Implementing Shared Memory on
Mesh-Connected Computers and on the Fat-Tree*

Kieran T. Herley
Department of Computer Science
University College Cork
Cork, Ireland

k.herley@cs.ucc.ie

Andrea Pietracaprina, Geppino Pucci
Dipartimento di Elettronica e Informatica,
Universita di Padova
Via Gradenigo 6/a
35131 Padova, Italy

{andrea,geppo}@artemide.dei.unipd.it

*This research was supported, in part, by the EC ESPRIT Basic Research Project 9072 (project GEPPCOM:
Foundations of GEneral Purpose Parallel COMputing). The results in this paper appeared in preliminary form
in the Proceedings of the Third Annual European Symposium on Algorithms (ESA’95), pages 60-74, 1995.

Running Head:

Implementing Shared Memory on Meshes

Corresponding Author:
Dr Kieran T. Herley

Department of Computer Science
University College Cork

Cork

Ireland

Phone: +353-21-902134

Fax: +353-21-274390

k.herley@cs.ucc.ie

Abstract

We present deterministic upper and lower bounds on the slowdown required to sim-
ulate an (n,m)-PRAM on a variety of networks. The upper bounds are based on a
novel scheme that exploits the splitting and combining of messages. This scheme can
be implemented on an n-node d-dimensional mesh (for constant d) and on an n-leaf
pruned butterfly and attains the smallest worst-case slowdown to date for such intercon-
nections, namely, O (n!/?(log(m/n))'!=*/?) for the d-dimensional mesh (with constant d)
and O(y/nlog(m/n)) for the pruned butterfly. In fact, the simulation on the pruned
butterfly is the first PRAM simulation scheme on an area-universal network. Finally,
we prove restricted and unrestricted lower bounds on the slowdown of any determinis-
tic PRAM simulation on an arbitrary network, formulated in terms of the bandwidth

properties of the interconnection as expressed by its decomposition tree.

List of Symbols Used

1

w Uy

=

one
lower-case ell

7ero

upper-case letter oh
upper-case oh symbol
for big-oh notation
square root

accented lower-case a

A times A

upper-case Greek omega
standard inequalities
logarithm

minimum

lower-case Greek alpha
subset symbol

proper subset symbol
set size

lower-case Greek lambda
lower-case Greek sigma
upper-case Greek Theta
upper-case Greek gamma
upper-case Greek sigma
(indicating summation)
S hat

3 dot 4 (indicating
multiplication)

floor of X

union symbol

[X]
a,b,....z

{a,b,c}

< a,bc>

> & K

3

~

ceiling of X

ellipsis

curly brackets (indicating
set notation)

angle brackets (delimiting
triple)

square brackets subscripted
with j

infinity

left square bracket, X,
comma, Y, right round
bracket

plus or minus

upper-case Greek phi
upper-case Greek delta

m bar

X prime

a to the b-th power

(exponentiation)

1 Introduction

The problem of implementing a shared-memory abstraction on various distributed-memory
parallel architectures has been intensively studied over the last decade. Generally, this prob-
lem has been referred to as the PRAM simulation problem and involves representing the m
cells of the PRAM shared memory (called variables) among the n processor-memory nodes of
the simulating machine in such a way that any n-tuple of distinct cells may be read or written
efficiently. The time required to simulate one PRAM step is known as the slowdown of the
simulation. A number of approaches to this problem, both probabilistic and deterministic,
have been investigated for a variety of well-known architectures such as the complete intercon-
nection, the mesh of trees, the butterfly, as well as a variety of expander-based architectures,
among others.

We will not attempt to summarize the extensive literature on this problem here but only
quote those results that relate directly to our work, and refer the interested reader to [PPS94]
for a recent and comprehensive summary of further work on this topic. Building on earlier
work of Upfal and Wigderson [UW8T], Alt et al. [AHMP87] presented a deterministic scheme
to simulate a PRAM with n processors and m variables (called an (n, m)-PRAM) on an n-
node Module Parallel Computer (MPC), an architecture in which each node includes both a
processor and a private memory module accessible only to that processor, and in which the
nodes are connected by a crossbar that allows each node to transmit or receive one message
per step. Their scheme employs the following copy-based method for the representation of
the PRAM variables, which most of the deterministic simulation algorithms, including this
present work, adopt. Specifically, each variable is represented by a set of copies, whose size
2¢ — 1 is logarithmically related to n and m, and each copy consists of a value and a time-
stamp. The copies are distributed carefully among the memory modules of the simulating
machine. To write a variable, at least ¢ of its copies are overwritten to reflect the intended
value and the time of writing. To read a value, at least ¢ copies are inspected. This set
of ¢ copies read contains at least one of the copies most recently written, which is readily
identifiable by virtue of its time-stamp. Alt et al. show that for a suitable distribution of the
copies among the nodes of the machine, any n-tuple of variables may be accessed (read or
written) in O (logm) time.

The above scheme can be ported to an arbitrary network by simulating each MPC step
using standard techniques such as routing and sorting. In particular, this approach yields

a simulation with slowdown O (nl/d log m) on an n-node d-dimensional mesh (d = O (1))

and a simulation with slowdown O (y/nlogm) on an n-leaf pruned butterfly, which are the
interconnections that we consider in this paper. In [AHMPS87], it was also observed that a
simple PRAM simulation for the two-dimensional mesh with an optimal slowdown of O (y/n) is
indeed possible. Unfortunately, this simulation requires up to n copies per variable, resulting
in an unacceptable memory blow-up. Moreover, the method does not extend to higher-
dimensional meshes and other interconnections.

Most of the deterministic simulations that appear in the literature, including those of
this paper, rely on memory distributions that are built upon certain expander-based graphs
whose existence can be proved, but for which no efficient construction is known. Recently,
Pietracaprina et al. [PPS94, PP95] have studied deterministic simulations based entirely on
explicitly constructible structures. By resorting to a complex hierarchical arrangement of con-
structible, mildly-expanding graphs, they achieve O (y/nlogn) slowdown on an n-node mesh
for memories of O (n1'5) size, using O (logl'59 n) copies per variable. In this paper, our focus
is on slowdown rather than constructiveness. By employing more powerful expander-based
structures, we achieve a better slowdown than that of [PP95] at a lower level of redundancy
(copies per variable).

It might appear, at least at first glance, that updating ¢ copies apiece for n variables
must involve the physical movement of cn distinct packets across the entire network, which
on the y/n x \/n mesh would require Q (cy/n) time. In this paper, we devise a novel split-
ting/combining technique to circumvent this difficulty, based on the following idea. If a
processor p wishes to send the same packet to nodes x and y that are “distant” from p but
“close” to one another, then rather than dispatch a separate packet for each, it may be more
efficient to dispatch a single message to some “intermediate” node z close to both z and y.
At node z, the original packet is then made into two replicas which are forwarded to z and y
separately. A careful implementation of this idea leads to the following result.

Theorem 1 For any m < 90(n!/(@+1))

there exists a scheme to simulate an (n,m)-PRAM on
an n-node d-dimensional mesh (d constant) with worst-case slowdown O (nl/d(log(m/n))l_l/d),

using O (log(m/n)) copies per variable and O ((m/n) 10g5(m/n)) storage per node.

In order to implement the splitting/combining strategy outlined above, the scheme relies on
a recursive decomposition of the mesh and on efficient algorithms for k-sorting, where each
processor initially holds & packets, and for k-relation routing, where each processor sends
and receives at most k packets. Theorem 1 implies that our simulation scheme incurs a

slowdown which is a factor O ((log(m/n))l/d) smaller than the one obtainable by porting the

MPC algorithm of [AHMP87] on an n node d-dimensional mesh. We want to remark that
the (exponential) upper bound on the memory size m in Theorem 1 is placed to avoid that
the cost of sequential bookkeeping operations such as local sorting or counting dominate the
overall running time of the simulation algorithm. Such a bound on m is not needed if a cost
model which accounts for interprocessor communication only was adopted, as customary for
network algorithms [Kun93].

The n-leaf pruned butterfly [BB95] (described later) is an area-universal network that is a
variant of Leiserson’s fat-tree [Lei85]. Although quite different from the two-dimensional mesh
in terms of the details of its structure, it is sufficiently similar in its bandwidth characteristics
to support the key operations upon which our simulations rely with comparable efficiency.
By providing novel sorting and routing primitives for this network, and by using its natural
decomposition into subtrees, we are able to implement the above simulation scheme with the
same slowdown achieved for the two-dimensional mesh, thereby obtaining the first PRAM

simulation on an area-universal network. The result is stated in the following theorem.

Theorem 2 For any m < 29(n'*) there emists a scheme to simulate an (n,m)-PRAM on
an n-leaf pruned butterfly with worst-case slowdown O(nlog(m/n)), using O (log(m/n))
copies per variable and O ((m/n) log5(m/n)) storage per node.

Lower bounds on the slowdown of PRAM simulations on bounded-degree networks have
been presented in a number of studies [AHMP87, KU88, HB94]. All such bounds, however,
apply to the entire class of such networks, and cannot be specialized to the characteristics of
a given topology. For example, in [HB94] the authors show an 2 (logQ(m/n)/log log(m/n))
lower bound on the slowdown required to simulate a PRAM step on any bounded degree
network, which is too weak for our purposes, since a trivial € (nl/d) lower bound may easily
be obtained for d-dimensional meshes based on diameter limitations. An Q (y/n) bound holds
for the pruned butterfly based on straightforward bandwidth considerations. In this paper,
we present the first lower bound argument that takes into account the characteristics of the
individual network. To capture the properties of the network topology, the bound exploits
the notion of decomposition tree [BL84, Lei85], which provides a partition of the network into
disjoint regions of limited bandwidth.

