
BSP vs LogP1Gianfranco Bilardi2;3 Kieran T. Herley4 Andrea Pietracaprina2Geppino Pucci2 Paul Spirakis5
AbstractA quantitative comparison of the BSP and LogP models of parallel computation is developed. Weconcentrate on a variant of LogP that disallows the so-called stalling behavior, although issuessurrounding the stalling phenomenon are also explored. Very e�cient cross simulations betweenthe two models are derived, showing their substantial equivalence for algorithmic design guidedby asymptotic analysis. It is also shown that the two models can be implemented with similarperformance on most point-to-point networks. In conclusion, within the limits of our analysis thatis mainly of an asymptotic nature, BSP and (stall-free) LogP can be viewed as closely relatedvariants within the bandwidth-latency framework for modeling parallel computation. BSP seemssomewhat preferable due to its greater simplicity and portability, and slightly greater power. LogPlends itself more naturally to multiuser mode.Key words: Models of Computation, Parallel Computation, Bridging Models, Portability, BSPModel, LogP Model.1 IntroductionWidespread use of parallel computers crucially depends on the availability of a model of compu-tation simple enough to provide a convenient basis for software development, accurate enough toenable realistic performance predictions, yet general enough that software be portable with goodperformance across a wide range of architectures. The formulation of a bridging model that bal-1This research was supported in part by the ESPRIT III Basic Research Programme of the EC under contractNo. 9072 (Project GEPPCOM). A preliminary version of this paper appeared in Proc. of the 8th ACM Symposiumon Parallel Algorithms and Architectures, Padova, I, pages 25{32, June 1996.2Dipartimento di Elettronica e Informatica, Universit�a di Padova, I-35131 Padova, Italy3Department of Electrical Engineering and Computer Science, University of Illinois at Chicago, Chicago, IL 60607USA4Department of Computer Science, University College Cork, Cork, Ireland5Computer Technology Institute, Patras, Greece

1

ances these con
icting requirements has proved a di�cult task, a fact amply demonstrated by theproliferation of models in the literature over the years.The BSP [1] and the LogP [2, 3] models have been proposed in this context and have attractedconsiderable attention (see [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] for BSP and [16, 17, 18, 10, 19]for LogP). In both models the communication capabilities of the machine are summarized by afew parameters that broadly capture bandwidth and latency properties. In BSP, the fundamentalprimitives are global barrier synchronization and the routing of arbitrary message sets. LogP lacksexplicit synchronization and imposes a more constrained message-passing style which aims at keep-ing the load of the underlying communication network below a speci�ed capacity limit. Intuitively,BSP ought to o�er a more convenient abstraction for algorithm design and programming, whileLogP ought to provide better control of machine resources.While it is part of the folklore that BSP and LogP bear a marked resemblance to each other, toour knowledge, a quantitative and systematic comparison between the two models had not yet beenundertaken. In this paper, we begin such a comparison. Technically, a clari�cation is in order at theoutset, to put our discussion and results in the proper perspective. The original de�nition of LogPincludes an operating regime, called stalling, which occurs when some processors become hot spots,i.e., the number of messages addressed to them exceeds a certain threshold. In our comparisonwith BSP we will mostly focus on a stall-free version of LogP. There are two main reasons for this.Firstly, the intended use of LogP appears to be that of writing stall-free programs and secondly,the behaviour dictated by the model in stalling situations appears hard to realize on real machines.However, the issue of stalling is a rather subtle one and, as we shall indicate, deserves furtherinvestigation, which might lead to valuable insights on the bandwidth-latency paradigm of parallelcomputing.Our main objectives and results in comparing BSP and stall-free LogP are the following:2

� To characterize the distance between the two modelsQuantitatively, we measure the distance between the models by the slowdown incurred byone in simulating the other. We show that, when the bandwidth and latency parameters havethe same value in both models, BSP can simulate LogP with constant slowdown and LogPcan simulate BSP with at most logarithmic slowdown (indeed constant slowdown for a widerange of the relevant parameters)1.The small value of the slowdown in both directions indicates that, at least from the point ofview of asymptotically e�cient algorithmic design, the two models are substantially equiv-alent. The (slightly) greater power of BSP and its greater simplicity with respect to LogPappear to be points in its favor.� To compare the performance of the two models on the same platformThe greater power of BSP with respect to LogP could, concievably, hide a potential loss ofperformance when implementing BSP over LogP on the same hardware platform. This couldoutweigh the advantages provided by BSP's more convenient programming abstraction.We investigate this issue for hardware platforms that can be modeled as point-to-point net-works. For several such networks, well-known routing results show that similar values can beachieved for the bandwidth and latency parameters in both models. The indication is that,asymptotically, no substantial price is paid for the convenience of the BSP abstraction.In summary, BSP and stall-free LogP can be viewed as closely related variants within thebandwidth-latency framework for modeling parallel computation. BSP seems somewhat preferabledue to greater simplicity and portability, and slightly greater power.1Recently Ramachandran et al. [20], as part of a broader exploration of the interrelationships between LogP,BSP and the QSM shared-memory model [21], have observed that our simulation of stall-free LogP on BSP can beimmediately made work-preserving while maintaining the same slowdown.3

