[i, k], M[k + 1, j] and m[k + 1, j] already
available at this point}
if M[l,j] < t; then M[l,]] — 1
if mli, j| > ty then mli, j| « o
return M[1, n]

The above algorithm computes the cost of an optimal parenthesization in O(n?) time.
If we are interested in actually determining the structure of the parenthesization, it is
sufficient to compute two additional tables, sy[1...7n,1...n] and s,[1...n,1...n], with
smli, j| (resp., Smli,j]) recording at which index k£ the maximizing (resp., minimizing)
parenthesization of X, _; is split into optimal parenthesizations for X; j and X, ;. Note

that s, and s,, can be computed without increasing the running time of the algorithm. O

Exercise 4.3 In Algorithm MATRIX CHAIN_ORDER (CLR, page 306), determine the
ezact number of times that the following Line is executed:

do q < m[i, k] +m[k +1,] + pi_1pkp:

29

Answer: Line 9 is executed once in each iteration of the innermost loop,
for k< itoj—1do ..
This loop is executed once in each iteration of the loop
fori<—1ton—/¢+1do ...,
which is in turn executed once in each iteration of the loop
for |+ 2tondo...
Recall that j = i+ £ — 1. Therefore, the total number of times that Line 9 is executed is

= Y (-1)n—-1+1)

= Zln—l—i—l Zn—l—i—l
1=2

n n n—1
= (n+1)Y1=> 17— h(weset h=n—1+1in the second sum)
= 1= h=1
1 1)(2 1 —1
ey [D] nesEnen
2 6 2
nd+2n2+n 2n3 +3n%2+n n®>—n
S e L LA L o LA LR
2 6 2
3t —2n3 2m2—n?—n? 3In—-6n-n+3n
6 2 6
_nP-n
= —
Note that Ty(n) = O(n?). O

Exercise 4.4 Give an algorithm that uses the vector s computed by Algorithm MA-
TRIX_CHAIN_ORDER (CLR, page 306) to print the optimal parenthesization for the

matrix chain.

Answer: Let s be the array computed by MATRIX CHAIN_ORDER. Recall that s[i, j]
stores the splitting index k of the optimal parenthesization of the subchain A;_ ; of matrices

Ay Aipa, .., Ay, with 1 <4 <k < j <n. We can write the following recursive algorithm.

60

PRINT_OPTIMAL_PARENS(i, 5)
ifi=j

then print(’A;’)

return

print(’(’)
k < s[i, j]
PRINT_OPTIMAL_PARENS(, k)
PRINT_OPTIMAL_PARENS(k + 1,)

print(’)’)

return
Let us charge one time unit for any print statement, and let 7'(n) be the running time of
PRINT_OPTIMAL_PARENS(1,n). When n = 1, the above procedure simply prints A;.
When n > 1, the number of print statements is the number of print statements performed
by the two recursive calls plus 2. The size of the subinstances is s[1,n] and n — s[1, n],

respectively. We obtain the following recurrence

T(s[l,n])+T(n—s[l,n])+2, n>1,

—N—
o R
=3
I
[

Let us prove by induction that 7'(n) = 3n — 2 (which is exactly the number of symbols
of a full parenthesization of A;A,...A,). The base case trivially holds. Assuming that
T(k) =3k — 2, for 1 < k < n, we obtain

T(n) = T(s(1,n]) +T(n—s[l,n])+2
3s[l,n] —2+3(n—s[l,n]) —2+2
= 3n—2,

and the inductive thesis follows. Therefore, PRINT_OPTIMAL_PARENS runs in linear
time. 0

Exercise 4.5 Let z12zy...2, € ¥*, where ¥ is a finite alphabet. Let DEL(7) denote the
operation of deleting x; from the string, and let INS(c, 7) denote the operation of inserting
a new character ¢ € X just before x;,;. Consider now two strings X and Y in ¥*, and
define the edit distance from X to Y, ED(X,Y), as the minimum number of DEL and
INS operations needed to transform X into Y. As an example, if X = man and Y = women,

then ED(X,Y) = 4, which can be obtained through the following transformation sequence:
INS(w,0) (— wman)

61

INS(0,0) (— woman)
DEL(2) (— womn)
INS(e,2) (— women).

(a) Design and analyze a dynamic programming algorithm which, on input two strings

X =mx129... 25 and Y = y1ys . . . y,, computes ED(z,y).

(b) Design and analyze a recursive algorithm that uses the information computed by the

previous algorithm to print a shortest transformation sequence.

Answer:

(a) Let LCS(X,Y) denote the length of a longest common subsequence of X and Y
(CLR, page 317). We have:

ED(X,Y)=m+n—2-LCS(X,Y).

In order to prove that ED(X,Y) <m+n—2-LCS(X,Y), let Z be any longest common
subsequence of X and Y. Then a possible trasformation sequence first deletes all the
characters in X that are not in Z and then inserts all the characters in Y that are not in Z.
The length of such transformation sequence is m+n—2-LCS(X,Y). In order to prove that
ED(X,Y) > m+4n—2-LCS(X,Y), consider an arbitrary shortest transformation sequence.
Let X' = zjz,,...2;, be the subsequence of X made of characters upon which DEL
operations are not invoked. Similarly, let Y’ = y;,y;, . .. y;, be the subsequence of Y made of
characters upon which INSERT operations are not invoked. Clearly, X" and Y’ are common
subsequences of X and Y, since the z;’s must already belong to Y and the y;’s must
already belong to X. The length of such sequence is m+n—h—k > m+n—2-LCS(X,Y).
Let us now develop a dynamic programming algorithm for the problem using the prop-
erties of a longest common subsequence of X; and Y; (CLR, pages 315-316). For1 <i <m
and 1 < j < n, let X; and Y} denote the prefixes 125 ...2; and 3192...y; of X and Y,
respectively. Moreover, let X =Yy =¢. For 0 <¢ <m and 0 < j < n we have:

j if1 =0,
ED(X;,Y;) = ' f5=0,
B ED(Xi_1,Y;_1) if 4,5 > 0 and z; = y;,

min{ ED(X;_1,Y;), ED(X;,Y;_1)} +1 if4,j > 0 and z; # ;.

62

In order to prove the above relationship, consider first the case ¢ = 0. Then, the minimum
tranformation sequence needed to transform X, = ¢ into Y} is clearly a sequence of j INS
operations, one for each character of Y;. Analogously, when j = 0, then the minimum
tranformation sequence needed to transform X; into € consists of + DEL operations. Let

now ¢, j > 0. When z; = y;, we have:

63

ED(X,Y;) = i+j—2-LOS(X,.Y))
= (-D)+0-1)+2-2-(LOS(Xi1, Y1) +1)
= (-1)+(0—-1)-2-LOS(Xi-1,Yj1)
= ED(Xi_1,Yj_).

When z; # y,, we have:

ED(X,Y;) = i+j—2-LCS(X,Y))
= (i+j—1)+1-2(max{LCS(X;,Yj_1), LCS(X;_1,Y;)})
= min{(i+j—1)—2-LOS(X;,Yj_1), (i+j — 1) = 2-LCS(X;_1,Y;)} + 1
= min{ED(X;,Y;_1), ED(X;_1,Y;)} + 1.

The algorithm follows.

EDIT_DISTANCE(X,Y)

m < length(X)

n < length(Y)

EDI0,0] < 0

for : + 1 tom do
EDIi,0] « i
Bli,0] < 'D’

for j + 1ton do
EDI0,j] + j
B[0,j] I

for i < 1 tom do
for j < 1ton do

if T; = y]-
then ED[i,j] < ED[i —1,j — 1]
Bli, j] < M’

else if ED[i — 1,j] < EDl[i,j — 1]
then ED[i,j] + ED[i — 1,j] + 1
Bli, j] <D’
else ED[i,j| + EDJi,j — 1]+ 1
Bli,j] < 'I
return ED[m,n], B

The running time Txp(m, n) of the algorithm is determined by the two nested loops needed

to compute the entries of Tables ED and B. Since only constant work is performed for each

64

such entry, we have Tgp(m,n) = ©(mn). Finally, the space requirement of the algorithm

is also ©(mn).

(b) Table B returned by EDIT_DISTANCE can be readily used to output a shortest
transformation sequence. Algorithm PRINT_SEQUENCE below assumes a global knowl-
edge of such table.

