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Abstract—In this paper we present a novel streaming
algorithm for the k-center clustering problem for general
metric spaces under the sliding window model. The algorithm
maintains a small coreset which, at any time, allows to compute
a solution to the k-center problem on the current window with
an approximation quality that can be made arbitrarily close
to the best approximation attainable by a sequential algorithm
running on the entire window. Remarkably, the size of our
coreset is independent of the window size and can be upper
bounded by a function of k, of the desired accuracy, and
of the doubling dimension of the metric space induced by
the stream. For streams of bounded doubling dimension, the
coreset size is merely linear in k. One of the major strengths
of our algorithm is that it is fully oblivious to the doubling
dimension of the stream, and it adapts to the characteristics
of each individual window. Also, unlike previous works, the
algorithm can be made oblivious to the aspect ratio of the
metric space, a parameter related to the spread of distances.
We also provide experimental evidence of the practical viability
of the approach and its superiority over the current state of
the art.

Keywords-k-center clustering, data streams, sliding window
model, coreset, doubling-dimension, approximation algorithms

I. INTRODUCTION

Clustering is a fundamental primitive for data analysis,

with applications in a variety of domains such as database

search, bioinformatics, pattern recognition, networking, op-

eration research, and many more [1], [2]. In this paper, we

focus on the popular k-center variant which, given a set P
of points from a metric space and a parameter k < |P |,
requires to identify a set S ⊂ P of k centers minimizing

the maximum distance of any point from its closest center.

In several current application domains (e.g., social net-

works, online finance, online transaction systems), data are

generated at a high rate in a continuous fashion, and their

processing requires on-the-fly computation while maintain-

ing in memory only a small portion of the data. This com-

putational scenario is captured by the well-known stream-

ing model, which has received ever-increasing attention in

the literature over the last two decades [3], [4]. In some

prominent applications, it is important that older data in the

stream (i.e., those outside a sliding window containing the

N most recent data items) should be considered “stale” and

should be disregarded in returning the desired solution. As

an example, consider the problem of detecting fraudulent

credit card use, where it is essential to detect a change in

the recent spending patterns with respect to the earlier ones.

For this latter setting, an important variant of the streaming

model, known as the sliding window model, was introduced

in [5].

In this paper, we design, analyze, and experiment with a

novel streaming algorithm for the k-center problem under

the sliding window model. Our algorithm improves over

the state of the art in several directions, as described in

Subsection I-B.

A. Related Work

In the standard static sequential setting, it is well known

that k-center is NP-hard, that it admits a 2-approximation

algorithm, and that for any ε > 0 it is not (2 − ε)-
approximable unless P=NP [6].

The problem has also been studied in the fully dy-

namic setting where the input pointset changes dynamically

through insertions of new points or deletions of existing

points, and, at any time, the algorithm must be able to

return an accurate solution for the current pointset in a

time substantially smaller than the time required to compute

the solution from scratch. In [7] the authors developed a

(2 + ε)-approximation algorithm for the fully dynamic k-

center problem on general metric spaces, with update time

independent of the input size. For a given query point x,

the algorithm can establish whether x is a center in constant

time, and return the entire cluster of x in time proportional to

the cluster size. These results have been recently improved

in [8] for spaces of constant doubling dimension. However,

we remark that these fully dynamic algorithms store in

memory a number of points linear with the size of the set of

interest, as they rather target good query time/approximation

tradeoffs, irrespective of the memory usage. For this reason

they cannot be utilized in the sliding window model, where

the size of the working memory, which is the premium

resource to be optimized, must be substantially smaller than

(and possibly independent of) the size of the set of interest.

In the standard streaming model, McCutchen and Khuller

[9], and, independently, Guha [10], presented algorithms
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which maintain a (2 + ε)-approximation to the k-center

problem for the entire set of points entered from the be-

ginning of the stream, using working memory polynomial

in k and 1/ε. In the more restrictive sliding window setting,

which is the focus of this paper, Cohen-Addad et al. [11]

presented an algorithm which is able to compute a (6 + ε)-
approximation to the k-center problem for the current win-

dow, from only O
(
kε−1 logα

)
points stored in the working

memory, where α is the aspect ratio of the stream, that is, the

ratio between the maximum and minimum distance between

any two points of the stream. At any time, the algorithm

requires O
(
kε−1 logα

)
update time for handling the new

point arrived from the stream, and O
(
k2ε−1 logα

)
time

to return the approximate solution for the current window.

One of the practical limitations of this algorithm is that

it assumes prior knowledge of the aspect ratio α. In the

same paper, the authors also show that, for general metric

spaces, any algorithm for the 2-center problem that achieves

an approximation ratio of less than 4 requires working

memory of size Ω
(
N1/3

)
, where N is the window size. In a

recent unpublished manuscript, Kim [12] improved the result

in [11] for Euclidean spaces, by presenting an algorithm

which attains a (2 + 2
√
3 + ε)-approximation through a

coreset-based approach. The algorithm makes crucial use

of the space dimensionality and is, thus, not immediately

portable to non-Euclidean spaces. The author also claims

that a (2 + ε)-approximation is achievable for constant-

dimensional Euclidean spaces, and that the algorithm can

be made oblivious to the aspect ratio α. However, due to

the missing details, it is not immediate to fully reconstruct

these stated improvements.

B. Our contribution

In this work we present a streaming algorithm for the

k-center problem under the sliding window model. At the

heart of our algorithm is a coreset construction that takes

inspiration from the one used by the algorithm in [11].

More specifically, our algorithm employs the data structures

used in [11] to obtain a reasonable estimate of the optimal

clustering radius. These structures are paired with additional

ones which leverage the estimate of the radius to maintain a

coreset containing better representatives for the points of the

current window. The working memory used by our algorithm

is analyzed as a function of a precision parameter ε, related

to the desired approximation guarantee, and of the doubling
dimension D of the metric space induced by the stream. The

doubling dimension, which is formally defined in Section II,

generalizes the notion of Euclidean dimensionality, and, as

our results show, is related to the increasing difficulty of

spotting good clusterings when its value grows.