These indications cannot be regarded as de�nitive. First, constant factors that are disregardedin the kind of asymptotic analysis presented here are clearly of considerable signi�cance when itcomes to the performance of practical applications on real machines. Second, commercial multi-processors are not necessarily accurately modeled by point-to-point networks. However, we hopethat the methodology proposed here can be re�ned to a�ord a more accurate comparison betweenBSP and LogP as well as between other models of computation.The rest of the paper is organized as follows. Section 2 provides a formal de�nition of themodels. Regarding LogP, we clarify some aspects of its de�nition. In particular, we propose aprecise characterization of the behaviour of stalling, while trying to remain faithful to the informaldescription of it given in [3]. We then discuss some possible implications of stalling on the use ofLogP as a programming model, and on its realizability on actual machines.Section 3 deals with the problem of simulating LogP on BSP. We begin by showing how astall-free LogP computation can be executed on the BSP model. The slowdown is constant underthe assumption that the bandwidth and latency parameters have the same value in both models.(This assumption is explored further in Section 5.) The proposed simulation is technically simpleand clearly exposes the fact that, due to the upper limit to message transmission time, LogP isreally a loosely synchronous model rather than an asynchronous one.We then consider possible extensions of the simulation to stalling LogP computations, whichexhibits a higher slowdown. It is not clear whether the higher slowdown is inherently requiredfor simulating such anomalous computations, or whether it can be reduced by means of moresophisticated simulation techniques.Section 4 presents both deterministic and randomized schemes to simulate BSP on LogP witha slowdown that is at most logarithmic in the number of processors, but becomes constant forwide ranges of parameter values. It is rather obvious that the BSP simulation must contain a4

LogP algorithm for barrier synchronization. Perhaps less obvious is that, in order to comply withthe LogP capacity constraint, the simulation must also embody a technique to decompose a set ofmessages into smaller sets where fewer messages can be sent or received by any given processor. Thisdecomposition is achieved by a careful combination of known techniques. The results are mainly ofan asymptotic nature and should eventually be re�ned to yield better estimates of constant factorsinvolved.In Section 5, we show that, for several well-known point-to-point topologies, the BSP abstractioncan be supported nearly as e�ciently as the LogP abstraction, to a higher degree than implied bythe simulation results of the previous sections. Point-to-point networks have been chosen hereas the basis for the analysis because they do provide an accurate model for the communicationcapabilities of some multiprocessors and because a large body of network routing results is availablein the literature. It would be interesting to derive similar results for other types of architectures.Finally, Section 6 concludes with a number of remarks derived from our analysis and directionsfor further research.2 The ModelsBoth the BSP [1] and the LogP [3] models can be de�ned in terms of a virtual machine consistingof p serial processors with unique identi�ers 0; 1; :::; p � 1. Each processor has direct and exclusiveaccess to a private memory bank and has a local clock. All clocks run at the same speed. Theprocessors interact through a communication medium which supports the exchange of messages.In the case of BSP, the communication medium also supports global barrier synchronization. Thedistinctive features of the two models are discussed below.
5

2.1 BSPA BSP machine operates by performing a sequence of supersteps. Conceptually, each superstepconsists of three consecutive phases: a local computation phase, a global communication phase, anda barrier synchronization. Each processor can be thought of as being equipped with an outputpool, into which outgoing messages are inserted, and an input pool, from which incoming messagesare extracted. During the local computation phase, a processor may extract messages from itsinput pool, perform operations involving data held locally, and insert messages into its outputpool. During the communication phase, every message held in the output pool of a processor istransferred to the input pool of its destination processor. The previous contents of the input pools,if any, are discarded. The superstep is concluded by a barrier synchronization, which informsthe processors that all local computations are completed and that every message has reachedits intended destination. The model prescribes that the next superstep may commence only aftercompletion of the barrier synchronization, and that the messages generated and transmitted duringa superstep are available at the destinations only at the start of the next superstep.The running time of a superstep is expressed in terms of two parameters g and ` asTsuperstep = w + gh+ `; (1)where w is the maximum number of local operations performed by any processor and h is themaximum number of messages sent or received by any processor. The overall time of a BSPcomputation is simply the sum of the times of its constituent supersteps.Intuitively, Relation (1) can be interpreted as follows. The time unit is chosen to be the durationof a local operation. For su�ciently large sets of messages (h� `=g), the communication mediumdelivers p messages every g units of time, so that 1=g can be viewed as measuring the available6

bandwidth per processor. Parameter ` must be an upper bound on the time required for globalbarrier synchronization (w = 0; h = 0). Moreover, g + ` must be an upper bound on the timeneeded to route any partial permutation (w = 0; h = 1), and therefore on the latency of a messagein the absence of other messages.An interesting property of the model is that the same BSP program will run and give the sameresults, regardless of the values of parameters g and `. Thus, these parameters, while they certainlyin
uence the performance of a program, do not a�ect its correctness. This is clearly a desirableproperty when it comes to portability.A drawback of the model is that all synchronizations are essentially global so that, for instance,two programs cannot run independently on two disjoint sets of processors. This is an obstacle formultiuser modes of operation.2.2 LogPIn a LogP machine, at each time step, a processor can be either operational or stalling. Whenoperational, a processor can do one of the following: (a) execute an operation on locally held data,(b) receive a message, (c) submit a message destined to another processor to the communicationmedium.Conceptually, for each processor there is an output register where the processor puts any mes-sage to be submitted to the communication medium. The preparation of a message for submissionrequires o time units, where o is referred to as the overhead parameter. Once submitted, a messageis accepted by the communication medium, possibly after some time has elapsed, and eventuallydelivered to its destination. Between the submission and acceptance of a message, the sending pro-cessor is assumed to be stalling. When a submitted message is accepted, the submitting processorreverts to the operational state. 7

Upon arrival, a message is promptly removed from the communication medium and bu�ered insome input bu�er associated with the receiving processor. However, the actual acquisition of theincoming message by the processor may occur at a later time and requires overhead time o.The behavior of the communication medium is modeled by two parameters, G (gap) and L(latency), which characterize its routing performance 2. Speci�cally, the model prescribes thatat least G time steps must elapse between consecutive submissions or consecutive acquisitions bythe same processor. Although the exact delivery time of a message is unpredictable, the modelguarantees that the message arrives at its destination at most L time steps after its acceptance.However, in order to capture network capacity limitations, the model requires that at any timethere are no more than dL=Ge messages in transit for the same destination (capacity constraint).According to the proposers, parameter G is the reciprocal of the maximum message injection(hence reception) rate per processor that the communication medium can sustain, while parameterL provides an upper bound on network latency when the system is operating within capacity.If accepting all the messages submitted at a given time does not violate the capacity constraint,then all the submitted messages are immediately accepted by the network. Otherwise, the accep-tance of some of the messages will be delayed, until congestion clears, leaving the processors whosesubmitted messages have not yet been accepted in a stalling state. The speci�c mechanism bywhich messages are treated when the capacity constraint is violated is only informally described inthe original paper ([3], p. 81). Here, we propose a characterization of such a mechanism which,while more formally stated, is faithful to the original one.Stalling Rule: At a given time t, let dL=Ge � s be the number of messages in transit destinedfor processor i that have been accepted but not yet delivered, and let k be the number of submittedmessages for processor i yet to be accepted. Then, minfk; sg of these messages are accepted from2The notation G is adopted here rather than the customary g to avoid confusion with the corresponding BSPparameter. 8