PRINT_SEQUENCE(, §)
if (1 =0) and (5 =0)
then return
if Bi,j] ="M’
then PRINT_SEQUENCE(i — 1,5 — 1)
else if B[i, j] ='D’
then PRINT_SEQUENCE(i — 1, j)
print('DEL(’,4,")")
else PRINT_ SEQUENCE('L
print('INS(, y;,",,4,)’

j—1)
)
return

The correctness of the above algorithm follows immediately from the structure of Table B,
which contains the relevant information needed to reconstruct an optimal transformation
sequence. In particular, Bli, j| records whether z; = y; (a match) or which value between
ED(X;_1,Y;) and ED(X;,Y;_1) is minimum. According to such information we can select
the appropriate operation to be appended to the transformation sequence. In order to
estimate the running time Tpg(m, n) of PRINT_SEQUENCE, observe that at each recursive
call the sum of its parameters decreases by at least one. Therefore Tps(m,n) = O(m +n).
O

Exercise 4.6 Design and analyze a dynamic programming algorithm that returns a
Longest Monotonically Increasing Subsequence (LMIS) of a string A = a1a3...a, of n

integers.

Answer: For 1 < i <n, let £[i] be the length of an LMIS with the additional constraint
that the first element be a;. Clearly, the length of any LMIS of a,as . . . a, is max{f[i] : 1 <
i <n}. Also, let A; = {j:i < j <nanda; <a;}. Then, the following recurrence must

hold:
Uil = L :
1+ max{/{[j]:j € A;} otherwise.
To show that the above relation holds, note that if A; = (J, then all elements a; with 7 <

j < n, if any, are no bigger than a;, hence the only monotonically increasing subsequence

65

with first element q; is a; itself. When A; #), consider a given LMIS starting at a;. Such
LMIS has clearly length at least 2. Now, if the second element of such subsequence is
ag, then ax > a; and k > i (by the definition of monotonically increasing subsequence),
therefore k € A;. Moreover, all the elements of the subsequence, excluding a;, must form
an LMIS starting at ay. If this were not the case, we could find a monotonically increasing
subsequence starting at a; longer than the LMIS itself, a contradiction.

The above relation immediately yields a dynamic programming algorithm for the LMIS
problem. In the algorithm, we maintain a variable start, storing the starting point of the
longest subsequence found so far, len, storing the length of such subsequence, and finally

a vector next[i], 1 <i < n containing the following information:

] 0 if A; =0,
nect(i] = L if £[k] = max{{[j] : j € A;}.

The algorithm uses vector nezt to output the desired LMIS for aqas . .. a,.

LMIS(aas...a,)
len <0
for 7 < n downto 1 do
lfi] + 1
next[i] < 0
for j«<—i+1tondo
if a; > a; then
if ¢[i] < 1+ ¢[j] then
lfi] < 1+ £[j]
next[i] < j
if len < /[i] then
len « ([i]
start <1
curr < start
LMIS[1] < acyrr
for j < 2 to len do
curr <— next[curr|
LMIS[j] « acurr
return LMI1S

The running time 7'(n) of the above algorithm is upperbounded by the number of

iterations of the two nested loops needed to compute vectors £ and nezt. Therefore

T(n) = @(Zn: 3 1)

i=1 j=i+1

66

|

Exercise 4.7 Given the string A = ajay...a,, we say that A, ; = aa;41...a; is a
palindrome substring of A if a;yp = a;_p, for 0 < h < j — 4. (Intuitively, a palindrome
substring is one which is identical to its “mirror” image. For example, if A = accaba, then

both A; 4 = acca and A4 g = aba are palindrome substrings of A.)

(a) Design a dynamic programming algorithm that determines the length of a longest

palindrome substring of a string A = ajas ... a, in O(n?) time and O(n?) space.

(b) Modify your algorithm so that it uses only O(n) space, while the running time remains

unaffected.

Answer:

(a) It is worth noting that there are no more than O(n?) substrings in a string of length
n (while there are exactly 2" subsequences). Therefore, we could scan each substring, check
for palindromicity and update the length of the longest palindrome substring discovered
so far. Since the palindromicity test takes time linear in the length of the substring, this
simple idea yields a ©(n?) algorithm. However, we can use dynamic programming to devise
a much better algorithm. For 1 <7 < j < n, define

Pl j] true if A; ; is a palindrome substring,
Z’ = .
J false otherwise.

Clearly, P[i,i] = true , while P[i,i+1] < a; = a;41, for 1 <i <n—1. It is also immediate
to see that for j — i+ 1 > 3 (i.e., for strings of length at least 3), we have

Pli,jl & (Pli+ 1,5 — 1] and a; = a;). (4.1)

Note that in order to obtain a well defined recurrence, we need to explicitly initialize fwo
distinct diagonals of the boolean array PJi, j|, since the recurrence for entry [i, j] uses the
value [i — 1,7 — 1], which is two diagonals away from [i, j] (in other words, for a substring
of length ¢, we need to know the status of a substring of length £ — 2).

The following algorithm is immediately obtained from the above considerations.

67

LONGEST _PALINDROME SUBSTRING(A)
n < length(A)
maz < 1
fori<1ton—1do
Pli,i] < true
{ note that P[n,n] will be never used below }

ifa; = a;11
then P[i,i+ 1] < true;
maz < 2

else P[i,i + 1] « false
for /< 3 ton do
{ check the substrings of length ¢ }
fori<1ton—-¢+1do
j—i1+4-1
if (Pli+1,j—1] and a; = a;)
{ P[i +1,j — 1] already available at this point }
then P[i, j] «+ true
max < £
else PJi, j| + false
return max

Since the algorithm performs a constant number of operations for each of the ©(n?) sub-
strings of A, it takes O(n?) time, while the space needed to store the table P[i, j] is clearly
O(n?).

(b) Note that by the ¢-th iteration of the outer for loop, we only need values P[i, j] with
j—i+1=/£—2 (needed for iteration ¢), £ — 1 (needed for iteration £+ 1), or £, (the ones
that we are computing). These are the values of P on diagonals £ — 2 and ¢ — 1 and /.
Therefore, at any time in the algorithm, it is sufficent to store no more than 3n entries of

P. The algorithm above can be easily modified as follows.

LINEAR_SPACE_L_P_S(A)
n < length(A)
mazx <+ 1
fori<1ton—1do
PJi, 1] « true
{ P is an array with only 3 columns }
if a; = a; 11
then P[i, 2] < true
mazx < 2
else PJi, 2] < false

68

for / <+ 3 ton do
{ check the substrings of length ¢ }
fori<1ton—/¢+1do
if (P[’L + 1, 1] and a; = az’+£—1)
then PJi, 3] < true
maz < ¢
else PJi, 3] < false
Pl[i, 1] < PJi, 2]
Pli,2] + PJi,3]
{ shift relevant entries one column left }
return max

We can further improve the above algorithm so that it uses only two column vectors.
In fact, after we check for palindromicity of the substring of length ¢ starting at i, we
could first save P[i, 2] into P[i, 1] (which is not needed anymore) and then store the newly
computed value directly in P[i, 2], rather than P[i,3]. However, the given algorithm is
sufficient to achieve linear space, with a running time which is is no more than three times

the running time of the algorithm of Part (a), whose space requirement was ©(n?). O

Exercise 4.8 A binary string of length 2k, k£ > 0, is balanced if it contains k£ zeros and
k ones. Design and analyze an algorithm to determine the length of the longest balanced

substring of a binary string zxs ... z,.
Answer: Let A[0] =0 and, for 1 < i < n, let
Alil={h:2zp=11<h<i}|-{k: 2, =0;1 <k <i}|.

In other words, A[i] is the difference between the number of one and zero components of

index at most ¢. It is straightforward to prove that the following recurrence holds:

0 1 =0,
Al =49 Ali—1]+1 i>0and z; =1,
Ali—1] -1 i>0and x; =0.

Observe that —i < A[i] < i. Let now z; ; denote the substring z;z;y1 ...z , for 1 <i <
j < n. We can prove the following:

;. is balanced & A[j] = A[i —1].