For any fixed ε > 0, at any time t our algorithm is

able to return a (2 + ε)-approximate solution to the k-

center problem for the current window W , using working

memory O
(
k log(α)(c/ε)D

)
, where α is the aspect ratio

of the stream (i.e., the ratio between the maximum and

the minimum distance of points of the stream), c > 1 is

a suitable constant, and D is the doubling dimension of the

stream. The update time required to handle each point is

linear in the working memory size, while the query time to

return the solution for the current window is subquadratic

in the working memory size. (See Theorems 2 and 3

for precise bounds on the working memory and on the

running times.) Observe that both working memory and time

requirements are independent of the window size, and that,

for constant ε and D, they grow asymptotically only as a

function of k and α. Moreover, the approximation ratio of

our algorithm can be made arbitrarily close to 2, which

is the best approximation attainable by any polynomial-

time sequential algorithm run on the entire window with

unbounded memory.

The main improvements of our algorithm with respect to

the state-of-the-art for general metric spaces [11] are:

• The approximation ratio drops from 6+ε to 2+ε, with

a moderate increase in the working memory and time

requirements for low-dimensional streams. Moreover,

our result shows that the lower bound on the working

memory size proved in [11] can be beaten when the

doubling dimension of the stream is small.

• Our algorithm is fully oblivious to the aspect ratio α
and to the doubling dimension D, in the sense that

these values are not used explicitly by the algorithm

but they are only employed to analyze their space and

time performance. This is a very desirable feature since,

in practice, estimates for α and D are difficult to obtain.

We remark that the algorithm in [11] exhibits the same

performance for all values of D and, also, it requires

prior knowledge of α.

Finally, as a proof of concept, we implemented our

algorithm and the one by [11], and compared their per-

formance. The experiments provide clear evidence that,

when endowed with the same amount of working memory,

our algorithm yields decidedly better approximation with

comparable update and query times. Moreover, the solution

quality provided by our algorithm is almost indistinguishable

from the one of the 2-approximate sequential algorithm run

on the entire window.

C. Organization of the paper

The rest of the paper is organized as follows. Section II

defines the problem formally, and introduces a number of

technical notions which will be used throughout the paper.

Sections III and IV contain, respectively, the description and

the analysis of our algorithm, under the assumption that

the aspect ratio α is known, while Section V shows how

to make the algorithm oblivious to α. Section VI presents

the experimental results. Finally, Section VII offers some

concluding remarks.
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II. PRELIMINARIES

Consider a pointset W from some metric space with

distance function dist(·, ·). For any point p ∈ W and any

subset C ⊆W we use the notation

dist(p, C) = min
q∈C

dist(p, q)

and define the radius of C with respect to W as

rC(W ) = max
p∈W

dist(p, C).

For a positive integer k < |W |, the k-center problem requires

to find a subset C ⊆W of size k which minimizes rC(W ).
Note that any subset C ⊆W of size k induces immediately

a partition of W into k clusters by assigning each point to

its closest center. We say that rC(W ) is the radius of such

a clustering, and define

OPTk,W = min
C⊆W,|C|=k

rC(W )

to denote the radius achieved by an optimal solution to the

problem.

As recalled in the introduction, the well-known greedy

algorithm by Gonzalez [6] (dubbed GON in the rest of the

paper), provides a sequential 2-approximation to the k-center

problem and runs in O (Nk) time, where N = |W | is the

input size. The following useful fact is proved in [13]:

Fact 1. For any subset T ⊆ W , with |T | > k, let C be
the output of GON when run on T . We have rC(T ) ≤ 2 ·
OPTk,W .

Fact 1 states that GON, when run on a subset T of the

pointset W , returns a clustering whose radius cannot be

much larger than the radius of an optimal clustering of the

entire pointset.

In the standard streaming framework [3], [4] the com-

putation is performed by a single processor with a small

working memory, and the input is provided as a continuous

stream of items (points, in our case) arriving one at each

time step, which is usually too large to fit in the working

memory. Under the sliding window model, at each time t,
a solution to the problem of interest should be computable

for the pointset Wt represented by the last N points arrived

in the stream, where N , referred to as window size, is a

predetermined value. More formally, for each input point

p, let t(p) denote its arrival time. At any time t, we have

that Wt = {p|0 ≤ t − t(p) < N}1. Since N can still be

much larger than the working memory size, the challenging

goal in this setting is to guarantee the quality of the solution

while storing an amount of data substantially smaller than

the window size.

In this paper, we present a streaming algorithm for the

k-center problem under the sliding window setting. Our

1For ease of notation, in what follows, we will omit the subscript in Wt,
if clear from the context.

algorithm uses a coreset-based strategy and, at any time t, it

is able to extract a coreset T from the information stored in

its working memory, such that a (2+ε)-approximate solution

to the k-center problem for the pointset Wt can be efficiently

obtained by running GON on T , where ε is a user-defined

accuracy parameter. The coreset T used in our approach

obeys to the following rigorous definition:

Definition 1. Given a pointset W and a value ε > 0, a
subset T ⊆ W is an ε-coreset for W (w.r.t. the k-center
problem), if maxp∈W dist(p, T ) ≤ εOPTk,W .

In other words, the property of an ε-coreset T of W is

that each point in W is “close” enough to some point in T ,

where closeness is defined as a function of ε and OPTk,W .

The time and space performance of our algorithm will

be analyzed in terms of the dimensionality of the points in

the input stream. Since we target the applicability of our

algorithm to arbitrary metric spaces, we will make use of

the following, general notion of dimensionality. Let S denote

a (possibly unbounded) set of points from a metric space.

