
Implementing Shared Memory onMesh-Connected Computers and on the Fat-Tree�
Kieran T. HerleyDepartment of Computer ScienceUniversity College CorkCork, Irelandk.herley@cs.ucc.ieAndrea Pietracaprina, Geppino PucciDipartimento di Elettronica e Informatica,Universit�a di PadovaVia Gradenigo 6/a35131 Padova, Italyfandrea,geppog@artemide.dei.unipd.it

�This research was supported, in part, by the EC ESPRIT Basic Research Project 9072 (project GEPPCOM:Foundations of GEneral Purpose Parallel COMputing). The results in this paper appeared in preliminary formin the Proceedings of the Third Annual European Symposium on Algorithms (ESA'95), pages 60{74, 1995.1

Running Head:Implementing Shared Memory on MeshesCorresponding Author:Dr Kieran T. HerleyDepartment of Computer ScienceUniversity College CorkCorkIrelandPhone: +353-21-902134Fax: +353-21-274390k.herley@cs.ucc.ie

2

AbstractWe present deterministic upper and lower bounds on the slowdown required to sim-ulate an (n;m)-PRAM on a variety of networks. The upper bounds are based on anovel scheme that exploits the splitting and combining of messages. This scheme canbe implemented on an n-node d-dimensional mesh (for constant d) and on an n-leafpruned buttery and attains the smallest worst-case slowdown to date for such intercon-nections, namely, O �n1=d(log(m=n))1�1=d� for the d-dimensional mesh (with constant d)and O(pn log(m=n)) for the pruned buttery. In fact, the simulation on the prunedbuttery is the �rst PRAM simulation scheme on an area-universal network. Finally,we prove restricted and unrestricted lower bounds on the slowdown of any determinis-tic PRAM simulation on an arbitrary network, formulated in terms of the bandwidthproperties of the interconnection as expressed by its decomposition tree.

3

List of Symbols Used1 onel lower-case ell0 zeroO upper-case letter ohO(n) upper-case oh symbolfor big-oh notationpn square root�a accented lower-case aA�A A times A
(n) upper-case Greek omega<;�; >;� standard inequalitieslog n logarithmminfX;Y g minimum� lower-case Greek alpha� subset symbol� proper subset symboljU j set size� lower-case Greek lambda� lower-case Greek sigma�(n) upper-case Greek Theta� upper-case Greek gamma� upper-case Greek sigma(indicating summation)Ŝ S hat3 � 4 3 dot 4 (indicatingmultiplication)bXc oor of XS union symbol

dXe ceiling of Xa; b; : : : ; z ellipsisfa; b; cg curly brackets (indicatingset notation)< a; b; c > angle brackets (delimitingtriple)[k]j square brackets subscriptedwith j1 in�nity[X;Y) left square bracket, X,comma, Y , right roundbracket� plus or minus� upper-case Greek phi� upper-case Greek deltam m barx0 x primeab a to the b-th power(exponentiation)

4

1 IntroductionThe problem of implementing a shared-memory abstraction on various distributed-memoryparallel architectures has been intensively studied over the last decade. Generally, this prob-lem has been referred to as the PRAM simulation problem and involves representing the mcells of the PRAM shared memory (called variables) among the n processor-memory nodes ofthe simulating machine in such a way that any n-tuple of distinct cells may be read or writtene�ciently. The time required to simulate one PRAM step is known as the slowdown of thesimulation. A number of approaches to this problem, both probabilistic and deterministic,have been investigated for a variety of well-known architectures such as the complete intercon-nection, the mesh of trees, the buttery, as well as a variety of expander-based architectures,among others.We will not attempt to summarize the extensive literature on this problem here but onlyquote those results that relate directly to our work, and refer the interested reader to [PPS94]for a recent and comprehensive summary of further work on this topic. Building on earlierwork of Upfal and Wigderson [UW87], Alt et al. [AHMP87] presented a deterministic schemeto simulate a PRAM with n processors and m variables (called an (n;m)-PRAM) on an n-node Module Parallel Computer (MPC), an architecture in which each node includes both aprocessor and a private memory module accessible only to that processor, and in which thenodes are connected by a crossbar that allows each node to transmit or receive one messageper step. Their scheme employs the following copy-based method for the representation ofthe PRAM variables, which most of the deterministic simulation algorithms, including thispresent work, adopt. Speci�cally, each variable is represented by a set of copies, whose size2c � 1 is logarithmically related to n and m, and each copy consists of a value and a time-stamp. The copies are distributed carefully among the memory modules of the simulatingmachine. To write a variable, at least c of its copies are overwritten to reect the intendedvalue and the time of writing. To read a value, at least c copies are inspected. This setof c copies read contains at least one of the copies most recently written, which is readilyidenti�able by virtue of its time-stamp. Alt et al. show that for a suitable distribution of thecopies among the nodes of the machine, any n-tuple of variables may be accessed (read orwritten) in O (logm) time.The above scheme can be ported to an arbitrary network by simulating each MPC stepusing standard techniques such as routing and sorting. In particular, this approach yieldsa simulation with slowdown O �n1=d logm� on an n-node d-dimensional mesh (d = O (1))5

and a simulation with slowdown O (pn logm) on an n-leaf pruned buttery, which are theinterconnections that we consider in this paper. In [AHMP87], it was also observed that asimple PRAM simulation for the two-dimensional mesh with an optimal slowdown of O (pn) isindeed possible. Unfortunately, this simulation requires up to n copies per variable, resultingin an unacceptable memory blow-up. Moreover, the method does not extend to higher-dimensional meshes and other interconnections.Most of the deterministic simulations that appear in the literature, including those ofthis paper, rely on memory distributions that are built upon certain expander-based graphswhose existence can be proved, but for which no e�cient construction is known. Recently,Pietracaprina et al. [PPS94, PP95] have studied deterministic simulations based entirely onexplicitly constructible structures. By resorting to a complex hierarchical arrangement of con-structible, mildly-expanding graphs, they achieve O (pn logn) slowdown on an n-node meshfor memories of O �n1:5� size, using O �log1:59 n� copies per variable. In this paper, our focusis on slowdown rather than constructiveness. By employing more powerful expander-basedstructures, we achieve a better slowdown than that of [PP95] at a lower level of redundancy(copies per variable).It might appear, at least at �rst glance, that updating c copies apiece for n variablesmust involve the physical movement of cn distinct packets across the entire network, whichon the pn � pn mesh would require
 (cpn) time. In this paper, we devise a novel split-ting/combining technique to circumvent this di�culty, based on the following idea. If aprocessor p wishes to send the same packet to nodes x and y that are \distant" from p but\close" to one another, then rather than dispatch a separate packet for each, it may be moree�cient to dispatch a single message to some \intermediate" node z close to both x and y.At node z, the original packet is then made into two replicas which are forwarded to x and yseparately. A careful implementation of this idea leads to the following result.Theorem 1 For any m � 2�(n1=(d+1)) there exists a scheme to simulate an (n;m)-PRAM onan n-node d-dimensional mesh (d constant) with worst-case slowdown O �n1=d(log(m=n))1�1=d�,using O (log(m=n)) copies per variable and O �(m=n) log5(m=n)� storage per node.In order to implement the splitting/combining strategy outlined above, the scheme relies ona recursive decomposition of the mesh and on e�cient algorithms for k-sorting, where eachprocessor initially holds k packets, and for k-relation routing, where each processor sendsand receives at most k packets. Theorem 1 implies that our simulation scheme incurs aslowdown which is a factor O �(log(m=n))1=d� smaller than the one obtainable by porting the6

MPC algorithm of [AHMP87] on an n node d-dimensional mesh. We want to remark thatthe (exponential) upper bound on the memory size m in Theorem 1 is placed to avoid thatthe cost of sequential bookkeeping operations such as local sorting or counting dominate theoverall running time of the simulation algorithm. Such a bound on m is not needed if a costmodel which accounts for interprocessor communication only was adopted, as customary fornetwork algorithms [Kun93].The n-leaf pruned buttery [BB95] (described later) is an area-universal network that is avariant of Leiserson's fat-tree [Lei85]. Although quite di�erent from the two-dimensional meshin terms of the details of its structure, it is su�ciently similar in its bandwidth characteristicsto support the key operations upon which our simulations rely with comparable e�ciency.By providing novel sorting and routing primitives for this network, and by using its naturaldecomposition into subtrees, we are able to implement the above simulation scheme with thesame slowdown achieved for the two-dimensional mesh, thereby obtaining the �rst PRAMsimulation on an area-universal network. The result is stated in the following theorem.Theorem 2 For any m � 2�(n1=3) there exists a scheme to simulate an (n;m)-PRAM onan n-leaf pruned buttery with worst-case slowdown O �pn log(m=n)�, using O (log(m=n))copies per variable and O �(m=n) log5(m=n)� storage per node.Lower bounds on the slowdown of PRAM simulations on bounded-degree networks havebeen presented in a number of studies [AHMP87, KU88, HB94]. All such bounds, however,apply to the entire class of such networks, and cannot be specialized to the characteristics ofa given topology. For example, in [HB94] the authors show an
�log2(m=n)= log log(m=n)�lower bound on the slowdown required to simulate a PRAM step on any bounded degreenetwork, which is too weak for our purposes, since a trivial
�n1=d� lower bound may easilybe obtained for d-dimensional meshes based on diameter limitations. An
 (pn) bound holdsfor the pruned buttery based on straightforward bandwidth considerations. In this paper,we present the �rst lower bound argument that takes into account the characteristics of theindividual network. To capture the properties of the network topology, the bound exploitsthe notion of decomposition tree [BL84, Lei85], which provides a partition of the network intodisjoint regions of limited bandwidth.As in all previous works, the lower bound is proved under the point-to-point assumption,which requires that a processor updating a number of copies of a variable dispatch a separatemessage for each copy. When specialized to d-dimensional meshes and to the pruned buttery,our lower bound technique yields the following results.7