69

Indeed, by the above definition,
Alj]—Ali =1l =h:2zp =11 <h<j} —Hk:2,=0,i <k <j},

therefore A[j]—A[i — 1] = 0 (or, equivalently, A[j] = Al —1]) if and only if the number of
zero and one components in z; _; is the same. The above discussion immediately suggests
a dynamic programming algorithm which first computes vector A and then proceeds to
evaluate all possible differences A[j] — Ali — 1], for 1 < ¢ < j < n, maintaining the
maximum value of j — i + 1 such that A[j] — A[¢ — 1] = 0. Such algorithm would run in
©(n?) time. In fact, we can get a linear-time algorithm by first sorting the A[7]’s (carrying
along their source index) using the same idea of BUCKET_SORT (CLR, page 181), and
then computing the maximum and minimum index within each bucket. The algorithm
follows:

MAX_BALANCED_SUBSTRING (2125 . . . Z)

Af0] <0
for i < 1 ton do

then A[i] + Ali — 1]+ 1
else A[l]«+ Ai—1]—-1
{ compute the Ali]’s }
for k < —n ton do B[k] =0
for i + 0 to n do B[A[i]] «+ B[A[]] U {i}
{ B is an array of 2n + 1 buckets. Bucket B[k]
contains all the indices ¢ with A[i] = k}
mazlen < 0
for k < —n ton do

if B[k] # 0
then M + MAX(B[k])
m < MIN(BI[k))

len <+ M —m
{ len is the length of balanced substring z,, 1. .1 }
if mazlen < len
then mazlen < len
return mazlen

In order to prove that the above algorithm is correct, let ¢ be the length of the longest
balanced substring, and let ¢ be the value returned by the algorithm. Now, whenever

mazlen is assigned a new value, say M — m, we have that x,,,1._s is balanced, since Alm)|

70

and A[M] belong to the same bucket. Hence
<t

Let now x5, be a balanced substring of maximum length. Then A — 1 and k£ will be in
the same bucket (since A[h — 1] = A[k]). Moreover, h — 1 (resp., k) must be the minimum
(resp., the maximum) value in the bucket, or otherwise there would be a longer balanced

substring. As a consequence, mazlen will be compared with £ — h + 1 = /. Hence
0>,

and the correctness of the algorithm follows.
The algorithm performs two loops of length n and 2n + 1, respectively. In the second
loop, we perform no more than 2n comparisons altogether to compute the minima and the

maxima in all the buckets. Therefore the overall running time is ©(n). O

Exercise 4.9 Given a language L C {0,1}", let DECIDE_L be an algorithm that decides
whether X € L in time T7,(n), with n = | X|. Based on algorithm DECIDE _L:

(a) Design and analyze an algorithm DECIDE_L? that decides whether X € L.

(b) Design and analyze an algorithm DECIDE_L* that decides whether X € L*.

Answer:

(a) Recall that X € L? iff there exist strings U,V € L such that X = U -V, where
- denotes concatenation between strings. Given a string X of length n, let X, ; be the
substring of X (of length j — i + 1) spanning from the i-th to the j-th character, for
1 <4< j < n. Algorithm DECIDE_L? will then scan all positions j, with 1 < j < n—1, to
check (using DECIDE_L) whether both X;_; and X, _, arein L . Moreover, DECIDE_L?
must check whether the empty string € € L (in this case, every string in L is also in L?).

The algorithm follows.

DECIDE_L?*(X)
n < length(X)
if DECIDE_L(¢)
then if DECIDE_L(X)
then return true

71

for j«— 1ton—1do
if DECIDE_L(X;.. ;)
then if DECIDE_L(X ;1. »)
then return true
return false

At the j-th iteration, DECIDE_L? calls DECIDE_L on strings of length j and n — j.

Therefore its running time is

T(n) = O(TL(n)+2TL(j)+TiTL(n—J‘)>

Jj=1

= 0 (TL(n) + QETL(j))

=1

= O(nTy(n)).

(b) Given a string X € {0,1}* of length n, for each pair 7, j, with 1 < i < j < n, define

the quantity mx]|i, j| as follows:

true if X; ; € L~

false otherwise.

mX[iaj] = {

Using a dynamic programming approach, algorithm DECIDE_L* on input X, computes
mx|i, j] in increasing order of the substring length j — i + 1 (which varies from 1 to n).
Clearly, DECIDE_L*(X) will return true iff mx[1, | X|] = true. As customary in dynamic
programming, the values mx/i, j| are stored in a look-up table. The algorithm uses the

following characterization of L*:
X € L* iff either X € Lor X =U -V, with U,V € L* and |U|, |V] < | X|.

Therefore, to compute mx|i, j], we look up mx|i, k| and mx[k + 1, j] for all k£ such that
i <k < j—1. If there is a value k for which mx[i, k| = mx[k + 1, j] = true (i.e., X; i,
Xii1.; € L*), then we set mx[i,j] = true. Otherwise, mx[i, j| is set to true only if
DECIDE_L(X;. ;) = true (i.e., X, ; € L). Here is the code for DECIDE_L*.

72

DECIDE_L*(X)
n < length(X)
for / < 1 ton do
fori<1ton—¢+1do
je—i+£0—-1
t < false
for k+—itoj—1do
t < t or (mx|[i, k] and mx[k + 1, j])
mx|i, j| <t or DECIDE_L(X;_,)
return mx|[1,n]
Clearly, DECIDE_L* decides L*. Let us now consider its running time. On a string of
length n, DECIDE_L* computes n(n+1)/2 values mx[i, j|, each taking time O(TL(n)+n).
The second term in the running time comes from the time spent to perform the table look-
ups, and must be included to account for the case when T7,(n) = o(n) (e.g., L = {0,1}*).
Hence, we obtain an overall running time of O (n*T(n) + n?).
We can devise another algorithm, with a better time and space complexity, by observing
that another equivalent characterization of L* is the following:

Xelrit X=U-V,withU € Land V € L*, |V| < |X]|.

Let s[i] = true iff X, € L*, for 1 < i < n. Moreover, let s[n+ 1] = true. The algorithm

works as follows:

DECIDE_L*(X)
n = length(X)
s[n + 1] < true
for i < n downto 1 do
t «+ false
for 7 < n downto 7 do
t «+ t or (DECIDE_L(X;. ;) and s[j + 1])
sli] <t
return s|1]
Note that s[i] is computed by means of n — i + 1 calls to DECIDE_L and O(n — i) other
work. Therefore the overall time complexity is O (n?T(n)). This improves on the previous
algorithm whenever T}, (n) = o(n). Moreover the new algorithm only requires linear rather

than quadratic space. O

Exercise 4.10 Design and analyze a dynamic programming algorithm which, on input
two nonnegative integers n and k, with n > k, outputs (Z) in O(nk) time.

73

Exercise 4.11 Let ® be a binary operator taking integer operands and defined as
a®b=(a+b)>
Let a be the minimum value achievable through a full parenthesization of the expression
a1 ©as©...0 an,

where a; is an integer, for 1 < ¢ < n. Design and analyze a dynamic programming algorithm
which, on input a, ao, . .., a,, first prints an optimal parenthesization and then returns a.

Exercise 4.12 Design and analyze a dynamic programming algorithm which, on input
z € {0,1}* determines the minimum number p of palindrome substrings vy, y2,...,¥yp €

{0,1}* such that z = y1 - yo - ... - Yp.

74

Chapter 5
NP Completeness

Exercise 5.1 Show that an algorithm that makes at most a constant number of calls to
polynomial-time subroutines runs in polynomial time, but that a polynomial number of

calls to polynomial-time subroutines may result in an exponential-time algorithm.

Answer: Suppose without loss of generality that algorithm A consists of a sequence of calls
to subroutines Si, ..., S,,, with each subroutine called once in that order. Assume that each
subroutine S; has a (polynomial) running time bounded by p;(n), with p;(n) < p(n) = nk.
Note that A might call S; on its input, then call Sy on the return value provided by Sj,
and so on until S, is called on the value provided by S,,_1. We show by induction that the
largest size of the return value and the worst-case running time of the i-th call are both
O(p'(n)), with
i times

p'(n) =p(...(p(n))...) =n*.

For ¢ = 1, the argument of S is of size at most n. Since S; has running time O(p(n)),
its return value has also size O(p'(n)) = O(n*). Assume that the proposition holds for
any ¢ < m, and consider the (i + 1)-th call. By the inductive hypothesis, the size of the
argument of S;; has size O(p*(n)). Since S;;; has running time O(p(n)), the running time
of the (i + 1)-th call and the size of the return value are both O ((pz(n))k) = O(p*(n)).
The inductive thesis follows.