the output registers.While the above stalling rule determines exactly the number of messages accepted at each timefor each destination, it leaves the order in which messages are accepted completely unspeci�ed. Asthis aspect is not mentioned in [3], we assume that any order is possible.We observe that there are two sources of nondeterminism in LogP: (i) the delay between ac-ceptance and delivery of a message by the network, and (ii) the delay between submission andacceptance of a message when the destination is congested. As a consequence, even for a �xedinput, a given LogP program admits a multitude of di�erent executions. A program is deemed tobe correct if it computes the required input-output map under all admissible executions 3. Theclass of admissible executions varies with the value of the parameters L, G, even for �xed p, withundesirable implications for the portability of the code. This aspect of the model might bene�tfrom further investigation.Another property of LogP which is worth observing is that, if two programs run on disjointsets of processors, then their executions do not interfere. This is a desirable property, as it nicelysupports partitioning of the computation into independent subcomputations, as well as multiusermodes of operation.An intriguing aspect of the LogP model is the stalling regime. Stalling ought to capture thedegradation in performance observed in real networks [22] when tra�c exceeds a certain threshold([2], p. 9). Correspondingly, the model discourages the development of stalling programs; indeed, itis clear from the literature on LogP algorithms that programmers are expected to make every e�ortto ensure that their programs are stall-free and to allow stalling only as a last resort. However,whether the speci�c de�nition of stalling given in [3] and formalized above completely achievesthese intended goals is not clear, due to the following considerations.3A similar de�nition of correctness is given in [3], page 81, with apparent reference to stall-free executions only.The present de�nition covers also stalling executions. 9

According to the stalling rule, when the capacity constraint for a given processor is exceeded,the latency of individual messages does grow, but the delivery rate at the hot spot is the highestpossible given the bandwidth limitation (one message every G steps). Therefore, if sending themessages to that processor is the core of the given computation, stalling might provide an e�cientway of accomplishing the task, in spite of the loss of CPU cycles incurred by the stalling processors.In such situations, the LogP performance model would actually encourage the use of stalling.It remains to be seen whether the potential performance advantage deriving from stalling canbe e�ectively exploited in some application, and what the cost of enforcing the stalling rule on areal platform might be. If taken literally, the stalling rule implies that, for every processor, a countof the messages in transit destined to that processor is maintained, with immediate e�ects whenthe count exceeds the capacity constraint. It appears hard to implement this behavior, within therequired performance bounds, especially in networks with high latency (L >> G).For the reasons discussed above, in the present paper, we focus mostly on stall-free programs,de�ned as those programs for which all admissible executions are stall-free. However, the abovediscussion also shows that stalling deserves further attention.Next, we discuss some constraints that can be reasonably assumed for the LogP parametersand can be summarized as follows: maxf2; og � G � L:� G � o. Since a processor is always forced to spend o time steps for preparing/acquiring amessage, without loss of generality, we can assume G � o.� G � 2. The choice of dL=Ge as the capacity threshold may pose some (probably unintended)modeling problems when G = 1, hence dL=Ge = L. Consider a situation where, at time t = 0,10

L processors simultaneously send a message destined to the same processor. According to themodel, no stalling occurs, hence all these L messages are guaranteed to be delivered by timet = L. Since the communication medium can deliver only one message at a time to a singledestination, one message must arrive for each time t = 1; 2; : : : ; L. The implication is that,for any processor j and every L-tuple of processors i1; i2; : : : ; iL, there is one ih from whichj can be reached in one time step. This is clearly a strong performance requirement hard tosupport on a real machine. In contrast, if G were such that dL=Ge � dL=2e such an extremescenario would not occur since each message in transit to a processor may be realisticallydelivered in at least �(L) time steps.� G � L. This assumption is made to permit bounded size for the input bu�ers of eachprocessor. In fact, assume that G > L, and consider a program where processor i 2 f0; 1gsends a message to processor 2 at time maxfG; 2Lgk + Li, for k = 0; 1; : : :. At any time,there is only dL=Ge = 1 message in transit in the medium, therefore the capacity constraintis always satis�ed and no stalling occurs. However, messages are delivered to processor 2 andstored in its input bu�ers at a rate strictly greater than 1=G (in fact, the rate is 1=L > 1=Gwhen G < 2L, and is exactly 2=G when G � 2L). However, messages can be actually acquiredby the processor only at the lower rate 1=G, thus requiring unbounded bu�er space.3 Simulation of LogP on BSPIn this section, we study the simulation of LogP programs on BSP. The key result is the followingtheorem, which applies to stall-free programs. Some issues arising from stalling are also discussed.Theorem 1 A stall-free LogP program can be simulated in BSP with slowdown O(1+ g=G+ `=L).When ` = �(L) and g = �(G), the slowdown becomes constant.11

