
Optimal Deterministic Protocols forMobile Robots on a Grid�
Roberto GrossiDipartimento di InformaticaUniversit�a di PisaCorso Italia 40I-56125 Pisa, Italygrossi@di.unipi.itAndrea Pietracaprina, Geppino PucciDipartimento di Elettronica e InformaticaUniversit�a di PadovaVia Gradenigo 6/aI-35131 Padova, Italyfandrea,geppog@artemide.dei.unipd.it

�Part of this work was done while the authors were attending the Research Retreat on Sense of Directionand Compact Routing held in June 1997 at the Certosa di Pontignano, Siena, Italy. A preliminary ver-sion of this paper appeared in the Proceedings of the Sixth Scandinavian Workshop on Algorithm Theory,1998. This work was supported, in part, by the Italian CNR, by UNESCO under contract UVO-ROSTE875.631.9, and by the Italian MURST under projects Algorithms for Large Data Sets: Science and Engi-neering and Methodologies and Tools of High Performance Systems for Multimedia Applications.1

Running HeadDeterministic Protocols for Mobile Robots
Corresponding AuthorRoberto GrossiDipartimento di InformaticaUniversit�a di PisaCorso Italia 40I-56125 Pisa, ItalyPhone: +39 050 887293Fax: +39 050 887226E-mail: grossi@di.unipi.it

2

AbstractThis paper studies a system of m robots operating in a set of n work locations connected by aislesin a pn �pn grid, where m � n. From time to time the robots need to move along the aisles,in order to visit disjoint sets of locations. The movement of the robots must comply with thefollowing constraints: (1) no two robots can collide at a grid node or traverse a grid edge at thesame time; (2) a robot's sensory capability is limited to detecting the presence of another robotat a neighboring node. We present a deterministic protocol that, for any small constant � > 0,allows m � (1 � �)n robots to visit their target locations in O �pdn� time, where each robotvisits no more than d � n targets and no target is visited by more than one robot. We also provea lower bound showing that our protocol is optimal. Prior to this paper, no optimal protocolswere known for d > 1. For d = 1, optimal protocols were known only for m � pn, while forgeneral m � n only a suboptimal randomized protocol was known.KeywordsMulti-Robot Grid System, Routing Protocol, Mesh, Social Laws, Computational Agents.

3

List of Symbols Used1 onel lower-case ell�a accented lower-case a@ at (for e-mail)� bullet (itemization)0 zeroO upper-case letter ohO(n) italic upper-case oh(big-oh notation)
 upper-case Greek omega� upper-case Greek Thetapn square roota� b a times b<;�; >;� standard inequalities� circled plus(indicating exclusive-or)logn logarithmmaxfX; Y g maximumx0 x primexi x sub i (indexing)ab a to the b-th power� upper-case Greek sigma(indicating summation)� lower-case Greek delta� lower-case Greek epsilonI, II, III, IV capital roman numbersa � b a dot b (indicatinga multiplied by b)bXc oor of XdXe ceiling of Xa; b; : : : ; z ellipsisfa; b; cg curly brackets (indicatingset notation)
4

1 IntroductionA Multi Robot Grid system (shortly, MRG) consists of m robots that operate in a set ofn � m work locations connected by aisles in a pn � pn grid [ST95]. At any time, therobots are located at distinct grid nodes, and from time to time each robot is given a set ofwork locations (targets) to be visited. The target sets are disjoint and no particular orderis prescribed for visiting the targets in each set. Moreover, robots may end up at arbitrarylocations, once their visits are completed. We may regard the system as representing awarehouse or a tertiary storage (e.g., tape) system, where robots are employed to gatheror redistribute items. We assume that the system is synchronous, that is, all robots areprovided with identical clocks. Control is distributed in the sense that each robot's movesare scheduled locally by a processor embedded in the robot. Our goal is to design ane�cient distributed on-line protocol that every robot must follow in order to visit theassigned targets while avoiding deadlocks and conicts with other robots. More speci�cally,the protocol must comply with the following rules:� At any time all the robots reside in the grid, i.e., no robot can leave the grid or enterfrom outside.� No two robots can occupy a grid node or traverse a grid edge at the same time.� A robot cannot exchange information with other robots directly. However, eachrobot is equipped with a short-range sensor that is able to detect the presence ofother robots occupying nodes at (Manhattan) distance one from its current location.� In one time unit, a robot can perform a constant amount of internal computation,read the output of its short-range sensor, and decide whether to remain at the currentgrid node, or to move to a neighboring node.In an MRG(n;m; d) problem, each of m � n robots in an MRG system is required tovisit (at most) d � n targets, with no grid node being target for more than one robot. Forthe sake of simplicity, we assume that n is a power of 4 so that the grid can be recursivelydecomposed into subgrids whose size is still a power of 4. The general case of n being anyeven power can be handled with minor modi�cations.
5

