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a b s t r a c t

We study the shortest-path broadcast problem in graphs and digraphs, where amessage has
to be transmitted from a source node s to all the nodes along shortest paths, in the classical
telephonemodel. For both graphs and digraphs, we show that the problem is equivalent to
the broadcast problem in layered directed graphs. We then prove that this latter problem is
NP-hard, and therefore that the shortest-path broadcast problem is NP-hard in graphs as
well as in digraphs. Nevertheless,we prove that a simple polynomial-time algorithm, called
MDST-broadcast, based on min-degree spanning trees, approximates the optimal broad-
cast time within a multiplicative factor 3

2 in 3-layer digraphs, and O(
log n

log log n ) in arbitrary
multi-layer digraphs. As a consequence, one can approximate the optimal shortest-path
broadcast time in polynomial time within a multiplicative factor 3

2 whenever the source
has eccentricity at most 2, and within a multiplicative factor O(

log n
log log n ) in the general case,

for both graphs and digraphs. The analysis of MDST-broadcast is tight, as we prove that
this algorithm cannot approximate the optimal broadcast timewithin a factor smaller than
Ω(

log n
log log n ).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The general context

Broadcasting refers to the task in which onemessage has to be transmitted from one source node to all the other nodes in
a network (we always assume that all nodes are reachable from the source). Constructing efficient broadcast protocols, that
is, computing an appropriate scheduling for the communications between nodes, has been the source of a huge amount of
work whose nature depends highly on the communication model. In this paper, we use the classical telephone model [15].
In this model, the network is modeled as a connected undirected or directed graph,1 and communications proceed in a
sequence of synchronous rounds. At each round, every node which is aware of the message (that is, either the source, or a
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1 In this paper, ‘‘directed graph’’ is abbreviated to ‘‘digraph’’, while ‘‘undirected graph’’ is abbreviated to ‘‘graph’’.
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node that has received the message during some previous round) can forward the message to at most one of its neighbors
in the network. In a digraph, the message can only travel in the direction of the edge along which it is sent. The measure of
complexity is the number of rounds necessary to complete broadcast. Given a graph or a digraph G = (V , E), and a node
s ∈ V , we denote by b(G, s) the minimum number of rounds required to broadcast a message from s to all nodes in V in the
telephone model.

Given a (di)graph G = (V , E) and s ∈ V , the telephone broadcast problem consists in computing b(G, s). In the multicast
version of the problem, a set S of terminals is additionally specified, and the objective is to compute theminimumnumber of
rounds to inform all nodes in S (the message can of course be relayed by non-terminal nodes). In fact, in both variants of the
problem, we are also interested in computing the optimal communication schedule enabling to reach the optimal broadcast
or multicast time. Since no nodes need to be informed twice, this schedule can be represented by a tree T rooted at the
source, spanning the terminals, with downward edges from each node u labeled by pairwise distinct integers in [1, deg(u)]
where deg(u) is the number of children of u in T , specifying the order in which u’s children should be informed. (Observe
that w.l.o.g., we are restricting our attention to schedules where transmissions from a node occur at consecutive rounds.)

The broadcast time of many classical networks is known (cf., e.g., [10,13,15–17] and the references therein), and several
efficient randomized broadcast protocols have been proposed [12]. However, the broadcast problem (and thus themulticast
problem as well) is known to be NP-complete in graphs (and thus in digraphs as well) [11]. In fact, it is even known that
it is NP-hard to approximate the broadcast time within a ratio 3 − ϵ for any ϵ > 0 [6]. There have been several attempts
to design polynomial-time approximation algorithms for the broadcast and multicast problems [2,6,7,18,21], and the best
known approximation ratio is O(

log k
log log k ) for k-terminal multicast (in the case of undirected graphs), due to [7]. In directed

graphs, the broadcast problem appears to be even more difficult to approximate: not only is it unlikely that there exists a
polynomial-time approximation scheme for it, but it is even unlikely that it is in APX. Indeed, it has been proved that, unless
NP ⊆ DTIME(nO(log n)), the broadcast problem in digraphs cannot be approximated within a ratio less than Ω(

√
log n) [6].