Theorem 3 Let m � 16n. For every T � 2m=n, there exists a T -step (n;m)-PRAM pro-gram, whose point-to-point, on-line simulation requires time
0@Tn 1d min8<:� log(m=n)log log(m=n)�1� 1d ; n d2�2d+12d2�d 9=;1Aon an n-node d-dimensional mesh (with d constant).Theorem 4 Let m � 16n. For every T � 2m=n, there exists a T -step (n;m)-PRAM pro-gram, whose point-to-point, on-line simulation requires time
 T min(sn log(m=n)log log(m=n) ; n 23)!on an n-leaf pruned buttery.Unfortunately, the point-to-point assumption upon which Theorems 3 and 4 and theother works in the literature rely, precludes the splitting and combining of messages. Asa consequence, the above lower bounds do not apply to our simulations directly. However,we are able to prove similar bounds in an unrestricted model by limiting the total level ofredundancy used to represent the variables. Such bounds show that our simulations use anamount of redundancy which is only a doubly logarithmic factor higher than the minimumredundancy needed to achieve the same slowdown. Speci�cally, we have the following result.Theorem 5 Let m � 16n. For every T � 2m=n and every constant � � 1, there existsa T -step (n;m)-PRAM program whose on-line simulation on an n-node d-dimensional meshrequires time
0@Tn 1d min8<:� log(m=n)log log(m=n)��(1� 1d) ; n ��+d=(d�1)(1� 1d)9=;1Aif the total number of copies used to represent the m PRAM variables in the local memorymodules is mr, with r � 18� min� log(m=n)log log(m=n) ; n 1�+d=(d�1)� :The bound with d = 2 also applies to the pruned buttery.The rest of the paper is organized as follows. Section 2 discusses the distribution of thecopies among the memory modules and the properties required of the graph representing the8

memory map. In Section 3, the simulation algorithm for the two-dimensional mesh is pre-sented. The algorithm consists of two phases, copy-selection and routing, which are describedin Subsections 3.1 and 3.2, respectively. This scheme is extended to higher-dimensional meshesin Section 4 and to the pruned buttery in Section 5. Section 6 shows how the space boundsquoted in Theorems 1 and 2 may be achieved. Section 7 presents the lower bound resultsdiscussed above. Section 8 concludes the paper with some �nal remarks and indicates futureresearch directions.2 Memory OrganizationConsider the simulation of an (n;m)-PRAM on an n-node machine and suppose that eachvariable is replicated into 2c � 1 copies, for a suitable integer c. It is convenient to modelthe distribution of copies among the nodes of the machine by means of a bipartite graphG = (U; V ;E), where U represents the set of variables, V the set of processor-memory nodesof the simulating machine, and 2c�1 edges connect each variable to the distinct nodes storingits copies. In the following we will denote by E(S) the set of edges in E incident on a setS � U . Note that there is a one-to-one correspondence between E(S) and the set of all copiesof variables in S.Let S � U and F � E(S). When F contains exactly k edges incident on each s 2 S wecall F a k-bundle for S. Also, we denote by �F (S) the subset of V reached by edges in F . Avertex v 2 V is said to be q-congested with respect to F if more than q edges in F are incidenton v. Finally, the congestion of F is the maximum value q such that there is a vertex in Vthat is q-congested with respect to F .Recall that our simulations adopt the majority protocol, which requires that at least ccopies be accessed in order to complete a read or a write. Equivalently, in graph-theoreticterms, if we wish to access a set S of variables, then we must select a c-bundle for S. Sincethe congestion of a c-bundle models the maximum number of physical copies that have tobe accessed sequentially by some individual node in the underlying machine, it is desirableto access a c-bundle with low congestion. The existence of c-bundles of low congestion isintimately related to the expansion properties of the graph G. This motivates the followingde�nition [HB94] that characterizes a class of graphs called generalized expanders that makegood memory organizations.De�nition 1 A bipartite graph G = (U; V ;E) with jU j = m and jV j = n, and with each9

node in U having degree d is a (�; d; c; �)-generalized expander if, for every S � U such thatjSj � �n and for every c-bundle F of S, j�F (S)j � �cjSj.We say that a generalized expander is smooth if the maximum degree of any node in V is� (jEj=jV j). Herley and Bilardi [HB94] have established the existence of certain generalizedexpanders using counting techniques similar in spirit to those found in the seminal work ofUpfal and Widgerson [UW87]. A minor variation of this result (guaranteeing smoothness) isquoted below.Theorem 6 For every n and m, with m � n, there exists a smooth (�; 2c� 1; c; 1=(2c � 1))-generalized expander G = (U; V ;E) with jU j = m, jV j = n, � = �(1) and c = �(log(m=n)).The graph of Theorem 6 will govern the memory organization of our simulations. We shallsee that such a graph has the desirable property that every set S � U of size at most n hasa c-bundle of low congestion. Moreover, this c-bundle can be constructed e�ciently.Let S � U be the set of variables to be accessed. The simulation algorithms described inthe next sections construct a c-bundle for S starting from E(S) and applying a sequence ofwhittling steps. Each whittling \prunes" the set of edges by selecting c edges apiece for someof the variables in S, and discarding the remaining c � 1. At the beginning of a whittlingstep, a variable is said to be alive if the c edges for the variable have not been selected yet,and dead otherwise. The sequence terminates when all variables are dead, at which point weare left with the desired c-bundle. The variables to whittle at each step are chosen to ensurethat the degree of the �nal c-bundle will not exceed a �xed congestion q, whose value will bespeci�ed later.For i � 1, let Si � S denote the set of live variables and Fi � E(S) the residual set of edgesat the beginning of the i-th whittling step. Initially, S1 = S and F1 = E(S). Conceptually,the i-th whittling step identi�es a set Wi of \congested" nodes and selects c edges apiece foras many live variables as possible without touching nodes in Wi. More formally, we say thatx 2 Si is con�ned to Wi under Fi if x has c or more copies in Fi stored in nodes of Wi. In thei-th whittling step, for each x 2 Si which is not con�ned to Wi under Fi, we select c edgesnot incident on Wi and remove the remaining c� 1 from Fi. This operation will be referredto as whittling of Si with respect to Wi.De�nition 2 Let S � U , jSj � n. A q-whittling sequence of length t for S is a sequence(S1; F1;W1), (S2; F2;W2), : : :, (St; Ft;Wt) such that10

� S1 = S, F1 = E(S), and W1 � V is a set of at most (2c � 1)n=q nodes including allnodes that are q-congested with respect to E(S);� For i > 1, Si � Si�1 and Fi � Fi�1 are, respectively, the set of live variables and theset of residual edges left after whittling Si�1 with respect to Wi�1 and Wi is the set ofq-congested nodes with respect to Fi;� St =Wt = ; and Ft is a c-bundle for S.Note that in the above de�nition eachWi, with i > 1, contains only nodes that are q-congestedwith respect to Fi, whileW1 may include an additional (small) number of uncongested nodes.The rationale behind this asymmetry will become clear later in the paper. It is also easy to seethat Ft, the �nal c-bundle for S, has congestion at most q. The following lemma characterizesthe rate at which the variables \die" during a whittling sequence.Lemma 1 Let S be a set of at most n variables, and q � 4c=� = �(log(m=n)). Then,for any q-whittling sequence of length t, (S1; F1;W1), (S2; F2;W2); : : : ; (St; Ft;Wt), we havejSij � n=(2c� 1)i�1 for i � 1. Therefore t = O (log n= log log(m=n)).Proof: The proof proceeds by induction on i. The basis i = 1 is trivial. For i = 2, considerthe set S2 and assume that jS2j > n=(2c� 1). Since all variables in S2 are con�ned to W1, wecan choose an arbitrary subset S0 � S2 of exactly n=(2c�1) variables, and a c-bundle F 0 � F1for S0, with �F 0(S0) � W1. Then, by the expansion properties of our memory organization,we obtain jW1j � ���F 0(S0)�� � �cjS0j = �cn(2c � 1) > (2c� 1)nq ;a contradiction. Finally, suppose that i � 3, and note that all the edges in Fi�1 relative tothe set S � Si�1 of dead variables at the beginning of Step i� 1 cannot be incident on nodesof Wi�1, since we never pick edges for c-bundles out of those incident on q-congested nodes.Therefore, the congestion of nodes in Wi�1 is entirely caused by copies of variables in Si�1,whence jWi�1j � (2c� 1)jSi�1jq � �2 jSi�1j: (1)On the other hand, being con�ned to Wi�1, all variables in Si have a c-bundle in Wi�1, andjSij � jS2j � n=(2c� 1), hence, by the expansion properties of the memory map,jWi�1j � �cjSij: (2)11