1.1 Related WorkMulti robot grid systems were originally introduced in [ST95, Sect. 2.1] as a practicalcase study within the general quest for social laws to coordinate agents sharing a commonenvironment in a distributed rather than centralized fashion. While central control relieson a single arbiter that regulates all possible interactions among the agents, distributedcontrol is based on a set local rules which must be complied with in order to avoid conicts.The need for distributed control stems from a number of shortcomings which may limitthe applicability of a central protocol, such as the need of reprogramming the system whenthe set of agents changes over time, or the overhead in computation and communicationintroduced by the arbiter. In fact, a distributed protocol may exploit better the intrinsicparallelism of the problem, since each agent can be programmed independently of theothers to follow the common set of rules. In order to be e�cient, a distributed protocolmust require a minimal amount of communication to regulate the interaction between theagents. Hence, the protocol must be based on simple rules that can be applied locally andquickly.Although the MRG(n;m; d) problem entails routing robots on a two-dimensional grid, itexhibits, however, some fundamental di�erences from classical message routing problems.The nodes of a network used to exchange messages are typically processing units ableto compute, maintain a local status and, in many cases, temporarily bu�er messages intransit. In contrast, in an MRG system the grid nodes are passive entities with no status orcomputing power, and robots, which are the active agents in the system, must orchestratetheir movements solely based on their processing and sensory capabilities. Moreover, inmessage routing, packets traveling through the network can be destroyed and replicated aslong as each message is eventually delivered to its destination(s), while this is clearly notadmissible when dealing with robots.For the above reasons, as was also observed in [PU96], none of the many message routingprotocols known in the literature appears to be directly applicable to the MRG(n;m; d)problem (see [Lei92] and [Sib95] for comprehensive surveys of grid protocols). Even hot-potato protocols, which involve very simple operations at the nodes and do not need internalbu�ers, are not immediately portable, since they require that in one time unit a node is ableto receive a packet from each neighbor, compare and manipulate the information carriedby the packet headers, and �nally redistribute the packets, suitably permuted, among the6

neighbors (e.g., see [NS95]). Another di�erence with the typical message routing scenariois that the m robots reside in the grid all the time, hence relocation becomes critical asm grows large. The main objective of the present paper is to show how the techniquesemployed in message routing can be suitably, yet not trivially, adapted to be applicable tothe MRG(n;m; d) problem. For this purpose, we will develop e�cient protocols for a setof basic primitives, such as balancing and sorting, which will then be used to orchestratethe robots' movements. We will also aim at solving the MRG(n;m; d) problem for valuesof the parameter m as close as possible to the maximum value n.Preminger and Upfal [PU96] pointed out that any instance of the MRG(n;m; d) problemcan be trivially completed in n � 1 steps by letting the robots circulate along a directedHamiltonian cycle traversing all the grid nodes. In fact, they proved that any deterministicprotocol in which robots are completely blind (i.e., a robot cannot detect the presence ofother robots at any distance) requires
 (n) time, thus implying the optimality of the trivialstrategy in this case.If the robots are not blind,
 (pn) time is necessary in the worst case due to the griddiameter. Clearly, a single robot with a single destination (MRG(n; 1; 1) problem) canachieve this bound by simply traversing a shortest path from its source to its target. For alarger number m of robots and a single destination per robot (MRG(n;m; 1) problem) twooptimal � (pn)-time protocols are presented in [ST92] and [ST95] for two special cases.The �rst protocol is designed for m � n1=4 robots, while the second one works for m � pnrobots, as long as they initially reside in distinct columns.The only known protocol that deals with an arbitrary number of m � n robots anda single destination is given in [PU96]. The algorithm is randomized and solves anyMRG(n;m; 1) problem in suboptimal O (pn logn) time, with high probability. However,the algorithm assumes that a robot's short-range sensor is able to detect the presence ofother robots at distance at most two, that a robot may initially stay outside the grid foran arbitrary amount of time, and that robots disappear from the grid as soon as they havevisited their target. No deterministic protocol that takes o(n) time and works under thestricter rules described in this paper is known for the MRG(n;m; 1) problem.For the case of d > 1 targets, one could repeat the single-target protocol d times.However, as we will show in the paper, this strategy does not always guarantee optimalperformance. To the best of our knowledge, no speci�c algorithm for the case of d > 1targets has been developed so far. 7