The simulation consists of a sequence of BSP supersteps, each of which simulates a cycle of L=2consecutive instructions of the given stall-free LogP program. (For simplicity, we assume L even.Minor modi�cations are required to handle the case of L odd.)In a superstep, the i-th BSP processor Bi executes the instructions speci�ed by the programfor the i-th LogP processor Li in the corresponding cycle, using its own local memory to store thecontents of Li's local memory. Message submissions are simulated by insertions in the output pool,while the actual transmission of the messages takes place during the communication phase at theend of the superstep. As for message acquisitions, at the beginning of the superstep, each processortransfers the messages that were sent to it in the preceding superstep into a local FIFO queue andsimulates the actual acquisitions by extractions from the queue. Therefore, all messages submittedin a cycle arrive at their destination in the subsequent cycle.The correctness of the simulation follows from the existence of an execution of the LogP programconsistent with such a delivery schedule. In fact, in a cycle of L=2 consecutive steps, no more thandL=Ge � L=2 messages for the same processor are submitted, since all these messages could be stillin transit at the end of the cycle and the program is stall-free. Therefore, it is possible to selectdistinct arrival times for all the messages within the next cycle, so that the delivery time for eachmessage is at most L.Finally, each superstep of the simulation involves the routing of an h-relation where h � dL=Ge,hence the overall simulation time of a cycle is O(L+ gdL=Ge+ `). Considering that a cycle corre-sponds to a segment of the LogP computation of duration L=2, the slowdown stated in Theorem 1is established.In the preliminary conference version of this paper [23], it was unjusti�ably claimed that thesimulation of Theorem 1 could be extended to arbitrary LogP programs while maintaining the sameslowdown. Instead, as pointed out by Ramachandran [24, 20], such an extension does not appear12

straightforward, and may in fact not be possible.In the above simulation, for a cycle where stalling occurs, the upper bound h = O(L=G) nolonger holds for the corresponding BSP superstep, possibly leading to a superstep time considerablylarger than in the stall-free case. Performance can be improved if messages are suitably preprocessedbefore being sent. In fact, standard sorting [25] and pre�x [4] techniques can be used to assignmessages an order of network acceptance consistent with the stalling rule. Along these lines, anO(((` + g)=G) log p) slowdown can be obtained, which is still not negligible. Whether this boundcan be improved upon remains to be seen. Interestingly, due to Theorem 1, a non-trivial lowerbound on the slowdown of any BSP simulation of LogP stalling programs would also apply to anystall-free LogP simulation of LogP stalling programs, and would therefore indicate that stallingadds computational power to LogP.4 Simulation of BSP on LogPWe now consider the reverse problem of simulating an arbitrary BSP program in the LogP model.First, we develop deterministic, stall-free simulations. Then, we explore the potential of random-ization; here, we allow stalling to occur, but only with polynomially small probability, so that theexpected simulation time is essentially determined by the stall-free part of the execution and is notvery sensitive to the speci�c way by which stalling is resolved.Theorem 2 Any BSP superstep involving at most w local operations per processor and the routingof an h-relation can be simulated in stall-free LogP with worst-case timeO(w + (Gh+ L)S(L;G; p; h));where S(L;G; p; h) = O(1) for h =
(p� + L log p) and S(L;G; p; h) = O(log p) otherwise.13

When G = �(g) and L = �(`), S(L;G; p; h) is an upper bound to the slowdown of the simulation.An explicit expression for S is derived in this section.The simulation of a BSP superstep where each processor executes at most w local operations andthe generated messages form an h-relation has the following general structure. First, for 1 � i � p,the i-th LogP processor Li executes the local computation of the i-th BSP processor Bi, bu�ering allgenerated messages in its local memory. Second, Li joins a synchronization activity which will endafter all the processors have completed their local computation. Third, a LogP routing algorithm isinvoked to send all the messages generated in the superstep to their destinations, while also makingeach processor aware of termination, so that no further synchronization is needed before startingthe next superstep.The simulation time for the superstep can then be expressed as Tsuperstep = w+Tsynch+Trout(h),where Tsynch is the duration of the synchronization activity, measured from the moment when thelast LogP processor joins the activity, and Trout(h) is the time to deliver all messages. The resultstated in Theorem 2 follows from bounds for Tsynch and Trout(h) which are derived in the nextsubsections.4.1 SynchronizationWe base processor synchronization in LogP on the Combine-and-Broadcast (CB) primitive which,given an associative operator op and input values x0; x2; : : : ; xp�1, initially held by distinct proces-sors, returns op(x0; x2; : : : ; xp�1) to all processors.A simple algorithm for CB consists of an ascend and a descend phase on a complete maxf2; dL=Geg-ary tree with p nodes, which are associated with the processors. At the beginning of the algorithm, aleaf processor just sends its local input to its parent. An internal node waits until it receives a valuefrom each of its children, then combines these values with its local one and forwards the result to14

its parent. Eventually, the root computes the �nal result and starts a descending broadcast phase.When dL=Ge � 2, the algorithm clearly complies with the LogP capacity constraint, since no morethan dL=Ge messages can be in transit to the same processor at any time. When dL=Ge = 1, thetree is binary, and we additionally constrain transmissions to the father to occur only at timeswhich are even multiples of L for left children and odd multiples of L for right children.Let TCB denote the running time of the CB algorithm. We have:TCB � 3(L+ o) log plog(1 + dL=Ge) = O�L log plog(1 + dL=Ge)� :The above algorithm is optimal for the CB problem to within constant factors, as an immediateconsequence of the following proposition.Proposition 1 Any stall-free LogP algorithm for CB with OR as the associative operation requirestime
�L log plog(1 + dL=Ge)� :Proof: Using the simulation strategy developed in Section 3, we can transform any T -time LogPstall-free algorithm for CB into a �(T+L)-time algorithm for the problem of computing the BooleanOR of p bits on a p-processor BSP machine with parameters g = G and ` = L, when the bits areinitially distributed evenly among the �rst dp=dL=Gee BSP processors, and each superstep routesh-relations with h � dL=Ge. Then, the proof follows from the lower bound for this last problemdeveloped by Goodrich in [25]. 2A di�erent optimal tree-based algorithm for CB appears in [17, 26], where the running time,however, is not explicitly expressed as a function of p, G and L.The synchronization needed to simulate a BSP superstep is implemented as follows. Uponcompletion of its own local activity, each LogP processor enters a Boolean 1 as input to a CB15