After the m-th call, we have taken time
0 ($5() = 0 () = 0 (mn”),
i=1
which is polynomial for any constant k£ and m.

75

On the other hand, suppose that A simply makes n nested calls to a subroutine S, i.e.,

on input n, A computes
n times

Suppose that S takes linear time and that its return value is twice as long as its input.
It follows that the running time and the size of the return value of the i-th call are both

©(n2%). Therefore, the total running time is

0 <nﬁ; 2@‘) = O(n2").
O

Exercise 5.2 Prove that the class NP of languages is closed under the following opera-

tions:
(a) Union of two languages.
(b) Intersection of two languages.
(c) Concatenation of two languages.

(d) Kleene star of a language.

Answer: Observe that we can re-state the definition of L € NP (CLR, page 927) equiv-
alently as follows:

Definition A language L is in N P iff there exists a verification algorithm A, and polyno-
mials p, ¢ such that:

o [= LA;
e Vz € L,3y such that |y| < p(|z|) and A(z,y) = 1;
e A on input (z,y) halts in time < ¢(|z| + |y|).

In what follows we use the notation (p + ¢)(n) to denote the polynomial whose value on n
is p(n) + q(n).

76

(a) Let Ly, Ly € NP, with verification algorithms Ay, Ay (i.e., Ly = La,, Ly = L4,), and
polynomial bounds p1, g1, and po, ¢o, respectively.

Define a new verification algorithm A as follows:

Az, y)
if Aj(z,y)=1
then return 1
else return Ay(z,vy)

Note that A(z,y) =1 iff A;(z,y) =1 or As(z,y) = 1. We have:

1. LtUlLy € Ly. Letx € LiULs. Then x € Ly or x € Ly. If x € Ly, then dy
such that A;(x,y) = 1. Hence, A(z,y) = 1. Otherwise, if x € Ly, then Jy such that
As(z,y) = 1. Hence, A(x,y) = 1. Therefore x € L.

2. Ly C L, U Ls. Let x € Ly. Then Jy such that A(z,y) = 1. This implies
that either A;(z,y) = 1 or Ay(z,y) = 1, that is, x € Ly, or x € Ly,. Therefore
.’EELAIULAZ :L1UL2.

3. Vz € Ly, 3y such that A(z,y) = 1. If x € Ly, we have |y| < p1(|z|). If z € Ly, we
have [y| < pa(|a[). Threfore |y| < pi(|z]) + pa(|z[) = (p1 + p2)(|z]).

4. Aon (z,y) takes time O((¢1 + ¢2)(|z| + |y|)) and is therefore polynomially bounded.

This proves that L; U L, € NP.

(b) Let L, Ly, € NP, with verification algorithms A;, Ay, and polynomial bounds p1, ¢
and ps, ¢o, respectively. Moreover, let # be a distinguished character not in the alphabet

of the certificates. Define a new verification algorithm A as follows:

A(z,y)
if y # yi#tye
then return 0

if Aj(z,y1) =1
then if Ay(z,y2) =1
then return 1
return 0

Note that A(z,y) = 1 iff y = y1#y2 and A;(z,y1) = As(x,y2) = 1. We have:

1. LyNnLy C Ly. Letx € LiNLy. Then z € Ly and x € Ly. Then, dy,,y, such
that A;(z,y1) = 1 and As(z,y) = 1. This implies that A(z,y1#y2) = 1. Therefore
T € Ly.

7

2. Ly C LiNLy. Letxz € Ly Then Jy;#y, such that A(x,y;#y2) = 1. This implies
that A;(z,y1) = 1 and As(x,y2) = 1. Hence x € Ly, and x € Ly,. Therefore,
x € L1 N LQ.

3. Vx € L4, Jy such that A(z,y) = 1. Moreover, since y = y1#y2, with |y1| < pi(|z])
and |ys| < pa(|z|), we have |y| = |y1| + |y2| + 1 < (p1 + p2)(|z]) + 1. Therefore |y| is
polynomially bounded.

4. A on (z,y) runs in time O((q1 + ¢2)(|z| + |y]))-

This proves that Ly N Ly € NP.

(c) Given a string z, let x; ; denote the substring of (of length j — i+ 1) from the
ith to the jth character. Define z; ; = ¢ if 1 > j. Let L, Ly, € NP, with verification
algorithms A;, Ay, and polynomial bounds p;, ¢; and ps, g2, respectively. Moreover, let #
be a distinguished character not in the alphabet of the certificates. Define a new verification

algorithm A as follows:

Az, y)
if y # y1#y2
then return 0

for k£ + 0 to |z|do
if Aj(@1..k,91) =1 and Ay(Tpi1..q, y2) =1
then return 1
return 0

Note that A(z,y) = 1 iff y = y1#y2 and 30 < k < |z| such that A;(z;_g,71) = 1 and
Ay (@k11..)al> y2) = 1. We have:

1. LiLy, C Ly. Let x € LiLy. Then 30 < k < |z| such that z; , € L; and
Thi1..)z) € Lo. Hence, Jyi,ys such that Ay(@1.k, 1) = 1 and Ap(@pt1.. 02, ¥2) = 1.
So, Az, y1#ys) =1, i.e. © € Ly.

2. Ly C L{Ly. This is immediate from our definition of A.
3. Vz € Ly, Jy such that A(z,y) =1 and |y| < (p1 + po)(|z]) + 1.

4. When running A on (z,y), there are at most |z|+1 executions of A;, each taking time
< q1(]z| +|y|), and at most |z|+ 1 executions of A, each taking time < ¢o(|z| + |y]).
So, A has a polynomial time bound O(|z|(¢: + ¢2)(|z| + |y]))-

This proves that LiL, € NP.

78

(d) We can exploit the advantage of guessing the right certificate by encoding the sub-
string divisions of z in the certificate y. Namely, let #, & be distinguished characters not

in the alphabet of the certificates. A certificate for a string x in L* will be of type

Y = NFFYFE - - FHYFILEMR& . &My,

where 1 <k < |z[,my=0<m; <...mp_1 <my =|z|, and, for any i, 1 <i <k, y; is a
potential certificate for x,,, ,+1..m,’s membership in L. Define a new verification algorithm

A as follows:

Az, y)
for k£ + 1 to |z|do
mo < 0, my, < |z|
if y = yi#tp# . . #FuFmi &ma& .. &my_
then ¢ + true
for i+ 1 to k do
do t <t and A¢(Tm, ,+1..m;> Yi)
if ¢t then return 1
return 0

A(z,y) = 1iff 3k, 1 < k < |z|, such that y = y1#ya# - . . FupH#m1&mae& ... &my_1 and,
for any i, 1 <i <k, Ao(Tm;_y..m;» ¥;) = 1. We have:

1. L* C Ly. Let z € L*. Then there is a value k, 1 < k < |z|, such that z is the con-
catenation of strings T, ,+1..m; € L, for 1 <4 < k. Then, for each such ¢ there is a y;
such that Ag(@p, | .m.,¥i) = 1. Thus, if y = y1#y7# . .. HFyeHFmi&made - - - &my_y,
we have A(z,y) = 1. Therefore, z € L4.

2. Ly C L*. Let x € Ly. Then, there is a y = y1#Hys# - - - #ypHmi&mobe ... &my_4
such that A(z,y) = 1. By our definition of A, this implies that z,,, ,..m, € L for any
1, 1 <14 < k. Therefore, x € L*.

3. Since there are at most |z| y;’s, with |y;| < po(|z]), and at most |z| m;’s, with
|m;| < log|z|, and at most 2|z| extra-characters in y, we have |y| = O(|z|(po(|z|) +

log |z| + 2)), which is polynomially bounded.

4. A on (z,y) runs Ay at most |z| times (because k < |z|), each taking time < go(|z| +
ly|). Thus, A runs in time O(|x|qo(|z|+ |y|)), and is therefore polynomially bounded.

This proves that L* € NP. O

79

Exercise 5.3 Prove that <p is a transitive relation. That is, for L, Ly, Ly C {0,1}*,
(L1 <p Ly, and L, <p L3) = L <p Ls.

Answer: Let f(z), g(z) denote the polynomial-time computable functions that reduce L,
to Ly and Ly to L3, respectively. Let h(z) = g(f(z)). For all strings = € {0,1}* we have:

ze Ly iff f(x)€ L,
y=f(z) € Ly iff g(y)=g(f(x)) € L3

Hence
x € Ly iff h(z)=g(f(z)) € Ls.