As in all previous works, the lower bound is proved under the point-to-point assumption,
which requires that a processor updating a number of copies of a variable dispatch a separate
message for each copy. When specialized to d-dimensional meshes and to the pruned butterfly,

our lower bound technique yields the following results.

Theorem 3 Let m > 16n. For every T > 2m/n, there exists a T-step (n,m)-PRAM pro-

gram, whose point-to-point, on-line simulation requires time

1—1 2,
Q [Tn min <7log(m/n) > ’ ,n%
log log(m/n)

on an n-node d-dimensional mesh (with d constant).

Theorem 4 Let m > 16n. For every T > 2m/n, there exists a T-step (n,m)-PRAM pro-

gram, whose point-to-point, on-line simulation requires time

Q (Tmind | [n 080/ 2
log log(m/n)
on an n-leaf pruned butterfly.

Unfortunately, the point-to-point assumption upon which Theorems 3 and 4 and the
other works in the literature rely, precludes the splitting and combining of messages. As
a consequence, the above lower bounds do not apply to our simulations directly. However,
we are able to prove similar bounds in an unrestricted model by limiting the total level of
redundancy used to represent the variables. Such bounds show that our simulations use an
amount of redundancy which is only a doubly logarithmic factor higher than the minimum

redundancy needed to achieve the same slowdown. Specifically, we have the following result.

Theorem 5 Let m > 16n. For every T > 2m/n and every constant « > 1, there exists
a T-step (n,m)-PRAM program whose on-line simulation on an n-node d-dimensional mesh

requires time

s [dostmm) \UT e)
Q(Tn m1n{<m> , metd/d=1)

if the total number of copies used to represent the m PRAM wvariables in the local memory

modules is mr, with
1 { log(m/n)

< — min{d —22
" i log log(m/n)

1
no+d/@-1n \
= 8@)

The bound with d =2 also applies to the pruned butterfly.

The rest of the paper is organized as follows. Section 2 discusses the distribution of the

copies among the memory modules and the properties required of the graph representing the

memory map. In Section 3, the simulation algorithm for the two-dimensional mesh is pre-
sented. The algorithm consists of two phases, copy-selection and routing, which are described
in Subsections 3.1 and 3.2, respectively. This scheme is extended to higher-dimensional meshes
in Section 4 and to the pruned butterfly in Section 5. Section 6 shows how the space bounds
quoted in Theorems 1 and 2 may be achieved. Section 7 presents the lower bound results
discussed above. Section 8 concludes the paper with some final remarks and indicates future

research directions.

2 Memory Organization

Consider the simulation of an (n, m)-PRAM on an n-node machine and suppose that each
variable is replicated into 2c¢ — 1 copies, for a suitable integer c. It is convenient to model
the distribution of copies among the nodes of the machine by means of a bipartite graph
G = (U,V; E), where U represents the set of variables, V' the set of processor-memory nodes
of the simulating machine, and 2¢c— 1 edges connect each variable to the distinct nodes storing
its copies. In the following we will denote by E(S) the set of edges in E incident on a set
S C U. Note that there is a one-to-one correspondence between E(.S) and the set of all copies
of variables in S.

Let S CU and F C E(S). When F contains exactly k edges incident on each s € S we
call F' a k-bundle for S. Also, we denote by I'(S) the subset of V' reached by edges in F. A
vertex v € V is said to be g-congested with respect to F if more than g edges in F' are incident
on v. Finally, the congestion of F' is the maximum value ¢ such that there is a vertex in V
that is g-congested with respect to F'.

Recall that our simulations adopt the majority protocol, which requires that at least c
copies be accessed in order to complete a read or a write. Equivalently, in graph-theoretic
terms, if we wish to access a set S of variables, then we must select a c-bundle for S. Since
the congestion of a c-bundle models the maximum number of physical copies that have to
be accessed sequentially by some individual node in the underlying machine, it is desirable
to access a c-bundle with low congestion. The existence of c-bundles of low congestion is
intimately related to the expansion properties of the graph G'. This motivates the following
definition [HB94] that characterizes a class of graphs called generalized expanders that make

good memory organizations.

Definition 1 A bipartite graph G = (U,V; E) with |U| = m and |V| = n, and with each

node in U having degree d is a (X, d, c,0)-generalized expander if, for every S C U such that
\S| < on and for every c-bundle F of S, [T'r(S)| > Ac|S|.

We say that a generalized expander is smooth if the maximum degree of any node in V is
© (|E|/|V]). Herley and Bilardi [HB94] have established the existence of certain generalized
expanders using counting techniques similar in spirit to those found in the seminal work of
Upfal and Widgerson [UW87]. A minor variation of this result (guaranteeing smoothness) is

quoted below.

Theorem 6 For every n and m, with m > n, there exists a smooth (\,2c —1,¢,1/(2¢ —1))-

generalized expander G = (U, V; E) with {U| =m, |V| =n, A =0 (1) and ¢ = © (log(m/n)).

The graph of Theorem 6 will govern the memory organization of our simulations. We shall
see that such a graph has the desirable property that every set S C U of size at most n has
a c-bundle of low congestion. Moreover, this c-bundle can be constructed efficiently.

Let S C U be the set of variables to be accessed. The simulation algorithms described in
the next sections construct a c-bundle for S starting from F(S) and applying a sequence of
whittling steps. Each whittling “prunes” the set of edges by selecting ¢ edges apiece for some
of the variables in S, and discarding the remaining ¢ — 1. At the beginning of a whittling
step, a variable is said to be alive if the ¢ edges for the variable have not been selected yet,
and dead otherwise. The sequence terminates when all variables are dead, at which point we
are left with the desired c-bundle. The variables to whittle at each step are chosen to ensure
that the degree of the final c-bundle will not exceed a fixed congestion ¢, whose value will be
specified later.

For i > 1, let S; C S denote the set of live variables and F; C E(S) the residual set of edges
at the beginning of the i-th whittling step. Initially, Sy = S and F; = E(S). Conceptually,
the ¢-th whittling step identifies a set W, of “congested” nodes and selects ¢ edges apiece for
as many live variables as possible without touching nodes in W;. More formally, we say that
x € S; is confined to W; under F; if £ has ¢ or more copies in F; stored in nodes of W;. In the
i-th whittling step, for each = € S; which is not confined to W; under F;, we select ¢ edges
not incident on W; and remove the remaining ¢ — 1 from F;. This operation will be referred

to as whittling of S; with respect to W;.

Definition 2 Let S C U, |S| < n. A g-whittling sequence of length t for S is a sequence
(Sl,Fl,Wl), (SQ,FQ,WQ), ey (St,Ft,Wt) such that

10

e S1 =S, F =E(S), and Wy CV s a set of at most (2c — 1)n/q nodes including all
nodes that are q-congested with respect to E(S);

e Fori> 1,85, C S;1 and F; C F,_1 are, respectively, the set of live variables and the
set of residual edges left after whittling S;_1 with respect to W;_1 and W; is the set of

q-congested nodes with respect to Fj;

e S, =W;=10 and F; is a c-bundle for S.

Note that in the above definition each W;, with ¢ > 1, contains only nodes that are ¢g-congested
with respect to F;, while W7 may include an additional (small) number of uncongested nodes.
The rationale behind this asymmetry will become clear later in the paper. It is also easy to see
that F}, the final c-bundle for S, has congestion at most ¢. The following lemma characterizes

the rate at which the variables “die” during a whittling sequence.

Lemma 1 Let S be a set of at most n variables, and ¢ > 4c/\ = O (log(m/n)). Then,
for any q-whittling sequence of length t, (S1, F1, W1), (S2, Fo, Wa), ..., (S, Fi, W}), we have
1S;| < n/(2c —1)=t for i > 1. Therefore t = O (logn/loglog(m/n)).

Proof: The proof proceeds by induction on 7. The basis 1 = 1 is trivial. For ¢ = 2, consider
the set So and assume that |S2| > n/(2c¢—1). Since all variables in Sy are confined to W7, we
can choose an arbitrary subset S’ C S of exactly n/(2¢—1) variables, and a c-bundle F' C F;
for S’, with T'p/(S") C Wi. Then, by the expansion properties of our memory organization,

we obtain
Aen (2¢ —1)n

> ;
(2¢ —1) q

a contradiction. Finally, suppose that ¢ > 3, and note that all the edges in F;_; relative to

Wil = |Dp(8)] 2 AdlS'| =

the set S —S;_; of dead variables at the beginning of Step ¢ — 1 cannot be incident on nodes
of W;_1, since we never pick edges for c-bundles out of those incident on ¢-congested nodes.
Therefore, the congestion of nodes in W;_ is entirely caused by copies of variables in S;_1,
whence

|Wi_1| <

2¢ —1)]5;— A
ez Sl < 2isi 4l)

p <
On the other hand, being confined to W;_1, all variables in S; have a c-bundle in W;_;, and
1Si| <|S2] < n/(2c — 1), hence, by the expansion properties of the memory map,

W] 2 AclSi|. (2)

11

The bound for S; follows by combining Inequalities (1) and (2) and applying the inductive
hypothesis. O

3 Simulation on the Mesh

We now consider the simulation of an (n,m)-PRAM on a \/n x /n mesh. In the subsequent
section we will sketch the (relatively minor) modifications required to extend the simulation
to meshes of higher dimensions. For notational convenience we will assume that n is a power
of four. Each mesh node simulates the activities of a distinct PRAM processor. Specifi-
cally, a node comprises a processor, capable of executing a standard repertoire of logical and
arithmetic operations, and a local memory directly accessible to that processor alone. Each
processor-memory node is connected to its immediate neighbours in the mesh by means of
bidirectional wires capable of transmitting a single O (log m)-bit quantity per step.