The best known approximation algorithm for broadcast in digraphs has approximation factor O(log n) [6]. The difficulty
appears to be even more severe regarding multicast, for which it is known [9] that the k-terminal multicast time cannot
be approximated within a factor less than Ω(log k). The best polynomial-time algorithm known approximates multicast
within a multiplicative factor of O(log k), but with an additive factor of O(

√
k) [8].

1.2. Our results

In this paper, we are interested in the shortest-path broadcast problem in graphs and digraphs [14] (see also [3]). Shortest
path broadcast refers to the broadcast problem in which the message must reach every node u along a shortest path from
the given source s to u in the given (di)graph G. In other words, the message can only traverse edges of the layered digraphs
induced by the edges of the original (di)graph from a node at distance i from s to a node at distance i + 1 from s in G.

We first show that the shortest-path broadcast problem in graphs and digraphs is equivalent to the broadcast problem in
layered directed graphs (a.k.a.multi-stage digraphs). Using this equivalence, we then show that the shortest-path broadcast
problem is NP-hard in graphs and digraphs. Nevertheless, using the techniques in [21], we prove that an approximation
algorithm based on aminimum-degree spanning tree construction, has approximation ratio O(

log n
log log n ) for the shortest-path

broadcast problem in general graphs and digraphs. The bad news is that this bound is tight for this algorithm, as we prove
that it cannot provide an approximation ratio better than Ω(

log n
log log n ) for the problem. Finally, for the instances in which the

source has eccentricity 2, we show that shortest-path broadcast time can be approximated within a multiplicative factor 3
2

for both graphs and digraphs.

1.3. Structure of the paper

We provide the formal definition of our problems in Section 2, where we also establish the equivalence between the
shortest-path broadcast problems and the broadcast problem in layered digraphs. In Section 3, we prove that all our
problems are NP-hard. Section 4 is then dedicated to the design and analysis of the approximation algorithm based on
the minimum-degree spanning tree construction, while Section 5 analyzes this algorithm for the instances in which the
source has bounded eccentricity. We conclude by some considerations about multicast, and the potential fixed parameter
tractability nature of the shortest-path broadcast problem where the parameter is the eccentricity of the source, including
some open questions.

2. Definitions and preliminary results

In this paper, we focus on shortest-path broadcast, that is, a variant of the classical broadcast problem,where themessage
is restricted to travel along shortest paths. In other words, the message can only be transferred from a node at distance i
from the source s to a node at distance i + 1 from s, for some i ≥ 0. As we mentioned in the introduction, shortest-path
broadcast is closely related to broadcast in layered graphs. In this section, we formalize this statement. For that purpose, let
us define formally the shortest-path broadcast problems we are interested in.



P. Crescenzi et al. / Discrete Applied Mathematics ( ) – 3

• sp-bcast: given a connected graph G, a node s of G, and k ≥ 0, decide whether broadcast from s to all nodes in G can be
achieved along shortest-paths in at most k rounds.

• min-sp-bcast: given a connected graph G, and a node s of G, compute the minimum number of rounds required to
broadcast a message from s to all nodes in G along shortest-paths.

• sp-dir-bcast and min-sp-dir-bcast: same as the above, respectively, where G is a directed graph (and all nodes are
reachable from s).

Now, let us define layered digraphs. A layered digraph is a directed graph where the set of nodes is partitioned into ℓ ≥ 1
disjoint subsets V0, V1, . . . , Vℓ−1 such that if (u, v) is an edge of the digraph then necessarily u ∈ Vi and v ∈ Vi+1 for some i,
0 ≤ i < ℓ − 1. To state the equivalence between shortest-path broadcast in graphs and digraphs, and broadcast in layered
digraphs, we define the following:

• lay-bcast: given a layered digraph L, with V0 = {s}, and k ≥ 0, decide whether broadcast from s to all nodes in L can be
achieved in at most k rounds.