For any x ∈ S and r > 0, let the ball of radius r centered
at x, denoted as B(x, r), be the subset of points of S at

distance at most r from x. The doubling dimension of S is

the smallest value D such that any ball B(x, r), with x ∈ S,

is contained in the union of at most 2D balls of radius r/2
suitably centered at points of S. The following important

fact, which we will use in the analysis, was proved in [14]:

Fact 2. Let S be a set of points from a metric space and
let Y ⊆ S be such that any two distinct points a, b ∈ Y
have pairwise distance dist(a, b) ≥ r. If S has doubling
dimension D, then for every R ≥ r and any point x ∈ S,
we have |B(x,R) ∩ Y | ≤ (4R/r)D.

A prominent feature of our algorithm is that it adapts
automatically to the doubling dimension D of the input
stream, in the sense that the algorithm does not require

explicit knowledge of D, and provides best performances for

small values of D. The characterization of datasets (or metric

spaces) through their doubling dimension has been used

in the literature in several contexts, including routing [15],

clustering [13], [16], nearest neighbor search [17], and

machine learning [18].

III. ALGORITHM PRESENTATION

Consider a continuous stream S of points from a metric

space with distance function dist(·, ·), a window size N , and

a target number k of cluster centers. To simplify the presen-

tation of the algorithm, we first make the assumption that

the values minDist and maxDist, denoting, respectively, the

minimum and maximum distances between any two distinct

points of S, hence the aspect ratio α = maxDist/minDist,
are known to the algorithm. In Section V, we will show

how this assumption can be removed, which is one of the
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improvements of our algorithm with respect to the one in

[11].

For each point p we define its time-to-live (TTL), denoted

by TTL(p), as N − (t− t(p)), where t is the current time.

When p arrives (t = t(p)), its TTL is N , the window size,

and, from that time on, TTL(p) decreases of one unit at

every new arrival. To avoid continuous updates of the TTL

of points stored in the working memory, we assume that

with each point p in the working memory we store the value

t(p), which allows to immediately compute its TTL, given

the current time t and N . We say that a point p expires when

it leaves the current window W , that is, when TTL(p) = 0.

In the analysis we will also consider points with negative

TTL, that is, points that have expired at some previous time

step.

For a user-defined constant β > 0, let

Γ = {(1+β)i : 	log1+β minDist
 ≤ i ≤ �log1+β maxDist�},

and note that |Γ| = O
(
log1+β α

)
. As in [11], our algorithm

runs several parallel instances, where each instance uses a

different value γ ∈ Γ as a guess of the optimal radius of

a clustering of the current window. For each guess γ, the

algorithm maintains two types of points belonging to the cur-

rent window W : validation points (v-points for short) which

enable to assess whether γ is a constant approximation to

the optimal radius OPTk,W , and coreset points (c-points for

short) which are used to actually extract the solution.

For each γ ∈ Γ, validation points are in turn organized

into three (not necessarily disjoint) sets, namely AVγ , RVγ

and OVγ . Coreset points are maintained according to a

similar organization within sets Aγ , Rγ and Oγ . The sets

of validation points are analogous to those used in [11]. In

broad terms, the set AVγ (attraction v-points), whose size

is upper bounded by k + 2, contains centers of clusters of

radius at most 2γ, which cover all points of W when γ is a

valid guess for OPTk,W (that is, OPTk,W ≤ γ). We say that

a point p is v-attracted by v ∈ AVγ if dist(p, v) < 2γ. The

set RVγ (representative v-points) contains a representative

repVγ(v) for each v ∈ AVγ , which is the newest point (that

is, the point with the largest TTL) among those v-attracted

by v. When v expires, its representative repVγ(v) becomes

an orphan, and it is moved to the set OVγ (orphan v-points).

Let ε > 0 be a user-defined precision parameter. The

three sets of coreset points are used to refine the coverage

provided by the validation points, so to make sure that, for

valid guesses of γ, they can provide an ε-coreset for the

current window. Let δ = ε/(1 + β). The set Aγ (attraction
c-points) contains centers that refine the clusters around the

attraction v-points by reducing their radius by a factor O (δ).
We say that a point p is c-attracted by a ∈ Aγ if dist(p, a) <
δγ/2. The sets Rγ and Oγ play, for c-points, the same role

played by RVγ and OVγ for v-points. Thus, the set Rγ

(representative c-points) contains a representative repCγ(a)

for each a ∈ Aγ , which is the newest point among those c-

attracted by a. When a expires, its representative repCγ(a)
becomes an orphan and it is moved to the set Oγ (orphan
c-points).

Observe that a point q can be a representative for several

attraction v-points (resp., c-points). In that case, we assume

that a distinct copy of q is maintained in RVγ (resp.,

Rγ), one for each v ∈ AVγ (resp., a ∈ Aγ) such that

q = repVγ(v) (resp., q = repCγ(a)).

At every time step, all copies of a number of points,

including all copies of the one that expires at that step,

are removed from the sets of validation and coreset points,

so to keep their sizes under control. The interplay between

validation and coreset points is the following. At any time

t, the validation points enable to identify a suitable guess

γ̂ which is within a constant factor from the optimal value

OPTk,W . Then, the set Rγ̂ ∪ Oγ̂ provides a good coreset

from which an accurate final solution to k-center for W can

be computed, using algorithm GON.

Our approach is described in detail by the following

pseudocode, which consists of three procedures: UPDATE(p)
describes the processing of each point p of the stream and

uses, as a subroutine, INSERTVALIDATION(p, γ); finally,

QUERY(), if invoked at time t, returns the coreset where

algorithm GON can be run.