Recall that the distribution of the PRAM variables (set U) among the memory modules of
the mesh (set V') is governed by a (A, 2c¢—1,¢,1/(2¢—1)) generalized expander G = (U, V; E)
with |U| = m and |V| =n, A <1 (X constant), and ¢ = © (log(m/n)). It is assumed for the
moment that each mesh node holds a copy of a read-only table that encodes the structure of
the memory organization. In other words, the i-th entry of the table records the locations
of the copies of the i-th PRAM variable. This naive representation of the memory map
requires O (mlog(m/n)) storage per node. In Section 6, we will show how this table may
be represented in a distributed fashion, taking only O ((m/n) 10g5(m/n)) storage per node.
Note that the total storage of the simulating machine will then be only a polylogarithmic
factor away from the size of the PRAM memory.

We simulate a PRAM program by separately simulating its individual steps. Consider the
simulation of an arbitrary PRAM step, and let S C U denote the set of variables accessed
in the step. We assume that each processor accesses a distinct variable (i.e., |S| = n), thus
restricting our attention to the simulation of the EREW PRAM. Standard techniques can
be employed to extend the simulation to the other PRAM variants with no performance loss
(e.g., see [HBY4]). We assume that the address of the variable referenced by the i-th PRAM
processor during the step is made known to the corresponding mesh processor at the start of
the simulation. Each mesh processor creates a packet, referred to as a v-packet, containing
(i) the processor’s id; (ii) the name of the PRAM variable it wishes to access and the type of
operation (read/write); (iii) a data field for the value to be read/written; and (iv) a bit vector

of length 2¢ — 1, whose entries correspond to the copies of the variable and are initially set

12

to zero. Let S denote the set of v-packets created by the mesh processors. The simulation

consists of the following two phases.

Copy Selection Phase A c-bundle for S of congestion at most ¢ = 4¢/X is selected. The
bit vector of each packet in S is set to encode which copies of the corresponding variable

are in the c-bundle and which are not.

Access Phase For each variable in S, a copy of the corresponding v-packet is routed to each
mesh node containing a selected copy of that variable. Each mesh node performs the
accesses relative to the packets it receives and, in the case of reads, sends the accessed

values back to the requesting processors.

In the two subsections that follow we will describe the implementation of these two phases.
Most of our algorithms will involve the movement or manipulation of sets of packets. In turn,
such activities are based on two algorithmic primitives: k-sorting and k-relation routing.
Given a set of packets distributed among the processors of an n’-node mesh, so that each
node holds at most k packets, k-sorting is used to rearrange the packets so that node 1
holds the packets with the k£ smallest keys, node 2 holds the next k smallest keys, and
so on. For any value of k£ and any numbering of the nodes, this can be accomplished in
@) (k (log k+ \/77)) on the two-dimensional mesh, where the term £ log k arises from the need
to initially sort the groups of k keys locally at each node. It has to be remarked that in our
simulation algorithm, k-sorting (with nonconstant k) is always applied for & = O (log(m/n))
and n' = Q (n/log(m/n)). Therefore, for values of m within the bound stated in Theorem 1,
the time for the initial local sorting will never dominate the overall running time. In other
words, in our scenario k-sorting will always require O (k\/??) time.

The k-relation routing problem involves routing a set of packets subject to the constraint
that no node is the source or destination of more than k packets. Again, this can be done in

@) (k\/f?) time on an n'-node mesh. Both algorithms can be found in [Kun93].

3.1 Copy Selection Phase

The copy selection is accomplished by performing the whittlings implied by a ¢-whittling
sequence {(S;, F;, W;) : 1 < i < ¢}, for some ¢t = O (logn/loglog(m/n)), as defined in
Section 2. Note that each whittling could be performed easily by representing the copies
of the live variables as individual packets and then employing sorting, prefix and routing in

order to select the packets relative to the copies to be included in the c-bundle. However,

13

the n variables would initially account for (2¢ — 1)n packets, and manipulating such a large
set of packets can be expensive: for example, just sorting the packets would require O (cy/n)
time, which is too costly for our purposes. For this reason, the copy selection phase is broken
into two stages. The first stage performs the first whittling step, using more complex but
faster techniques. Since only a relatively small number of variables (less than n/(2¢ — 1))
will participate in the second stage, the remaining whittlings can be implemented using the

simple technique described above.

Stage 1 In the first stage, we perform the whittling of S; = S with respect to a certain
set W1 (specified later) which includes all nodes g-congested relative to Fy = E(S), with
g = 4c/A. In what follows, we will regard the mesh as being partitioned into s disjoint
submeshes of size \/n/s x \/n/s, which we will call cells. The quantity s, which we assume
to be a power of four greater than logc, will be determined by the analysis.

Recall that S denotes the set of v-packets relative to the n variables to be accessed. The

stage consists of the following steps.
1. Create a replica S¢ of S in each cell C of the mesh.
2. Independently within each cell C' do the following:

(a) Determine the degree of each packet in Sc with respect to C, that is, the total
number of copies of the corresponding variable which reside within C. Compute

the total degree of all packets in the cell as the sum of the individual degrees.

(b) If the total cell degree is less than g(n/s), then generate a set of c-packets R¢
containing one c-packet for each copy of a variable in S residing within C'. Each
c-packet contains the name of the variable and the node in C storing the copy. This
node is called the target of the c-packet. Furthermore, c-packets with the same
target are said to be competitors, while c-packets relative to the same variable are
said to be companions. Note that a c-packet may have companions belonging to
several cells. Finally, we call R the set obtained as the union over all cells C of the

set RC.

(c) Determine how many competitors each c-packet has. A c-packet with ¢ or fewer

competitors is deemed accessible, and inaccessible otherwise.

3. For those variables with ¢ or more accessible c-packets, select ¢ copies and update the

bit-map in the appropriate v-packet in S to reflect which copies have been selected. The

14

bit-vectors for all other v-packets should remain unchanged i.e. all bits should remain

at zero.

We can easily see that the first stage executes the whittling of S with respect to a set
W1 which comprises all mesh nodes that store more than ¢ copies of variables in S (i.e.,
the g-congested nodes), plus those nodes belonging to cells with total degree at least g(n/s).
Therefore, the nodes in W; account for at least q|WW;| copies. Since there are (2¢ — 1)n copies
of variables, we must have |W;| < (2¢ — 1)n/q, as required by the definition of g-whittling

sequence.
Lemma 2 Stage 1 can be implemented on the mesh in time O (sc+ vns+ q\/n/s).

Proof: Step 1 is executed as follows. Partition the \/n x \/n mesh into four \/n/4 x /n /4 sub-
meshes (quadrants), and each of these in turn into four submeshes of size \/n/16 x \/n/16 (sub-
quadrants), and so on until be have tessellated the mesh into submeshes of size \/n/s x \/n/s,
i.e. into individual cells. The replication of S in the individual cells, reflects this recursive
decomposition of the mesh. First, the set S is replicated in each of the four quadrants. This
is achieved by having the four mesh nodes that occupy the same relative position in the four
quadrants send each other a copy of the packets they hold. At this point, each node holds
four packets and each quadrant holds a replica of S. Each quadrant independently replicates

its copy of S into its four constituent subquadrants in the same manner, and so on. At

the start of the i-th iteration of this process, each node of a \/n/4i_1 X \/n/4i_1 submesh
holds 4'~! packets that it must send to three other nodes within this submesh. This is a
simple routing pattern in which each node is the source and destination of 3 - 4~! pack-
ets (i.e., an instance of the 3 - 4 !-relation routing problem), and so can be completed in
0 (4i*1\/n/4i—1) = O (y/n2"1) time. Since there are (1/2) log s iterations in all, we see that
the time required to complete Step 1 is O (251:/12)10“ \/EZFI) = 0 (y/ns).

Step 2.a involves calculating the degree of each variable packet, hence requires O (c) time
per packet and O (sc) time per node, since each node hold s packets. The total cell degree
for C' can easily be computed within each cell from the individual degrees in O (\/7%) time.

A straightforward implementation of Step 2.b, where each node generates the appropriate
number of c-packets for each v-packet it holds, would result in an unbalanced distribution
of the c-packets among the nodes, which would in turn make the execution of subsequent
steps more expensive. Therefore, we resort to the following more careful implementation of

this step. Within each cell C, partition S¢ into degree classes S’(Cf) for 0 < < [log(2¢ —1)],

15

where S’(Cf) contains v-packets of variables with at least 2¢ and at most 2!*! — 1 copies in C.
(We ignore variables of degree zero and note that no v-packet can have degree greater than
2c—1.) Redistribute the v-packets of each degree class so that each node of C receives at most
Hgg)\s/n} v-packets in Class 7. This redistribution can be performed by first determining
the destinations of packets in all classes using [log(2c — 1)] prefix operations (one per degree
class), and then invoking a routing step within C' in which each node is the source of at most s
packets and the destination of at most }_;— log (2e=1)] H,SA'(Cf) \s/n] =0 (s +logc) = O (s) packets.
This requires overall time O (\/n—/slogc + \/n_s) = O (y/ns).