• min-lay-bcast: given a layered digraph L, with V0 = {s}, compute theminimum number of rounds required to broadcast
a message from s to all nodes in L.

In order to precisely state the equivalence between the above problems, we refer to a quite strong notion of
approximation-preserving reduction, that is, the strict reduction [4] (S-reduction), which strengthens the linear reduction
(L-reduction) defined in [20]. Intuitively, an optimization problem A is S-reducible to another optimization problem B if any
instance of A can be transformed into an instance of Bwith the same optimal value, and any solution for B can be transformed
into a solution for A with the same cost. More formally, let A and B be optimization problems, and cA and cB (respectively,
OPTA and OPTB) their cost functions (respectively, their optimal value functions). A pair of functions f and g is an S-reduction
from A to B if all of the following conditions are met: (1) functions f and g are computable in polynomial time; (2) if x is
an instance of problem A, then f (x) is an instance of problem B, and OPTB(f (x)) = OPTA(x); (3) if y is a solution to f (x),
then g(x, y) is a solution to x, and cA(x, g(x, y)) = cB(f (x), y). The two problems A and B are S-equivalent if there exists an
S-reduction from A to B, and an S-reduction from B to A.

Lemma 1. min-sp-bcast, min-sp-dir-bcast, and min-lay-bcast are all S-equivalent.

Proof. First, let us show thatmin-sp-bcast andmin-sp-dir-bcast are both S-reducible tomin-lay-bcast. To see why, given
a (di)graph G, and given a source node s ∈ V (G), let f1(G, s) = Gs, where Gs is the directed graph on the same set of nodes as
G, where the edge (u, v) belongs to E(Gs) if and only if the directed edge (u, v) or the edge {u, v} in G belongs to at least one
shortest path starting from s. Note that Gs is directed and layered, with V0 = {s}. By construction, any broadcast protocol
from s in Gs is a shortest-path broadcast protocol from s in G, and vice-versa, with the same execution times. That is, by
choosing g1(x, y) = y, we get that (f1, g1) is an S-reduction.

Conversely, let us show that min-lay-bcast is reducible to both min-sp-bcast and min-sp-dir-bcast. The S-reduction to
min-sp-dir-bcast is trivial since the instance graph of min-lay-bcast is directed, i.e., choose f2 as the identity function, and
g2 = g1. The S-reduction to min-sp-bcast is defined by choosing, for any layered digraph L with V0 = {s}, f3(L) = (U, s)
where U is the graph obtained from L by removing the orientation of the edges, and g3 = g1. Indeed, we then have:

OPTmin-sp-bcast(f3(L)) = OPTmin-sp-bcast(U, s)
= OPTmin-lay-bcast(f1(U, s))
= OPTmin-lay-bcast(Us)

= OPTmin-lay-bcast(L)

where the first equality is by definition of f3, the second equality by the fact that min-sp-bcast is S-reducible to min-lay-
bcast by (f1, g1), the third equality is by definition of f1, and the last equality follows from the fact that, given a layered
digraph L with V0 = {s}, we have Us = L. Similarly, regarding the cost function, for any solution y of min-sp-bcast for the
instance (U, s), we have:

cmin-lay-bcast(L, g3(L, y)) = cmin-lay-bcast(L, y)
= cmin-lay-bcast(Us, y)
= cmin-sp-bcast((U, s), g1((U, s), y))
= cmin-sp-bcast(f3(L), y)

where the first equality is by definition of g3, the second equality follows from the fact that Us = L, the third equality follows
from the fact thatmin-sp-bcast is S-reducible tomin-lay-bcast by (f1, g1), and the last equality follows from the definitions
of f3 and g1. �

The first important consequence of this lemma is that if any of the three decision problems sp-bcast, sp-dir-bcast, and
lay-bcast is NP-complete, then all of them are NP-complete. The second important consequence is that any approximation
results, either positive or negative, for any of the three optimization problems min-sp-bcast, min-sp-dir-bcast, and min-
lay-bcast immediately applies to all of them. In any case, note that the broadcast problem in layered digraphs may also
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Fig. 1. The gadget Gn of the NP-completeness proof.

have an interest on its own because of the practical importance of these graphs for communication networks, ranging from
tightly coupled parallel computers [19] to modern data centers [1].