The bound for Si follows by combining Inequalities (1) and (2) and applying the inductivehypothesis. 23 Simulation on the MeshWe now consider the simulation of an (n;m)-PRAM on a pn�pn mesh. In the subsequentsection we will sketch the (relatively minor) modi�cations required to extend the simulationto meshes of higher dimensions. For notational convenience we will assume that n is a powerof four. Each mesh node simulates the activities of a distinct PRAM processor. Speci�-cally, a node comprises a processor, capable of executing a standard repertoire of logical andarithmetic operations, and a local memory directly accessible to that processor alone. Eachprocessor-memory node is connected to its immediate neighbours in the mesh by means ofbidirectional wires capable of transmitting a single O (logm)-bit quantity per step.Recall that the distribution of the PRAM variables (set U) among the memory modules ofthe mesh (set V) is governed by a (�; 2c�1; c; 1=(2c�1)) generalized expander G = (U; V ;E)with jU j = m and jV j = n, � < 1 (� constant), and c = �(log(m=n)). It is assumed for themoment that each mesh node holds a copy of a read-only table that encodes the structure ofthe memory organization. In other words, the i-th entry of the table records the locationsof the copies of the i-th PRAM variable. This naive representation of the memory maprequires O (m log(m=n)) storage per node. In Section 6, we will show how this table maybe represented in a distributed fashion, taking only O �(m=n) log5(m=n)� storage per node.Note that the total storage of the simulating machine will then be only a polylogarithmicfactor away from the size of the PRAM memory.We simulate a PRAM program by separately simulating its individual steps. Consider thesimulation of an arbitrary PRAM step, and let S � U denote the set of variables accessedin the step. We assume that each processor accesses a distinct variable (i.e., jSj = n), thusrestricting our attention to the simulation of the EREW PRAM. Standard techniques canbe employed to extend the simulation to the other PRAM variants with no performance loss(e.g., see [HB94]). We assume that the address of the variable referenced by the i-th PRAMprocessor during the step is made known to the corresponding mesh processor at the start ofthe simulation. Each mesh processor creates a packet, referred to as a v-packet, containing(i) the processor's id; (ii) the name of the PRAM variable it wishes to access and the type ofoperation (read/write); (iii) a data �eld for the value to be read/written; and (iv) a bit vectorof length 2c � 1, whose entries correspond to the copies of the variable and are initially set12

to zero. Let Ŝ denote the set of v-packets created by the mesh processors. The simulationconsists of the following two phases.Copy Selection Phase A c-bundle for S of congestion at most q = 4c=� is selected. Thebit vector of each packet in Ŝ is set to encode which copies of the corresponding variableare in the c-bundle and which are not.Access Phase For each variable in S, a copy of the corresponding v-packet is routed to eachmesh node containing a selected copy of that variable. Each mesh node performs theaccesses relative to the packets it receives and, in the case of reads, sends the accessedvalues back to the requesting processors.In the two subsections that follow we will describe the implementation of these two phases.Most of our algorithms will involve the movement or manipulation of sets of packets. In turn,such activities are based on two algorithmic primitives: k-sorting and k-relation routing.Given a set of packets distributed among the processors of an n0-node mesh, so that eachnode holds at most k packets, k-sorting is used to rearrange the packets so that node 1holds the packets with the k smallest keys, node 2 holds the next k smallest keys, andso on. For any value of k and any numbering of the nodes, this can be accomplished inO �k �log k +pn0�� on the two-dimensional mesh, where the term k log k arises from the needto initially sort the groups of k keys locally at each node. It has to be remarked that in oursimulation algorithm, k-sorting (with nonconstant k) is always applied for k = O (log(m=n))and n0 =
(n= log(m=n)). Therefore, for values of m within the bound stated in Theorem 1,the time for the initial local sorting will never dominate the overall running time. In otherwords, in our scenario k-sorting will always require O �kpn0� time.The k-relation routing problem involves routing a set of packets subject to the constraintthat no node is the source or destination of more than k packets. Again, this can be done inO �kpn0� time on an n0-node mesh. Both algorithms can be found in [Kun93].3.1 Copy Selection PhaseThe copy selection is accomplished by performing the whittlings implied by a q-whittlingsequence f(Si; Fi;Wi) : 1 � i � tg, for some t = O (log n= log log(m=n)), as de�ned inSection 2. Note that each whittling could be performed easily by representing the copiesof the live variables as individual packets and then employing sorting, pre�x and routing inorder to select the packets relative to the copies to be included in the c-bundle. However,13

the n variables would initially account for (2c � 1)n packets, and manipulating such a largeset of packets can be expensive: for example, just sorting the packets would require O (cpn)time, which is too costly for our purposes. For this reason, the copy selection phase is brokeninto two stages. The �rst stage performs the �rst whittling step, using more complex butfaster techniques. Since only a relatively small number of variables (less than n=(2c � 1))will participate in the second stage, the remaining whittlings can be implemented using thesimple technique described above.Stage 1 In the �rst stage, we perform the whittling of S1 = S with respect to a certainset W1 (speci�ed later) which includes all nodes q-congested relative to F1 = E(S), withq = 4c=�. In what follows, we will regard the mesh as being partitioned into s disjointsubmeshes of size pn=s �pn=s, which we will call cells. The quantity s, which we assumeto be a power of four greater than log c, will be determined by the analysis.Recall that Ŝ denotes the set of v-packets relative to the n variables to be accessed. Thestage consists of the following steps.1. Create a replica ŜC of Ŝ in each cell C of the mesh.2. Independently within each cell C do the following:(a) Determine the degree of each packet in ŜC with respect to C, that is, the totalnumber of copies of the corresponding variable which reside within C. Computethe total degree of all packets in the cell as the sum of the individual degrees.(b) If the total cell degree is less than q(n=s), then generate a set of c-packets R̂Ccontaining one c-packet for each copy of a variable in S residing within C. Eachc-packet contains the name of the variable and the node in C storing the copy. Thisnode is called the target of the c-packet. Furthermore, c-packets with the sametarget are said to be competitors, while c-packets relative to the same variable aresaid to be companions. Note that a c-packet may have companions belonging toseveral cells. Finally, we call R̂ the set obtained as the union over all cells C of theset R̂C .(c) Determine how many competitors each c-packet has. A c-packet with q or fewercompetitors is deemed accessible, and inaccessible otherwise.3. For those variables with c or more accessible c-packets, select c copies and update thebit-map in the appropriate v-packet in Ŝ to reect which copies have been selected. The14

bit-vectors for all other v-packets should remain unchanged i.e. all bits should remainat zero.We can easily see that the �rst stage executes the whittling of S with respect to a setW1 which comprises all mesh nodes that store more than q copies of variables in S (i.e.,the q-congested nodes), plus those nodes belonging to cells with total degree at least q(n=s).Therefore, the nodes in W1 account for at least qjW1j copies. Since there are (2c� 1)n copiesof variables, we must have jW1j � (2c � 1)n=q, as required by the de�nition of q-whittlingsequence.Lemma 2 Stage 1 can be implemented on the mesh in time O �sc+pns+ qpn=s�.Proof: Step 1 is executed as follows. Partition the pn�pn mesh into fourpn=4�pn=4 sub-meshes (quadrants), and each of these in turn into four submeshes of sizepn=16�pn=16 (sub-quadrants), and so on until be have tessellated the mesh into submeshes of size pn=s�pn=s,i.e. into individual cells. The replication of Ŝ in the individual cells, reects this recursivedecomposition of the mesh. First, the set Ŝ is replicated in each of the four quadrants. Thisis achieved by having the four mesh nodes that occupy the same relative position in the fourquadrants send each other a copy of the packets they hold. At this point, each node holdsfour packets and each quadrant holds a replica of Ŝ. Each quadrant independently replicatesits copy of Ŝ into its four constituent subquadrants in the same manner, and so on. Atthe start of the i-th iteration of this process, each node of a qn=4i�1 �qn=4i�1 submeshholds 4i�1 packets that it must send to three other nodes within this submesh. This is asimple routing pattern in which each node is the source and destination of 3 � 4i�1 pack-ets (i.e., an instance of the 3 � 4i�1-relation routing problem), and so can be completed inO �4i�1qn=4i�1� = O �pn2i�1� time. Since there are (1=2) log s iterations in all, we see thatthe time required to complete Step 1 is O �P(1=2) log si=1 pn2i�1� = O (pns).Step 2.a involves calculating the degree of each variable packet, hence requires O (c) timeper packet and O (sc) time per node, since each node hold s packets. The total cell degreefor C can easily be computed within each cell from the individual degrees in O �pn=s� time.A straightforward implementation of Step 2.b, where each node generates the appropriatenumber of c-packets for each v-packet it holds, would result in an unbalanced distributionof the c-packets among the nodes, which would in turn make the execution of subsequentsteps more expensive. Therefore, we resort to the following more careful implementation ofthis step. Within each cell C, partition ŜC into degree classes Ŝ(i)C for 0 � i � dlog(2c � 1)e,15