After the above redistribution of the v-packets, each node examines each v-packet it holds
and generates the appropriate number of c-packets for the corresponding variable. Since each
node receives no more than Hg(cf)|s/n] v-packets from the i-th degree class and each such
packet may result in up to 271 — 1 c-packets, it follows that each node may hold up to
Zlﬂzog (2e=1)] HS \s/n} (21+1 — 1) c-packets. Now, since 3, log (2e=1)1 |.§’g)\(2i+1 —1) <2|R¢| <
2¢(n/s) by assumption, we can conclude that each node generates O (¢ + ¢) = O (q) c-packets.
Putting it all together, Step 2.b can be completed in time O (y/ns + ¢) time.

Turning to Step 2.c, we can count the competitors of each packet within each cell by
first sorting the c-packets by target, to group competitors together, and then using parallel
prefix to determine which packets are accessible and which are inaccessible. If a c-packet is
deemed accessible, then the appropriate entry in the bit vector of the corresponding v-packet
is set. Since each node initially holds O (g) packets and the cell has diameter \/n/s, this step
requires O (q\/%) time.

As for Step 3, we gather the accessibility information gained for each variable in different
cells by “coalescing” the replicas of the v-packets created in Step 1. When two replicas of a
v-packet are coalesced, a single v-packet results, whose bit-vector is obtained as the bitwise
OR of the two bit-vectors associated to the replicas. The structure of the gathering process
follows the reverse pattern of the replication process of Step 1, and is executed in the same
time. At the end of the process, each processor checks the bit-vector of its v-packet. If
the bit-vector contains more than ¢ 1-bits, then ¢ of these, chosen arbitrarily, are retained
(corresponding to a c-bundle), while the others are reset to 0. Otherwise, all bits are reset to
0.

By combining the complexities of all the steps, we conclude that the running time of the

first stage is O (sc + /ns + q\/n/s). O

Following the completion of the first stage the v-packets are back to their originating

16

processors and encode a c-bundle for all variables except for the set Sy of variables confined
to Wi. Since |Wi| < (2¢ — 1)n/q, by Lemma 1 it follows that |Sa| < n/(2¢ —1). Stage 2
will select a c-bundle for Sy by performing all the remaining whittlings of the ¢-whittling

sequence.

Stage 2 Since |S3| < n/(2c — 1), the live variables account for at most n copies, i.e. at
most one per mesh node. As a consequence, we can perform the remaining ¢ — 1 whittlings
using standard 1-sorting, prefix and 1-routing primitives and without exceeding our target
time performance. In fact, in each whittling step the number of live variables decreases
geometrically, thus we can execute the whittlings within smaller and smaller submeshes so
that the cost of the aforementioned primitives also decreases geometrically.

Let S; denote the live variables at the beginning of the i-th whittling step, and recall that
by Lemma 1 we have |S;| < n/(2c—1)""!. We define a sequence of submeshes My, M3, -, M,
that are nested one inside the other, where M; is a \/n/(2c —1)i=2x \/n/(2c — 1)=2 submesh.

(For concreteness, we will assume that M;,q occupies the lower left hand corner of M;.) Note
that Ms is the entire mesh. Stage 2 consists of £—1 iterations numbered, for convenience, from
2 to t. Iteration 7 performs the ¢-th whittling step in the whittling sequence and is executed
entirely within M;. In particular, for + > 2 at the beginning of Iteration i, the v-packets
corresponding to the live variables (set S;) are distributed among the nodes of M;, with at
most one v-packet per node. At the end of the iteration, the v-packets corresponding to dead
variables in S — S;;1, are evenly distributed among the nodes outside M;; (for notational

convenience, we assume that M;,; is an “empty” mesh). Iteration i is implemented as follows.

1. For each variable in S; create 2c¢ — 1 c-packets and distribute the c-packets among the

nodes of M;, assigning at most one packet to each node.

2. For each c-packet, determine how many competitors it has. A c-packet with at most ¢

competitors is said to be accessible and is said to be inaccessible otherwise.

3. For each variable z in S; determine how many of the associated c-packets are accessible.
If ¢ or more are accessible, set the bit-vector positions in z’s v-packet corresponding
to the first ¢ accessible copies of that variable; otherwise reset all bits in the bit-vector
for z to zero. In the former case x becomes dead while in the latter x is alive and will

belong to S;+1.

4. Delete all c-packets. Route the v-packets corresponding to the dead variables in S; to

17

distinct nodes of M; — M, 1, while those corresponding to variables that remain alive,

to distinct nodes of M; 4.

It is easy to see that the above steps perform the whittling of S; with respect to W;. Note
that at most |S;| < n/(2c—1)"~! die during Iteration i and that at most |S; 1| < n/(2c— 1)
variables remain alive at its conclusion. Since M; contains n/(2c — 1)'=2 nodes and M,
contains n/(2¢ — 1)'~! nodes, if ¢ > 3 there are always enough nodes in M; — M; 1 and in

My to implement the last step of Iteration 3.
Lemma 3 Stage 2 can be implemented on the mesh in time O (y/n).

Proof: Tteration i requires a constant number of prefix, 1-sorting and 1-relation routing on M;,
which all require time O (n/(2¢c — 1)i—2), therefore the combined cost of the ¢ — 1 iterations
is . ’

o (3) =0,

a

Once the sequence of whittlings has been completed, the information on which copies have
been selected is encoded in the bit-vectors of the various v-packets that lie scattered among
the nodes of the mesh, with at most 2 packets per node (at most one from Stage 1 and at
most one from Stage 2). Finally, the v-packets are sent back to their originating processors
in O (y/n) time.

Combining the contributions of the two stages, we obtain the overall running time for the

copy selection phase.

Theorem 7 A c-bundle of congestion O (log(m/n)) for an arbitrary set of n variables can

be selected in time O (nlog(m/n)) on the mesh.

Proof: Choose s = g = 4c/X = O (log(m/n)) and note that for m < 26(”1/3), as required in
Theorem 1, sc = O (nlog(m/ n)) Then, the theorem follows by adding up the complexities

of Stage 1 and Stage 2 given in Lemmas 2 and 3, respectively. O

3.2 Access Phase

After copy selection, the bit-vectors of the v-packets in S encode a ¢-bundle of congestion at
most ¢ for the set of variables to be accessed. The actual access is performed using a protocol

similar to Stage 1 of copy selection.

18

1. Let s = g = 4¢/\ = O (log(m/n)). Create a replica S¢ of S in each cell C of n/s nodes
of the mesh.

2. Independently within each cell C' do the following:

(a) Generate a set Re of c-packets containing one c-packet for each selected copy of
a variable in S residing within C'. Now, each c-packet contains the identity of the
node in C' storing the copy, plus all the fields of the corresponding v-packet, with

the exception of the bit-vector.
(b) Route each c-packet in R to its target within C.

(c) Each node in C performs the memory accesses associated with the received c-
packets. In case of writes, the value of the copy is set to the one carried by the
c-packet and timestamped with the current PRAM step. In case of reads, the data
field of the c-packet is loaded with the value and time-stamp of the referenced copy.

(d) Route c-packets carrying read requests back to the nodes where they were gener-
ated. For each read request, the data field of the corresponding v-packet is loaded
with the data field of the c-packet carrying the most recently updated time-stamp.

3. Complete the read accesses by carrying back to each originating node the (replica of

the) v-packet carrying the most recent time-stamp.

Theorem 8 The memory accesses relative to the c-bundle determined by the copy selection

phase can be performed in time O (nlog(m/n)) on the mesh.

Proof: Steps 1, 2.a, 3 of the access phase have, respectively, the same structure of Steps 1,
2.b, 3 of the first stage of copy selection, hence can be completed in O (nlog(m/n)) time
using the same ideas. Both Steps 2.b and 2.d involve a k-relation routing (with £ = s + q)
hence require O ((3 + q)M) = O(nlog(m/n)) time altogether. Finally Step 2.c can
be completed in O (q) = O (log(m/n)) time by individual nodes. The theorem follows by

combining the complexities of the individual steps. O

By combining Theorem 7 with Theorem 8 we establish that any step of an (n, m)-PRAM
can be simulated with slowdown O (n log(m/n)) on an y/n x y/n mesh, using O (log(m/n))
copies per variable. Section 6 shows how the read-only tables encoding the memory map
held by each node may be replaced by a space-efficient, distributed representation using only
0 ((m/n) 10g5(m/n)) storage per node, thus completing the proof of Theorem 1 as it relates

two-dimensional meshes.

19

4 Higher-Dimensional Meshes

The overall structure of the simulation scheme for the two-dimensional mesh described in
Section 3 also applies to higher-dimensional meshes. Specifically, we adopt the same memory
organization and pick the same values for the parameters s and ¢. In what follows, we sketch
how to implement the individual steps of the copy selection and access phases efficiently on
an n'/? x /4 x ... x n'/¢ d-dimensional mesh (called, for short, an n-node d-mesh) with
constant d. As for the case of the two-dimensional mesh, we note that for m < 29("1/(d+1)),
k = 0O (log(m/n)) and n' = Q (n/log(m/n)), the k-sorting problem and the k-relation routing
problem may both be solved in time O (k(n’)l/d) on an n/-node d-mesh [Kun93].