3. Shortest-path broadcast is hard

Our first result is showing that the broadcast problem remains hard to be solved, even in the case of the shortest paths.

Theorem 1. lay-bcast is NP-complete.

Proof. We adapt the reduction presented in [5], which was used to show that the broadcast problem is NP-complete even
for bounded-degree graphs. We reduce 3-SAT to lay-bcast. To this aim we will make use of the gadget Gn depicted in Fig. 1.
In this figure, s = L0,0. Observe that b(Gn, s) = n+ 1. Indeed, it is clear that b(Gn, s) ≥ n+ 1, since there are n+ 2 levels. On
the other hand, the unique optimal broadcast scheduling is the one in which each node Li,0, for 0 ≤ i ≤ n, first serves its left
child and then serves its right child, while all other nodes serve their right child only (in the figure, the broadcast times of
this scheduling are shown in gray). Note also that, according to this optimal scheduling, all nodes at level i, with 1 ≤ i ≤ n,
receive the message at time i + 1, apart from the node Li,0, which receives the message at time i.

Let ϕ be a CNF Boolean formula on variables {v1, . . . , vn} with clauses {c1, . . . , cm}, where |ci| = 3 for 1 ≤ i ≤ m. We
then construct a layered graph Gϕ as follows (see Fig. 2). A copy of the gadget Gn is connected to 2n copies of the gadget Gm
(whose sources are denoted by F1, . . . , Fn, and T1, . . . , Tn) and to a path of m + 3 nodes (denoted by p1, p2, . . . , pm+3) by
the following edges: (Ln,i, Fi) and (Ln,i, Ti), for 1 ≤ i ≤ n, and (Ln+1,0, p1). For any i, 1 ≤ i ≤ n, we denote the node Lm+1,0
of the gadget rooted at Fi (respectively, Ti) as node fi (respectively, ti). Finally, for each clause cj there is a node xj. An edge is
connecting the node Ln,j of the gadget rooted at Fi (respectively, Ti) to node xj if and only if the literal ¬vi (respectively, vi)
belongs to cj. Observe that there are exactly n+m+5 levels inGϕ (n+2 levels inGn, andm+3 levels in the path p1, . . . , pm+3).

We have that b(Gϕ, s) ≥ n + m + 4 because the broadcast time cannot be less than the number of levels minus 1. We
now prove that ϕ is satisfiable if and only if b(Gϕ, s) = n + m + 4.

If ϕ is satisfiable, then let τ be a satisfying truth-assignment. We can construct an optimal broadcast scheduling as fol-
lows. We apply the optimal broadcast scheduling in the gadget Gn. The node Ln+1,0 will inform the node p1 at time n + 2.
The message can propagate through the path starting from this latter node and arrive at node pm+3 at time n + m + 4. For
any i, 1 ≤ i ≤ n, if τ(vi) = 0 (respectively, 1), then the node Ln,i of Gn will inform the node Fi (respectively, Ti) at time n+ 2,
and the node Ti (respectively, Fi) at time n + 3. We then apply the optimal broadcast scheduling to each gadget Gm, so that
if τ(vi) = 0 (respectively, τ(vi) = 1), then all nodes Lm,j of the gadget rooted at Fi (respectively, Ti), 1 ≤ j ≤ m, will receive
the message at time n + m + 3, and all nodes Lm,j of the gadget rooted at Ti (respectively, Fi), will receive the message at
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Fig. 2. The graph Gϕ corresponding to a CNF Boolean formula ϕ (in this case,¬x1 and¬xn appear in c1 , while x1 and xn appear in c2). The optimal broadcast
time is n + m + 4.