computation with Boolean AND as the associative operator. The activity terminates when CBreturns 1 to all processors. It is easy to see that the CB algorithm described above works correctlyeven if the processors join the computation at di�erent times. In this case, TCB represents the timeto completion measured from the joining time of latest processor. We have:Proposition 2 The synchronization used to simulate a BSP superstep in LogP can be performed,without stalling, in time Tsynch = O�L log plog(1 + dL=Ge)� :4.2 Deterministic routing of h-relationsA major impediment to be overcome in realizing arbitrary h-relations in LogP is the capacityconstraint. For h � dL=Ge, an h-relation can be routed in worst-case time 2o+G(h� 1) +L � 4Lby having each processor send its messages, one every G steps. For larger h, this simple-mindedstrategy could lead to the violation of the capacity constraint. Hence, a mechanism to decomposethe h-relation into subrelations of degree at most dL=Ge is required.By Hall's Theorem [27], any h-relation can be decomposed into disjoint 1-relations and, there-fore, be routed o�-line in optimal 2o+G(h� 1) + L time in LogP. O�-line techniques may indeedbe useful when the h-relation is input independent, hence, known before the program is run.In general, however, the h-relation becomes known only at run-time and the required decom-position must be performed on-line. Next, we describe a protocol for routing h-relations, whichdecomposes the relation by standard sorting techniques. We let r (resp., s) denote the maximumnumber of messages sent (resp., received) by any processor, whence h = maxfr; sg.1. Compute r and broadcast it to every processor. Then, make the number of messages held bythe processor exactly r, by forming in each processor a suitable number of dummy messageswith nominal destination p. 16

2. Sort all messages by destination and provide each message with its rank in the sorted sequence.3. Compute s and broadcast it to every processor. (Ignore the dummymessages when calculatingthis quantity.)4. For each i such that 0 � i < h = maxfr; sg, execute a routing cycle delivering all (non-dummy) messages whose rank taken modulo h is i.Both Step 1 and Step 3 can be executed by means of CB in time r + TCB. Also, it is easy to seethat the h cycles of Step 4 can be pipelined with a period of G steps without violating the capacityconstraint; hence, Step 4 takes optimal time 2o+G(h� 1)+L. Overall, the h-relation is routed intime Trout(h) � 2TCB + Tsort(r; p) + 2o+ (G+ 2)h+ L; (2)where Tsort(r; p) denotes the time required for sorting rp keys in the range [0; p] evenly distributedamong the processors. Upper bounds on Tsort(r; p) are given below.Sorting In what follows we describe two LogP sorting schemes. The �rst scheme is based onthe AKS network [28] for sorting p messages, extended to the case of r messages per processorthrough standard techniques. The second scheme is based on the Cubesort algorithm [29]. Theformer scheme turns out to be more e�cient for small values of r, while the second yields betterperformance for large values of r.The AKS network can be regarded as a directed graph with p nodes connected by K = O(log p)sets of edges, with each set realizing a matching among the p nodes. Consider the case r = 1.The sorting algorithm runs in K comparison steps. In the i-th step, the endpoints of each edge ofthe i-th matching exchange their keys and select the minimum or the maximum according to theirposition with respect to the orientation of the edge. When r > 1, �rst a local sorting is performed17

within each processor, and then the algorithm proceeds as before, replacing each compare-swapstep by a merge-split step among sorted sequences of r messages [30].The above algorithm can be easily implemented in LogP, since the message transmissions re-quired at each step are known in advance and can be decomposed into a sequence of r 1-relationsthat are routed in time 2o+G(r � 1) + L. On LogP, the running time of the algorithm isTAKS(r; p) = O((Gr + L) log p);since the cost of the message transmissions dominates the cost of the initial sorting step (which, forr keys in the range [0; p], is O(r log p)) and the cost of the O(log p) local merge-splits steps (O(r)per step).Cubesort consists of O(25log� pr�log� r(log pr= log(r + 1))2) rounds, where each round partitionsthe pr keys into groups of size at most r and sorts the groups in parallel. In LogP, the algorithmcan be implemented by letting each round be preceded by a suitable data redistribution so thatthe subsequent group sortings can be done locally within the processors. Since keys are in therange [0; p], each local sorting can be performed in time Tseq�sort(r) = rminflog r; dlog p= log regby using Radixsort. Note that when r = p�, for any positive constant �, we get Tseq�sort(r) = O(r).Each data redistribution involves an r-relation which is known in advance and can therefore bedecomposed into r 1-relations, routed in time 2o + G(r � 1) + L. Thus, the running time of thealgorithm in LogP isTCS(r; p) = O 25log� pr�log� r � log prlog(r + 1)�2 (Tseq�sort(r) +Gr + L)! :Note that for r � 2plog p, the AKS-based sorting scheme outperforms the Cubesort-based one. Incontrast, when r = p�, for any positive constant �, the running time of the latter sorting becomes18

TCS(r; p) = O(Gr+L), which is clearly optimal and improves upon TAKS(r; p) by a factor O(log p).Additional material on sorting in the LogP model can be found in [16, 10].By adding the contributions to the simulation of a BSP superstep due to local computation,synchronization (see Proposition 2), and sorting plus routing (this subsection), we obtain:Tsuperstep = O (w + (Gh+ L)S(L;G; p; h)) ;which yields Theorem 2 withS(L;G; p; h) = L log p(Gh+ L) log(1 + dL=Ge) + min(log p;� log phlog(h+ 1)�2 �Tseq�sort(h)Gh+ L �) :(Note that the term 25log� ph�log� h does not appear in the slowdown, since this term becomesconstant when h is large enough that sorting via Cubesort is preferable to sorting via AKS.) Inall cases, S(L;G; p; h) = O(log p). Moreover, S(L;G; p; h) = O(1) for h su�ciently large (e.g.,h =
(p� + L log p), for constant �).4.3 Randomized routing of h-relationsWhile the slowdown of simulations based on sorting is asymptotically small, it remains substantialfor practical purposes. In part, this is a re
ection of the inherent di�culty of decomposing ageneral h-relation on-line. However, in many cases, the problem can be eased if some properties ofthe h-relation are known in advance.In this subsection, we show that if the degree h of the relation is known in advance to eachprocessor, then routing can be accomplished in asymptotically optimal time by resorting to simplerandomized procedures. Speci�cally, we consider the case h > dL=Ge, since otherwise the routingis trivially accomplished in O(L) steps, and establish the following result.19