where Ŝ(i)C contains v-packets of variables with at least 2i and at most 2i+1 � 1 copies in C.(We ignore variables of degree zero and note that no v-packet can have degree greater than2c�1.) Redistribute the v-packets of each degree class so that each node of C receives at mostdjŜ(i)C js=ne v-packets in Class i. This redistribution can be performed by �rst determiningthe destinations of packets in all classes using dlog(2c� 1)e pre�x operations (one per degreeclass), and then invoking a routing step within C in which each node is the source of at most spackets and the destination of at mostPdlog(2c�1)ei=1 djŜ(i)C js=ne = O (s+ log c) = O (s) packets.This requires overall time O �pn=s log c+pns� = O (pns).After the above redistribution of the v-packets, each node examines each v-packet it holdsand generates the appropriate number of c-packets for the corresponding variable. Since eachnode receives no more than djŜ(i)C js=ne v-packets from the i-th degree class and each suchpacket may result in up to 2i+1 � 1 c-packets, it follows that each node may hold up toPdlog(2c�1)ei=1 djŜ(i)C js=ne(2i+1 � 1) c-packets. Now, since Pdlog(2c�1)ei=1 jŜ(i)C j(2i+1 � 1) � 2jR̂C j <2q(n=s) by assumption, we can conclude that each node generates O (q + c) = O (q) c-packets.Putting it all together, Step 2.b can be completed in time O (pns+ q) time.Turning to Step 2.c, we can count the competitors of each packet within each cell by�rst sorting the c-packets by target, to group competitors together, and then using parallelpre�x to determine which packets are accessible and which are inaccessible. If a c-packet isdeemed accessible, then the appropriate entry in the bit vector of the corresponding v-packetis set. Since each node initially holds O (q) packets and the cell has diameter pn=s, this steprequires O �qpn=s� time.As for Step 3, we gather the accessibility information gained for each variable in di�erentcells by \coalescing" the replicas of the v-packets created in Step 1. When two replicas of av-packet are coalesced, a single v-packet results, whose bit-vector is obtained as the bitwiseOR of the two bit-vectors associated to the replicas. The structure of the gathering processfollows the reverse pattern of the replication process of Step 1, and is executed in the sametime. At the end of the process, each processor checks the bit-vector of its v-packet. Ifthe bit-vector contains more than c 1-bits, then c of these, chosen arbitrarily, are retained(corresponding to a c-bundle), while the others are reset to 0. Otherwise, all bits are reset to0. By combining the complexities of all the steps, we conclude that the running time of the�rst stage is O �sc+pns+ qpn=s�. 2Following the completion of the �rst stage the v-packets are back to their originating16

processors and encode a c-bundle for all variables except for the set S2 of variables con�nedto W1. Since jW1j � (2c � 1)n=q, by Lemma 1 it follows that jS2j � n=(2c � 1). Stage 2will select a c-bundle for S2 by performing all the remaining whittlings of the q-whittlingsequence.Stage 2 Since jS2j � n=(2c � 1), the live variables account for at most n copies, i.e. atmost one per mesh node. As a consequence, we can perform the remaining t � 1 whittlingsusing standard 1-sorting, pre�x and 1-routing primitives and without exceeding our targettime performance. In fact, in each whittling step the number of live variables decreasesgeometrically, thus we can execute the whittlings within smaller and smaller submeshes sothat the cost of the aforementioned primitives also decreases geometrically.Let Si denote the live variables at the beginning of the i-th whittling step, and recall thatby Lemma 1 we have jSij � n=(2c�1)i�1. We de�ne a sequence of submeshesM2;M3; � � � ;Mtthat are nested one inside the other, whereMi is aqn=(2c � 1)i�2�qn=(2c� 1)i�2 submesh.(For concreteness, we will assume that Mi+1 occupies the lower left hand corner of Mi.) NotethatM2 is the entire mesh. Stage 2 consists of t�1 iterations numbered, for convenience, from2 to t. Iteration i performs the i-th whittling step in the whittling sequence and is executedentirely within Mi. In particular, for i � 2 at the beginning of Iteration i, the v-packetscorresponding to the live variables (set Si) are distributed among the nodes of Mi, with atmost one v-packet per node. At the end of the iteration, the v-packets corresponding to deadvariables in S � Si+1, are evenly distributed among the nodes outside Mi+1 (for notationalconvenience, we assume thatMt+1 is an \empty" mesh). Iteration i is implemented as follows.1. For each variable in Si create 2c � 1 c-packets and distribute the c-packets among thenodes of Mi, assigning at most one packet to each node.2. For each c-packet, determine how many competitors it has. A c-packet with at most qcompetitors is said to be accessible and is said to be inaccessible otherwise.3. For each variable x in Si determine how many of the associated c-packets are accessible.If c or more are accessible, set the bit-vector positions in x's v-packet correspondingto the �rst c accessible copies of that variable; otherwise reset all bits in the bit-vectorfor x to zero. In the former case x becomes dead while in the latter x is alive and willbelong to Si+1.4. Delete all c-packets. Route the v-packets corresponding to the dead variables in Si to17

distinct nodes of Mi �Mi+1, while those corresponding to variables that remain alive,to distinct nodes of Mi+1.It is easy to see that the above steps perform the whittling of Si with respect to Wi. Notethat at most jSij � n=(2c� 1)i�1 die during Iteration i and that at most jSi+1j � n=(2c� 1)ivariables remain alive at its conclusion. Since Mi contains n=(2c � 1)i�2 nodes and Mi+1contains n=(2c � 1)i�1 nodes, if c � 3 there are always enough nodes in Mi �Mi+1 and inMi+1 to implement the last step of Iteration i.Lemma 3 Stage 2 can be implemented on the mesh in time O (pn).Proof: Iteration i requires a constant number of pre�x, 1-sorting and 1-relation routing onMi,which all require time O �qn=(2c � 1)i�2�, therefore the combined cost of the t�1 iterationsis O tXi=2s n(2c � 1)i�2! = O �pn� : 2Once the sequence of whittlings has been completed, the information on which copies havebeen selected is encoded in the bit-vectors of the various v-packets that lie scattered amongthe nodes of the mesh, with at most 2 packets per node (at most one from Stage 1 and atmost one from Stage 2). Finally, the v-packets are sent back to their originating processorsin O (pn) time.Combining the contributions of the two stages, we obtain the overall running time for thecopy selection phase.Theorem 7 A c-bundle of congestion O (log(m=n)) for an arbitrary set of n variables canbe selected in time O �pn log(m=n)� on the mesh.Proof: Choose s = q = 4c=� = �(log(m=n)) and note that for m � 2�(n1=3), as required inTheorem 1, sc = O �pn log(m=n)�. Then, the theorem follows by adding up the complexitiesof Stage 1 and Stage 2 given in Lemmas 2 and 3, respectively. 23.2 Access PhaseAfter copy selection, the bit-vectors of the v-packets in Ŝ encode a c-bundle of congestion atmost q for the set of variables to be accessed. The actual access is performed using a protocolsimilar to Stage 1 of copy selection. 18

1. Let s = q = 4c=� = �(log(m=n)). Create a replica ŜC of Ŝ in each cell C of n=s nodesof the mesh.2. Independently within each cell C do the following:(a) Generate a set R̂C of c-packets containing one c-packet for each selected copy ofa variable in S residing within C. Now, each c-packet contains the identity of thenode in C storing the copy, plus all the �elds of the corresponding v-packet, withthe exception of the bit-vector.(b) Route each c-packet in R̂C to its target within C.(c) Each node in C performs the memory accesses associated with the received c-packets. In case of writes, the value of the copy is set to the one carried by thec-packet and timestamped with the current PRAM step. In case of reads, the data�eld of the c-packet is loaded with the value and time-stamp of the referenced copy.(d) Route c-packets carrying read requests back to the nodes where they were gener-ated. For each read request, the data �eld of the corresponding v-packet is loadedwith the data �eld of the c-packet carrying the most recently updated time-stamp.3. Complete the read accesses by carrying back to each originating node the (replica ofthe) v-packet carrying the most recent time-stamp.Theorem 8 The memory accesses relative to the c-bundle determined by the copy selectionphase can be performed in time O �pn log(m=n)� on the mesh.Proof: Steps 1, 2.a, 3 of the access phase have, respectively, the same structure of Steps 1,2.b, 3 of the �rst stage of copy selection, hence can be completed in O �pn log(m=n)� timeusing the same ideas. Both Steps 2.b and 2.d involve a k-relation routing (with k = s + q)hence require O �(s+ q)pn=s� = O �pn log(m=n)� time altogether. Finally Step 2.c canbe completed in O (q) = O (log(m=n)) time by individual nodes. The theorem follows bycombining the complexities of the individual steps. 2By combining Theorem 7 with Theorem 8 we establish that any step of an (n;m)-PRAMcan be simulated with slowdown O �pn log(m=n)� on an pn�pn mesh, using O (log(m=n))copies per variable. Section 6 shows how the read-only tables encoding the memory mapheld by each node may be replaced by a space-e�cient, distributed representation using onlyO �(m=n) log5(m=n)� storage per node, thus completing the proof of Theorem 1 as it relatestwo-dimensional meshes. 19