time n + m + 4. Since τ satisfies ϕ, we get that, for each node xj, there must exist one of its parents that has received the
message at time n+m+ 3. Hence, xj will receive the message at time n+m+ 4. Finally, all nodes Lm+1,0 of the gadgets Gm
will receive the message at time n + m + 3, and can inform the corresponding fj or tj nodes at time n + m + 4.

Conversely, assume that b(Gϕ, s) = n+m+ 4. This implies that the broadcast scheduling applied to the gadget Gn must
be optimal. Otherwise, either Ln+1,0 or Ln,i, for some i, 1 ≤ i ≤ n, receive the message at time at least n + 2. In the first case,
the overall broadcast time would be greater than n + m + 4, since there are m + 3 levels below Ln+1,0, while, in the other
case, either Fi or Ti receive the message at time at least n + 4 and the overall broadcast time would be at least n + m + 4,
since there arem+ 1 levels below these two nodes. Hence, all terminal nodes of the gadget Gn must receive the message at
time n + 1. For each variable vi, we set τ(vi) = 0 (respectively, 1) if the node Fi (respectively, Ti) has received the message
at time n + 2. This yields a truth-assignment (since either Fi or Ti has received the message at time n + 2 and either Fi or Ti
has received the message at time n+ 3). Since all clause nodes xj have received the message at time n+m+ 4, this implies
that they have received the message from a node belonging to a gadget Gm whose source node Si has received the message
at time n+ 2, that is, the literal corresponding to xj included in the clause corresponding to Si has been assigned the value 1.
In other words, all clauses are satisfied by τ . �

As a direct consequence of Lemma 1 and Theorem 1, we get the following result.

Corollary 1. sp-bcast and sp-dir-bcast are both NP-complete.

4. The approximation algorithm MDST-broadcast

A spanning tree T rooted at a node u in a given (di)graph G is a minimum-degree spanning tree (MDST) of G rooted at u
if no spanning trees of G rooted at u can have a maximum degree smaller than the maximum degree of T . (Note that, if G
is undirected, then the root actually plays no role.) We analyze the following 2-stage algorithm, calledMDST-broadcast, for
solving the broadcast problem in layered digraphs:

1. Compute a MDST T rooted at the source s;
2. Compute an optimal broadcast schedule from s in T (i.e., using only the edges of T ).

Note that both stages can be computed in polynomial time, thanks to [23] and [22], respectively. (In fact, in layered digraphs,
computing a MDST can also be done by solving a series of flow problems between each pair of consecutive levels, but this
solution is less efficient than the one in [23].)

Theorem 2. Algorithm MDST-broadcast approximates min-lay-bcast within multiplicative factor O(
log n

log log n ).

Proof. Ravi [21] has defined the poise of a graph, and has shown that it is closely related to the broadcast time of the graph.
The poise p(G) of a graph G is defined as the minimum ∆T +DT taken over all spanning trees of G, where ∆T and DT denote
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Fig. 3. The instance (G, s) in the proof of Theorem 3.

the maximum degree and the depth of T , respectively. This definition extends directly to our setting, where the trees are
bounded to be rooted at s. Hence, by applying the same arguments as in [21], we obtain that

1
2

p(G) ≤ b(G, s) ≤ O

p(G)

log n
log log n


where the upper bound is obtained by computing a greedy broadcast protocol in a spanning treewith poise p(G), completing
in this many rounds.