Note that h(z) = g(f(x)) is polynomial-time computable, since it is the composition of

two polynomial-time computable functions. This proves that L; <p Lg. O

Exercise 5.4 We say that a function f is computable in quasi linear time Ty(n) if there
are nonnegative constants ¢ and k such that Ty(n) < en(logn)*. Show that reducibility in

quasi linear time is a transitive relation.

Answer: Consider three languages Ly, Ly and Lz such that L; is reducible in quasi linear
time to Lo, and L4 is reducible in quasi linear time to L3. By the definition of reduction,
there exist reduction functions f from L; to Ly computable in quasi linear time Ty(n) <
csn(logn)¥s; and g from L, to Ly computable in quasi linear time 7,(n) < ¢yn(logn)ks. In
the previous exercise, we have shown that h(z) = g(f(z)) is a reduction function from L,
to L3. It remains to show that A(x) is computable in quasi linear time.

Let y = f(x) and h(z) = g(y). Let also |z| = n. We have |y| < Ty(|z]) < ¢sn(logn)*s.
Therefore, h(xz) = g(y) can be computed in time

Th(n) < Ty(n) +Ty(Ty(n))

= c¢rn(logn)* +¢, (cfn(log n)kf) (log (cfn(log n)kf))kg
= (cgep)n (logn)* ™ (14 o(1))

Therefore, there exist constants ¢, > c,c; and kj, = kj + k, such that T, (n) < ¢pn(logn)*s.
This shows that L, is reducible in quasi linear time to Ls. O

80

Exercise 5.5 Prove that L <p L¢iff L¢ <p L.
Answer:

freduces L to L < Ve eX*: xe Liff f(z) € L°
& VeeX: (x ¢ L)iff (f(z) ¢ L°)
& VeeX:zeliff f(z) €L
< f reduces L€ to L.

|

Exercise 5.6 Under the assumption that P # NP, prove or disprove the following

statements:
(a) {0,1}* € P.

(b) There are N P-complete languages that are regular. Recall that a regular language
is one which is accepted by a Deterministic Finite-State Automaton (DFSA).

(c) If L contains an N P-complete subset, then L is N P-complete.

(d) All NP-Complete problems can be solved in time O (2”(”)), for some polynomial
p(n).

(e) The halting problem is N P-complete.

(f) The halting problem is N P-hard.

Answer:

(a) True {0,1}* is decided by the following constant-time algorithm:

Ao,y (z)
return 1

(b) False Given a regular language L, any DFSA that accepts L yields a linear-time
decision algorithm A; for L. To see this, associate a distinct label to each state and use
conditional jumps to “simulate” transitions. On string z, we will perform exactly |z| jumps
before either accepting or rejecting, according to whether the last jump leads to a final or

a nonfinal state. This proves that for any regular language L, L € P.

81

(c) False Counterexample: {0,1}* D Lgar, but Point (a) proves that {0,1}* € P.

(d) True For L € NP, let Af, be the polynomial-time algorithm verifying L and running
in time Tx(|z| + |y|) < ei(|z] + |y))*, where |y| < co|z|* when z € L. We can write the

following decision algorithm for L:

DECIDE_L(z)

for each y € {0,1}*, |y| < co|z|* do
if Ay (z,y) =1 then return 1

return 0

DECIDE_L(z) returns 1 if and only if there exists a “short” certificate for z, which is
the case if and only if x € L. Therefore DECIDE_L decides L. The running time of
DECIDE_L(z) is O (|a|*2:22") = O (2e212/*+2') = O (20(laD).

(e) False Recall that the halting problem corresponds to the following language:
Ly ={y€{0,1}*: y = (M, z), M is a Turing machine which terminates on input z}.

We know that Ly is an undecidable language. On the other hand, since NPC C NP, Point
(d) proves that any NP-Complete problem is decidable. Therefore the halting problem
cannot be NP-Complete.

(f) True Cousider an arbitrary language L € NP, and let DECIDE_L be the exponential
decision algorithm for L developed in Point (d). Consider the following program, based
on DECIDE_L:

AL (l‘)
if DECIDE L(z) =1
then return 1
else while true do
{ loop forever }

Ay, either returns 1 or goes into an infinite loop. Let M4, be a Turing Machine encoding

algorithm A;. Define the following function:

f(l‘) = <MAL7‘T>

Clearly, f is computable in polynomial time, since it takes constant time to encode the

Turing Machine and linear time to copy the input string. We now prove that f reduces L

82

to Ly, the language of the halting problem. We have

z €L < DECIDE L(z)=1
& Ap(z) terminates

- <MAL7 33) € Ly
We have proved that for any language L € NP, L <p Ly. Hence Ly is NP-Hard. O

Exercise 5.7 Suppose that someone gives you a polynomial-time algorithm to decide
formula satisfiability. Describe how to use this algorithm to find satisfying assignments in
polynomial time.

Answer: Let ®(z1,...,x,) be a boolean formula, and let SAT be a (rather unlikely)
subroutine deciding satisfiability in polynomial time O(p(n)), where n > m is the size
of formula ®. We can find a satisfying assignment to ® (assuming that there is one,
which can be ascertained with one call to SAT) by iteratively finding a truth assignment
s(1) for xy, then finding an assignment s(2) for x5, and so on until we have an assign-

ment for all the variables. Our invariant will be that after the ¢-th iteration, the formula

®(s(1),...,s(i), Tit1,-- -, Tm) (i-e., the formula where the variables zy,...,x; are substi-
tuted with the boolean constants s(1),...,s(i) € {false, true}) is satisfiable.
The algorithm works as follows: having found assignments s(1), s(2), ..., s(i—1) for the

first 4 — 1 variables, we call SAT on ®(s(1),...,s(:—1),false, z;1, ..., Ty). If this formula
is satisfiable, then s(i) = false. If the formula is not satisfiable, then s(:) = true. In the
latest case, ®(s(1),...,s(: — 1), true, x;,1,...,Z,) must be satisfiable, because our loop
invariant /induction hypothesis tells us that ®(s(1),...,s(i — 1),z;,...,2,,) is satisfiable
(and ®(s(1),...,s(i — 1), false, z;i1, ..., Ty) is not). The algorithm follows:

FIND_ASSIGNMENT(®(z1,x2, - - -, Tm))
if SAT(®(z1, 22, ..., Tm))= “no”
then return “formula is not satisfiable”
fori«+ 1tom
do s[i] < false
if SAT(®(s[1], ..., s[i], Tit1,- - -, Tm)) = “n0”
then s[i| «+ true
return s

At stage 1, it takes polynomial time to prepare ®(s(1),...,s(7), false, z; o, ..., Z;); then
SAT takes time p(n) to decide the satisfiability of this formula. Since there are m = O(n)

iterations, the overall running time is polynomial. O

83

Exercise 5.8 Consider the following decision problem:

BI_SAT (DOUBLE SATISFIABILITY):
INSTANCE: (P(x1, 29, ...,2,)), D is a boolean formula

QUESTION: Are there two distinct satisfying assignments for &7
Show that BI_SAT is N P-Complete.

Answer: Let us first show that BIL.SAT € NP. Consider the following straightforward
algorithm.

VERIFY BI_SAT(z,y)

if.’lf # <@(~/L‘1a$2a e 7$n)>
then return 0

ify # <(b%7b%7 : '5b':fll)i (b%7b%7 c '7bzl)>
then return 0

{ the b!’s are boolean values that form two
truth assignments for the variables of @ }

same < true

for i < 1 to n do same + same and (b} = b?)

if same then return 0

{ truth assignments must be distinct}

if ®(bl,b3,...,b.) and ®(b?,03,...,02)
then return 1

return 0

The algorithm performs two evaluations of ® plus some extra steps whose number is linear
in [(®)|. Since a boolean formula can be evaluated in time polynomial in its length,
VERIFY BI_SAT verifies BI.SAT in polynomial time.

The second step is to show that BI.SAT is N P-Hard. We show that SAT <p BI_SAT,
where SAT is the Boolean Formula Satisfiability problem.

Let ®(z1,2,...,2,) be a formula, and let z,; be a new variable. We define our
reduction function as follows:

f((cb(xhx% <. 7~Tn)> = <q>($17x27 s 7~Tn) A (xn—i-l v _‘xn—i—l))-
Let us show that
(P(x1,22,...,2,)) € SAT & f((®(x1,22,...,2,))) € BI.SAT.