4 Higher-Dimensional MeshesThe overall structure of the simulation scheme for the two-dimensional mesh described inSection 3 also applies to higher-dimensional meshes. Speci�cally, we adopt the same memoryorganization and pick the same values for the parameters s and q. In what follows, we sketchhow to implement the individual steps of the copy selection and access phases e�ciently onan n1=d � n1=d � � � � � n1=d d-dimensional mesh (called, for short, an n-node d-mesh) withconstant d. As for the case of the two-dimensional mesh, we note that for m � 2�(n1=(d+1)),k = O (log(m=n)) and n0 =
(n= log(m=n)), the k-sorting problem and the k-relation routingproblem may both be solved in time O �k(n0)1=d� on an n0-node d-mesh [Kun93].Let us �rst consider the �rst stage of copy selection, and interpret a cell C as an (n=s)-noded-submesh. Step 1 prescribes that the set Ŝ be replicated in each cell. We adopt the samerecursive approach developed for d = 2 and perform the replication in substeps. At the i-thsubstep, each (n=2d(i�1))-node d-submesh replicates its copy of Ŝ in each of its 2d component(n=2di)-node d-submeshes . Such replication involves an instance of the 2di-relation routingproblem on an n=2d(i�1)-node d-mesh and can therefore be completed in O �2(d�1)in1=d� time.Hence, the total time required by Step 1 isO0@(1=d) log sXi=1 2(d�1)in1=d1A = O �n1=ds1�1=d� :Step 3 is accomplished in the same time by performing the routings of Step 1 in the reverseorder. Let us �nally consider Step 2. In this step, the nodes of each cell C �rst determinewhether the cell degree is less than q(n=s) (Step 2.a). If this is the case, a balanced collectionof c-packets relative to the copies of variables in S residing in C is generated (Step 2.b) and�nally checked for accessibility (Step 2.c). The operations involved are dlog(2c � 1)e pre�xcomputations as well as a constant number of s-sorting, s-relation routing and q-sortingoperations, plus an additional O (q + s) work per node. By plugging in the chosen values fors and q we see that Step 2 of copy selection can be completed in timeO �sc+ n1=ds1�1=d + q(n=s)1=d� = O �n1=d(log(m=n))1�1=d� : (3)Since this subsumes the cost of Steps 1 and 3, this expression also captures the cost of theentire �rst stage of copy selection. In the second stage, we perform the i-th whittling entirelywithin an n=(2c�1)i�2-node d submesh. As in the two-dimensional case, this whittling can be20

easily implemented by means of 1-sorting and parallel pre�x. Since the size of the submeshesis geometrically decreasing, the overall running time is dominated by the time for i = 2,which is O �n1=d�. Hence, the entire copy selection algorithm can be completed within thetime given by Equation 3.Finally, recall that Steps 1, 2.a, 3 of the access phase mirror Steps 1, 2.b, 3 of copyselection, hence they require time O �n1=d(log(m=n))1�1=d� altogether. The remaining stepscan be realized as two instances of an (s+ q)-relation routing in each cell plus O (q) work pernode. Therefore, the total time required by the access phase is again O �n1=d(log(m=n))1�1=d�time.The above discussion establishes that any step of an (n;m)-PRAM with m � 2�(n1=(d+1))can be simulated with slowdown O �n1=d(log(m=n))1�1=d� on a d-dimensional mesh (withconstant d) using O (log(m=n)) copies per variable. In Section 6 we will show how the spacerequirements per node may be reduced to ((m=n) log3(m=n)) storage per node. This willcomplete the proof of Theorem 1.5 The Pruned ButteryAn n-leaf fat-tree is a routing network whose coarse structure resembles that of an n-leaf binarytree. More speci�cally, leaves correspond to processing elements, non-leaf nodes representclusters of routing switches and edges represent communication channels of bandwidth thatincreases from the leaves to the root. The �rst architecture of this kind was proposed byLeiserson [Lei85], and was later followed by a number of related networks di�ering in thedetail of how components at di�erent levels of the tree are interconnected. In this paperwe adopt the pruned buttery fat-tree of Bay and Bilardi [BB95], an example of which isillustrated in Figure 1. Each dotted ellipse in the �gure identi�es a cluster of routing switchesthat collectively correspond to a single node in the binary tree. The bundle of edges joiningswitches of a cluster to switches of its parent cluster constitutes a channel whose bandwidthequals the cardinality of the bundle. The depth of a cluster is the distance of its componentswitches from the root. At any given depth, the clusters are numbered from left to right,beginning at zero. Individual switches within each cluster are also numbered from left toright, beginning at zero.Assume that n is a power of four. Formally, an n-leaf pruned buttery is a graph G =
21

Figure 1: A pruned buttery with 16 leaves(V;E) whose vertices are indexed as follows :V = f< i; j; k >: 0 � i � logn; 0 � j < 2i; 0 � k < pn2�bi=2cg:With the above indexing, the j-th processor-memory node from left to right corresponds tovertex < logn; j; 0 >. For 0 � i < log n, vertex < i; j; k > corresponds to the k-th switch ofthe j-th cluster at depth i of the tree. The set of edges E is de�ned as follows:E = log n[i=1 2i�1[j=0 Eij;where Eij contains the edges connecting switches in the j-th cluster at depth i to those in itsparent cluster. When i is even, we letEij = f(< i; j; k >;< i� 1; bj=2c; k >);(< i; j; k >;< i� 1; bj=2c; k +pn2�i=2 >) :0 � k < pn2�i=2g:When i is odd, we letEij = f(< i; j; k >;< i� 1; bj=2c; k >: 0 � k < pn2�bi=2cg:Note that jEij j = pn21�di=2e, therefore channel bandwidths double every other level from theleaves to the top, ranging from 2 to pn. 22

G is interpreted as an n-node machine by identifying the n processor-memory nodes withthe n leaves, a routing switch with each internal vertex, and a wire capable of transmittinga single packet along its length in unit time with each edge. Moreover we assume thateach routing switch is provided with an adder, so that parallel pre�x computations may becompleted e�ciently. Intuitively, to route a message from leaf i to leaf j, the message isrouted upwards in the tree to the cluster that is the least common ancestor of i and j andthence downwards to its destination.This architecture has a number of interesting properties. For example, it is a subgraphof the buttery network and it embeds the n-leaf mesh of trees architecture with constantdilation and load. Furthermore, the original bit-serial formulation of the pruned butterypresented by Bay and Bilardi is area universal: the n-leaf pruned buttery can be laid outin O �n log2 n� area and can route any set of messages almost as e�ciently as any circuitof similar area. (See [BB95] and the references contained therein for a fuller discussion ofarea-universality and the capabilities and properties of the pruned buttery.) An importantrouting property of the n-leaf pruned buttery is the following. Consider a collection ofk � pn packets, stored one per node among the leaves, with the i-th packet residing at leaf< logn; si; 0 > and destined to leaf < log n; di; 0 >. We refer to the collection as a wave ifs1 < s2 < : : : < sk, and d1 < d2 < : : : < dk. In [BB95] it is shown that any wave can beeasily routed in O (log n) time. Moreover, a sequence of t waves may be routed in a pipelinedfashion in time O (t+ logn).5.1 Sorting and Routing on the Pruned ButteryIn this subsection, we develop algorithms for k-sorting and k-relation routing on the prunedbuttery, which will needed for the shared memory simulation.Lemma 4 Any instance of k-sorting can be performed in O (k(log k +pn)) time on the n-leafpruned buttery.Proof: We will consider the input packets sorted when the k packets with the smallest keysare in the 0-th leaf, the next k smallest occupy the 1-st leaf, and so on. Our sorting strategyis based on an adaptation of Batcher's bitonic sorting algorithm to handle the case wherek = 1. The generalization to larger values of k is standard, and can be obtained by �rstsorting the sequence of input packets at each node (possibly padded with extra dummypackets with key=1 to bring its length to k) in O (k log k) time, and then replacing each23

constant-time compare-exchange operation in the algorithm for k = 1 with an O (k)-timemerge-split operation [Knu73].When k = 1, let x0; x1; : : : ; xn�1 be the n-tuple of variables that we wish to sort, with xiresiding at the i-th leaf. The bitonic sorting algorithm is structured as a sequence of lognmerging phases. During the i-th phase, for 1 � i � log n, distinct pairs of sorted subsequencesof length 2i�1 are merged into subsequences of length 2i. In turn, the i-th phase is made of(i; j)-stages, for j = i� 1; i� 2; : : : 1; 0. An (i; j) stage executes as follows:for all 0 � k � n� 1 do in parallelif [k]j = 0 then Oper(k; k + 2j�1; i; j).In the above code, [k]j denotes the j-th bit in the binary representation of k, while Oper(k; k+2j�1; i; j) denotes a compare-exchange operation applied to the variables xk and xk+2j�1 . The\orientation" of the exchange depends on i and j. Note that the leaves containing these twovariables fall within the same subtree of 2j leaves. Thus, any (i; j)-stage can be performedwithin such subtrees. We now describe the implementation of an (i; j)-stage for the subtreewith leaves 0; � � � ; 2j � 1, and note that the same algorithm can be executed simultaneouslywithin each 2j-leaf subtree.1. Transfer the values of x0; x1; : : : ; x2j�1�1 (residing at distinct leaves of the left subtree)to the right subtree, so that leaf k+2j�1 holds both xk and xk+2j�1 , for 0 � k � 2j�1�1.2. Perform Oper(k; k + 2j�1; i; j) at leaf k + 2j�1, for 0 � k � 2j�1 � 1.3. Transfer the updated values of x0; x1; � � � ; x2j�1�1 back into the leaves of the left subtree.Clearly, Step 2 can be completed in O (1) time, since Oper involves a simple comparison-exchange. Steps 1 and 3 have a similar structure and involve the routing of the 2j�1 valuesstored at the leaves of the left (resp., right) 2j�1-leaf subtree to the leaves of its sibling subtree.We may decompose this routing into l2j�1=2bj=2cm = O �p2j� waves which may then berouted in a pipelined fashion in O �p2j� time. Hence, any (i; j)-stage can be completed inO �p2j� time.Now, recall that the i-th merging phase of the sorting algorithm consists of a sequence of(i; j)-stages for j = i � 1; i � 2 : : : ; 1; 0. Hence, the total running time of the algorithm maybe bounded as follows log nXi=1 i�1Xj=0O �p2j� = log nXi=1 O �p2i� = O �pn� :24