1.2 Our ResultsWe begin by devising a simple and general protocol for the MRG(n;m; 1) problem, withm � n=4, which attains optimal � (pn) time. The algorithm implements a routing strategyin a way that fully complies with the constraints imposed by an MRG system. Our protocolimproves upon the work of [PU96] in several directions. First, the protocol is deterministic,hence it provides a worst-case guarantee on performance. Second, it achieves optimalityfor a wide range of m values, thus reducing the running time of [PU96] by an O (logn)factor. Third, it works in a weaker model in which the robots reside in the grid all the timeand their sensors can detect other robots at distance one. It must be remarked, however,that our protocol requires a common clock governing all robots' movements, while theresults in [PU96] and [ST95] can be adapted to hold under a slightly weaker notion ofsynchronization.Next, we consider the case of d > 1 targets. If we put a constraint on the order of thevisits that �xes a priori the sequence of targets to reach for each robot, a simple argumentbased on diameter considerations su�ces to prove that any protocol for the problem re-quires
 (dpn) time, in the worst case. Consequently, applying our optimal MRG(n;m; 1)protocol d times yields an optimal � (dpn)-time general solution in this case. However, ifthe robots can arbitrarily rearrange the order of their targets, the latter approach becomessuboptimal. Indeed, we prove an
 �pdn� lower bound to the MRG(n;m; d) problem andprovide an optimal � �pdn�-time protocol that matches the lower bound for any d � nand m � (1� �)n, where � > 0 is an arbitrary small constant. Ours is the �rst nontrivialsolution to the most general case of the MRG problem.The paper is organized as follows. Section 2 describes an optimal deterministic protocolfor the MRG(n;m; 1) problem under the assumption m � n=4. In Section 3 the protocol isextended to handle the more general MRG(n;m; d) problem with d � n and m < (1� �)n.The section also proves the lower bound showing the optimality of the extended protocol.Some �nal conclusions and open problems are drawn in Section 4.2 The Case of Single TargetsConsider an arbitrary instance of the MRG(n;m; 1) problem, for m � n=4. The basic ideabehind our protocol is to perform the routing through sorting, which is a typical strategy8

employed in the context of packet routing. However, we have to deal with the restrictiverules of an MRG system. In the following, we assume that at any time each robot knowsthe coordinates of its current location.Let us consider the grid as partitioned into n=4 subgrids, called tiles, of size 2� 2 each.The protocol has a simple high-level structure consisting of the four phases outlined below:� Phase I | Balancing: The robots relocate in the grid so that each robot ends up inthe top-left node of a distinct tile.� Phase II | Sorting-by-Row: The robots sort themselves by their target row. Thesorted sequence of robots is arranged on the grid (one robot per tile) according to thePeano indexing [Mor66] shown pictorially in Figure 1 and described mathematicallylater. In other words, at the end of the sorting, the i-th robot in the sorted orderoccupies the top-left corner of the tile of Peano index i.� Phase III | Permuting: The sorted sequence of robots permutes from the Peanoindexing to the row-major indexing.� Phase IV | Routing: The robots �rst circulate within columns of tiles to reachthe rows containing their targets. Then, they circulate around the rows to visit thetargets.Before describing the four phases in detail, we show how to perform some basic primi-tives in an MRG system which will be needed to implement the above phases.Pack Given q � t robots on a t-node linear array, pack them into q consecutive nodes atone end of the array.Solution: Each robot repeatedly crosses an edge towards the designated end whenever itsshort-range sensor detects that the node across the edge is empty. No collisions arise inthis way. Moreover, a simple argument shows that after t time steps all the robots havecompleted the packing.Count Given q � t robots on a t-node linear array, make q known to each robot.Solution: The robots �rst pack at one end of the array and then at the other. A robotthat ends up at the i-th location from one end and at the j-th location from the other,sets q = i+ j � 1. This primitive requires no more than 2t steps.9

Compare-Swap Given a tile with two robots in it, sort the two robots so that the oneassociated with the smaller target row goes to the top left corner, while the other goes tothe bottom left corner.Solution: Suppose that the two robots start at the top and bottom left corners of thetile. The robots execute a number of rounds until they \learn" their relative order in thesorted sequence. Speci�cally, in the i-th round, the robots \implicitly compare" the i-thmost signi�cant bit of the binary representation of their respective target row as follows.A robot positions itself at the left corner (in the same row) of the tile if its bit is 0, whileit positions itself at the right corner if its bit is 1. Then each robot can infer the otherrobot's bit by simply checking for its presence in the same column. The �rst time thatthe robots �nd di�erent bits, the robot whose bit is 0 moves to the top left corner, whilethe other moves to the bottom left corner, and the algorithm ends. If the robots have thesame target row (i.e., all bits are equal) they stay in their starting positions. Overall, thecomputation takes no more than logn steps.In the following subsections, we describe the four phases of our protocol in more detail.2.1 Phase I: BalancingIn this phase, the m � n=4 robots start at arbitrary positions in the grid and mustdistribute themselves among the n=4 tiles so that each tile contains at most one robot inits top-left node. This is accomplished in logn � 2 balancing steps, numbered from 0 tologn� 3, according to the following inductive scheme. At the beginning of Step i, with ieven, the robots are already distributed evenly among square subgrids of sizeqn=2i�qn=2iby induction. (This clearly holds for i = 0). During the step, the robots work independentlywithin each square subgrid, and partition themselves evenly among rectangular subgridsof size qn=2i�qn=2i+2. Analogously, in Step i with i odd, the robots work independentlywithin each rectangular subgrid of size qn=2i�1�qn=2i+1, and partition themselves evenlyamong square subgrids of size qn=2i+1 � qn=2i+1. Clearly, at the end of Step logn � 3the robots are evenly partitioned among the subgrids of size 2� 2 (the tiles), with at mostone robot per tile. At this point, each robot moves to the top-left corner of its tile.We now describe the implementation of Step i, with i odd (the implementation of abalancing step of even index requires only minor modi�cations). Consider an arbitraryt � t=2 rectangular subgrid, with t = qn=2i�1, and suppose that there are p robots in10