UPDATE(p)

1 for γ ∈ Γ
2 for each expired v ∈ AVγ

3 AVγ = AVγ \ {v}
4 RVγ = RVγ \ {repVγ(v)}
5 OVγ = OVγ ∪ {repVγ(v)}
6 for each expired a ∈ Aγ

7 Aγ = Aγ \ {a}
8 Rγ = Rγ \ {repCγ(a)}
9 Oγ = Oγ ∪ {repCγ(a)}

10 Remove expired points from OVγ and Oγ

11 EV = {v ∈ AVγ : dist(p, v) ≤ 2γ}
12 E = {a ∈ Aγ : dist(p, a) ≤ δγ/2}
13 if EV == ∅
14 INSERTVALIDATION(p, γ)
15 else
16 for each v ∈ EV
17 set repVγ(v) = p in RVγ

18 if E == ∅
19 Aγ = Aγ ∪ {p}
20 repCγ(p) = p
21 Rγ = Rγ ∪ {repCγ(p)}
22 else
23 for each a ∈ E
24 set repCγ(a) = p in Rγ
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INSERTVALIDATION(p, γ)

1 AVγ = AVγ ∪ {p}
2 repVγ(p) = p
3 RVγ = RVγ ∪ repVγ(p)
4 if |AVγ | > k + 1
5 vold = argminv∈AVγ

TTL(v)
6 AVγ = AVγ \ {vold}
7 RVγ = RVγ \ {repVγ(vold)}
8 OVγ = OVγ ∪ {repVγ(vold)}
9 if |AVγ | > k

10 tmin = minv∈AVγ TTL(v)
11 for q ∈ Aγ ,
12 if TTL(q) < tmin

13 Aγ = Aγ \ {q}
14 Rγ = Rγ \ {Rγ(q)}
15 Oγ = Oγ ∪ {Rγ(q)}
16 Remove from OVγ and Oγ all q with TTL(q) < tmin

QUERY()

1 for increasing values of γ ∈ Γ such that |AVγ | ≤ k
2 C = ∅
3 for p ∈ AVγ ∪OVγ ∪RVγ

4 if dist(p, C) > 2γ
5 C = C ∪ {p}
6 if |C| ≤ k
7 γ̂ = γ
8 break;
9 // now γ̂ is the smallest radius such that the clustering

requires at most k centers
10 return Rγ̂ ∪Oγ̂

IV. ALGORITHM ANALYSIS

Consider an input stream S and suppose that Procedure

UPDATE(p) is applied to any point p ∈ S when it arrives. In

this section, we show that, at any time, invoking Procedure

QUERY (after UPDATE(p) has finished processing the last

point p) returns an ε-coreset for the current window W and

that by running the 2-approximation algorithm GON for k-

center on the coreset, a (2 + ε)-approximate solution for

W is obtained. Moreover, we will analyze the amount of

working memory the time required to process each point

of the stream. Space and time bounds will be expressed in

terms of the various parameters involved and of the doubling

dimension of S.
The following technical lemma states the main invariants

maintained by Procedure UPDATE, which will be crucial for

the analysis.

Lemma 1. Let W denote the set of the last N points arrived
in the stream. For every γ ∈ Γ, the following invariants hold
at the end of each execution of Procedure UPDATE(p).

1) If |AVγ | ≤ k, the following two inequalities hold:
a) maxq∈W dist(q,Rγ ∪Oγ) ≤ δγ;
b) maxq∈W dist(q,RVγ ∪OVγ) ≤ 4γ.

2) If |AVγ | > k, the following two properties hold:
a) For every q ∈ W with dist(q,Rγ ∪ Oγ) > δγ,

then TTL(q) < minv∈AVγ
TTL(v).

b) For every q ∈W with dist(q,RVγ ∪OVγ) > 4γ,
then TTL(q) < minv∈AVγ

TTL(v).

Proof: The proof for Invariants 1(b) and 2(b) follow

the lines of the argument in [11], but we include it for

completeness. For convenience, we subdivide the time in

steps, where each step processes a point of the stream. It

is easy to see that the invariants hold at the end of Step 0,

which we consider as the beginning of the stream before

the first point arrives. We suppose that the invariants hold

at the end of Step t − 1, for some t > 0, and show that

they are maintained at the end of Step t. In the proof, we

assume that following ordering of the activities of Step t:
first, the point whose TTL goes to 0 expires and is thus

excluded from the current window W ; then, the new point

p arrives and UPDATE(p) is executed; and, finally, at the

end of UPDATE(p), p is included in the current window W .

For each point q ∈ W we define its v-attractor (resp., c-
attractor) as the oldest attraction v-point (resp., attraction

c-point) which was at distance at most 2γ (resp. ≤ δγ/2)

from q when q arrived. For simplicity, we define a number

of checkpoints in the execution of Step t and show that if

the invariants hold prior to each checkpoint, they also hold

at the checkpoint. All the line numbers are, unless explicitly

specified, referred to procedure UPDATE.

Checkpoint 1: the invariants hold after the point with
TTL=0 expires. This is immediate to see, since we are only

removing a point from the window, but the point is not yet

removed from the sets stored in memory which it belongs

to, if any.

Checkpoint 2: the invariants hold after Line 12. If

|AVγ | ≤ k before UPDATE(p) starts, it stays this way after

Line 12, since Lines 1-12 do not add new points to AVγ ,

thus we only need to prove that Invariant 1 is maintained.

We will do the argument for 1(a), since the one for 1(b) is

virtually identical. If the expired point is o ∈ Oγ , its removal

in Line 10 does not affect the invariant. Indeed, if a point q
violated 1(a) after the expiration of o, it would imply that o
and q shared the same c-attractor, but, in this case, q would

have expired before o and could not belong to W . If instead,

the expired point is a ∈ Aγ then its representative repC(a)
is moved to Oγ . If it a represents itself (i.e., a = repC(a)),
then repC(a) will be also removed from the orphans and

the considerations made above apply, otherwise the union

Rγ ∪Oγ remains unchanged. Note that no point of Rγ can

expire unless its c-attractor also expires but, in this case, the

point is moved to the orphan set, and this corresponds to the

case considered above when a = repC(a) expires. Consider

now the case |AVγ | > k before UPDATE(p) starts (note that

it must necessarily be |AVγ | = k+1). If a v ∈ AVγ expired,

v is removed from AVγ hence |AVγ | = k after Line 12,

hence it suffices to prove that Invariant 1 holds. Note that

all the points q such that dist(q,Rγ ∪ Oγ) > δγ already

expired due to the fact that 2(a) holds at the beginning of

UPDATE(p). Similarly, it can be argued that all points q such

that dist(q,RVγ∪OVγ) > 4γ already expired. Consider now

the case |AVγ | = k + 1 after Line 12, and let us first show
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that 2(a) holds. If a point q violates 2(a) this implies that a

point o ∈ Oγ with the same c-attractor as q has expired, but

then q must have expired prior to o, hence it cannot belong

to W . A similar argument can be used to prove 2(b).