2Recall that a k-relation routing problem involves routing a set of packets from source todestination subject to the constraint that no node is the source or destination of more thank packets. We have:Lemma 5 Any instance of the k-relation routing problem may be routed in O (k(log k +pn))time on the n-leaf pruned buttery.Proof: Let Ŝ denote the set of packets to be routed. The routing algorithm is made of thefollowing steps:1. Sort the packets in Ŝ by their destination among the n leaves of the pruned buttery.2. For 0 � i < kpn, route the packets whose rank in the sorted sequence is equal toi mod kpn.By Lemma 4, Step 1 above requires time O (k(log k +pn)). As for Step 2, it is easy to see thateach of the kpn routings is a wave. Therefore, all iterations can be pipelined and completedin time O (kpn). Thus, the entire routing algorithm can be completed in O (k(log k +pn))time. 25.2 The Simulation AlgorithmA closer look at the simulation algorithm devised for the two-dimensional mesh reveals thatboth the copy selection and access phases are implemented in terms of k-sorting, k-relationrouting, pre�x computations, and rely upon a recursive decomposition of the network intosubnetworks of the same topology. Note that the pruned buttery exhibits such a decomposi-tion. Speci�cally, for n and s � n arbitrary powers of two, an n-leaf pruned buttery can bedecomposed into s (n=s)-leaf pruned butteries. Since the complexity of routing and sortingare asymptotically the same for the pruned buttery and the mesh, we conclude that any stepof an (n;m)-PRAM can be simulated with slowdown O �pn log(m=n)� on an n-leaf prunedbuttery using O (log(m=n)) copies per variable. The techniques of the next section showhow space requirement per node may be limited to O �(m=n)(log(m=n))3� thus completingthe proof of Theorem 2.
25

6 Space-E�cient SimulationsThe simulations presented in the paper are based on a memory organization whose structureis modelled by a bipartite graph G = (U; V ;E), with jU j = m, jV j = n, and where everyvertex in U has degree 2c � 1 = � (log(m=n)). This graph may be represented by meansof a read-only table TG = [t1; t2; � � � ; tm] consisting of m entries, where the i-th entry ti =(ti(1); ti(2); � � � ; ti(2c � 1)) contains the addresses of the copies of the i-th variable. We calleach such address an item. In this section, we show that such a table may be representedin a distributed fashion among the nodes of the simulating network, so that the maximumnumber of items stored per node is O �(m=n) log3(m=n)� and that any N -tuple (with N � n)of entries (corresponding to the variables to be accessed in the PRAM step) may be read intime proportional to the slowdown of the simulation step. (The need to access an N -tuplerather than an n-tuple will be discussed later.) We sketch the required techniques for the two-dimensional mesh, which are akin to those presented in [Her96], though somewhat simpler.The result extends immediately to the other interconnections considered in the paper.Let n0 � n be a parameter to be �xed later. Partition the pn � pn mesh into n=n0tiles of size pn0 �pn0. Each tile will contain a complete copy of TG distributed as follows.Partition TG into m=b pages of b entries each, and partition each tile into n0=b blocks each ofsize pb�pb. Within each tile, replicate and distribute the m=b pages among the n0=b blocksthat make up that tile according to a smooth (�; 2c0 � 1; c0; 1=(2c0 � 1))-generalized expanderH = (UH ; VH ;EH) such that jUH j = m=b, jVH j = n0=b, c0 = 2c � 1, and where parameters� < 1, c = �(log(m=n)) are as de�ned in Section 2. The maximum number of pages mappedto any individual block is O ((m=n0)c0)), which amounts to O �(m=n0)bc2� items in all. Theitems mapped to a particular block are distributed evenly among the nodes of the block, withO �(m=n0)c2� items per node. Within each node, the individual items are held in a staticdictionary in order to facilitate retrieval.Note that there are a total of (n=n0)(2c0 � 1) copies of each entry and that to read anentry it su�ces to read any one copy. Note also that the structure of the graph H can berepresented by means of a read-only table TH of m=b entries. This latter table is replicatedand represented in every block in the network, with each node of each block holding m=b2entries of TH .To read an N -tuple of entries of TG, each tile deals locally with the reads relating to itsown nodes, independently of other tiles, by executing the following steps. (It is assumed thateach node handles N=n entries.) 26

1. Generate a set S containing 2c0� 1 numbered request packets r1(x); r2(x); : : : ; r2c0�1(x)for each referenced entry x. Packet ri(x) bears the name of the processor that generatedit, the entry to which it refers, and the name of the block that contains the i-th copyof that entry within the tile in question.2. Select a subset S0 of the packets that contains c0 packets r01(x); � � � ; r0c0(x) per refer-enced entry such that the number of selected packets relating to any individual block isO ((N=n)bc0).3. Route each packet in S0 to the appropriate block, ensuring that the number of packetsrouted to any individual node is O ((N=n)c0).4. Within each block, circulate the packets around a Hamiltonian cycle. (For the prunedbuttery, use an Eulerian cycle.) As a packet, say r0i(x), visits a node, check whetherthat node contains a copy of entry tx. If so, load a copy of item tx(i) into the packet.5. Route each packet back to the node that generated it.Notice that the c0 = 2c� 1 selected packets relating to entry x are ultimately returned to thenode that generated them, each bearing the value of a distinct item of that entry.In order to discover the locations of the various copies of the entries, which are neededto generate packets during Step 1, the nodes need to query TH . Since each block maintainsa private copy of this table and each block generates (N=n)b(2c0 � 1) request packets, thisoperation can be accomplished in the same fashion as that outlined for Step 4 and has thesame O ((N=n)bc0) running time. Steps 3 and 5 involve ((N=n)c0)-relation routing within ann0-node tile so these contribute O �(N=n)c0pn0� to the running time.As for Step 2, note that for each page of TG the number of entries referenced may be upto b, the page size. For a particular tile, let Pi denote the set of pages where the numberof referenced entries lies in the interval [2i; 2i+1). Clearly, Plog bi=0 2ijPij � 2(N=n)n0. SinceH is a generalized expander, it is possible to construct a c0-bundle for the pages in eachPi that has degree O ((jPij=(n0=b))c0). Each edge in such a bundle corresponds to at most2i+1 request packets, and so the total number of selected packets over all the Pi is at mostPlog bi=0 2i+1(jPij=(n0=b))c0 = O ((N=n)bc0). The algorithmic techniques required to perform theselection include straightforward combinations of sorting and parallel pre�x akin to thoseemployed during the second stage of the copy selection process of Section 3, and this stepalso has a running time of O �(N=n)c0pn0�. 27

Thus, the overall running time is O �(N=n)(b +pn0)c0�. Recall that in our intendedapplication, namely the reading of the addresses of variable copies during Step 2.b of the copyselection phase of the algorithm of Section 3 (and the corresponding step of the subsequentaccess phase), each mesh node generates O(s) = �(log(m=n)) such lookup requests. Thus,N = sn, so by choosing b = pn0 = qn= log3(m=n) and c0 = O (log(m=n)), this runningtime simpli�es to O �pn log(m=n)�. Moreover, the distributed representation of the memorymap TG requires O ((m=n0)c0(2c� 1)) = O �(m=n) log5(m=n)� storage per node, while therepresentation of TH contributes a further O �(m=b2)c0� = O �(m=n) log4(m=n)� per node.Hence, the total storage requirement per node is O �(m=n) log5(m=n)�.7 Lower BoundIn this section, we prove a lower bound on the worst-case slowdown incurred when simulatinga PRAM step on a processor network. Unlike previous approaches [AHMP87, KU88, HB94],which do not account for the network topology, we obtain a bound that is based on thebandwidth characteristics of the simulating network. As a result, while previous lower boundswere signi�cant only for very powerful networks such as expanders, our lower bound canbe specialized, yielding nontrivial results, to a broad family of topologies, including low-bandwidth ones such as d-dimensional meshes and the pruned buttery. The bound is basedon the notion of balanced decomposition tree [BL84], which provides a partition of the networkinto disjoint regions of known bandwidth. We �rst formulate the general lower bound in termsof such a decomposition, and then show how to specialize it to meshes and to the prunedbuttery.Consider the simulation of an arbitrary (n;m)-PRAM program on an n-processor networkN . For convenience, we assume that each PRAM step involves either the reading (read step)or the writing (write step) of some n-tuple of variables. The simulation must satisfy thefollowing standard constraints, which are also required in the lower bounds quoted earlier.� The simulation must on-line, in the sense that each PRAM step is made known tothe simulation algorithm only after the simulation of previous read steps has beencompleted. Thus, read steps are simulated one-by-one according to the order speci�edby the PRAM program. Each read must succeed in accessing the correct (i.e. mostrecently written) value of the variable in question. Note that no restriction is placed onthe execution of write operations. 28