the subgrid. Let the rows (resp., columns) of the subgrid be numbered from 1 to t (resp.,t=2). At the end of the step we want to have bp=2c robots in the upper half (top t=2 rows)and the remaining dp=2e in the lower half (bottom t=2 rows) of the subgrid. This is donethrough the following substeps:(1) The robots in each row pack towards the left.(2) The robots in each column pack towards the bottom.Comment: After this step, the robots form a \staircase" descending from northwestto southeast in the subgrid.(3) In each column k < t=2, each robot determines the number of robots in the column.If this number is odd, the topmost robot (referred to as leftover) moves to the topof the column.(4) All leftovers pack towards the right of the topmost row. Then they move down alongcolumn t=2 towards the bottom. Then, in column t=2, each robot determines thenumber of robots in the column.Comment: If p � t2=4 (which is always the case) then there is enough room in columnt=2 to hold all leftovers.(5) For every column k, let x be number of robots in the column after Step 4. (Notethat x may be odd only for k = t=2.) If k < t=2, the robots pack around the columncenter, i.e., on rows (t� x)=2 + 1; (t� x)=2 + 2; : : : ; (t+ x)=2. If k = t=2, the robotspack so that bx=2c of them end up in the upper half and the remaining dx=2e endup in the lower half.Lemma 1 Phase I takes O (pn) time.Proof: The correctness of the above strategy is immediate. The resulting time bound is ageometrically decreasing sum, whose i-th term is the cost O �qn=2i� of balancing step i,which is implemented in terms of the Pack and Count primitives presented before.
11

2.2 Phase II: Sorting-by-RowAt the end of the balancing phase, the robots are spread among the grid nodes in sucha way that there is at most one robot in each tile, parked in the tile's top-left corner.The robots will now sort themselves according to their target row, with ties broken ar-bitrarily. The sorting algorithm relies upon a grid implementation of Batcher's bitonicsorting algorithm [Bat68] for sequences of size n=4 or smaller. We recall that Batcher'salgorithm is structured as a cascade of logn � 2 merging stages. At the beginning of thei-th merging stage, 1 � i � logn � 2, the robots are partitioned into (n=4)=2i�1 sortedsubsequences each of size 2i�1. Then, pairs of subsequences are merged independently sothat, at the end of the stage, there are (n=4)=2i sorted subsequences each of size 2i. Inturn, the i-th merging stage is made of a sequence of i steps, called (i; j)-compare-swap forj = i � 1; i � 2; : : : 0. More speci�cally, an (i; j)-compare-swap step compares and swapspairs of elements at distance 2j in each subsequence (the direction of the compare/swapoperator is �xed a priori and depends on the values of i and j).In order to e�ciently implement Batcher's algorithm on the grid, we number the n=4tiles according to the Peano indexing , which can be de�ned as follows (see Figure 1).Split the set of indices I = f0; : : : ; n=4� 1g into four equally sized subsets of consecutiveindices I0 = f0; : : : ; n=16 � 1g, I1 = fn=16; : : : ; n=8 � 1g, I2 = fn=8; : : : ; 3n=16 � 1g,I3 = f3n=16; : : : ; n=4� 1g. Similarly, split the grid into four quadrants of n=16 tiles each,namely, Ht`, Hb`, Htr, and Hbr, where t stands for \top," b for \bottom," ` for \left," andr for \right." Assign the set of indices I0 to Ht`, I1 to Hb`, I2 to Htr and I3 to Hbr. Thenproceed recursively within the quadrants until quadrants of one tile each are reached. Aneasy argument shows that two tiles with indices h and h� 2j in the Peano indexing, where� denotes bitwise exclusive-or, lie on the same row or column of tiles (depending on theparity of j) at distance O �p2j� from each other.An (i; j)-compare-swap step can be performed as follows. Let k denote any integer inf0; : : : ; n=4 � 1g whose binary representation has 0 in position j. The following substepsare executed in parallel for all such values of k:(1) The robot residing in tile k + 2j in the Peano indexing (if any) moves to tile k.(2) The robots in tile k execute the Compare-Swap primitive according to their targetrow, with ties being broken arbitrarily. When only one robot is in the tile, it movesdirectly to the tile's top left corner. 12