In the case of ℓ-layer digraphs, the poise is simply equal to ∆min + ℓ − 1 where ∆min denotes the maximum degree of
any minimum-degree spanning tree (rooted at s), because the depth of any spanning tree of an ℓ-layer digraph is equal to
ℓ − 1. Hence p(G), and a spanning tree T with poise p(G), are computable in polynomial time in layered digraphs (because,
as we observed before, a spanning tree with maximum degree equal to ∆min is computable in polynomial time in these
graphs [23]).

Therefore, a broadcast protocol completing inO(p(G)
log n

log log n ) rounds is computable in polynomial time (e.g., by computing
an optimal broadcast protocol in T with the algorithm in [22]). If follows thatMDST-broadcast returns a broadcast protocol
whose completion time is O(

log n
log log n ) times the optimal broadcast time, since p(G) is at most twice b(G, s). �

The following result shows that the above analysis is tight up to constant factors.

Theorem 3. The approximation ratio of algorithm MDST-broadcast is at least Ω
 log n
log log n


for min-lay-bcast.

Proof. We present an instance (G, s) of the broadcast problem in layered digraphs (see Fig. 3), for which MDST-broadcast
approximates b(G, s) within ratio Θ(

log n
log log n ).

To describe the instance, let d ≥ 2 be a power of two and h ≤ d be a positive integer. The source s is the root of a
complete binary tree B with dh leaves (hence of depth h log d). For i = 1, . . . , dh, every leaf ui of B is the root of a path Pi of
length h. Node u1 is also the root of a complete d-ary tree D with dh leaves (hence of depth h), whose nodes belong to the
Pi’s. More formally: the root u1 of D is the first node of P1; the d children of u1 in D are the second nodes of P1, . . . , Pd; the
d2 grand-children of u1 in D are the third nodes in P1, . . . , Pd2 ; and, in general, the dk nodes at level k of D are the (k + 1)th
nodes of P1, . . . , Pdk . In particular, the leaves ofD correspond to the last nodes of the Pis. The connections between the nodes
in D (i.e., which nodes of level ℓ of D are connected to which nodes of level ℓ+1) are arbitrary, apart from the fact that every
node x in D which is the successor in some path Pi of a node y in Dmust be a child of y in D.

For every pair v, w of adjacent nodes in some Pi, such that v ∉ D and w ∈ D, we connect v to d new leaves. Let U denote
the set of all these new leaves. Note that |U| = d(dh −1) because each of the dh paths Pi, apart from P1, has exactly one node
wi belonging to Dwhose predecessor vi in the path is not in D (see again Fig. 3). Note that, according to how the connections
in D have been constructed, the sub-path of Pi starting from wi is included in D.

Overall, the layered digraph has n = Θ(dh+1) nodes, as there are Θ(dh) nodes in B and in D, Θ(hdh) = O(dh+1) nodes in
the collection of paths Pi, i = 1, . . . , dh, and Θ(dh+1) nodes in U .

On the one hand, there exists a spanning tree T of Gwith maximum out-degree d. For instance T could consist of the tree
B, the tree D and the collection of dh − 1 ‘‘brooms’’ formed by the sub-path of Pi from ui to vi and the d children of vi in U , for
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i = 2, . . . , dh. The existence of a spanning tree T of Gwith maximum out-degree d implies that the broadcast time returned
byMDST-broadcast is O(dh). Indeed,MDST-broadcastmust employ a spanning tree of maximum out-degree atmost d. Such
a spanning treemust include B because, in fact, any spanning tree of Gmust include B. Broadcasting in the binary tree B takes
2h log d rounds. Hence, after this many rounds, broadcasting takes at most O(dh) additional rounds because broadcasting in
a tree with maximum degree d and depth h requires at most O(dh) rounds.

On the other hand, every minimum-degree spanning tree of G must include the d-ary tree D. This is because the nodes
vi on the paths Pi need to ‘‘cover’’ their d children in the set U , and hence they cannot cover their only child wi in D. This
implies that the edge (vi, wi) cannot be part of the spanning tree. Hence all the nodes in D can only be spanned by using
the edges in D. The fact that D is included in every minimum-degree spanning tree of G implies that the protocol computed
by MDST-broadcast completes in at least Ω(dh) rounds because broadcasting in D takes at least these many rounds (by
induction on k, informing all nodes at level k requires at least kd rounds).