� The simulation must be point-to-point in the sense that a processor that wants to writea variable must dispatch a distinct message for each copy of the variable it wants toupdate.Note that the point-to-point constraint rules out the splitting and combining techniques thatare at the core of the simulations presented in this paper. However, at the end of the section,we modify the argument to obtain a non point-to-point lower bound, formulated in terms ofthe global space used to represent the PRAM memory, which applies to our upper bounds.We assume that the simulating network N has a [w0; w1; : : : ; wlog n] balanced decompositiontree, as de�ned in [BL84]; that is, for any i, 0 � i � log n, N can be partitioned into 2i disjointi-regions, R(i)1 ; : : : ; R(i)2i , where each i-region contains dn=2ie � 1 processors and is connectedto the rest of the network by at most wi edges. Clearly, every network has a balanceddecomposition tree, for suitable values of the wi's.De�nition 3 Let h and k be two integers, with 1 � h; k � logn, and let t be an arbitrary timestep during the course of the simulation. For any shared variable u 2 U , we de�ne rth;k(u) tobe the minimum, taken over all h-regions R(h)j , of the number of k-regions containing valid(i.e., most recently updated) copies of u that lie outside R(h)j at the beginning of step t. (Weassume r0h;k(u) = 0, for every h; k and u.) We also de�ne the average redundancy at time twith respect to h and k as rth;k =Pu2U rth;k(u)=m.The lower bound argument is similar in spirit to the ones in [AHMP87, KU88, HB94],namely, it relies on �nding a sequence of PRAM steps which are \hard" to simulate. Such asequence will contain a judicious mixture of write and read steps suitably chosen to expose atradeo� of the following kind: unless the simulation devotes a su�cient amount of e�ort toeach write step to ensure that the valid copies of the variables written are \nicely distributed"among di�erent regions of the network, an adversary is always guaranteed to be able to �nda read instruction that will be relatively expensive to simulate.In the subsequent analysis, we will make use of the following technical lemma, whose proofis embedded in that of Lemma 1 in [PP97].Lemma 6 ([PP97]) Consider a �xed partition of the network into p disjoint regions, anda set of m0 PRAM variables, such that, for each variable, there are at most r0 � 1 distinctregions containing valid copies of the variable. Then, for any n0 � m0, there exists a set of n0
29

variables whose valid copies are all stored in memory modules residing in at most�(r0; p; n0;m0) = 2 �max8<:r0; p� n0m0� 1r09=;regions.A lower bound on the complexity of a read operation as a function of the redundancy ofthe simulation scheme is proved in the following lemma.Lemma 7 Fix an arbitrary time step t during the course of the simulation. For every h andk, with 1 � h; k � log n, at time t an adversary could issue a read step involving n distinctvariables, whose simulation requires time at least gh;k(rth;k), wheregh;k(r) = 8><>: 1 if �(2r; 2k; n;m=2h+1) � 2k�2;n4(wh+wk�(2r;2k;n;m=2h+1)) otherwiseand rth;k is the average redundancy at time t with respect to h and k .Proof: Fix h and k and let r = rth;k. The case �(2r; 2k; n;m=2h+1) � 2k�2 is trivial, hencewe assume that �(2r; 2k; n;m=2h+1) < 2k�2. We will identify a set of � (n) variables all ofwhose valid copies are con�ned within a low-bandwidth portion of the network, and thereforeare expensive to read by processors outside the region. Let Û = fu 2 U : rth;k(u) � 2rg.Clearly, jÛ j � m=2 and there exists an h-region R(h)j0 for which there are at least m=2h+1variables in Û achieving their minimum redundancy with respect to R(h)j0 . Let Û (h)j0 � Û bethe set containing these variables. Note that since �(2r; 2k ; n;m=2h+1) < 2k�2 we must havem=2h+1 � n and, thus, jÛ (h)j0 j � n. We distinguish between two cases, depending on whetherr is less than 1=2 or not.If r < 1=2, then there exists an n-tuple of variables in Û (h)j0 whose valid copies are allwithin R(h)j0 . Since h � 1 and so R(h)j0 contains no more than n=2 processors, we can stipulatethat n=2 variables of the n-tuple be read by processors outside R(h)j0 . At least one copy pervariable must then be transmitted along the wires connecting the region with the rest of thenetwork, therefore such a read instruction will require at least n=(2wh) time.The case r � 1=2 is more involved. Fix an arbitrary subset W of Û (h)j0 containing exactlym=2h+1 variables. Each variable u 2W may have a number of valid copies within R(h)j0 plus atmost 2r valid copies scattered among k-regions external to R(h)j0 (call them expensive copies).By plugging r0 = 2r, p = 2k, n0 = n, and m0 = m=2h+1 into the statement of Lemma 6,30

we conclude that there are n variables in W whose expensive copies are all contained in atmost �(2r; 2k ; n;m=2h+1) k-regions. Since �(2r; 2k ; n;m=2h+1) < 2k�2, the union of R(h)j0and these k-regions contains no more than 3n=4 processors. Therefore we can stipulate thatn=4 variables of the n-tuple be read by processors outside the union. The lemma follows byobserving that reading these variables would take time at leastn4 (wh + wk�(2r; 2k; n;m=2h+1)) ;and that the above term is strictly less than n=(2wh). 2We observe that the function gh;k(r) de�ned in the above lemma is a non-increasing functionof r.The following lemma is similar to Lemma 7 in [HB94], and captures the contribution ofthe write steps to the running time in terms of the average redundancy.Lemma 8 Consider an arbitrary time step t during the course of a point-to-point simulation,and let r = rth;k. Then, t and r satisfy the following inequality:t � r m2hwh :Proof: For each variable u, let ru denote the number of valid copies of u lying outside theh-region which contains the processor that most recently updated u (before time t). (Notethat ru as well as rth;k(u), for any h and k, are equal to 0 if no processor wrote u before timet.) Under the point-to-point assumption, such a processor must have dispatched at least rudistinct messages that crossed the boundaries of its h-region. As a consequence, we have thata total of at least Pu2U ru � rm messages must have crossed boundaries of h-regions, hence,there must be an h-region whose boundary was crossed by at least rm=2h distinct messages,which accounts for a total of at least rm=(2hwh) time. 2Theorem 9 For any T � 2m=n, there exists a T -step (n;m)-PRAM program, whose point-to-point, on-line simulation on an n-processor network with a [w0; w1; : : : ; wlog n] balanceddecomposition tree, requires worst-case time
�T � max1�h;k�lognminr�0 �gh;k(r) + r n2hwh��� ;where gh;k(r) is the function de�ned in Lemma 7.31

Proof: We construct a PRAM program with bT=(2m=n)c batches of m=n instructions, eachbatch consisting of m=n write steps that update all the variables, followed by m=n read stepssuitably chosen by the adversary according to Lemma 7.Consider the simulation of one such batch, for some h and k, with 1 � h; k � log n. Letr be the maximum value of rth;k at the start (time t) of the simulation of any read step. ByLemma 8, the simulation of all the write steps requires time at least rm=(2hwh). By Lemma 7,the simulation of each read step requires time at least gh;k(r). Hence, the simulation time forthe batch is at least mn �gh;k(r) + rn2hwh� :The theorem follows by taking the minimum over all possible values of r and the maximumover all choices of h and k of the simulation time of a batch given above, and then by summingthe contributions of the bT=(2m=n)c batches. 2We are now ready to prove Theorem 3, stated in the Introduction, which specializes thegeneral lower bound of Theorem 9 to the case of d-dimensional meshes (with d constant).Proof of Theorem 3: Let us �rst concentrate on one-dimensional meshes (d = 1). Weestablish this case separately, by means of a simple, diameter-based argument as follows.Consider a PRAM program consisting of T steps where in odd steps a processor v updatesa variable u and in even steps all other processors read u. Such a sequence requires
 (Tn)time to be simulated on the linear array since distinct pairs of consecutive write and readsteps must be simulated in disjoint time intervals, because of the on-line hypothesis, and ineach such pair the newly written value of u must travel at distance � (n).Consider now the case d > 1. A natural halving process of an n-node d-dimensional meshgenerates a balanced decomposition tree with wi = � ��n=2i�1�1=d�, for 0 � i � log n. De�ne� = log(m=n)log log(m=n) ;and �x h and k as the minimum indices such that 2h � � and 2k � �(2d�1)=(d�1). Sincem � 16n and d > 1, we have � � 2, hence h; k � 1. Let �m be the largest value of m forwhich the chosen value for 2k is at most n (note that this also implies 2h � n). We �rst provethe lower bound under the assumption m � �m. Let us de�ne �r = �=16 and note thatr n2hwh =
�n 1d�1� 1d� for r � �r: (4)32