Ht` Htr
HbrHb`

Figure 1: (Left) Logical partition of the grid into four quadrants. The Peano indexing forthe whole grid is recursively de�ned as the concatenation of the Peano indexings for Ht`,Hb`, Htr, and Hbr, in that order. (Right) The 64 tiles of a 16� 16 grid ordered accordingto the Peano indexing. Each square represents a tile with 2 � 2 grid nodes and containsone robot at most, after the balancing phase.(3) The robot with the larger or smaller target (if any) moves to tile k + 2j, dependingon the direction of the (i; j)-compare-swap operator.The routing implied by Step 1 above is easily performed by the robots without collisions.In particular, when j is odd, the robot in tile k + 2j �rst moves to the bottom-left cornerof its tile, and then moves left until it reaches the bottom-left corner of tile k (which ison the same row as tile k + 2j by our numbering). When j is even, the robot in tilek + 2j �rst moves to the top-right corner of the tile and then moves upwards along thecolumn, until it reaches the bottom-right corner of tile k. From there, it then positionsitself at the bottom-left of the tile. Step 3 can be accomplished analogously. Thus, Steps 1and 3 require O �p2j� time overall. By using the Compare-Swap primitive discussed before,Step 2 requires O (logn) time.Lemma 2 Phase II takes O (pn) time.Proof: The i-th merging stage of the sorting algorithm, 1 � i � logn � 2, consists of asequence of (i; j)-compare-swap steps, for j = i�1; i�2; : : : ; 1; 0. As an (i; j)-compare-swap13

step takes O �p2j + logn� time, the total running time of the algorithm isTsort(n) = log n�2Xi=1 i�1Xj=0O �p2j + logn� = O �pn� :
2.3 Phase III: PermutingAfter the sorting phase, the robots reside in distinct tiles, sorted by target row accordingto the Peano indexing. In Phase III, the robots permute in such a way that the sortedsequence is rearranged according to the row-major indexing. Let us call t-column (resp., t-row) a column (resp., row) of tiles. The permutation is executed according to the followingrecursive protocol. If n = 4, the permutation is trivial. Consider n > 4.(1) Each robot in Htr swaps positions with the one occupying the corresponding positionin Hb`.(2) Within each quadrant, the sorted subsequence of robots recursively permutes fromPeano to row-major indexing.(3) Within each quadrant, the robots permute so that those in odd t-rows pack to thetop, while those in even t-rows pack to the bottom of the quadrant.(4) Each robot in the lower half ofHt` (resp., Hb`) swaps positions with the one occupyingthe corresponding position in the top half of Htr, (resp., Hbr).The correctness of the permutation protocol is easily established by induction. Below,we give a pictorial illustration of the steps for m = 64 robots:Initial con�guration1 3 9 11 33 35 41 432 4 10 12 34 36 42 445 7 13 15 37 39 45 476 8 14 16 38 40 46 4817 19 25 27 49 51 57 5918 20 26 28 50 52 58 6021 23 29 31 53 55 61 6322 24 30 32 54 56 62 64

After Step 11 3 9 11 17 19 25 272 4 10 12 18 20 26 285 7 13 15 21 23 29 316 8 14 16 22 24 30 3233 35 41 43 49 51 57 5934 36 42 44 50 52 58 6037 39 45 47 53 55 61 6338 40 46 48 54 56 62 6414

After Step 21 2 3 4 17 18 19 205 6 7 8 21 22 23 249 10 11 12 25 26 27 2813 14 15 16 29 30 31 3233 34 35 36 49 50 51 5237 38 39 40 53 54 55 5641 42 43 44 57 58 59 6045 46 47 48 61 62 63 64After Step 31 2 3 4 17 18 19 209 10 11 12 25 26 27 285 6 7 8 21 22 23 2413 14 15 16 29 30 31 3233 34 35 36 49 50 51 5241 42 43 44 57 58 59 6037 38 39 40 53 54 55 5645 46 47 48 61 62 63 64
After Step 41 2 3 4 5 6 7 89 10 11 12 13 14 15 1617 18 19 20 21 22 23 2425 26 27 28 29 30 31 3233 34 35 36 37 38 39 4041 42 43 44 45 46 47 4849 50 51 52 53 54 55 5657 58 59 60 61 62 63 64Lemma 3 Phase III takes O (pn) time.Proof: The movements of robots implied by Step 1, Step 3 and Step 4 can be executedin a conict-free fashion in O (pn) time as one robot at most is in each tile. Since therecursive Step 2 is executed in parallel and independently within subgrids of geometricallydecreasing side, we conclude that the overall permutation time is also O (pn).2.4 Phase IV: RoutingThe routing phase starts with the m robots sorted by target row and occupying the �rstm tiles in the row-major indexing, with at most one robot per tile (in the tile's top-leftcorner). We number the t-columns (resp., the t-rows) from 1 to pn=2. Note that, due tosorting, each t-column holds no more than two robots with targets in the same row. Therouting is performed by �rst moving the robots to their target row and then to their �naltarget. This is accomplished in parallel as follows:(1) For 1 � i � pn=4 and 1 � j � pn=2, the robot residing in t-column 2i and t-row jmoves to the top-right corner of the tile in t-column 2i� 1 and t-row j.Comment: After this step, in any odd-numbered t-column there can be up to fourrobots destined for the same row, while the even-numbered t-columns are empty.15