Suppose ®(z1,zy,...,x,) € SAT. Then there is a truth assignment (b;, b, ..., b,) to vari-
ables (x1,Za,...,x,) satisfying ®(x1,z2,...,x,). Since (Tpy1 V —Zny1) is true for both

84

Zn41 = false and x, 1 = true, we have that f(®(zq,zs,...,z,)) is satisfied by the two as-
signments (b, by, . . ., by, false) and (b, by, . . ., by, true). Conversely, if f(®(z1,z9,...,2,))
has two satisfiying assignments (b}, ..., by, b, ;) and (b7,...,02,02) then (1, s, ..., x,)
is clearly satisfied by both assignments (b}, b3,...,b%) and (b2,3,...,b2), since, in order
for ®(x1,29,...,2,) A (Tny1 V —Zpy1) to be true, both operands ®(xq,zs,...,x,) and
(Tna1 V "Zpe1) must be true.

Finally, note that f creates a new variable z,,; and computes the encoding of the new

formula. Such activity can be accomplished in time polynomial in [{®(z1,zs,...,2,))|- O

Exercise 5.9 Consider the following decision problem:

M_SAT (MAJORITY SATISFIABILITY):
INSTANCE: (®(z1,22,...,%,)), ® is a boolean formula

QUESTION: s ®(zy,x9,...,x,) true for more than a half of the pos-

sible 2" input assignments?

Show that M_SAT is NP-hard.

Answer: We show that SAT <p M_SAT. Given a formula ®(z1, zo,. .., Z,), define

FU®(x1, 29, ..., 2p))) = (D' (z1, 2, Tny Trg1)),

with ®'(z1, 29, ..., T, Tni1) = ®(T1,Zo, ..., Tn) V Tpy1.

Note that f is trivially computable in time polynomial in [(®(z1,zs, ..., z,))|.

Let us show that f reduces SAT to M_SAT. First note that ®' is satisfied by any of
the 2" assignments (z1,2s,...,Z,,true). If & € SAT, then there exists an assignment
(Z1,Z2, - - -, Tp) such that ®(Zy, T, ..., T,) = true. Then, &' is also satisfied by the assign-
ment (Z, T, ..., Ty, false), for a total of at least 2" + 1 = 2""!/2 + 1 satisfying assign-
ments, therefore f((®)) € M_SAT. Vice versa, if ® is not satisfiable, then the assignments
(z1,m9,...,7,, true) are all and only those satisfying ®’. Since these are 2" < 2°t1/2 4+ 1,
F(®)) & M_SAT. O

Exercise 5.10 Consider the following decision problem:

0-1 IP (0-1 INTEGER PROGRAMMING):
INSTANCE: (A, b), where A is an integer m X n matrix and b is an

integer m-vector.

85

QUESTION: Is there an n-vector & with components in {0,1} such
that (Azx); > b;, for 1 <i <m?

Prove that 0-1 IP is N P-complete.

Answer: A certificate for an instance (A4, b) of 0-1 IP is clearly a 0-1 cols(A)-vector z.

Here is the verification algorithm:

VERIFY_IP(a,y)
if (a # (A, b)) or (y # (z))
then return 0
m < rows(A)
n < cols(A)
if (length(b) # m) or (length(x) # n)
then return 0
for : <+ 1 tom do
for j + 1ton do
if (a; j, b; noninteger) or (z; ¢ {0,1})
then return 0
¢+ MAT_VEC_MULT(A, x)
for i < 1 to m do
if ¢; < b; then return 0
return 1
VERIFY IP(a,y) is a legal verification algorithm for 0-1 IP, since it returns 1 if and only
if @ is a well-formed encoding (A, b) of an instance of IP, y is a well formed encoding of
a 0-1 cols(A)-vector &, and Ax > b. Moreover, since matrix-vector multiplication can be
performed in polynomial time, the algorithm is clearly polynomial.

To show 0-1 IP is NP-hard, we show that 3-CNF-SAT <p 0-1 IP. Let ®(x1, 2z, ...2,) =
CiANCyAN--+ ANCi be a boolean formula in 3-CNF made of k£ clauses. Without loss of
generality, in what follows we assume than no clause C; contains both z; and 7;, since in
this case C; is a tautology and can be eliminated from ® without affecting the value of
the formula on any of the assignments. We will say that x; = 1 if x; is assigned the value
true, and z; = 0 if z; is assigned the value false. If a boolean variable has value z; = ¢,
with o € {0, 1}, then the value of 7; is (1 —). With this convention, a 0-1 n-vector can
be seen as a truth assignment to the n boolean variables of ®.

From our instance ® of 3-CNF-SAT, we build an instance (A, b) of 0-1 IP in the following
way:

e Ais a k x n matrix, where row ¢ is built from clause C; of ® in the following way: if
boolean variable z; does not appear in Cj, then a;; = 0. If z; is a literal in Cj, then

a;; = 1. If 7; is a literal in Cj, then a;; = —1.

86

e b is a k-vector such that b; = 1 — |{negative literals in C;}|.

Given the above definition of A and b, for 1 <i < k, the i-th inequality (Az); > b; can be

rewritten as follows:

x4+ >, (1—gz;)>1. (5.1)

z;€C; z;€C;
Assume now that @ is satisfiable. Then there must exist a truth assignment to the n

variables such that satisfies all clauses. Let (¢, s, ..., t,) be the 0-1 n-vector corresponding

to such assignment. Then, the sum of the values o], a?,a of the three literals in each
clause C; dictated by the t;’s is at least 1. Hence, all inequalities are satisfied at the same
time by setting x; = 1 if ¢; = true, and z; = 0 otherwise. Vice versa, any 0-1 n-vector
(21,29, ..., x,) satisfying all the &k inequalities yields a satisfying truth assignment for ®.

Hence, f is a reduction from 3-CNF-SAT to IP. a

Exercise 5.11 Consider the following decision problem:

DF (DISTINCT FORMULAE):

INSTANCE: (®(z1,%2,---,Tpn), Y(T1, T, ..., Zn)),
with ®(zy, z9,...,2,) and ¥(z1, s, ..., z,) boolean for-
mulae.

QUESTION: s there a truth assignment (by,bs,...,b,) such that
®(by, bay -+, bn) £ U(bi, b, .., bn)?

Show that DF is NP-complete.

Answer: We first show that DF € NP. A candidate certificate for DF is a truth as-
signment to the n variables. The verification algorithm VERIFY _DF first checks whether
its first input z = (®(z1, 29, ..., 2s), ¥(21, 29, ..., T,)), that is, z is a well-formed encod-
ing of an instance of DF; then checks that its second input encodes a truth assignment
(b1, by, ...,b,). If this is the case, then the algorithm checks whether ®(by,bo, ..., b,) #
W(by,bo,...,b,). The running time of VERIFY_DF is clearly polynomial in the size of its
inputs. For brevity, we omit the code of the algorithm.

In order to show that DF is NP-Hard, we provide a polynomial-time reduction from
SAT to DF. Recall that an instance of SAT is (®(z1,9,...,2,)) and the question is
whether ® is satisfiable, that is, whether there is a truth assignment (by, b, ...,b,) such
that ®(by, bs, - .., b,) = true. Our reduction function is the following:

fUP(z1, 20, ..., 20))) = (P(z1, 20, ..., T0), V(T1, T2y ..., Zn) = 1 A T1).

87

Note that the second formula in f ((®(z1,xs,...,2,))) is a contradiction, therefore its
evaluation yields false on all truth assignments.

Clearly, f is computable in polynomial time. It remains to show that f is indeed
a reduction. Assume that (®(zy,zy,...,2,)) € SAT. Then there is a truth assignment
(b1, bg, ..., by) such that ®(by, b, ...,b,) = true. On such assignment, we have

true = q)(bl, bg, ey bn) 7é \I’(bl, bz, ce ,bn) = false,
hence f ({(®(x1, 2, --.,xy,))) € DF. Vice versa, if (®(x1,z2,...,2,)) ¢ SAT, then
(I)(bl, b2, ceey bn) = ‘Il(bl, bg, Ceey bn) = false,

on all truth assignments (by, bo, ..., b,). Therefore f ((®(xy1,z,...,2,))) ¢DF. O

Exercise 5.12 Consider the following problem:

TWO-CLIQUE :
INSTANCE: (G, h,k), with G an undirected graph and h, &k > 0.