Using the chosen values of h, �r and �, we see that� m2h+1n�1=2�r � (m=n)8 log(m=n)= log log(m=n)(2h+1)8=� � log8(m=n)84 ;where the simpli�cation of the denominator relies on the facts that 2h+1 < 4� and (4�)8=� �84 (since 4� � 8 and x1=x is decreasing for x > 2). With this it is easy to establish thatwhen r < �r, we have �(2r; 2k ; n;m=2h+1) < 2k�2, which according to the de�nition of gh;r(r)in Lemma 7 implies that gh;k(r) = n4 (wh + wk�(2r; 2k ; n;m=2h+1))Substituting for wh, wk and �, this simpli�es togh;k(r) = � n 1d min((2h)1� 1d ; 1r (2k)1� 1d ;� 12k� 1d � mn2h+1� 12r)! :Using the chosen values for 2h, 2k and the facts that gh;k(r) is non-increasing in r and(m=(2h+1n))1=(2�r) =
�log8(m=n)� =
 ��8�, we havegh;k(r) � gh;k(�r) =
�n 1d�1� 1d� for r < �r: (5)By combining Equations 4 and 5 the lower bound on the simulation time in the casem � �m is
0@Tn 1d � log(m=n)log log(m=n)�1� 1d1A :Straightforward but tedious calculations show that our choice of h and k yields the bestpossible bound. Moreover, the lower bound is an increasing function of m, hence, for m � �m,the simulation time is at least
0@Tn 1d � log(�m=n)log log(�m=n)�1� 1d1A =
�Tn 1dn d2�2d+12d2�d � ;since log(�m=n)log log(�m=n) = ��n d�12d�1� ;and the theorem follows 2Note that the argument used to prove Theorem 9 does not exploit the �ne-grained struc-33

ture of the interconnection but solely depends on the bandwidth distribution, as captured bythe decomposition tree. Consequently, we get the same specialized version of the lower boundfor networks of di�erent topologies which have similar decomposition trees. An example isprovided by the n-leaf pruned buttery that has the same decomposition tree (up to constantfactors) as the two-dimensional mesh, although the two topologies are very di�erent. Hence,the proof of Theorem 4, stated in the Introduction, is virtually identical to that of Theorem 3for d = 2, and is omitted for brevity.Recall that the simulations presented in this paper achieve high levels of e�ciency bymaking a crucial use of splitting and combining techniques. More speci�cally, a processorissuing a memory request generates a single variable packet for each subset of copies residingin a suitably sized region of the network. Once the variable packet is shipped within itsdestination region, it is split into multiple copy packets, destined to the individual copies ofthe variable. In this way, the cost of the \long leg" of the journey to access a copy is paidonly once for all the copies residing within the same region.Unfortunately, the point-to-point assumption made by our lower bound argument pre-cludes the splitting and combining of messages destined to distinct copies, therefore Theo-rems 3 and 4 do not apply to our simulations. Note however that the argument uses thisassumption only to establish a bound on the cost of write operations. As a consequence, wecan prove a lower bound solely based on the cost of read operations, which holds in an unre-stricted model where splitting/combining may occur. The lower bound, stated in Theorem 5in the Introduction and proved below, is obtained by making sure that the average redun-dancy does not grow too large during the simulation. This can be achieved by establishingthat the total amount of space used to represent the PRAM variables in the local memorymodules can never exceed a �xed threshold mr.Proof of Theorem 5: Consider the case of d-dimensional meshes. For d = 1, the boundcan be trivially obtained through the same diameter-based argument employed in the proofof Theorem 3. Hence, assume d > 1. We consider a PRAM program that �rst executes m=nwrite steps to update all the variables, and then executes T � (m=n) = � (T) read stepssuitably chosen by the adversary. Since the average number of copies per variable is r, it isimmediate to argue that, for every 1 � k � logn, at the beginning of each read step thereare at least m=2 variables each of which has updated copies in at most 2r k-regions. ByLemma 6 this implies that there exist minf2k;�(2r; 2k ; n;m=2)g k-regions that contain allupdated copies of at least n variables. If �(2r; 2k ; n;m=2) � 2k�1, the adversary can require34

that n=2 such variables be read by processors outside the �(2r; 2k ; n;m=2) k-regions, whichtakes time
� nwk�(2r; 2k; n;m=2)� =
 n 1d min(1r2k(1� 1d);� 12k� 1d �m2n� 12r)! : (6)Let us �x k as the minimum index such that2k � � log(m=n)log log(m=n)��+ dd�1 ;and let �m be the largest value of m for which the chosen value for 2k is at most n. As inthe proof of Theorem 3, we �rst consider the case m � �m. In this case, we have 1 � k �log n. Moreover, it is easy to verify that (m=2n)1=(2r) � (log(m=n)= log log(m=n))2�+1 and�(2r; 2k; n;m=2) � 2k�1. By plugging the value for 2k in the right-hand side of Equation 6we see that the cost of each read operation is
0@n 1d � log(m=n)log log(m=n)��(1� 1d)1A :When m � �m, we have r � 18�n 1�+d=(d�1) � 18� log(�m=n)log log(�m=n) ;and the cost of each read can be easily bounded from below by
0@n 1d � log(�m=n)log log(�m=n)��(1� 1d)1A =
�n 1dn ��+d=(d�1)(1� 1d)� :The unrestricted lower bound for the pruned buttery is obtained by setting d = 2 in theabove calculations. 2Theorem 5 shows that our simulations use an amount of redundancy which is only a dou-bly logarithmic factor higher than the minimum redundancy needed to achieve the sameslowdown.8 ConclusionsIn this paper we have presented upper and lower bounds for the problem of simulating ashared memory abstraction on network-based machines such as d-dimensional meshes and the35

pruned buttery. An interesting feature of our scheme is its generality. Indeed, the simulationalgorithm relies on a recursive decomposition of the underlying network into subnetworks ofthe same topology, and employs a restricted set of basic primitives such as pre�x, k-sortingand k-relation routing. As a consequence, the algorithm is e�ciently portable to any othermachine with a recursive structure and on which optimal algorithms for the above primitivesare known. As for the lower bound, we have developed a generic, bandwidth-based argumentthat can be applied to any speci�c interconnection using the parameters of its decompositiontree.Regarding the upper bound, it must be remarked that we make use of memory organiza-tions based on generalized expanders. As it was mentioned in the Introduction, the explicit,deterministic construction of generalized expanders is a long-standing open question, althoughit can be shown that a random bipartite graph would exhibit the required expansion propertywith high probability. This limitation su�ered by our scheme is shared by all other deter-ministic mesh-based schemes in the literature, with the exception of the scheme of [PPS94],which only applies to very small memory sizes (m = O �n1:5�) and exhibits a higher slowdownthan ours.Finally, the general lower bound presented in Section 7 is proved under the point-to-point assumption, which stipulates that packets sent to copies of a variable can neither besplit nor combined. This constraint rules out the techniques that are at the core of thesimulations presented in this paper, hence the bound does not apply to our algorithms directly.However, we have been able to modify the argument to obtain one which applies to ouralgorithms, by introducing an upper limit to the global space used to represent the PRAMvariables. In particular, we are able to show that in order to match the slowdowns exhibitedby our simulations, any deterministic scheme must use about the same amount of space torepresent the variables. However, the search for a nontrivial, totally unrestricted lower boundfor deterministic PRAM simulation on network-based machines remains a challenging openproblem.AcknowledgementsThe authors would like to thank Gianfranco Bilardi for a some helpful discussions on sortingon the pruned buttery, and the anonymous referee who indenti�ed some shortcomings in theoriginal version of the manuscript. 36

References[AHMP87] Alt, H., Hagerup, T., Mehlhorn, K., and Preparata, F.P. (1987), Deter-ministic simulation of idealized parallel computers on more realistic ones, SIAMJ. Comput., 16 (5), 808{835.[BB95] Bay, P., and Bilardi, G. (1995), Deterministic on-line routing on area-universal networks, J. ACM, 42 (3), 614{640.[BL84] Bhatt, S.N. and Leighton, F.T. (1984), A framework for solving VLSI graphlayout problems, J. Comput. System Sci., 28 (2), 300{342.[Her96] Herley, K.T. (1996), Representing shared data on distributed-memory parallelcomputers, Math. Syst. Theory, 29, 111{156.[HB94] Herley, K.T., and Bilardi, G. (1994), Deterministic simulations of PRAMson bounded-degree networks, SIAM J. Comput., 23 (2), 276{292.[KU88] Karlin, A.R., and Upfal, E. (1988), Parallel hashing: An e�cient implemen-tation of shared memory, J. ACM, 35 (4), 876{892.[Knu73] Knuth, D.E. (1973), \The Art of Computer Programming, volume 3: Sortingand Searching," Addison Wesley, Reading, Mass.[Kun93] Kunde, M. (1993), Block gossiping on grids and tori: Deterministic sorting androuting match the bisection bound, in \Proceedings, 1st European Symposium onAlgorithms" (T. Lengauer, Ed.), pp. 272{283, Springer-Verlag LNCS 726, Berlin,Germany.[Lei85] Leiserson, C.E. (1985), Fat-trees: Universal networks for hardware-e�cientsupercomputing, IEEE Trans. Comput., C-34 (10), 892{901.[PP95] Pietracaprina, A., and Pucci, G. (1995), Improved deterministic PRAMsimulation on the mesh, in \Proceedings, 22nd International Colloquium on Au-tomata, Languages and Programming" (Z. F�ul�op and F. G�ecseg, Eds.), pp. 372{383, Springer-Verlag LNCS 944, Berlin, Germany.[PP97] Pietracaprina, A., and Pucci, G. (1997), The complexity of deterministicPRAM simulation on distributed memory machines, Theory Comput. Syst., 30(3), 231{247. 37

[PPS94] Pietracaprina, A., Pucci, G., and Sibeyn, J.F. (1994), Constructive de-terministic PRAM simulation on a mesh-connected computer, in \Proceedings,6th ACM Symposium on Parallel Algorithms and Architectures," pp. 248{256.(Journal version to appear in SIAM J. Comput.)[UW87] Upfal, E., and Widgerson, A. (1987), How to share memory in a distributedsystem, J. ACM, 34 (1), 116{127.

38