Let us first consider the first stage of copy selection, and interpret a cell C as an (n/s)-node
d-submesh. Step 1 prescribes that the set S be replicated in each cell. We adopt the same
recursive approach developed for d = 2 and perform the replication in substeps. At the i-th
substep, each (n/2%~)-node d-submesh replicates its copy of S in each of its 2¢ component
(n/2%)-node d-submeshes . Such replication involves an instance of the 2%-relation routing
problem on an n/24%~Y_node d-mesh and can therefore be completed in O (Z(dfl)inl/d) time.

Hence, the total time required by Step 1 is

=1

(1/d)log s
O (Z 2(d1)in1/d) -0 (nl/dslfl/d) .

Step 3 is accomplished in the same time by performing the routings of Step 1 in the reverse
order. Let us finally consider Step 2. In this step, the nodes of each cell C first determine
whether the cell degree is less than g(n/s) (Step 2.a). If this is the case, a balanced collection
of c-packets relative to the copies of variables in S residing in C' is generated (Step 2.b) and
finally checked for accessibility (Step 2.c). The operations involved are [log(2c — 1)] prefix
computations as well as a constant number of s-sorting, s-relation routing and ¢-sorting
operations, plus an additional O (¢ + s) work per node. By plugging in the chosen values for

s and g we see that Step 2 of copy selection can be completed in time
@) (sc +pt/dgt=1/d 4 q(n/s)l/d) =0 (nl/d(log(m/n))lfl/d) . (3)

Since this subsumes the cost of Steps 1 and 3, this expression also captures the cost of the
entire first stage of copy selection. In the second stage, we perform the i-th whittling entirely

within an n/(2c—1)"~2-node d submesh. As in the two-dimensional case, this whittling can be

20

easily implemented by means of 1-sorting and parallel prefix. Since the size of the submeshes
is geometrically decreasing, the overall running time is dominated by the time for i = 2,
which is O (nl/d). Hence, the entire copy selection algorithm can be completed within the
time given by Equation 3.

Finally, recall that Steps 1, 2.a, 3 of the access phase mirror Steps 1, 2.b, 3 of copy
selection, hence they require time O (nl/d(log(m/n))l_l/d) altogether. The remaining steps
can be realized as two instances of an (s + ¢)-relation routing in each cell plus O (¢) work per
node. Therefore, the total time required by the access phase is again O (nl/d(log(m/n))l_l/d)
time.

The above discussion establishes that any step of an (n, m)-PRAM with m < 90(n!/(**1)
can be simulated with slowdown O (nl/d(log(m/n))l_l/d) on a d-dimensional mesh (with
constant d) using O (log(m/n)) copies per variable. In Section 6 we will show how the space

requirements per node may be reduced to ((m/n)log3(m/n)) storage per node. This will

complete the proof of Theorem 1.

5 The Pruned Butterfly

An n-leaf fat-tree is a routing network whose coarse structure resembles that of an n-leaf binary
tree. More specifically, leaves correspond to processing elements, non-leaf nodes represent
clusters of routing switches and edges represent communication channels of bandwidth that
increases from the leaves to the root. The first architecture of this kind was proposed by
Leiserson [Lei85], and was later followed by a number of related networks differing in the
detail of how components at different levels of the tree are interconnected. In this paper
we adopt the pruned butterfly fat-tree of Bay and Bilardi [BB95], an example of which is
illustrated in Figure 1. Each dotted ellipse in the figure identifies a cluster of routing switches
that collectively correspond to a single node in the binary tree. The bundle of edges joining
switches of a cluster to switches of its parent cluster constitutes a channel whose bandwidth
equals the cardinality of the bundle. The depth of a cluster is the distance of its component
switches from the root. At any given depth, the clusters are numbered from left to right,
beginning at zero. Individual switches within each cluster are also numbered from left to
right, beginning at zero.

Assume that n is a power of four. Formally, an n-leaf pruned butterfly is a graph G =

21

Figure 1: A pruned butterfly with 16 leaves

(V, E) whose vertices are indexed as follows :
V={<ijk>0<i<logn,0<j<2,0<k</n27 2}

With the above indexing, the j-th processor-memory node from left to right corresponds to
vertex < logn, 7,0 >. For 0 < i < logn, vertex < 1,7,k > corresponds to the k-th switch of
the j-th cluster at depth ¢ of the tree. The set of edges E is defined as follows:
logn 2t —1
E=U U Ey
i=1 j=0
where F;; contains the edges connecting switches in the j-th cluster at depth 7 to those in its

parent cluster. When ¢ is even, we let

Ei; = {(<i,5,k><i—1,[5/2],k >),
(<i g k> <i—1,13/2].k+vn277?>):
0<k<n27/?}.

When ¢ is odd, we let
Eij = {(< i,k >, <i—1, L]/ZJ,k >:0<k< \/');2__2/%}

Note that | E;j| = /n2'~[*/?] therefore channel bandwidths double every other level from the

leaves to the top, ranging from 2 to \/n.

22

G is interpreted as an n-node machine by identifying the n processor-memory nodes with
the n leaves, a routing switch with each internal vertex, and a wire capable of transmitting
a single packet along its length in unit time with each edge. Moreover we assume that
each routing switch is provided with an adder, so that parallel prefix computations may be
completed efficiently. Intuitively, to route a message from leaf 7 to leaf j, the message is
routed upwards in the tree to the cluster that is the least common ancestor of 7 and j and
thence downwards to its destination.

This architecture has a number of interesting properties. For example, it is a subgraph
of the butterfly network and it embeds the n-leaf mesh of trees architecture with constant
dilation and load. Furthermore, the original bit-serial formulation of the pruned butterfly
presented by Bay and Bilardi is area universal: the n-leaf pruned butterfly can be laid out
in O (n log? n) area and can route any set of messages almost as efficiently as any circuit
of similar area. (See [BB95] and the references contained therein for a fuller discussion of
area-universality and the capabilities and properties of the pruned butterfly.) An important
routing property of the n-leaf pruned butterfly is the following. Consider a collection of
k < y/n packets, stored one per node among the leaves, with the i-th packet residing at leaf
< logn, s;,0 > and destined to leaf < logn,d;,0 >. We refer to the collection as a wawve if
$1 < 83 < ... < s, and dy < dy < ...<d In[BB95] it is shown that any wave can be
easily routed in O (logn) time. Moreover, a sequence of ¢ waves may be routed in a pipelined

fashion in time O (¢ + logn).

5.1 Sorting and Routing on the Pruned Butterfly

In this subsection, we develop algorithms for k-sorting and k-relation routing on the pruned

butterfly, which will needed for the shared memory simulation.

Lemma 4 Any instance of k-sorting can be performed in O (k(logk + \/n)) time on the n-leaf
pruned butterfly.

Proof: We will consider the input packets sorted when the k packets with the smallest keys
are in the O-th leaf, the next k smallest occupy the 1-st leaf, and so on. Our sorting strategy
is based on an adaptation of Batcher’s bitonic sorting algorithm to handle the case where
k = 1. The generalization to larger values of k is standard, and can be obtained by first
sorting the sequence of input packets at each node (possibly padded with extra dummy

packets with key=oo to bring its length to k) in O (klogk) time, and then replacing each

23

constant-time compare-exchange operation in the algorithm for ¥ = 1 with an O (k)-time
merge-split operation [Knu73].

When k£ =1, let zg,z1,..., 2,1 be the n-tuple of variables that we wish to sort, with z;
residing at the i-th leaf. The bitonic sorting algorithm is structured as a sequence of logn
merging phases. During the i-th phase, for 1 < ¢ < logn, distinct pairs of sorted subsequences
of length 2~ are merged into subsequences of length 2¢. In turn, the i-th phase is made of

(i,7)-stages, for j =i —1,4—2,...1,0. An (i,j) stage executes as follows:

for all 0 < k£ <n—1 do in parallel
if [k]; = 0 then Oper(k,k + 2914, j).

In the above code, [k]; denotes the j-th bit in the binary representation of &, while Oper(k, k+
29714, 7) denotes a compare-exchange operation applied to the variables z;, and Tpyoi-1. The
“orientation” of the exchange depends on 7 and j. Note that the leaves containing these two
variables fall within the same subtree of 2/ leaves. Thus, any (4, j)-stage can be performed
within such subtrees. We now describe the implementation of an (i, j)-stage for the subtree
with leaves 0,---,27 — 1, and note that the same algorithm can be executed simultaneously

within each 27-leaf subtree.

1. Transfer the values of xg, x1,...,Z9;-1_; (residing at distinct leaves of the left subtree)

to the right subtree, so that leaf k+27~! holds both z;, and Tpaoi-1, for 0 <k < 2J-1_1.
2. Perform Oper(k,k +2771,i,7) at leaf k42771, for 0 < k <2771 — 1.
3. Transfer the updated values of zg,x1, - -, x9;-1_; back into the leaves of the left subtree.