To sum up, the protocol returned by MDST-broadcast completes in

tMDST-broadcast = Θ(dh)

rounds. Let us now focus on the optimal protocol. We have

b(G, s) = Θ(h log d + d)

since, on the one hand, there are Θ(h log d) layers and d steps are required to transmit to all the leaves in U , and, on the
other hand, this broadcast time is achieved by broadcasting in B and by then using the paths Pi’s in parallel.

We now set h = ⌈d/ log d⌉, whence d = Θ(h log h). Then, n = Θ(dh+1) = 2Θ(d), whence d = Θ(log n) and h =

Θ(log n/ log log n). Also, b(G, s) = Θ(d) = Θ(h log h), so the performance ratio is Ω(h) = Ω(log n/ log log n). �

Again, as a direct consequence of Lemma 1, Theorems 2 and 3 is the following result.

Corollary 2. Algorithm MDST-broadcast approximates min-sp-bcast and min-sp-dir-bcast within multiplicative factor
Θ(

log n
log log n ).

5. Sources with bounded eccentricities

We have seen that the algorithm MDST-broadcast enables to approximate the shortest-path broadcast problem with a
multiplicative factorO(

log n
log log n ). In this section, we study the performance ofMDST-broadcast as a function of the eccentricity

of the source. According to the reduction from the shortest-path broadcast problem to the broadcast problem in layered
digraph stated in Lemma 1, this corresponds to analyzing the performances ofMDST-broadcast as a function of the number
of layers ℓ in a layered digraph.

Theorem 4. AlgorithmMDST-broadcast approximatesmin-lay-bcastwithin multiplicative factor ℓ − 1 in ℓ-layered digraphs.

Proof. Let ∆min be the maximum degree of a minimum-degree spanning tree T computed in the first step of MDST-
broadcast. Broadcasting in T takes at most (ℓ − 1)∆min rounds (by induction on ℓ). On the other hand, the spanning tree
corresponding to an optimal broadcast protocol has degree at least ∆min and thus b(G, s) ≥ ∆min. �

We now provide a better bound on the approximation ratio of MDST-broadcast, in the case ℓ = 3.

Theorem 5. Algorithm MDST-broadcast approximates min-lay-bcast within multiplicative factor 3
2 in 3-layer digraphs.

Proof. Let G = ({s} ∪ V1 ∪ V2, E) be a 3-layer digraph. Let us denote by topt = b(G, s) the broadcast time of an optimal
protocol opt, and by talg the completion time of the broadcast protocol alg computed by our algorithm MDST-broadcast.

For i = 1, . . . , |V1|, let vi ∈ V1 be the ith node informed by s in alg, and let Bi ⊆ V2 be the set of nodes informed by vi
in alg. We can assume, without loss of generality, that |B1| ≥ |B2| ≥ · · · ≥ |B|V1|| ≥ 0. Indeed, if |Bj| > |Bi| for some i and j
with i < j, then we could modify the broadcast protocol by informing vj before vi, without increasing its completion time.
Observe that

talg = max
1≤i≤|V1|

(i + |Bi|) = k + |Bk|, (1)

where k is the value of i that maximizes i + |Bi|. Observe also that topt ≥ |V1| ≥ k. Thus, if |Bk| < k/2, we are done, since
talg = k+|Bk| < 3

2k ≤
3
2 topt . Finally observe that topt ≥ |B1|, sinceMDST-broadcast is based on aminimumdegree spanning

tree. Indeed, if ∆opt (respectively, ∆alg ) denotes the maximum degree of the spanning tree induced by the broadcast pro-
tocol opt (respectively, alg), then topt ≥ ∆opt ≥ ∆alg ≥ |B1|. Thus, if k < |Bk|/2, we are also done, since talg = k + |Bk| <
3
2 |Bk| ≤

3
2 |B1| ≤

3
2 topt .