Theorem 3 Let dL=Ge � h � p be known in advance by the processors, and let dL=Ge � c1 log p,for some constant c1 > 0. For any constant c2 > 0, any h-relation can be realized in the LogPmodel, without stalling, in time �Gh, with probability at least 1� p�c2, where � = 4e2(c2+3)=c1 .To implement the h-relation, the following protocol is executed in each LogP processor.1. Group the messages in R batches by randomly and independently assigning an integer uni-formly distributed between 1 and R to each message.2. Execute R rounds, each of 2(L + o) steps. In Round r, 1 � r � R, transmit up to dL=Gemessages belonging to batch r, one transmission every G steps.3. Transmit all remaining messages, one transmission every G steps.We now show that, for a suitable value of R, with high probability (i) all messages are transmittedin Step 2, and (ii) the capacity constraint is never violated (i.e., no stalling occurs).Let Xr(j) and Yr(j) denote, respectively, the number of messages originating from and destinedto the j-th LogP processor in Round r, for 1 � r � R. For simplicity, we consider the case whereeach processor is source/destination of exactly h messages, since this is clearly a worst case for ouranalysis. Then, both Xr(j) and Yr(j) are the sum of h independent Bernoulli variables which takevalue 1 with probability 1=R (and value 0 with probability 1� 1=R). Let us chooseR = (1 + �) hdL=Ge ;for some constant � � 1, which implies an expected value for Xr(j) and Yr(j) of h=R = dL=Ge=(1+�). By applying the well-known Cherno� bound [31], we getProb(Xr(j) > dL=Ge) = Prob(Yr(j) > dL=Ge) � e�(1 + �)1+�! dL=Ge1+�
20

where Xr(j) > dL=Ge implies that some message in Round r is not sent by the j-th processor, andYr(j) > dL=Ge implies that in Round r there is (potential) stalling due to violation of the capacityconstraint by messages destined to the j-th processor. Thus, the probability that no stalling occursand that no processor has messages to transmit in Step 3, is at least1� 2Rp e�(1 + �)1+�! dL=Ge1+� � 1� pc2 ;where the last inequality is obtained by making use of the relations R; h � p and dL=Ge � c1 log p,and letting � = e2(c2+3)=c1 � 1. As a consequence, the time bound of the proposed protocol is2(L+ o)R � 4LR = 4(1 + �)Gh = �Gh with probability at least 1� p�c2 , as stated.For the randomized protocol illustrated above, a nonstalling execution can be guaranteed onlywith high probability. However, according to the speci�cation of stalling given in Section 2, evenin the presence of such an event, an h-relation is completed in time O(Gh2), which provides aworst-case upper bound to the running time of the protocol. The key observation is that the totaltime spent by a processor Li stalling while trying to send a message to processor Lj is at most Ghsince, while a hot-spot, Lj receives one message every G steps, and there are at most h messagesfor it to receive. Since there are at most h di�erent destinations for Li's messages, the total timespent stalling is O(Gh2).By employing the randomized protocol to perform h-relations when h < p, in conjunction withthe deterministic strategy when h � p, it can be easily shown that the communication phases ofany sequence of T BSP supersteps, where the i-th superstep requires the routing of an hi-relation,can be simulated by LogP in time O(GPTi=1 hi) with high probability, provided that the hi's areknown and that dL=Ge =
(log p). It should be observed that this result is rather insensitive tothe speci�c form of the adopted stalling rule, since it holds under the reasonable assumption that
21

the stalling rule guarantees a polynomially bounded time to route an h-relation.Consequently, a p-processor machine supporting LogP with parameters L and G, with dL=Ge =
(log p), is able to simulate programs written for a BSP machine with parameters g = G and ` = Lwith constant slowdown with high probability, as long as the degree of the h-relation in eachsuperstep is known by the processors in advance and is large enough to hide the extra cost due tobarrier synchronization (namely, h =
((L=G) log p= log(1 + dL=Ge))). Note that the randomizedsimulation widens the range of optimality of the deterministic simulation considerably. It would beinteresting to explore good randomized strategies for small values of dL=Ge, which are not coveredby Theorem 3, perhaps by adapting some of the randomized routing strategies for bandwidth-latency models proposed in the literature (e.g., [32, 4, 19]).5 BSP vs LogP on Processor NetworksThe preceding sections show that the simulation of stall-free LogP on BSP is considerably simplerthan the simulation of BSP on stall-free LogP. Moreover, under the assumption that G =
(g) andL =
(`), the former exhibits a smaller slowdown, which reinforces the intuition that BSP providesa more powerful abstraction than stall-free LogP does. However, there is no guarantee that theparameters obtained by a direct implementation of the two models on the same machine satisfy theabove relations. Indeed, a key ingredient needed to implement a BSP or a LogP abstraction on amachine is an algorithm for routing h-relations. The algorithm has to support arbitrary values ofh for the BSP implementation, and only dL=Ge-relations for stall-free LogP. It is thus conceivablethat the restriction to small-degree relations yield faster routing algorithms, and therefore smallervalues of G and L for stall-free LogP, compared to the corresponding BSP parameters. In thissection we show that this is not the case for a wide range of machines.In general, Theorem 1 implies that any machine that supports BSP with parameters g and `22

