
International Journal of Computational Intelligence Research. 
ISSN 0973-1873 Vol.4, No.1 (2008), pp. 1–8 
© Research India Publications http://www.ijcir.info 
 
 
 

 

 
Obtaining Performance Measures through 

Microbenchmarking in a Peer-to-Peer Overlay 
Computer* 

 
Paolo Bertasi, Mauro Bianco†, Andrea Pietracaprina, and Geppino Pucci 

 
Dept. of Information Engineering, 

University of Padova, Padova, Italy 
{bertasi,bianco1,capri,geppo}@dei.unipd.it 

 
     Abstract: The availability of enormous amounts of un-used 
computing power and data storage over the In-ternet makes the 
development of a globally distributed computing platform, called 
Overlay Computer (OC), at-tractive for the industry, the scientific 
community, and also the general user. In order to be effective, an 
OC must be equipped with tools for estimating and optimiz-ing the 
performance of applications. The tools must rely upon performance 
metrics of the key factors impacting performance of a distributed 
application, such as inter-connection latency and bandwidth, and 
available comput-ing power at the nodes. This paper first reviews 
the state-of-the-art on performance benchmarking approaches in 
globally distributed systems, including performance-conscious P2P 
systems. Later, it addresses the problem of developing a suite of 
microbenchmarking experiments aimed at providing the basic 
functionalities of a measurement tool for a P2P-based OC platform. 
Results show that such a measuring system should take into 
account the communication patterns generated by the applications 
in order to provide useful performance insights.  

 
1. Introduction  
 
The impressive amount of computationqal resources 
potentially available through the Internet has stimulated 
several attempts at making them profitable for vast scale 
applications, the first and most popular being Peer-to-Peer 
(P2P) file-sharing applications. The opportunity to exploit 
idle cycles of connected computers has also led to the 
development of several world-distributed applications, such 
as SETI@Home [SETI], GIMPS [GIMPS], among the 
others. While these applications are essentially based upon a 
simple producer-consumer paradigm, they are a witness of 
the potential offered by wide-area network distributed 
computing also for other, more general applications 
[LZ+04]. The parallel computing platform that would 
actually deploy the computing and storage resources needed 
for this purpose, and whose network topology is embedded 
within the Internet is generally referred to as an Overlay 
Computer (OC).  
     To be successful, an OC must provide higher 
performance and capabilities than the individual computing 

equipment available to the user. To this purpose, it is 
necessary to provide the user with tools for estimating the 
effectiveness of design choices on such a distributed 
computer. The tools must rely upon a measuring tool aimed 
at providing a reasonably accurate estimate of the key 
factors impacting performance of a distributed application, 
such as interconnection latency and bandwidth, and 
available computing power.  
     The approach pursued in this paper is the use of 
microbenchmarking techniques to measure basic 
performance characteristics of a P2P-based OC. In turn, 
these techniques can be employed for improving the 
topology of the OC embedding onto the Internet, which has 
the potential of yielding high pay-offs in terms of 
performance. Furthermore, it may be useful to have a system 
which provides a quantitative assessment of specific OC 
capabilities, e.g., the ability to efficiently route certain 
communications patterns of widespread use. Finally, 
performance measurements may also aid applicationside 
optimizations, e.g., the efficient spawning of a given 
application over a suitable set of OC peers.  
 
*This work was supported in part by MIUR of Italy under project 
MAINSTREAM and by the EC/IST Project 15964 AEOLUS. A 
preliminary version of this work was published in the 
Proceedings of the Proceedings of the First International 
Conference on Complex, Intelligent and Software Intensive 
Systems, Vien, April 2007.  
†Mauro Bianco is currently affiliated at Computer Science Dept., 
Texas A&M University, College Station, TX, USA.  
 
     This paper offers two main contributions. The first is to 
provide an overview on performance measurement 
techniques for related parallel or distributed platforms such 
as clusters, the Internet, and P2P systems. The second is to 
provide a preliminary set of experimental results to serve as 
proof-of-concept for the development of a more extensive 
microbenchmarking tool for an OC. The proposed tests aim 
at identifying both measurement techniques and key 
performance factors that any such tool will have to embody.  



2  Paolo Bertasi et al 

 

     The rest of the paper is structured as follows: Section 2 
presents the above-mentioned overview. Section 3 presents 
the tests implemented as a preliminary effort towards a more 
complete microbenchmarking tool, together with results of 
performance measurements executed on a local area 
network running JXTA. Finally, Section 4 draws some 
conclusions and describes future work.  
 
2. Techniques for Performance Measurement 
and Improvement: an Overview  
 
This section is dedicated to an overview of techniques used 
in related systems to measure and/or improve performance 
in contexts closely related to overlay computing, such as 
clusters of workstations, the Internet, and P2P systems.  
 