Let us now define q = |Bk|/k. From the preceding observations, the theorem holds if either q < 1/2 or q > 2. Thus, we
assume from now on that q ∈ [1/2, 2]. We can rewrite (1) as

talg = (1 + q)k.
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Each set in B1, B2, . . . , Bk has at least |Bk| nodes, which implies that

|V2| ≥ k · |Bk| = qk2.

Observe that in t rounds, no broadcast protocol can inform more than


t−1
2


nodes in V2 (indeed, this upper bound can be

reached when t − 1 nodes in V2 are informed by the first informed node in V1, t − 2 from the second informed node in V1,
and so on). Hence, |V2| ≤


topt −1

2


< t2opt /2. That is,

topt >

2|V2| ≥


2qk.

The performance ratio of the algorithm is therefore bounded by

talg
topt

<
(1 + q)k
√
2qk

=
(1 + q)
√
2q

.

Examining the function f (x) =
1+x
√
2x

in the range x ∈ [1/2, 2], we find that the onlymaxima are at the two endpoints, x = 1/2

and x = 2, in which the function is equal to 3
2 . The theorem then follows. �

Corollary 3. Algorithm MDST-broadcast approximates min-sp-bcast and min-sp-dir-bcast within multiplicative factor ℓ
(respectively, 3

2 ) whenever the source has eccentricity at most ℓ ≠ 2 (respectively, ℓ = 2).

Note that the bound 3/2 for ℓ = 2 is essentially tight for MDST-broadcast. Indeed, let d > 0 be an arbitrary odd integer.
The instance where (V1, V2) forms a complete d ×

d(d−1)
2 bipartite graph has optimal broadcast time equal to d, but the

minimum-degree spanning tree where each node in V1 has degree (d−1)/2 results in a broadcast time equal to 3(d−1)/2,
yielding an approximation factor of 3d−1

2d , which is less than 3
2 , but arbitrarily close to 3

2 as d grows.

6. Conclusions

In this paper, we analyzed the shortest-path broadcast problem in graphs and digraphs. In particular, after proving the
NP-hardness of the problem, we showed that Algorithm MDST-broadcast approximates the shortest-path broadcast time
within a ratio Θ(

log n
log log n ) in both graphs and digraphs. In the case of digraphs, this ratio is smaller than the best known

approximation ratio for broadcasting without the shortest path constraint. Moreover, for instances where the source has
eccentricity 2, we have shown that shortest-path broadcast time can be approximated within a multiplicative factor less 3

2 .
It is known [21] that the broadcast problem is as hard in (di)graphs with bounded diameter as in general (di)graphs. This

may not be the case when we restrict ourselves to shortest-path broadcast. In particular, it is not clear whether the problem
is NP-hard for instances where the source has bounded eccentricity, or even eccentricity 2. If so, an intriguing open problem
is whether the shortest-path broadcast problem is fixed-parameter tractable (FPT) when parameterized by the eccentricity
of the source. (The reduction from SAT in the proof of Theorem 1 uses instances where the eccentricity of the source is
unbounded.) In fact, to the best of our knowledge, no results are known on the FPT nature of the broadcast problem even in
the case without the shortest-path constraint.

Another direction of research is extending the study of shortest-path communication to the multicast problem. One can
show that multicast remains hard to approximate in layered digraphs. Indeed, by a reduction similar to the one in Theorem
3 of [9], it is possible to show that, even for 3-layer digraphs, the multicast time cannot be approximated within a ratio
smaller than Ω(log n). Note that this bound is tight, as the multicast time can be approximated within a ratio O(log n) in
3-layer digraphs. (One way to achieve this bound is using a greedy algorithm based on flow, for solving a minimum-degree
set-cover problem.)
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