QUESTION: Does GG contain two disjoint cliques of size h and k?

(a) Show that TWO-CLIQUE is in NP.

(b) Show that TWO-CLIQUE is NP-hard.

Answer:

(a) Consider the following verification algorithm A.
Az, y)
ife#(G=(V,E),h,k),h,k>0
then return 0
ify 7é <U1, UQ), Ul, U2 C V
then return 0
if |[Uj]=hand |Uy]=kand Uy NU; =0
then if IS CLIQUE(G, U;) and IS_CLIQUE(G, Us)
then return 1
return 0
Subroutine IS_CLIQUE(G,U) checks the adjacency list of G to make sure that U is a
clique. Clearly, L4, = TWO-CLIQUE. The length of an accepting certificate y is clearly
O(|V]) = O(|z|). Finally, IS.CLIQUE(G,U) can clearly be implemented in polynomial

time, therefore A is polynomial.

88

(b) Let us consider the following reduction function f from CLIQUE to TWO-CLIQUE.
f(G=(V,E), h)) =(G"= (VU{u}, E), h,1),

where (G = (V, E), h) is a CLIQUE instance and u ¢ V. Note that u is an isolated node
in G'.

Let us first prove that f is indeed a reduction. If (G = (V, E), h) € CLIQUE then there
is a subset K of V which forms an h-clique. Now, K is also an h-clique in G, and {u} is a
1-clique in G’ disjoint from K. Therefore (G', h,1) = f({(G, h)) € TWO-CLIQUE. Consider
now the case f((G,h)) € TWO-CLIQUE. If A = 1, then clearly (G,h) € CLIQUE. Let
now h > 1. Then there is an h-clique K in (V U {u}, E). Since u is not adjacent to any
other vertex in V', u is not contained in the h-clique. Therefore K is also an h-clique in
G. So (G, h) € CLIQUE. Finally, f simply copies G and adds an extra node, therefore f

is computable in linear time. O

Exercise 5.13 Consider the following decision problems:

OMC (ODD-MAX-CLIQUE):
INSTANCE: (G = (V,E)), with G an undirected graph.

QUESTION: Is the maximum clique size odd?

EMC (EVEN-MAX-CLIQUE):
INSTANCE: (G = (V,E)), with G an undirected graph.

QUESTION: Is the maximum clique size even?

(a) Show that OMC <, EMC.

(b) Show that if EMC is NP-complete then OMC is NP-complete.
Answer:
(a) Let G = (V,E) be an undirected graph, and let G' = (V', E') be defined as follows:

Vi = VUu{a}, a¢V;
E' = EU{{a,v}:veV}.

89

Let now f({(G)) = (G"). Clearly, f({G)) can be computed in time polynomial in |V| and
|E|. Let M C V be a max-clique for G, and M’ C V' be a max-clique for G'. Then, the

following two claims hold:

l.ae M.
If this were not the case, since {a,u} € E' for each u € M', M' U {a} would be a
clique of size strictly greater than M’ a contradiction.

2. |M'|=|M|+1.
By Claim 1, « € M' and M’ — {a} is a clique for G. Hence

M| > |M'| - 1.
M U {a} is a clique for G'. Hence

|M'| > [M]+1

From Claim 1 and Claim 2 we conclude that G' has an odd max clique iff G’ has an even
max clique. This proves that f reduces OMC to EMC. Therefore OMC <, EMC.

(b) Suppose that EMC is NP-complete. Then, from Part (a) it follows that OMC €
NP. Therefore, it is sufficient to show that EMC <, OMC, which requires an identical
argument to the one used in Part (a), since function f also reduces EMC to OMC. O

Exercise 5.14 Consider the following decision problem:

IS INDEPENDENT SET):
INSTANCE: (G =(V,E), k), with G an undirected graph, and k£ > 0.

QUESTION: Is there a subset S C V, |S| = k, with {u,v} ¢ E for
each u,v € §7?

(a) Show that IS is NP-Complete.

(b) Assume that you are given an O(|V| + |E|) algorithm for IS. Show how to use the
algorithm to determine the mazimum size of an independent set in time O((|V| +
|E|)log [V']).

Answer: In order to prove that IS € NP, consider the following verification algorithm A.

90

Az, y)
ifz#(G=(V,E),k),k>0

then return 0
ify#({U),UCV

then return 0
if |U| =k

then if IS INDEPENDENT(G, U)
then return 1

return 0

Subroutine IS INDEPENDENT(G, U) checks the adjacency list of G to make sure that
U is an independent set. Clearly, Ly = IS. The length of an accepting certificate y
is O(|V]) = O(|z|). Finally, ISINDEPENDENT(G,U) can clearly be implemented in
polynomial time, therefore A is polynomial.

Next we show that CLIQUE <p IS, hence IS is NP-hard. Consider the following

transformation:

f(G = (V,E), k) =(G° = (V, E), k),
where F¢ = {{u,v}:u#v €V and {u,v} ¢ E}. Then:

1. Since there is an edge (u,v) in G€ if and only if (u,v) ¢ E, G° can be determined
by checking all the pairs of vertices in O(|V'|?) time. Therefore f is computable in

polynomial time.

2. If G contains a clique U C V of size k, then no pair of vertices in U will be connected
by an edge in G¢. Therefore U is an IS of size k£ for G*.

3. If G° has an IS U of size k, then any pair of distinct vertices in U will be connected
by an edge in G, therefore U is a clique of size k for G.

(b) Let DECIDE_IS((G = (V, E), k)) be our (unlikely) O(|V| + |E|) algorithm that de-

cides IS. Based on DECIDE_IS, we can write the following recursive algorithm:

MAX_SIZE((G = (V, E)),i, j)

if - = j then return ¢

middle < [(i + j)/2]

if DECIDE IS((G = (V, E), middle))
then return MAX SIZE((G = (V, E)), middle, j)
else return MAX SIZE((G = (V, E)), i, middle — 1)

91

When we call MAX SIZE((G = (V, F)),1,|V|), we basically perform a binary search on
all possible cardinalities of an independent set. The correctness of the algorithm follows
from the observation that there is an independent set of size A iff the size of the maximum
independent set is > h. Therefore a binary search approach can be applied, yieding the
desired running time of O((|V'| + |E|) log|V). O

Exercise 5.15 A problem closely related to problem IS, defined in the previous exercise,
is the following. Given an undirected graph G = (V, E), a mazimal independent set is
an indepent set S such that, for each v € V — S, SU {v} is not independent. That is, S

cannot be “upgraded” to a larger independent set.

(a) Give an example of a graph where there is a mazimal independent set of size much

smaller than the size of the mazimum independent set.

(b) Show that the problem of determining a maximal independent set can be solved in

polynomial time.

Answer:

(a) Consider the following “star” graph:

Clearly, the node at the center of the star makes a mazimal independent set by itself, since
all other nodes are connected to it. However, the mazimum independent set contains eight
nodes. Note that the above example can be generalized to yield a discrepancy of O(|V])
between the size of a a maximal and a maximum independent set, for any value of |V|.

(b) We build our maximal independent set S incrementally as follows. We start from

the empty set and perform a linear scan the nodes. We add a new node v to S if SU {v}

is still independent. The algorithm follows.

92

GREEDY MAXIMAL_INDEPENDENT _SET(G = (V, E))
n <« |V|
S« 0
for 1 < 1 ton do

ndep < true

for each u € Adj[v;] do

ifues
then indep + false
if indep
then S + S U {v;}

return S

The set S returned by the above algorithm is an independent set by construction. Let us
now prove that S is maximal. Assume, for the sake of contradiction, that S is not maximal.
Then, there is a node v; € V — S such that S U {v;} is an independent set. Note that v;
was not added to S, therefore, at the end of the i-th iteration of the outer loop, variable
indep was false. This means that there was a node u € S such that u € Adj[v;], which
contradicts the hypothesis that S U {v;} is an independent set.