Checkpoint 3: the invariants hold after Line 17. First,

consider the case EV = ∅. Then INSERTVALIDATION

is invoked to insert p in AVγ . If at the end of

INSERTVALIDATION we have |AVγ | ≤ k, then Invariant 1

holds since the call does not delete any point. Otherwise, at

the end of INSERTVALIDATION, |AVγ | = k+1 and we need

to prove that Invariant 2 holds. Consider first 2(a). For any

point q whose distance from Rγ ∪Oγ becomes > δγ, there

must be an orphan o ∈ Oγ with the same c-attractor as q,

which has been deleted in Line 16 of INSERTVALIDATION,

hence TTL(q) ≤ TTL(o) < minv∈AVγ TTL(v). A symmet-

rical argument applies to prove 2(b). In case EV �= ∅, we

replace each representative repV(v), with v ∈ EV , with the

new point p. Note that both repV(v) and p are v-attracted
by the same point v, so, all points with the same v-attractor

as repV(v) are contained in the 4γ-ball centered in p, which

suffices to prove both Invariants 1 and 2.

Checkpoint 4: the invariants hold after Line 24. If E =
∅, then no point is deleted in Lines 18-24, thus the two

invariants will hold. Otherwise, if E �= ∅, we replace each

representative c-point repC(a), a ∈ E with the new point p.

Since repC(a) and p are c-attracted by the same point a, all

points with the same c-attractor as repC(a) are contained

in the δγ-ball centered in p, which suffices to prove that

Invariants 1 and 2 hold.

Checkpoint 5: the invariants hold after the new point
p is inserted into the active window. If p has been inserted

into AVγ , then p has also been inserted into RVγ , hence

dist(p,RVγ) = 0. Else, there exists a point v ∈ AVγ

such that dist(p,RV γ) ≤ dist(p, v) + dist(v,RVγ) ≤ 4γ.

Similarly, it must hold that either dist(p,Rγ) = 0 (case

E = ∅) or dist(p,Rγ) ≤ δγ (case E �= ∅), and the two

invariants follow.

The next lemma shows that Procedure QUERY returns an

ε-coreset of the current window.

Lemma 2. Let CSW be the set of points returned by
Procedure QUERY, and let W be the current window. Then
CSW is an ε-coreset for W w.r.t. the k-center problem.

Proof: It can be easily seen that for any guess γ such

that either |AVγ | > k, or |AVγ | ≤ k and the set C computed

by QUERY contains > k points, there at least k + 1 points

of W at pairwise distance > 2γ, which immediately implies

that γ < OPTk,W . Moreover, since Γ contains guess γ ≥
maxDist ≥ OPTk,W , the procedure will always determine a

minimum guess γ̂ such that both |AVγ̂ | ≤ k and |C| ≤ k.

Then, since Γ samples the interval [minDist,maxDist] with

a geometric progression of common ratio (1+β), we obtain

that γ̂/(1+β) < OPTk,W . Also, since |AVγ̂ | ≤ k, Invariant

1(a) ensures that

max
p∈W

dist(p,CSW ) < δγ̂ = εγ̂/(1 + β) < ε · OPTk,W ,

and the lemma follows.

The next theorem establishes the approximation factor of

our algorithm.

Theorem 1. Let CSt be the set of points returned by
Procedure QUERY if invoked at time t, and let W be the
current window. Then, by running Algorithm GON on CSt

we obtain a (2 + ε)-approximate solution for the k-center
problem on W .

Proof: Let Calg
t be the set of centers returned by GON

when run on CSt. Since CSt is a subset of W , by Fact 1

we have that for each q ∈ CSt, dist(q, Calg
t ) ≤ 2 ·OPTk,W .

Moreover, since CSt is an ε-coreset for W (Lemma 2) we

have that for each p ∈ W there is q ∈ CSt such that

dist(p, q) ≤ ε · OPTk,W . By combining these two observa-

tions and applying the triangle inequality, we conclude that

for each p ∈W we have dist(p, Calg
t ) ≤ (2 + ε) · OPTk,W .

The next two theorems establish the space and time

requirements of our algorithm.

Theorem 2. At any time t during the processing of the
stream S, the sets stored in the working memory (i.e., AVγ ,
RVγ , OVγ Aγ , Rγ , and Oγ , for every guess γ) contain

O

(
k · log(α)

log(1 + β)

(
32(1 + β)

ε

)D
)

points, overall.

Proof: Consider an arbitrary time t. We first show that

|AVγ | ≤ k + 1, |RVγ | ≤ k + 1, |OVγ | ≤ k + 1. The

proof argument is the same as the one used in [11], but we

report it for completeness. The bound on |AVγ | is explicitly

enforced by INSERTVALIDATION which removes a point

from AVγ as soon as its size exceeds k + 1. The bound

on RVγ follows from the fact that the algorithm makes

sure that RVγ contains exactly one representative for each

v ∈ AVγ . Indeed, when a point is removed from AVγ , its

representative is moved to OVγ .