(2) The robots in each odd-numbered t-column circulate along a directed Hamiltoniancycle traversing all of the nodes in the t-column. When a robot traveling on the rightside of the t-column reaches its target row, it attempts to shift right to the adjacenttile and then moves to the rightmost unoccupied node in such tile.Comment: Within an odd-numbered t-column, no more than two robots with thesame target row are able to move to the adjacent t-column.(3) The robots in each t-row circulate along a directed Hamiltonian cycle traversing allthe nodes in the t-row, therefore visiting their target locations.(4) All the robots go back to the t-columns they occupied at the end of Step 1.(5) Steps 2{3 are repeated to deliver the robots that have not visited their targets yet.To this end, the robots that have already completed their task will not attempt toshift right during Step 2.Comment: All robots that have not visited their targets at the beginning of Step 5are now able to do so.Lemma 4 Phase IV takes O (pn) time.Proof: Steps 1{3 require O (pn) time altogether and are executed at most twice each (dueto Step 5). Step 4 can be executed as follows. In each odd-numbered t-column, the robotsin each row pack to the left. Then, robots in each even-numbered t-column circulate alonga directed Hamiltonian cycle traversing all the nodes in the t-column, and when a robotsees an empty spot in the adjacent t-column (to the left) it moves into such a spot packingto the left. Thus, Step 4 requires O (pn) time. This implies that the whole routing phasealso takes O (pn) time.The following theorem is an immediate consequence of Lemmas 1, 2, 3 and 4.Theorem 1 Any instance of the MRG(n;m; 1) problem, with m � n=4, can be solved intime O (pn) in the worst case.The simple diameter-based argument shows that the running time stated in the abovetheorem is optimal. Moreover, the result is easily extended to the case in which m0 � mrobots have one target to reach, while the m�m0 remaining ones do not have any visit to16

perform. It is su�cient to associate the latter robots with a �ctitious destination whoserow is pn+1 and let them participate to the various phases of the protocol. Clearly, thereis no increase in the running time.3 The Case of Multiple TargetsIn this section we devise a protocol for the more general MRG(n;m; d) problem whereeach of m robots needs to visit up to d grid nodes, with each grid node being visitedby at most one robot. The protocol is �rst presented for the case m � n=4, and thenextended to handle up to m � (1 � �)n robots, for any small constant � > 0. Beforedescribing the protocols, we prove a lower bound on the running time of any protocol forthe MRG(n;m; d) problem. The lower bound will be employed later to show the optimalityof the proposed protocols.Lemma 5 For every choice of integers n;m; d, with 1 � m; d � n, there exists an instanceof the MRG(n;m; d) problem whose solution requires
 �pdn� time.Proof: If n < 4 or d < 4, the bound follows from the diameter argument. Therefore, letus examine the case n; d � 4. Let n0; d0 be the largest powers of 4 such that n0 � n andd0 � d. Note that n0 � n=4, d0 � d=4 and d0 � n0. Consider a square subgrid of n0 nodes,partitioned into d0 square tiles of size qn0=d0 � qn0=d0, and suppose that one of the mrobots has the d0 centers of the tiles among its targets, where the center of a tile is thenode in the (qn0=d0=2)-th row and in the (qn0=d0=2)-th column of the tile. In order tovisit its targets the robot must traverse at least qn0=d0=2 nodes in each of d0 � 1 subgridsor more, for an overall time requirement of
 �d0qn0=d0� =
 �pdn�.3.1 An Optimal Protocol for m � n=4Consider an instance of the MRG(n;m; d) problem with d � n and m � n=4, and letk = blog4 dc. The protocol is structured as a sequence of k + 1 stages of geometricallyincreasing running time. For 0 � i � k, in stage i all robots having to visit at least 4i andless than 4i+1 destinations, accomplish their task. We call such robots active in stage i,whereas the remaining robots are called inert in stage i. Note that since all robots resideon the grid at all times, the protocol must orchestrate the movement for both active andinert robots in every stage. 17

Stage 0 and stage 1 are executed by simply running the single-target protocol �fteentimes, one for every possible target of each robot active in these stages. Clearly, inertrobots will participate in the protocol by associating themselves to \fake" destinations, asdescribed at the end of Section 2.In stage i, 2 � i � k, at most n=4i robots are active. Let �i = n=4i�1 and regard thegrid as being conceptually partitioned into 4i�1 square subgrids of �i nodes each, whichwe refer to as �i-tiles. Observe that all robots active in this stage �t in one quadrant ofa �i-tile. Stage i is executed in two rounds. In the �rst round, the inert robots pack inthe lower half of the grid, while the active robots tour all �i-tiles in the upper half of thegrid, stopping in each �i-tile for a time su�cient to visit all of their destinations in thetile, and progressively accumulating in the �rst tile of the lower half as they complete theirtour. Di�erent robots may stop in a �i-tile for di�erent amounts of time, depending on thenumber of their targets in the tile. Similarly, in the second round the inert robots pack inthe upper half of the grid while the active robots visit their destinations in the lower half.We describe in detail the operations performed by the robots in the �rst round ofstage i, omitting the description for the second round, which is virtually identical. For0 � j < 4i�1, let Tj denote the j-th �i-tile based on a snake-like ordering of the �i-tileswhich proceeds alternatively left-to-right and right-to-left. Note that the �i-tiles in theupper half of the grid are those of indices j < 4i�1=2.(1) The robots relocate in the grid so that all active robots end up in the �rst tile T1,while the inert robots pack to the bottom tiles Tj with 4i�1=2 + 1 � j < 4i�1.Comment: Tile T4i�1=2 is left empty to collect the active robots having completedtheir task in the upper tiles.(2) The following sequence of substeps is repeated 17 � 4i�1 times, in parallel for eachindex j, 0 � j < 4i�1=2:(2.a) Each active robot with unvisited targets in Tj visits one arbitrary such target.(2.b) Robots that visited all of their targets in Tj move to the top-left quadrant ofTj, while each robot that has still some unvisited targets in Tj moves to thebottom-right quadrant of Tj.(2.c) Robots in the top-left quadrant of Tj move to the top-left quadrant of Tj+1.18