Clearly, Step 2 can be completed in O (1) time, since Oper involves a simple comparison-
exchange. Steps 1 and 3 have a similar structure and involve the routing of the 2/~! values
stored at the leaves of the left (resp., right) 2/~ !-leaf subtree to the leaves of its sibling subtree.
We may decompose this routing into [2j_1/2lj/gj-| =0 (\/2_9) waves which may then be
routed in a pipelined fashion in O (\/2_]) time. Hence, any (i, j)-stage can be completed in
@) (\/2_3) time.

Now, recall that the i-th merging phase of the sorting algorithm consists of a sequence of
(i,7)-stages for j =4 — 1,5 —2...,1,0. Hence, the total running time of the algorithm may

be bounded as follows

logn i—1 logn
2;}0(\/27) = ;0(\/2_) =0 (vn).

24

a

Recall that a k-relation routing problem involves routing a set of packets from source to
destination subject to the constraint that no node is the source or destination of more than

k packets. We have:

Lemma 5 Any instance of the k-relation routing problem may be routed in O (k(logk + /n))
time on the n-leaf pruned butterfly.

Proof: Let S denote the set of packets to be routed. The routing algorithm is made of the

following steps:
1. Sort the packets in S by their destination among the n leaves of the pruned butterfly.

2. For 0 < i < k+/n, route the packets whose rank in the sorted sequence is equal to
i mod kv/n.

By Lemma 4, Step 1 above requires time O (k(log k + \/n)). As for Step 2, it is easy to see that
each of the ky/n routings is a wave. Therefore, all iterations can be pipelined and completed
in time O (ky/n). Thus, the entire routing algorithm can be completed in O (k(logk + /n))

time. O

5.2 The Simulation Algorithm

A closer look at the simulation algorithm devised for the two-dimensional mesh reveals that
both the copy selection and access phases are implemented in terms of k-sorting, k-relation
routing, prefix computations, and rely upon a recursive decomposition of the network into
subnetworks of the same topology. Note that the pruned butterfly exhibits such a decomposi-
tion. Specifically, for n and s < n arbitrary powers of two, an n-leaf pruned butterfly can be
decomposed into s (n/s)-leaf pruned butterflies. Since the complexity of routing and sorting
are asymptotically the same for the pruned butterfly and the mesh, we conclude that any step
of an (n,m)-PRAM can be simulated with slowdown O (nlog(m/n)) on an n-leaf pruned
butterfly using O (log(m/n)) copies per variable. The techniques of the next section show
how space requirement per node may be limited to O ((m/n)(log(m/n))?) thus completing

the proof of Theorem 2.

25

6 Space-Efficient Simulations

The simulations presented in the paper are based on a memory organization whose structure
is modelled by a bipartite graph G = (U,V; E), with |U| = m, |V| = n, and where every
vertex in U has degree 2¢ — 1 = O (log(m/n)). This graph may be represented by means
of a read-only table T = [t1,t9, -, ty] consisting of m entries, where the i-th entry ¢; =
(¢i(1),ti(2),---,ti(2c — 1)) contains the addresses of the copies of the i-th variable. We call
each such address an item. In this section, we show that such a table may be represented
in a distributed fashion among the nodes of the simulating network, so that the maximum
number of items stored per node is O ((m/n) log3(m/n)) and that any N-tuple (with N > n)
of entries (corresponding to the variables to be accessed in the PRAM step) may be read in
time proportional to the slowdown of the simulation step. (The need to access an N-tuple
rather than an n-tuple will be discussed later.) We sketch the required techniques for the two-
dimensional mesh, which are akin to those presented in [Her96], though somewhat simpler.
The result extends immediately to the other interconnections considered in the paper.

Let n' < n be a parameter to be fixed later. Partition the /n x \/n mesh into n/n’'
tiles of size v/n! x v/n'. Each tile will contain a complete copy of T distributed as follows.
Partition T into m/b pages of b entries each, and partition each tile into n’/b blocks each of
size Vb x /b. Within each tile, replicate and distribute the m/b pages among the n'/b blocks
that make up that tile according to a smooth (X, 2¢' —1,¢',1/(2¢' — 1))-generalized expander
H = (Ug,Vu; Ey) such that |Ug| = m/b, [Vy| = n'/b, ¢ = 2¢ — 1, and where parameters
A <1, c= 0 (log(m/n)) are as defined in Section 2. The maximum number of pages mapped
to any individual block is O ((m/n')c’)), which amounts to O ((m/n')bc?) items in all. The
items mapped to a particular block are distributed evenly among the nodes of the block, with
O ((m/n')c?) items per node. Within each node, the individual items are held in a static
dictionary in order to facilitate retrieval.

Note that there are a total of (n/n’)(2¢' — 1) copies of each entry and that to read an
entry it suffices to read any one copy. Note also that the structure of the graph H can be
represented by means of a read-only table T of m/b entries. This latter table is replicated
and represented in every block in the network, with each node of each block holding m/b?
entries of Ty.

To read an N-tuple of entries of T, each tile deals locally with the reads relating to its
own nodes, independently of other tiles, by executing the following steps. (It is assumed that

each node handles N/n entries.)

26

1. Generate a set S containing 2¢’ — 1 numbered request packets r1(z),ro(z), ..., roe—1(z)
for each referenced entry x. Packet r;(z) bears the name of the processor that generated
it, the entry to which it refers, and the name of the block that contains the i-th copy

of that entry within the tile in question.

2. Select a subset S’ of the packets that contains ¢’ packets r|(z),---, 7. (x) per refer-

enced entry such that the number of selected packets relating to any individual block is

O ((N/n)bc').

3. Route each packet in S’ to the appropriate block, ensuring that the number of packets
routed to any individual node is O ((N/n)c').

4. Within each block, circulate the packets around a Hamiltonian cycle. (For the pruned
butterfly, use an Eulerian cycle.) As a packet, say r/(z), visits a node, check whether

that node contains a copy of entry ¢,. If so, load a copy of item #,(7) into the packet.
5. Route each packet back to the node that generated it.

Notice that the ¢’ = 2c — 1 selected packets relating to entry = are ultimately returned to the
node that generated them, each bearing the value of a distinct item of that entry.

In order to discover the locations of the various copies of the entries, which are needed
to generate packets during Step 1, the nodes need to query Tx. Since each block maintains
a private copy of this table and each block generates (N/n)b(2¢' — 1) request packets, this
operation can be accomplished in the same fashion as that outlined for Step 4 and has the
same O ((N/n)bc') running time. Steps 3 and 5 involve ((N/n)c’)-relation routing within an
n’-node tile so these contribute O ((N/n)c’\/ﬁ) to the running time.

As for Step 2, note that for each page of Tz the number of entries referenced may be up
to b, the page size. For a particular tile, let P; denote the set of pages where the number
of referenced entries lies in the interval [2¢,2i%1). Clearly, Zi'(fob 2!|P;| < 2(N/n)n'. Since
H is a generalized expander, it is possible to construct a ¢-bundle for the pages in each
P; that has degree O ((|P;|/(n'/b))c'). Each edge in such a bundle corresponds to at most
21*1 request packets, and so the total number of selected packets over all the P; is at most
Ziozgob 201 (|P;|/(n' /b)) = O ((N/n)bc'). The algorithmic techniques required to perform the
selection include straightforward combinations of sorting and parallel prefix akin to those
employed during the second stage of the copy selection process of Section 3, and this step

also has a running time of O ((N/n)c’\/ﬁ)

27

Thus, the overall running time is O ((N/n)(b + \/77)0’). Recall that in our intended
application, namely the reading of the addresses of variable copies during Step 2.b of the copy
selection phase of the algorithm of Section 3 (and the corresponding step of the subsequent
access phase), each mesh node generates O(s) = O(log(m/n)) such lookup requests. Thus,
N = sn, so by choosing b = v/ = y/n/log®(m/n) and ¢ = O (log(m/n)), this running
time simplifies to O (n log(m/n)). Moreover, the distributed representation of the memory
map T requires O ((m/n')c'(2¢—1)) = O ((m/n) log5(m/n)) storage per node, while the
representation of Ty contributes a further O ((m/b?)c’) = O ((m/n) 10g4(m/n)) per node.
Hence, the total storage requirement per node is O ((m/n) log5(m/n)).

7 Lower Bound

In this section, we prove a lower bound on the worst-case slowdown incurred when simulating
a PRAM step on a processor network. Unlike previous approaches [AHMP87, KU88, HB94],
which do not account for the network topology, we obtain a bound that is based on the
bandwidth characteristics of the simulating network. As a result, while previous lower bounds
were significant only for very powerful networks such as expanders, our lower bound can
be specialized, yielding nontrivial results, to a broad family of topologies, including low-
bandwidth ones such as d-dimensional meshes and the pruned butterfly. The bound is based
on the notion of balanced decomposition tree [BL84], which provides a partition of the network
into disjoint regions of known bandwidth. We first formulate the general lower bound in terms
of such a decomposition, and then show how to specialize it to meshes and to the pruned
butterfly.

Consider the simulation of an arbitrary (n, m)-PRAM program on an n-processor network
N. For convenience, we assume that each PRAM step involves either the reading (read step)
or the writing (write step) of some n-tuple of variables. The simulation must satisfy the

following standard constraints, which are also required in the lower bounds quoted earlier.

e The simulation must on-line, in the sense that each PRAM step is made known to
the simulation algorithm only after the simulation of previous read steps has been
completed. Thus, read steps are simulated one-by-one according to the order specified
by the PRAM program. Each read must succeed in accessing the correct (i.e. most
recently written) value of the variable in question. Note that no restriction is placed on

the execution of write operations.