Topology
(p) �(p) Referenced-dim Array p1=d p1=d [34]d = O(1)Hypercube 1 log p [32](multi-port)Hypercube log p log p [32](single-port)Butter
y, CCC, log p log p [32]Shu�e-ExchangePruned Butter
y pp log p [35]Mesh-of-TreesTable 1: Bandwidth and latency parameters of prominent topologies.also supports stall-free LogP with parameters G = �(g) and L = �(`+ g). Conversely, Theorem 2implies that any machine that supports LogP with parameters G and L also supports BSP withparameters g = �(G � S(L;G; p; h)) = O(G log p) and ` = �(L log p). However, tighter relationsbetween the parameters may result when the best direct implementations of the two models areconsidered for a speci�c machine. We next examine this issue for machines that can be accuratelymodeled by suitable networks of processors with local memory.For many prominent interconnections, algorithms are known that route h-relations, for arbitraryh, in optimal time �(
(p)h+�(p)), where �(p) denotes the network diameter and
(p) a bandwidth-related network parameter (e.g.,
(p) = O(p=b(p)) where b(p) is the bisection width [33]). Table 1indicates the asymptotic values of
(p) and �(p) for a number of such interconnections.Any implementation of BSP on any of these networks requires g =
(
(p)) and ` =
(�(p)).Moreover, there is an implementation that matches these lower bounds for both g and `, wherethe value of ` stems from the fact that on any processor network barrier synchronization canalways be implemented in time proportional to the diameter. Thus, the choice g? = �(
(p)) and`? = �(�(p)) represents the best attainable parameter setting for BSP implementations for theseinterconnections. 23

As for stall-free LogP, the de�nition of the model requires that any dL=Ge-relation be routedin time L, which implies L � dL=Ge
(p) + �(p). Therefore, it follows that L =
(
(p) + �(p))and G =
(
(p)). When combined with the observation relating to Theorem 1 stated above, thissuggests that the choice L? = �(
(p) + �(p)) and G? =
(
(p)) represents the best attainableparameter setting for LogP implementations for these interconnections.We can summarize the above discussion as follows:Observation 1 For most processor networks in the literature, G? = �(g?) and L? = �(`? +g?), where G?; L? and g?; `? represent the best attainable parameters for stall-free LogP and BSPimplementations, respectively.6 ConclusionsThe arguments developed in the previous sections suggest that BSP and stall-free LogP exhibitcomparable power when regarded as computational models for the design of algorithms. Namely,we have provided asymptotically e�cient cross-simulations between the two models and arguedthat both abstractions can be implemented on most prominent point-to-point interconnectionswith comparable values of their respective bandwidth and latency parameters.When considering ease of use, the BSP abstraction, with its facility for handling arbitraryh-relations, provides a more convenient framework for algorithm design than LogP, which forcesthe programmer to cast algorithms in a way that respects the capacity constraint. While manyalgorithms can quite naturally be expressed as stall-free LogP programs without undue di�culty,there are others that appear to require considerable ingenuity to be formulated within the LogPframework. This di�culty is evident in the LogP literature: for example, the simple parallelimplementation of Radixsort in [16] involves relations that may violate the capacity constraint andwhose cost cannot be estimated reliably under those circumstances.24

With respect to portability, an important question is how would a change of the machine param-eters a�ect a program. In BSP, such a change will impact performance, but not alter correctness.In LogP, the change might turn correct programs into incorrect ones, or stall-free programs intostalling ones, although the extent to which these undesirable phenomena occur needs investigation.With respect to partitionability of the system into subsystems running independent computa-tions, BSP's global synchronization might induce unnecessary complications, whereas LogP leadsto natural solutions.Although it is recognized that the LogP model is more descriptive than BSP and may thereforeprovide more accurate performance predictions, our �ndings suggest that the loss in accuracyincurred by choosing BSP over LogP is relatively minor in comparison with the advantages providedby the former's more convenient programming abstraction. This conclusion, however, cannot beconsidered de�nitive. In fact, it should be remarked that the BSP simulation on LogP is notstraightforward and its slowdown, even when constant, may be signi�cant in practice. A bettercontrol of constant factors is needed to con�rm the results of our analysis, which is mainly ofasymptotic nature. Further light needs to be shed on the issue of supporting the two abstractionson parallel platforms by considering other architectures that do not fall within the point-to-pointframework. Finally, a more systematic study ought to be devoted to the issue of stalling, possiblyleading to interesting developments within the LogP approach to bandwidth-latency models ofparallel computation.Acknowledgments We gratefully acknowledge Vijaya Ramachandran for pointing out the in-correct claim about the generalization of Theorem 1 to LogP programs that might stall, whichappeared in the earlier versions of this paper, and for suggesting a more careful examination ofthe issue of stalling in LogP. We also would like to thank the SPAA'96 program committee for the
25

extensive and valuable feedback given on the conference version of this paper.References[1] L.G. Valiant. A bridging model for parallel computation. Communications of the ACM,33(8):103{111, August 1990.[2] D.E. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos R. Subramonian, andT.V. Eicken. LogP: Towards a realistic model of parallel computation. In Proceedings of FourthACM SIGPLAN Symposium on principles and Practice of Parallel Programming, pages 1{12,May 1993.[3] D.E. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos, K.E. Schauser, R. Subramonian, andT.V. Eicken. LogP: A practical model of parallel computation. Communications of the ACM,39(11):78{85, November 1996.[4] A.V. Gerbessiotis and L.G. Valiant. Direct bulk-synchronous parallel algorithms. Journal ofParallel and Distributed Computing, 22(2):251{267, 1994.[5] W.F. McColl. BSP programming. In K.M. Chandy G.E. Blelloch and S. Jagannathan, editors,DIMACS Series in Discrete Mathematics, pages 21{35. American Mathematical Society, 1994.[6] W.F. McColl. General purpose parallel computing. In A.M. Gibbons and P. Spirakis, editors,Proc. of the 1991 ALCOM Spring School on Parallel Computation, pages 337{391, Warwick,UK, 1994. Cambridge University Press.[7] W.F. McColl. Scalable computing. In J. Van Leeuwen, editor, Computer Science Today:Recent Trends and Developments, LNCS 1000, pages 46{61. Springer-Verlag, 1995.
26