For what concerns the bound on |OVγ |, let v1, v2, . . .
be an enumeration of the points inserted in AVγ at any

time during the algorithm, ordered by arrival time. We

now show that for every i ≥ 1 we have TTL(vi+k+1) >
TTL(repVγ(vi)) ≥ TTL(vi). Consider two cases. If vi ex-

pires before vi+k+1 enters the window, then TTL(vi+k+1) >
TTL(repVγ(vi)) because repVγ(vi) must have entered the

window before vi expired. Otherwise, upon insertion of

vi+k+1 in AVγ , there are k + 1 points in AVγ , so the

algorithm deletes vi as it is the oldest point in AVγ . Then,

again TTL(vi+k+1) > TTL(repVγ(vi)) because repVγ(vi)
must have entered the window before vi is deleted. At time
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t, let vj be the last point that was removed from AVγ , either

because expired or deleted. By the property proved above,

any point which has been representative of vj−(k+1) has a

TTL smaller than TTL(vj), thus it cannot be in memory at

time t because it either expired or has been deleted by Line

11 of INSERTVALIDATION. This shows that |OVγ | ≤ k+1.

Next, we show that |Aγ ∪Rγ ∪Oγ | ≤ 6(k + 1)(32/δ)D,

where D is the doubling dimension of S. From the proof

above we know that there are at most k+1 points in each of

the sets AVγ , RVγ and OVγ . By construction, we also know

that distance between any two points of Aγ is ≥ δγ/2. We

show that the points of Aγ are enclosed in at most 2(k+1)
balls of radius 4γ. Consider two cases. If |AVγ | ≤ k, by

Invariant 1(b) we have maxq∈W dist(q,RVγ ∪OVγ) ≤ 4γ,

hence each q ∈ Aγ is within one of the at most 2(k + 1)
balls of radius 4γ centered at the points of RVγ ∪ OVγ .

Instead, if |AVγ | = k + 1, then by Invariant 2(b) we have

that for each q ∈ W with TTL(q) ≥ minv∈AVγ TTL(v) it

holds that maxq∈W dist(q,RVγ ∪ OVγ) ≤ 4γ. Recall that

after we insert a new point in AVγ , if the size exceeds k we

delete from |Aγ ∪Rγ ∪Oγ | all the points with TTL smaller

than the smallest TTL of a point in AVγ . Then after each

execution of the procedure UPDATE, if |AVγ | = k+1, each

point in Aγ has TTL greater than the oldest point in AV .

Thus, each q ∈ Aγ is within a ball of radius 4γ from some

point in RVγ ∪ OVγ . By Fact 2, in each of these 2(k + 1)
balls, there can be at most (32/δ)D points of Aγ , so |Aγ | ≤
2(k+1)(32/δ)D. Moreover, at any given time |Rγ | = |Aγ |,
since the algorithm makes sure that Rγ contains exactly one

representative for each a ∈ Aγ .

Let k′ be the above upper bound on the size of Aγ . We are

left to show that |Oγ | ≤ k′. Let a1, a2, . . . be an enumeration

of the points inserted in Aγ at any time during the algorithm,

ordered by arrival time. We now show that for every i ≥ 1
we have TTL(ai+k′+1) > TTL(repCγ(ai)) ≥ TTL(ai). It

must hold that ai expires or gets deleted before ai+k′+1

enters the window, or otherwise, upon insertion of the

new point ai+k′+1, there would be k′ + 1 points in Aγ ,

which is impossible since k′ is an upper bound to |Aγ |.
Then, TTL(ai+k′+1) > TTL(repCγ(ai)) because repCγ(ai)
must have entered the window before ai expired or got

deleted, which means that repCγ(ai) must have entered

the window before ai+k′+1 enters the window. Let aj be

the last point that was removed from Aγ , either because

expired or deleted. By the property proved above, any point

which has been representative of aj−(k′+1) has a TTL

smaller than TTL(vj), thus it cannot be in memory at time

t because it either expired or has been deleted by Line 11 of

INSERTVALIDATION. This shows that there can be at most

k′ points in Oγ .

Theorem 3. Procedure UPDATE(p) runs in time

O

(
k · log(α)

log(1 + β)

(
32(1 + β)

ε

)D
)
,

while Procedure QUERY() runs in time

O

(
k2 · log

(
log(α)

log(1 + β)

)
+ k ·

(
32(1 + β)

ε

)D
)
.

Proof: The time complexity of UPDATE(p) is dominated

by the construction of the sets EV and E for each γ (Lines

11 and 12), which requires time linear in |AVγ |+ |Aγ |. The

claimed bound follows by Theorem 2. For what concerns

QUERY, we observe that, as shown in the proof of Theorem 2

|AVγ |+ |RVγ |+ |OVγ | = O (k) ,

hence the identification of γ̂ can be easily accomplished

in O
(
k2 log(α)/ log(1 + β)

)
time. In fact, by using binary

search over the values γ ∈ Γ, the time can be reduced to

O
(
k2 log(log(α)/ log(1 + β))

)
. Finally, once γ̂ has been

found, returning Rγ̂ ∪ Oγ̂ takes time proportional to their

size, which is O
(
k(32(1 + β)/ε)D

)
as argued in the proof

of Theorem 2.

The following corollary, which summarizes the main

features of our algorithm, is an immediate consequence of

Theorems 1, 2 and 3.

Corollary 1. Consider a stream S of points from a
metric space and a sliding window of length N . Let
D be the doubling dimension of S and let α be the
ratio between the maximum and minimum distance of
two points of S. For fixed parameters ε, β > 0, at
any time our algorithm requires working memory of size
M = O

(
k · (log(α)/ log(1 + β))(32(1 + β)/ε)D

)
, pro-

cesses each point p ∈ S in time O (M), and at any
time t is able to return a (2 + ε)-approximation to
the k-center problem for the current window in time
O
(
k2 · log(log(α)/ log(1 + β)) + k · (32(1 + β)/ε)D

)
.