28

e The simulation must be point-to-point in the sense that a processor that wants to write
a variable must dispatch a distinct message for each copy of the variable it wants to

update.

Note that the point-to-point constraint rules out the splitting and combining techniques that
are at the core of the simulations presented in this paper. However, at the end of the section,
we modify the argument to obtain a non point-to-point lower bound, formulated in terms of
the global space used to represent the PRAM memory, which applies to our upper bounds.
We assume that the simulating network A has a [wg, w1, ..., Wiegn] balanced decomposition
tree, as defined in [BL84]; that is, for any 4, 0 < 4 < logn, A can be partitioned into 2° disjoint
1-Tegions, Rgi), ... ,R;), where each i-region contains [n/QZ} 4 1 processors and is connected
to the rest of the network by at most w; edges. Clearly, every network has a balanced

decomposition tree, for suitable values of the w;’s.

Definition 3 Let h and k be two integers, with 1 < h, k < logn, and let t be an arbitrary time
step during the course of the simulation. For any shared variable v € U, we define rfhk(u) to

be the minimum, taken over all h-regions RrM

;s of the number of k-regions containing valid

(i.e., most recently updated) copies of u that lie outside Rgh) at the beginning of step t. (We
assume r,g,k(u) =0, for every h,k and u.) We also define the average redundancy at time t

with respect to h and k as v}, = 3 ,cpr 7 4 (w)/m.

The lower bound argument is similar in spirit to the ones in [AHMP87, KU88, HB94],
namely, it relies on finding a sequence of PRAM steps which are “hard” to simulate. Such a
sequence will contain a judicious mixture of write and read steps suitably chosen to expose a
tradeoff of the following kind: unless the simulation devotes a sufficient amount of effort to
each write step to ensure that the valid copies of the variables written are “nicely distributed”
among different regions of the network, an adversary is always guaranteed to be able to find
a read instruction that will be relatively expensive to simulate.

In the subsequent analysis, we will make use of the following technical lemma, whose proof

is embedded in that of Lemma 1 in [PP97].

Lemma 6 ([PP97]) Consider a fized partition of the network into p disjoint regions, and
a set of m' PRAM wvariables, such that, for each variable, there are at most ' > 1 distinct

regions containing valid copies of the variable. Then, for any n' < m/, there exists a set of n'

29

variables whose valid copies are all stored in memory modules residing in at most

N
®(r',p,n',m') = 2 - max {r',p (%) }

regions.

A lower bound on the complexity of a read operation as a function of the redundancy of

the simulation scheme is proved in the following lemma.

Lemma 7 Fiz an arbitrary time step t during the course of the simulation. For every h and
k, with 1 < h,k < logn, at time t an adversary could issue a read step involving n distinct

variables, whose simulation requires time at least gh,k(T}fL i), where

1 if ®(2r,2% n,m/2M*1) > 2k=2

n
4(wh+wk<1>(2r,2k,n,m/2h+1))

gh,k\T) = i
(r) otherwise

and Tfl’k is the average redundancy at time t with respect to h and k .

Proof: Fix h and k and let r = rfl7k. The case ®(2r,2%, n,m/2"*1) > 2k=2 is trivial, hence
we assume that ®(2r,2% n,m/21) < 2k=2, We will identify a set of © (n) variables all of
whose valid copies are confined within a low-bandwidth portion of the network, and therefore
are expensive to read by processors outside the region. Let U = {u € U : sz,k(“) < 2r}.
Clearly, |U| > m/2 and there exists an h-region R;g) for which there are at least m /2!

variables in U achieving their minimum redundancy with respect to Rgg). Let UJ(:) C U be
the set containing these variables. Note that since ®(2r, 2%, n, m/2"*") < 2¥=2 we must have
m /2" > n and, thus, W](:)| > n. We distinguish between two cases, depending on whether

r is less than 1/2 or not.

If r < 1/2, then there exists an n-tuple of variables in U](:) whose valid copies are all

within R%Z). Since h > 1 and so Rgg) contains no more than n/2 processors, we can stipulate
(h)
Jo

that n/2 variables of the n-tuple be read by processors outside R ’. At least one copy per

variable must then be transmitted along the wires connecting the region with the rest of the
network, therefore such a read instruction will require at least n/(2wy) time.

The case r > 1/2 is more involved. Fix an arbitrary subset W of)

o containing exactly

(h)

m/2M*1! variables. Each variable u € W may have a number of valid copies within Rjg

(h)

Jo

plus at
most 2r valid copies scattered among k-regions external to R ’ (call them expensive copies).

By plugging ' = 2r, p = 2%, n' = n, and m' = m/2"*! into the statement of Lemma 6,

30

we conclude that there are n variables in W whose expensive copies are all contained in at
most ®(2r, 2%, n,m/2"*1) k-regions. Since ®(2r,2%, n,m/2"*1) < 2572 the union of R;g)
and these k-regions contains no more than 3n/4 processors. Therefore we can stipulate that
n/4 variables of the n-tuple be read by processors outside the union. The lemma follows by

observing that reading these variables would take time at least

n
4 (wp, + wi®(2r, 2%, n,m/2h+1))’

and that the above term is strictly less than n/(2wy).
a

We observe that the function gy (r) defined in the above lemma is a non-increasing function
of r.
The following lemma is similar to Lemma 7 in [HB94], and captures the contribution of

the write steps to the running time in terms of the average redundancy.

Lemma 8 Consider an arbitrary time step t during the course of a point-to-point simulation,

and let r = sz,k- Then, t and r satisfy the following inequality:

m
- 2hwh '

Proof: For each variable u, let r, denote the number of valid copies of u lying outside the
h-region which contains the processor that most recently updated u (before time t). (Note
that r, as well as rfl’k(u), for any h and k, are equal to 0 if no processor wrote u before time
t.) Under the point-to-point assumption, such a processor must have dispatched at least r,
distinct messages that crossed the boundaries of its h-region. As a consequence, we have that
a total of at least), -;; 7, > mm messages must have crossed boundaries of h-regions, hence,
there must be an h-region whose boundary was crossed by at least rm /2" distinct messages,

which accounts for a total of at least rm/(2"wy,) time. 0

Theorem 9 For any T > 2m/n, there exists a T-step (n,m)-PRAM program, whose point-
to-point, on-line simulation on an n-processor network with a [wo, w1, ..., Wiegn| balanced

decomposition tree, requires worst-case time

n
QT i
(r{ max, min{onstr +rzi} }).

where gp, () is the function defined in Lemma 7.

31

Proof: We construct a PRAM program with |T'/(2m/n)| batches of m/n instructions, each
batch consisting of m/n write steps that update all the variables, followed by m/n read steps
suitably chosen by the adversary according to Lemma 7.

Consider the simulation of one such batch, for some h and k, with 1 < h,k < logn. Let
r be the maximum value of r}fl’k at the start (time ¢) of the simulation of any read step. By
Lemma, 8, the simulation of all the write steps requires time at least rm/(2"wy,). By Lemma 7,

the simulation of each read step requires time at least gy, 1(r). Hence, the simulation time for

% <9h,k(7“) + o >

2hwy,

the batch is at least

The theorem follows by taking the minimum over all possible values of r and the maximum
over all choices of h and k of the simulation time of a batch given above, and then by summing

the contributions of the |T'/(2m/n)| batches. O

We are now ready to prove Theorem 3, stated in the Introduction, which specializes the

general lower bound of Theorem 9 to the case of d-dimensional meshes (with d constant).

Proof of Theorem 3: Let us first concentrate on one-dimensional meshes (d = 1). We
establish this case separately, by means of a simple, diameter-based argument as follows.
Consider a PRAM program consisting of T' steps where in odd steps a processor v updates
a variable u and in even steps all other processors read u. Such a sequence requires Q (7'n)
time to be simulated on the linear array since distinct pairs of consecutive write and read
steps must be simulated in disjoint time intervals, because of the on-line hypothesis, and in
each such pair the newly written value of u must travel at distance © (n).

Consider now the case d > 1. A natural halving process of an n-node d-dimensional mesh

generates a balanced decomposition tree with w; = © ((n/2i)1_1/d), for 0 < i < logn. Define

__log(m/n)

~ loglog(m/n)’
and fix h and & as the minimum indices such that 2" > A and 28 > Ad=1/(d=1) = Since
m > 16n and d > 1, we have A > 2, hence h,k > 1. Let m be the largest value of m for
which the chosen value for 2 is at most n (note that this also implies 2" < n). We first prove

the lower bound under the assumption m < m. Let us define 7 = A/16 and note that

n

rm =Q (néAk%) for r > r. (4)

32

Using the chosen values of h, 7 and A, we see that

m 1/2F (m/n)S log(m/n)/ loglog(m/n) logS (m/n)
<2h+1n> = (2h+1)8/A =]4)

where the simplification of the denominator relies on the facts that 2"+ < 4A and (4A)8/A <
8* (since 4A > 8 and z'/% is decreasing for = > 2). With this it is easy to establish that

when r < 7, we have ®(2r, 2%, n,m/2"") < 2572 which according to the definition of Ghr (1)

in Lemma 7 implies that

n
90 (T) = o+ wn®(r, 25, 2]

Substituting for wy, wi and @, this simplifies to

gnr(r) =© <n% min{(gh)li, %(2’6)175’ <2ik>5 <%>%}> _

Using the chosen values for 27, 2 and the facts that gjx(r) is non-increasing in r and

(m/(2"10))/ @D = Q (log®(m/n)) = Q2 (A), we have
_ 1L o1-1 _
Gh i (r) > gni(r) = Q (ndA d) for r < 7. (5)
By combining Equations 4 and 5 the lower bound on the simulation time in the case

Straightforward but tedious calculations show that our choice of h and k yields the best

m < m 18

possible bound. Moreover, the lower bound is an increasing function of m, hence, for m > m,

the simulation time is at least
L (log(m/n) \'d | d?o2an
Q| Tni (7) =0 (TnEn 2d2—d) ,
loglog(m/n)

since

and the theorem follows O

Note that the argument used to prove Theorem 9 does not exploit the fine-grained struc-

33

ture of the interconnection but solely depends on the bandwidth distribution, as captured by
the decomposition tree. Consequently, we get the same specialized version of the lower bound
for networks of different topologies which have similar decomposition trees. An example is
provided by the n-leaf pruned butterfly that has the same decomposition tree (up to constant
factors) as the two-dimensional mesh, although the two topologies are very different. Hence,
the proof of Theorem 4, stated in the Introduction, is virtually identical to that of Theorem 3
for d = 2, and is omitted for brevity.