[8] G.E. Blelloch, P.B. Gibbons, Y. Matias, and M. Zagha. Accounting for memory bank con-tention and delay in high-bandwidth multiprocessors. IEEE Trans. on Parallel and DistributedSystems, 8(9):943{958, September 1997.[9] T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant. Bulk Synchronous Parallel Computing| A Paradigm for Transportable Software. In Proc. of the 28th Annual Hawaii Conferenceon System Sciences. Volume II: Software Technology, pages 268{275. IEEE Computer SocietyPress, January 1995.[10] M. Adler, J.W. Byers, and R.M. Karp. Parallel sorting with limited bandwidth. In Proc. ofthe 7th ACM Symp. on Parallel Algorithms and Architectures, pages 129{136, S. Barbara, CA,USA, July 1995.[11] A. B�aumker, W. Dittrich, and F. Meyer auf der Heide. Truly e�cient parallel algorithms:c-optimal multisearch for and extension of the BSP model. In Proc. of the 3rd EuropeanSymposium on Algorithms, LNCS 979, pages 17{30, 1995.[12] B.H.H. Juurlink and H.A.G. Wijsho�. A quantitative comparison of paralle computationmodels. In Proc. of the 8th ACM Symp. on Parallel Algorithms and Architectures, pages13{24, June 1996.[13] P. De la Torre and C.P. Kruskal. Submachine locality in the bulk synchronous setting. InProc. of EUROPAR 96, LNCS 1124, pages 352{358, August 1996.[14] M. Goudreau, J.M.D. Hill, W. McColl, S. Rao, D.C. Stefanescu, T. Suel, and T. Tsantilas.A proposal for the BSP worldwide standard library. Technical report, Oxford UniversityComputing Laboratory, Wolfson Building, Parks Rd., Oxford OX1 3QD, UK, 1996.
27

[15] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. Towards e�ciency and portability:Programming with the BSP model. In Proc. of the 8th ACM Symp. on Parallel Algorithmsand Architectures, pages 1{12, June 1996.[16] D.E. Culler, A. Dusseau, R. Martin, and K.E. Shauser. Fast parallel sorting under LogP:from theory to practice. In Proc. of the Workshop on Portability and Performance for ParallelProcessors, pages 18{29, Southampton, UK, July 1993.[17] R. Karp, A. Sahay, E.E. Santos, and K.E. Shauser. Optimal broadcast and summation in theLogP model. In Proc. of the 5th ACM Symp. on Parallel Algorithms and Architectures, pages142{153, Velen, Germany, 1993.[18] A. Alexandrov, M.F. Ionescu, K.E. Schauser, and C. Scheiman. LogGP: Incorporating longmessages into the LogP model. In Proc. of the 7th ACM Symp. on Parallel Algorithms andArchitectures, pages 95{105, Santa Barbara, CA, July 1995.[19] M. Adler, J.W. Byers, and R.M. Karp. Scheduling parallel communication: The h-relationproblem. In Proc. of the 20th International Symp. on Mathematical Foundations of ComputerScience, LNCS 969, pages 1{20, 1995.[20] V. Ramachandran, B. Grayson, and M. Dahlin. Emulations between QSM, BSP and LogP:a framework for general-purpose parallel algorithm design. To appear in Proc. of the 10thACM-SIAM Symp. on Discrete Algorithms, Baltimore, MD, January 1999.[21] P. B. Gibbons and Y. Matias and V. Ramachandran. Can a shared-memory model serveas a bridging model for parallel computation? In Proc. of the 9th ACM Symp. on ParallelAlgorithms and Architectures, pages 72{83, Newport, RI, June 1997.
28

[22] W.J. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE Trans. onComputers, 39(6):775{785, June 1990.[23] G. Bilardi, K.T. Herley, A. Pietracaprina, G. Pucci and P. Spirakis. BSP vs LogP. In Proc. ofthe 8th ACM Symposium on Parallel Algorithms and Architectures, pages 25{32, June 1996.[24] V. Ramachandran. Personal Communication, June 1998.[25] M.T. Goodrich. Communication-e�cient parallel sorting. In Proc. of the 28th ACM Symp. onTheory of Computing, pages 247{256, Philadelphia, Pennsylvania USA, May 1996.[26] A. Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the postal model for message-passing systems. In Proc. of the 4th ACM Symposium on Parallel Algorithms and Architectures,pages 13{22, June 1992.[27] B. Bollob�as. Graph theory : an introductory course. Springer-Verlag, New York, NY, 1979.[28] M. Ajtai, J. Koml�os, and E. Szemer�edi. Sorting in c log n parallel steps. Combinatorica,3(1):1{19, 1983.[29] R. Cypher and J.L.C. Sanz. Cubesort: a parallel algorithm for sorting n data items withs-sorters. Journal of Algorithms, 13:211{234, 1992.[30] D.E. Knuth. The Art of Computer Programming, volume 3 : Sorting and Searching. AddisonWesley, Reading, MA, 1973.[31] T. Hagerup and C. R�ub. A guided tour of Cherno� bounds. Information Processing Letters,33(6):305{308, February 1990.[32] L.G. Valiant. General purpose parallel computing. In J. Van Leeuwen, editor, Handbook ofTheoretical Computer Science, volume A, chapter 18, pages 944{996. Elsevier, NL, 1990.29

[33] C.D. Thompson. A complexity theory for VLSI. PhD thesis, Dept. of Computer Science,Carnegie-Mellon University, Aug. 1980. Tech. Rep. CMU-CS-80-140.[34] J.F. Sibeyn and M. Kaufmann. Deterministic 1-k routing on meshes, with application to hot-potato worm-hole routing. In Proc. of the 11th Symp. on Theoretical Aspects of ComputerScience, LNCS 775, pages 237{248, 1994.[35] P. Bay and G. Bilardi. Deterministic on-line routing on area-universal networks. Journal ofthe ACM, 42(3):614{640, May 1995.

30