V. OBLIVIOUSNESS TO α

For convenience, the algorithm presented in Section III

assumed the knowledge of α, that is, the ratio between

the maximum and minimum distance of any two distinct

points in the stream. In this section, we show how this

assumption can be removed with some slight modifications

to the algorithm, which are described below.

Let p1, p2, . . . be an enumeration of all points of the

stream S based on the arrival order. At every time t > k,

let rt be the minimum pairwise distance between the last

k+1 points of the stream (pt−k, . . . , pt−1, pt), and observe

that rt ≤ OPTk,W for the current window W . We require

that, together with the other structures, the algorithm stores

the last k + 1 points arrived and maintains the value rt,
which can be computed with an extra O

(
k2
)

operations per
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step. We also require the algorithm to maintain the value

Mt = 2max1<i≤t dist(pi, p1), which is easly seen to upper

bound the diameter (i.e., the maximum pairwise distance) of

all points arrived so far, to within a factor at most 2.

Let the values β, ε and δ = ε/(1 + β) be defined as in

Section III, and assume that δ ≤ 4 (in fact, larger values of

δ would be uninteresting in our algorithm). We define

Γt = {(1 + β)i : 	log1+β rt/2
 ≤ i ≤ �log1+β 2Mt/δ�},
and observe that the definition of Γt is independent of α. The

following claim shows that at any step t, it is sufficient that

the algorithm maintains structures for guesses γ belonging

to Γt.

Claim 1. Consider the non-oblivious algorithm presented
in Section III. At any time t, Procedure QUERY() would
be correct if the sets AVγ , RVγ , OVγ , Aγ , Rγ , and Oγ

satisfying the invariants stated in Lemma 1 were available
only for γ ∈ Γt.

Proof: Consider a value γ < minΓt and observe that

the last k+1 points of the stream, namely pt−k, . . . , pt−1, pt,
are all at pairwise distance at least rt > 2γ. Therefore, the

non-oblivious algorithm would insert all of these points in

AVγ , hence |AVγ | = k + 1 and the value γ would not be

considered in the main for loop of QUERY. Let γmax =
maxΓt. We show that at time t, when QUERY() considers

γmax it must find |AVγmax | ≤ k and a set C of size at most

k, since otherwise there would exist k+1 points at distance

> 2γmax ≥ 4Mt/δ ≥ Mt, which is impossible since Mt is

an upper bound to the diameter up to point pt.
We now show how to modify the algorithm so that,

without the knowledge of α, at the end of each step t it

is able to maintain the sets AVγ , RVγ , OVγ , Aγ , Rγ , and

Oγ satisfying the invariants stated in Lemma 1, limited to the

guesses γ ∈ Γt. Suppose that this is the case up to some time

t− 1 > k and consider the arrival of pt. First, the algorithm

computes the new values rt and Mt and removes all sets

relative to values of γ ∈ Γt−1 − Γt. Then, if rt < rt−1,

for each γ ∈ Γt with γ < minΓt−1, the algorithm sets

AVγ = {pt−k−1, . . . , pt−1} = RVγ = Aγ = Rγ and

OVγ = Oγ = ∅. Observe that, for these values of γ, these

would have been the sets maintained by the non-oblivious

algorithm at the end of step t − 1 since all the last k + 1
points of the stream up to pt−1 would have made their

way into AVγ being all at pairwise distance > 2γ. Also,

if Mt > Mt−1, then for each γ ∈ Γt with γ > maxΓt−1,

the algorithm sets AVγ = {pt−1} = RVγ = Aγ = Rγ and

OVγ = Oγ = ∅. Observe that, for these values of γ, the

sets satisfy the invariants of Lemma 1 at the end of step

t− 1 since for every point q in the window at that time we

have dist(q,RVγ) = dist(q,Rγ) = dist(q, pt−1) ≤ Mt−1 ≤
δγ/2 ≤ 2γ ≤ 4γ, since we are assuming δ ≤ 4.

At this point, for every γ ∈ Γt the algorithm has available

sets AVγ , RVγ , OVγ , Aγ , Rγ , and Oγ which satisfy the

invariants of Lemma 1 at the end of step t− 1. Finally, the

algorithm runs UPDATE(pt) limiting the main loop to values

γ ∈ Γt.

The above discussion suffices to prove that the α-oblivious

algorithm described above yields the same result of Corol-

lary 1 with the only difference that an additive term O
(
k2
)

is required in the processing time of each point of the stream.

VI. EXPERIMENTS

As a proof of concept to assess the practical viability of

our approach, we designed a set of experiments to compare

approximation ratio, execution time, and memory usage of

our algorithm against the state-of-the-art algorithm in the

published literature [11]. We devised an implementation of

our algorithm, which we will refer to as OUR-SLIDING,

and the sliding window algorithm by Cohen-Addad et al.,

hereinafter referred to as CSS-SLIDING. For the sake of a

fair comparison, since CSS-SLIDING is not oblivious to α,

OUR-SLIDING implements the non-oblivious version of our

approach. Due to the NP-hardness of the k-center problem,

it is impractical to compute the optimal solution for each

window so to measure the exact approximation factor of

the solutions returned by two algorithms. As a workaround,

we compared these solutions against the one obtained by

running the sequential algorithm GON on the entire window.

All tests were executed using a Java 13 implementa-

tion of the algorithms on a Windows machine running

on an AMD FX8320 processor with 12GB of RAM,

and the running times of the procedures were measured

with System.nanoTime. The points of the datasets are

fed to the algorithms through the file input stream. The

code for the experiments on the datasets is available at

https://github.com/PaoloPellizzoni/CoresetSlidingWindows.

We experimented with the Higgs dataset2, which con-

tains 11 million points representing high-energy particle

features generated through Monte-Carlo simulations. The

points of this dataset have 28 attributes, 7 of which are a

function of all the others; for the sake of this experiment we

considered only these seven ”high-level” features, and used

Euclidean distance.