Recall that the simulations presented in this paper achieve high levels of efficiency by
making a crucial use of splitting and combining techniques. More specifically, a processor
issuing a memory request generates a single variable packet for each subset of copies residing
in a suitably sized region of the network. Once the variable packet is shipped within its
destination region, it is split into multiple copy packets, destined to the individual copies of
the variable. In this way, the cost of the “long leg” of the journey to access a copy is paid
only once for all the copies residing within the same region.

Unfortunately, the point-to-point assumption made by our lower bound argument pre-
cludes the splitting and combining of messages destined to distinct copies, therefore Theo-
rems 3 and 4 do not apply to our simulations. Note however that the argument uses this
assumption only to establish a bound on the cost of write operations. As a consequence, we
can prove a lower bound solely based on the cost of read operations, which holds in an unre-
stricted model where splitting/combining may occur. The lower bound, stated in Theorem 5
in the Introduction and proved below, is obtained by making sure that the average redun-
dancy does not grow too large during the simulation. This can be achieved by establishing
that the total amount of space used to represent the PRAM variables in the local memory

modules can never exceed a fixed threshold mr.

Proof of Theorem 5: Consider the case of d-dimensional meshes. For d = 1, the bound
can be trivially obtained through the same diameter-based argument employed in the proof
of Theorem 3. Hence, assume d > 1. We consider a PRAM program that first executes m/n
write steps to update all the variables, and then executes T' — (m/n) = © (T') read steps
suitably chosen by the adversary. Since the average number of copies per variable is r, it is
immediate to argue that, for every 1 < k < logn, at the beginning of each read step there
are at least m/2 variables each of which has updated copies in at most 2r k-regions. By
Lemma 6 this implies that there exist min{2*, ®(2r,2%,n,m/2)} k-regions that contain all

updated copies of at least n variables. If ®(2r, 2%, n, m/2) < 2k=1 the adversary can require

34

that n/2 such variables be read by processors outside the ®(2r, 2%, n,m/2) k-regions, which

. <wk<1>(2r, 22,n,m/2)> =9 (” mi“{%w_%)’ (%) (%>_}> ' (6)

Let us fix £ as the minimum index such that

takes time

3

2k > <_10lgo1%)(;(17?;771))Mm

and let m be the largest value of m for which the chosen value for 2% is at most n. As in
the proof of Theorem 3, we first consider the case m < m. In this case, we have 1 < k <
logn. Moreover, it is easy to verify that (m/2n)"/(?") > (log(m/n)/loglog(m/n))?**! and
®(2r, 2%, n,m/2) < 28~'. By plugging the value for 2* in the right-hand side of Equation 6

we see that the cost of each read operation is
of, (log(m/n))“H)
nd [—=———— :
log log(m/n)

r< L aaan < LM’
~ 8« ~ 8aloglog(m/n)

When m > m, we have

and the cost of each read can be easily bounded from below by

o ((ﬁ)w))

The unrestricted lower bound for the pruned butterfly is obtained by setting d = 2 in the

above calculations. O

Theorem 5 shows that our simulations use an amount of redundancy which is only a dou-
bly logarithmic factor higher than the minimum redundancy needed to achieve the same
slowdown.

8 Conclusions

In this paper we have presented upper and lower bounds for the problem of simulating a

shared memory abstraction on network-based machines such as d-dimensional meshes and the

35

pruned butterfly. An interesting feature of our scheme is its generality. Indeed, the simulation
algorithm relies on a recursive decomposition of the underlying network into subnetworks of
the same topology, and employs a restricted set of basic primitives such as prefix, k-sorting
and k-relation routing. As a consequence, the algorithm is efficiently portable to any other
machine with a recursive structure and on which optimal algorithms for the above primitives
are known. As for the lower bound, we have developed a generic, bandwidth-based argument
that can be applied to any specific interconnection using the parameters of its decomposition
tree.

Regarding the upper bound, it must be remarked that we make use of memory organiza-
tions based on generalized expanders. As it was mentioned in the Introduction, the explicit,
deterministic construction of generalized expanders is a long-standing open question, although
it can be shown that a random bipartite graph would exhibit the required expansion property
with high probability. This limitation suffered by our scheme is shared by all other deter-
ministic mesh-based schemes in the literature, with the exception of the scheme of [PPS94],
which only applies to very small memory sizes (m = O (n!-%)) and exhibits a higher slowdown
than ours.

Finally, the general lower bound presented in Section 7 is proved under the point-to-
point assumption, which stipulates that packets sent to copies of a variable can neither be
split nor combined. This constraint rules out the techniques that are at the core of the
simulations presented in this paper, hence the bound does not apply to our algorithms directly.
However, we have been able to modify the argument to obtain one which applies to our
algorithms, by introducing an upper limit to the global space used to represent the PRAM
variables. In particular, we are able to show that in order to match the slowdowns exhibited
by our simulations, any deterministic scheme must use about the same amount of space to
represent the variables. However, the search for a nontrivial, totally unrestricted lower bound
for deterministic PRAM simulation on network-based machines remains a challenging open

problem.

Acknowledgements

The authors would like to thank Gianfranco Bilardi for a some helpful discussions on sorting
on the pruned butterfly, and the anonymous referee who indentified some shortcomings in the

original version of the manuscript.

36

References

[AHMP87] Avrt, H., HAGERUP, T., MEHLHORN, K., AND PREPARATA, F.P. (1987), Deter-

[BBYS5]

[BL84]

[Her96]

[HBY4]

[KUSS]

[Knu73]

[Kun93]

[Lei85)]

[PPY5]

[PPY7]

ministic simulation of idealized parallel computers on more realistic ones, SIAM

J. Comput., 16 (5), 808-835.

BAy, P., AND BILARDI, G. (1995), Deterministic on-line routing on area-
universal networks, J. ACM, 42 (3), 614-640.

BHATT, S.N. AND LEIGHTON, F.T. (1984), A framework for solving VLSI graph
layout problems, J. Comput. System Sci., 28 (2), 300-342.

HERLEY, K.T. (1996), Representing shared data on distributed-memory parallel
computers, Math. Syst. Theory, 29, 111-156.

HErRLEY, K.T., AND BILARDI, G. (1994), Deterministic simulations of PRAMs
on bounded-degree networks, SIAM J. Comput., 23 (2), 276-292.

KARLIN, A.R., AND UPFAL, E. (1988), Parallel hashing: An efficient implemen-
tation of shared memory, J. ACM, 35 (4), 876-892.

KnuTH, D.E. (1973), “The Art of Computer Programming, volume 3: Sorting
and Searching,” Addison Wesley, Reading, Mass.

KuNDE, M. (1993), Block gossiping on grids and tori: Deterministic sorting and
routing match the bisection bound, in “Proceedings, 1st European Symposium on
Algorithms” (T. Lengauer, Ed.), pp. 272-283, Springer-Verlag LNCS 726, Berlin,

Germany.

LEISERSON, C.E. (1985), Fat-trees: Universal networks for hardware-efficient
supercomputing, IEEE Trans. Comput., C-34 (10), 892-901.

PIETRACAPRINA, A.; AND Puccl, G. (1995), Improved deterministic PRAM
simulation on the mesh, in “Proceedings, 22nd International Colloquium on Au-
tomata, Languages and Programming” (Z. Fiilop and F. Gécseg, Eds.), pp. 372—
383, Springer-Verlag LNCS 944, Berlin, Germany.

PIETRACAPRINA, A., AND Puccl, G. (1997), The complexity of deterministic
PRAM simulation on distributed memory machines, Theory Comput. Syst., 30
(3), 231-247.

37

[PPS94]

[UW87]

PIETRACAPRINA, A., Puccl, G., AND SIBEYN, J.F. (1994), Constructive de-
terministic PRAM simulation on a mesh-connected computer, in “Proceedings,
6th ACM Symposium on Parallel Algorithms and Architectures,” pp. 248-256.
(Journal version to appear in SIAM J. Comput.)

UpFAL, E., AND WIDGERSON, A. (1987), How to share memory in a distributed
system, J. ACM, 34 (1), 116-127.

38