(2.d) The robots in tile T4i�1=2, including those newly arrived in it, pack to the tile'sbottom-right quadrant.Lemma 6 For 2 � i � k, stage i is correct and is completed in O �p4in� time.Proof: Fix some i, 2 � i � k, and consider the �rst round of stage i (the argument for thesecond round is identical). Note that, since i � 2, the �i-tiles Tj, with 4i�1=2+1 � j < 4i�1,comprise �i(4i�1=2 � 1) � n=4 grid nodes altogether, hence all inert robots �t in suchtiles. Step (1) is easily accomplished in O (pn) time through the balancing and sortingtechniques described in Section 2. As for Step (2), we discuss its four substeps in detail.Substep (2.a) is executed independently within �i-tiles and entails one execution of thesingle-target protocol of Section 2, which takes O �p�i� time. Substeps (2.b), (2.c) and(2.d) can be executed through balancing and sorting within �i-tiles and simple relocationsbetween adjacent �i-tiles, in time O �p�i�. The correctness of these substeps follows fromobserving that all robots active in stage i �t in one quadrant of a �i-tile. Consequently, atany time there cannot be more than �i=4 robots in each tile Tj, with 0 � j � 4i�1=2, andthat at the beginning of Substep (2.d) all robots in T4i�1=2 can be packed into the tile'sbottom-right quadrant.It remains to show that 17 �4i�1 iterations of Step (2) are su�cient for each active robotto visit its targets in the upper half of the grid. Consider an active robot and let dj bethe number of its targets in Tj, for 0 � j < 4i�1=2. The robot will stay in such a tile formaxf1; djg iterations, hence the total number of iterations needed to visit all of its targetsis 4i�1=2�1Xj=0 maxf1; djg < 4i�12 + 4i+1 < 17 � 4i�1:Thus, Step (2) takes O �4ip�i� = O �p4in� time overall. Since the complexity of Step (2)dominates that of Step (1), it is also the running time for the entire round.The complexity of the protocol follows from Lemma 5 and Lemma 6.Theorem 2 Any instance of the MRG(n;m; d) problem with m � n=4 and d � n can besolved in optimal � �pdn� time, in the worst case.Proof: Stage 0 and stage 1 can be correctly performed in � (pn) time by Theorem 1. Thecorrectness and complexity of stage i, for 1 � i � k, is established in Lemma 6. The19

total cost is therefore O �pn +Pki=1p4in� = O �pdn�, and the optimality follows fromLemma 5.3.2 Extension to m � (1� �)n RobotsLet � be an arbitrary constant, 0 < � < 1, and consider an instance of the MRG(n;m; d)problem with m � (1� �)n robots. Let c be the smallest power of 2 larger than or equalto 2=�, and let � = n=c2. We regard the grid as conceptually partitioned into c2 �-tiles,each of size �. For 0 � i < c2, we denote by Ti the i-th �-tile along a predeterminedHamiltonian cycle of the �-tiles, with T0 being the �-tile at the northeast corner of the grid(it is easy to see that such a cycle exists, since c is even). The protocol is organized asfollows. Initially, the robots pack southwest on the grid leaving T0 empty (see Figure 2).Then such empty �-tile is \slid" around the grid occupying, in turn, every position alongthe Hamiltonian cycle. When a �-tile Ti�1 becomes the empty tile, the robots in Ti moveinto Ti�1 in four batches of one quadrant each at a time. Once in Ti�1, the (at most) �=4robots of a batch visit their targets in the tile by employing the protocol from the previoussubsection. By repeatedly shifting all robots along the Hamiltonian cycle and repeatingthe above operations, all robots initially in Ti are able to visit all of their targets in thegrid. T0
Figure 2: Con�guration of robots after Step (1)More formally, the protocol consists of the following steps.(1) The robots �rst pack towards the left in each row and then towards the bottom ineach column, thus ending in a \staircase" con�guration descending from northwestto southeast in the grid (see Figure 2). Let Ri;k denote the robots that occupy thek-th quadrant of Ti at the end of this step, for 0 � i < c2 and 1 � k � 4.Comment: At the end of Step (1), T0 is empty.20