Note that the outer loop is executed |V| times. During iteration i, we execute the inner
loop | Adj[v;]| times, for a total of O(| F|) iterations altogether. In each iteration, the check
u € S can be performed in O(log|S|) time (using —say— a binary search tree to store S).
Since |S| < |V, the running time of the above algorithm is then O(|V| + |E|log|V|). O

Exercise 5.16 Given undirected graphs G, = (V(G1), E(G1)) and Gy = (V(G2, E(G3)),
we say that G is isomorphic to Gy if there is a one-to-one function 7 : V(G1) — V(Gs) such
that {u,v} € E(G) iff {n(u),7(v)} € E(Gs). Consider the following decision problem:

SI (SUBGRAPH ISOMORPHISM):
INSTANCE: (G=(V(G),E(G)),H =(V(H),E(H))), with G and H
undirected graphs
QUESTION: Does H contain a subgraph H' = (V(H'), E(H')), with
V(H') C V(H) and E(H') C E(H)) that is isomorphic
to G?
Show that SI is NP-complete.

Answer: Sl is clearly in NP. Given a string x = (G, H) € SI, a certificate y for SI is
(H' = (V(H'"),E(H'"),m). Note that 7 can be represented as a sequence of |V (G)| pairs
(u,m(u)), with u € V(G), therefore the encoding of y is polynomial in the size of the

93

instance. On input (z,y), the verifier first checks that the encodings for the instance and
the certificate are well-formed, then checks that H' is indeed a subgraph of H with |V (G)|
nodes, and finally checks that for any edge (u,v) in E(G), edge (7(u),7(v)) is in E(H')
and viceversa. These checks clearly take time polynomial in the size of (x,y). The code of
the algorithm is omitted for the sake of brevity.

In order to show that SI is NP-Hard, we show that CLIQUE <p SI. Recall that an
instance of CLIQUE is (G, k) and the question is whether G contains a complete subgraph
of size k. Let Cy be the graph ({1,2,...,k}, {{u,v} :1 <wu # v <k}), that is, Cy is the
complete graph built on vertices V(Cy) = {1,2,...,k}. Our reduction function is

f((Gak» = <CkﬂG>

Clearly, f is computable in polynomial time. To see that f reduces CLIQUE to SI, note that
if G contains a complete subgraph with k£ nodes, then such subgraph is clearly isomorphic
to Cy (all complete graphs with the same number of nodes are isomorphic). Viceversa, if
G contains a subgraph isomorphic to Cy, then such subgraph is itself a clique of k£ nodes (a
complete graph can only be isomorphic to another complete graph). This suffices to show
that CLIQUE <p SI, and the claim follows. O

Exercise 5.17 Consider the following decision problem:

HS (HITTING SET):

INSTANCE: (n,m,C1,Cs,...,Cnp, k), with C; C {1,2,...,n} for 1 <
1 <m,and k <n.

QUESTION: Is there a subset S' C {1,2,...,n} with |S’| = k£ and
such that S'NC; # 0, for 1 <7 < m?

Show that HS is NP-complete.

Answer: A candidate certificate for HS is a subset S C {1,2,...,n}. The verifi-
cation algorithm first checks whether its first input x is a well-formed encoding x =
(n,m,Cy,Cy,...,Cp, k) of an instance of HS; then checks that its second input encodes
a subset of {1,2,...,n} of cardinality k. If this is the case, the algorithm proceeds to
check whether S'NC; # 0, for 1 < i < m. Each such test can clearly be accomplished in
polynomial time. Therefore HS € NP.

In order to show that HS is N P-Hard, we exhibit a reduction from VERTEX_COVER
(VC) to HS. Recall that an instance of VC is (G = (V, E), k) and the question is whether V
contains a subset V' of size k such that each edge in F has at least one of its endpoints in V.

94

Let 7 : V — {1,2,...,|V|} be an arbitrary one-to-one function from V to {1,2,...,|V|}.

Our reduction function is the following:
f (<G = (‘/a E)a k>) = <‘V‘7 ‘E‘a 017 C?a ey C'|E'|7 k>a

where C; = {m(u), m(v)} iff the i-th edge in E is {u,v}.

Clearly, f is computable in polynomial time. To show that f reduces VC to HS, it is
sufficient to observe that, by construction, G contains a vertex cover V' with k£ nodes if
and only if 7(V') C {1,2,...,|V|} has nonempty intersection with all the C;’s. The proof
follows since |7 (V')| = |V'| = k. O

Exercise 5.18 Show that the HAMILTONIAN CIRCUIT problem for undirected graphs

can be polynomially reduced to the following problem:

TSP (TRAVELING SALESMAN PROBLEM):

INSTANCE: (G = (V,E),w,k), where G is a complete, undirected
graph, w : F — N is a weight function and £ > 0.

QUESTION: Isthere a hamiltonian cycle in G containing all the nodes,
whose total weight (i.e., the sum of the weights on the
edges of the cycle) is exactly k?

Answer: An instance of HAMILTONIAN CIRCUIT is simply an undirected graph G =
(V, E). Consider the following reduction function:

f((G:(V:E))) = <GI:(VaEl):w:El_){LQ}a'V‘ >,
E = {{u,v}:u#v,u,veV}

1 ifee E'NE,
w(e) = .
2 otherwise.

Clearly, f can be computed in time at most quadratic in |[(G)|. Let us now show that f is
indeed a reduction. If (G) € HAMILTONIAN CIRCUIT, then G’ contains a circuit whose
edges are in E. Under function w, the total weight of such cycle is exactly |V|, therefore
f({G)) € TSP. Vice versa, if (G) ¢ HAMILTONIAN CIRCUIT, no such circuit exists, and
any circuit in G’ will include edges in E' — F yielding a total weight strictly greater than
|V|. Therefore f({G)) ¢ TSP. O

Exercise 5.19 Given a language L € NP, consider the following three cases.

95

(a) L=%*
(b) L #0,%* is accepted by a DFSA.
(c) L contains an N P-complete subset.

Under the assumption P # NP, decide, for each of the above cases, whether 1) L is NP-
complete or 2) L is not NP-complete or 3) L might be NP-complete or not. Redo the

exercise under the assumption P = NP.

Exercise 5.20 Let L;,L, € {0,1}". Under the assumption that P # NP, prove or

disprove the following propositions:
(a) Lie P= L € NP.
(b) Ly <, Ly & LS <p LS.
(¢) Ly <, Lsar = L, € NPC.
(d) Ly <, Lsar = L, € NP.
(e) L1 <, Lyand Ly <, Ly = Ly, Ly € P.
(f) A reduction function f is a one-to-one correspondence.

(g) If we restricted the input set of CLIQUE to graphs G = (V, E) of degree at most 7,
then the resulting subproblem would be in P.

(h) If there is an algorithm for CLIQUE with running time N9(°%€N) then every other

problem in NP has an algorithm with a running time of the same form.

Exercise 5.21 Consider the following decision problem:

BF_SAT (BALANCED FORMULA SATISFIABILITY):
INSTANCE: (®(x1, T2, ---,%op)), @ is a boolean formula

QUESTION: Is there a satisfying assignment in which ezactly n vari-

ables have value false?

Prove that BF_SAT is NP-Complete.

96

Exercise 5.22 Consider the following decision problem:

NCBF (NON CONSTANT BOOLEAN FORMULA):
INSTANCE: (P(x1, 22, ...,2,)), is a boolean formula

QUESTION: Is ®(zy,x2,...,2,) a non constant function? (i.e., & #
false and ® # true)

Show that NCBF is N P-Complete.

Exercise 5.23 Consider the following decision problem:

CoH (CLIQUE or HAMILTONIAN):
INSTANCE: (G = (V,E),k), with G an undirected graph and k£ > 0

QUESTION: Does G contain either a clique of size k£ or a hamiltonian
circuit?

Show that CoH is N P-Complete.

Exercise 5.24 Consider the following decision problem:

RH (ROOT-HAMILTONIAN):
INSTANCE: (G = (V,E)), with G an undirected graph

QUESTION: Does G contain a simple cycle of length at least [V| W?

Show that RH is N P-Complete.

Exercise 5.25 Given an undirected graph G, recall that a hamiltonian path is a simple

path that touches all nodes of G. Consider the following two problems:

HP (HAMILTONIAN PATH):
INSTANCE: (G = (V,E)), with G an undirected graph

QUESTION: Does G contain a hamiltonian path?

k-P (k-PATH):

INSTANCE: (G,u,v,k), with G = (V, E) an undirected graph, u #
veVand k>0

QUESTION: Does G contain a simple path containing at least k£ edges
from u to v ?

97

(a) Show that HP is NP-Complete.
(b) Show that k-P is N P-Complete.

(c) Show that HP and k-P are both in P when the graph G is restricted to be acyclic.

98