We tested several values of k in [10, 100], and several

window sizes N in [103, 106]. For brevity we report only

the results for k = 20, since the behaviors observed for the

other values exhibit a similar pattern. For OUR-SLIDING, we

set ε = 1 and β = 0.1. For a fair comparison, we searched

the parameter space of CSS-SLIDING so to determine a value

of its parameter ε (the equivalent of our parameter β) so

to enforce that the two algorithms use the same working

memory. As a result, we set ε = 0.01 which, in all of our

tests, makes the working memory of CSS-SLIDING compa-

rable yet slightly larger than the one used by OUR-SLIDING,

which gives a competitive advantage to CSS-SLIDING in the

2http://archive.ics.uci.edu/ml/datasets/HIGGS
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comparison with respect to the approximation quality. The

results are reported in the plots of Fig. 1, 2, 3, and 4. In

each plot, the blue line corresponds to CSS-SLIDING, the

orange line corresponds to OUR-SLIDING, and the yellow

line corresponds to the execution of the sequential algorithm

GON on the entire window. All the quantities are averaged

over 1000 consecutive windows.

The comparison of the algorithms’ memory requirements

is reported in Fig. 1. As expected, the working memory

required by both CSS-SLIDING and OUR-SLIDING does

not seem to be significantly affected by the window size

while the memory requirements of GON grow linearly with

it. Fig. 2 compares the clustering radii obtained by the

three algorithms. Remarkably, OUR-SLIDING, even for the

relatively large value ε = 1, returns a clustering whose

radius essentially coincides with the one returned by running

GON on the full window, and it is consistently and decidedly

smaller than the one returned by CSS-SLIDING. The update

time (Fig. 3), seems rather insensitive to N for both CSS-

SLIDING and OUR-SLIDING, while it is clearly negligible for

GON where it simply entails discarding the oldest point of

the window and inserting the new one. Finally, as shown in

Fig. 4, the query times of CSS-SLIDING and OUR-SLIDING

are comparable while, clearly, the one of GON is much higher

and grows linearly with the window size.

Overall, the experiments provide evidence that, with re-

spect to the state-of-the-art algorithm in [11], our algorithm

OUR-SLIDING offers an approximate solution that matches

almost perfectly the one returned by best sequential algo-

rithm run on the entire window, within the same space and

time budgets.

Finally, we wish to point out that we also implemented

the α-oblivious version of the algorithm and ran the same

experiments described in this section on additional datasets,

obtaining similar results to the one presented. A full account

of these additional experiments will be provided in the full

version of this paper.

Figure 1: Comparison of memory requirements

Figure 2: Comparison of clustering radii

Figure 3: Comparison of update times

VII. CONCLUSIONS

In this paper, we have shown how to attain an improved

coreset construction yielding an accurate streaming algo-

rithm for the k-center problem under the sliding window

model. While the algorithm exhibits very reasonable work-

ing memory bounds for streams of low doubling dimension

D, the approach quickly degrades as D grows large. An

interesting, yet challenging, research avenue is to investigate

whether this steep dependence on D can be ameliorated by

means of alternative techniques (e.g., the use of randomiza-

tion).
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Figure 4: Comparison of query times

REFERENCES

[1] C. Hennig, M. Meila, F. Murtagh, and R. Rocci, Handbook
of cluster analysis. CRC Press, 2015.

[2] P. Awasthi and M. Balcan, “Center based clustering: A
foundational perspective,” in Handbook of cluster analysis.
CRC Press, 2015.

[3] M. Henzinger, P. Raghavan, and S. Rajagopalan, “Computing
on Data Streams,” in Proc. DIMACS Workshop on External
Memory Algorithms, 1998, pp. 107–118.

[4] J. Leskovec, A. Rajaraman, and J. Ullman, Mining of Massive
Datasets, 2nd Ed. Cambridge University Press, 2014.

[5] M. Datar and R. Motwani, “The sliding-window computation
model and results,” in Data Stream Management - Processing
High-Speed Data Streams, 2016, pp. 149–165.

[6] T. F. Gonzalez, “Clustering to minimize the maximum inter-
cluster distance,” Theoretical Computer Science, vol. 38, pp.
293 – 306, 1985.

[7] T.-H. H. Chan, A. Guerqin, and M. Sozio, “Fully Dynamic
k -Center Clustering,” in Proc. TheWebConf, 2018, pp. 579–
587.

[8] G. Goranci, M. Henzinger, D. Leniowski, C. Schulz, and
A. Svozil, “Fully dynamic k-center clustering in doubling
metrics,” arXiv:1908.03948, 2019.

[9] R. McCutchen and S. Khuller, Streaming Algorithms for k-
Center Clustering with Outliers and with Anonymity, 2008,
pp. 165–178.

[10] S. Guha, “Tight results for clustering and summarizing data
streams,” in Proc. ICDT, 2009, p. 268–275.

[11] V. Cohen-Addad, C. Schwiegelshohn, and C. Sohler, “Diame-
ter and k-Center in Sliding Windows,” in Proc. ICALP, 2016,
pp. 19:1–19:12.

[12] S.-S. Kim, “Computing euclidean k-center over sliding win-
dows,” arXiv:2001.01035, 2020.

[13] M. Ceccarello, A. Pietracaprina, and G. Pucci, “Solving k-
center clustering (with outliers) in mapreduce and streaming,
almost as accurately as sequentially,” PVLDB, vol. 12, no. 7,
pp. 766–778, 2019.

[14] A. Gupta, R. Krauthgamer, and J. R. Lee, “Bounded geome-
tries, fractals, and low-distortion embeddings,” in Proc. IEEE
FOCS, 2003, pp. 534–543.

[15] G. Konjevod, A. W. Richa, and D. Xia, “Dynamic routing
and location services in metrics of low doubling dimension,”
in Proc. DISC, 2008, pp. 379–393.
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