(2) For every 1 � i < c2 do(2.1) For 0 � j < c2 do(2.1.a) For each k, 1 � k � 4, the robots in Ri;k move from T(i+j) mod c2 toT(i�1+j) mod c2, visit their destinations therein using the protocol from Sec-tion 3.1, and return to T(i+j) mod c2 .(2.1.b) All robots shift by one �-tile forward along the Hamiltonian cycle, main-taining the same relative positions within the �-tile.(2.2) All robots in Ti move to Ti�1, maintaining the same relative positions withinthe �-tile.Theorem 3 Any instance of the MRG(n;m; d) problem with m � (1� �)n and d � n canbe solved in optimal � �pdn� time, in the worst case.Proof: We begin by showing the correctness of the protocol. First, note that at the end ofStep (1) T0 must be empty, or otherwise there would be more than�pn�p��2 > �1� 2c�n � (1� �)nrobots on the grid, which is a contradiction, since m � (1 � �)n. Let Ri = [4k=1Ri;k, for0 � i < c2. An easy inductive argument shows that for every 1 � i < c2 and 0 � j < c2,at the beginning of Iteration j of Substep (2.1), within Iteration i of Step (2), all robotsin Ri reside in T(i+j) mod c2, and T(i+j�1) mod c2 is empty. As a consequence, in Iteration i ofStep (2) all robots in Ri are able to visit all of their targets, hence the protocol is correct.Let us now analyze the running time. Step (1) is easily executed in O (pn) time. TimeO (pn) is also su�cient for every execution of Substeps (2.1.b) and (2.2), while, fromTheorem 2, each execution of Substep (2.1.a) takes O �pdn� time. The overall protocol'srunning time claimed in the theorem follows by noting that since c = O (1) both Step (2)and Substep (2.1) are repeated a constant number of times.4 Conclusions and Open ProblemsWe studied the complexity of moving a set of m robots with limited sensory capabilities,in a multi robot grid system of size pn � pn. We provided an O �pdn� deterministic21

protocol that governs the movement of m � (1� �)n robots for any small constant � > 0,where each robot may visit up to d � n distinct locations, but no two robots visit thesame location (MRG(n;m; d) problem). We also proved a lower bound showing that ourprotocol is optimal. Our investigation leaves open the problem of studying the complexityof moving m = n� o(n) robots. It would be interesting to extend the protocol to achieveoptimality in such extreme scenario. Clearly, our protocol could be employed to this end ifthe rules governing the system were relaxed so as to allow a robot to stay initially outsidethe grid for an arbitrary amount of time, and to disappear from the grid as soon as it visitsits target, which is a tacit assumption made by the protocols in [PU96]. Finally, anotherinteresting open problem concerns the extension of the protocol to allow distinct robots tovisit the same location. To the best of our knowledge, no result is known for this setting,except for the trivial O (n)-time protocol based on a Hamiltonian tour of the grid nodes.Acknowledgments The authors would like to thank Elena Lodi, Fabrizio Luccio, LindaPagli and Ugo Vaccaro for many interesting discussions and comments during the earlystages of this work, and the referees, who provided a number of useful suggestions. Someof these suggestions lead us to the results described in Section 3.2.References[Bat68] Batcher, K.E. (1968), Sorting networks and their applications, in \Proceedings,AFIPS Spring Joint Computer Conference," pp. 307{314.[Lei92] Leighton, F.T. (1992), \Introduction to Parallel Algorithms and Architectures:Arrays � Trees � Hypercubes," Morgan Kaufmann, San Mateo, CA.[Mor66] Morton, G. (1966), \A computer oriented geodetic data base and a new tech-nique in �le sequencing," IBM Ltd. Internal Report.[NS95] Newman, I., and Schuster, A. (1995), Hot-potato algorithms for permutationrouting, IEEE Trans. Parallel and Distribut. Comput. PDC-6, 1168{1176.[PU96] Preminger, S., and Upfal, E. (1996), Safe and e�cient tra�c laws for mobilerobots, in \Proceedings, 5th Scandinavian Workshop on Algorithm Theory," (R.22

Karlsson and A. Lingas, Eds), pp. 356{367, Springer-Verlag LNCS 1097, Berlin,Germany.[Sib95] Sibeyn, J.F. (1995), \Overview of mesh results," Technical Report MPI-95-1-018, Max-Planck Institut f�ur Informatik, Saarbr�ucken, Germany.[ST92] Shoham, Y., and Tennenholtz, M. (1992), On tra�c laws for mobile robots,in \Arti�cial intelligence planning systems: Proceedings of the �rst internationalconference," pp. 231{252, Morgan Kaufmann, San Mateo, CA.[ST95] Shoham, Y., and Tennenholtz, M. (1995), On social laws for arti�cial agentsocieties: O�-line design, Arti�cial Intelligence 73, 231{252.

23

Figure CaptionsFigure 1: (Left) Logical partition of the grid into four quadrants. The Peano indexing forthe whole grid is recursively de�ned as the concatenation of the Peano indexings for Ht`,Hb`, Htr, and Hbr, in that order. (Right) The 64 tiles of a 16� 16 grid ordered accordingto the Peano indexing. Each square represents a tile with 2 � 2 grid nodes and containsone robot at most, after the balancing phase.Figure 2: Con�guration of robots after Step (1).