Overview of performance measurements techniques.  
Several efforts have been carried out to provide accurate 
performance measurement tools for parallel platforms using 
MPI. The mpptest utility, developed in [GL99], consists of a 
suite of programs that provide reproducible performance 
measurements relative to low-level MPI primitives as well 
as to more complex communication patterns. In [GL99] the 
authors also point out the perils of badly designed tests, the 
most relevant being 1) confusing total bandwidth with point-
to-point bandwidth 2) using communication patterns 
different from those featured by the application, 3) 
measuring under a single communication pattern, and 4) 
timing events that are short relative to clock resolution. In 
our experiments, we have been careful in avoiding these 
pitfalls.  
     The problem of obtaining accurate measurements without 
incurring in long testing sessions is addressed in [GC01] 
where the MPIBench tool is developed to measure 
performance of MPI-based computations. Although 
reducing testing time is also a highly desirable objective for 
an OC, the approach taken in [GC01] relies on the use of 
high precision timers which, however, would require 
substantial effort to be implemented in a OC. In fact, the 
tradeoff between accuracy and measurement overhead is a 
major challenge for an OC.  
     Another platform for parallel and distributed computing 
is the Grid. Scheduling decisions on the Grid are based 
essentially on performance declarations of the (trusted) 
institutions participating in Grid initiatives. In [TD05] the 
Grid-Bench suite is described which addresses the problem 
of measuring performance to alleviate the management work 
of institutions participating in a Grid. More interestingly to 
our purposes, in this paper the minimization of testing time 
is stressed, along with the reliability of the obtained results. 
The measurement system also manage the access to 
performance information by users. Organizing the 
performance information of an OC can be more 
cumbersome, since the users cannot rely on stable 
institutions, but still potentially useful to reduce overheads.  
     The availability of high bandwidth over the Internet has 

made possible the development of several kinds of 
distributed services, many of them relying on performance 
metrics to achieve good performance. This has inspired 
numerous research projects aimed at getting performance 
parameters out of the Internet, with the double objective of 
minimizing the testing time while avoiding to overload the 
network itself. Typically, measures of interest for the 
Internet are latency and bandwidth, where latency is often 
referred to as distance and depends on the topology of the 
network at a given instant.  
     The simplest way to measure the latency is through ping 
time, which, however, may require many repeated 
experiments, since ping times are subject to a high variance. 
Since distances depend only on topology, many works try to 
characterize the Internet using fictitious coordinate systems 
whose aim is to allow the estimation of ping time without 
prior communication, thus avoiding time-consuming 
probing: what a node need to know are the coordinates of 
the remote node to compute the distance of that node. A 
coordinate system must provide an accurate embedding of 
the internet hosts in a low-dimensional space with a distance 
metric, with additional requirements for scalability and 
dynamic adaptation. Coordinates can be evaluated by 
measuring distances from some special hosts called 
landmarks, [NZ02, KZ04], or in a totally distributed 
fashion, as in [RD01, DL+04]. A well known coordinate 
system for the Internet is Vivaldi [DC+04]. Vivaldi treats the 
internet as a self-adjusting system of springs, where 
distances are dynamically updated in a totally distributed 
fashion, thus avoiding the use of static landmarks that pose 
scalability and fault-tolerance problems. Vivaldi is also 
employed in some actual P2P implementations to improve 
the quality of the overlay network [RD01, DL+04].  
     Measuring communication bandwidth appears more 
difficult than estimating latency, since the bandwidth 
available between two hosts depends on several (global) 
aspects, such as the quality of the path connecting the two 
nodes, the amount of competing traffic along that path, the 
load at the end-points, etc. Since the load profile of a wide-
area network tends to exhibit a slowly-changing profile, 
instantaneous measures of bandwidth can still produce 
results which are valid for a certain time interval. When 
measuring bandwidth, one is faced with the problem of 
defining the type of bandwidth that is going to be measured 
(recall the first pitfall mentioned by [GL99]). In fact, point-
to-point unidirectional bandwidth, bidirectional, cumulative, 
or bisection bandwidth, are all measures that relate that 
describe different capabilities of the interconnection, hence 
it is often difficult to compare the quantitative results 
obtained for different measures. We address this problem for 
our OC infrastructure in Section 3.  
     Many works in the literature measure bandwidth in a 
wide-area network by defining the bottleneck link band-
width, that is, the minimal bandwidth available along the 
links in a path between two hosts. This measure is ideally 
related to the hardware parameters of the links in a path, so 
its measure is not dependent on traffic conditions during the 



Obtaining Performance Measures through Microbenchmarking 

 

3 

measure. In [HS05] an efficient strategy is proposed to 
obtain the O(N2)bottleneck link bandwidths on an N-node 
distributed system, which exhibits an overhead linear in the 
number of nodes and requires only limited cooperation 
among them. The resulting measures are very descriptive, 
since they provide an estimate of the maximum possible 
bandwidth between any pair of nodes. However, the 
infrastructure to be provided is quite complex, and some of 
the hypotheses upon which the whole approach relies may 
be difficult to satisfy in an OC context.  
     Topology awareness techniques for performance 
improvement on P2P systems. P2P systems employ 
several techniques to provide better performance by 
exploiting topological characteristics of the underlying 
network. Recent works have pursued a quantitative 
approach to measure the gains produced by Topology-
awareness. The work in [DL+04] reports on an extensive 
experimentation of DHash++, which implements a 
Distributed Hash Table (DHT) based on Chord [SM+01]. 
The authors experiment with several different lookup 
algorithms and evaluate the resulting performance in terms 
of lookup time and throughput. Both measures result to be 
highly affected by locality-awareness of the protocols, 
which can halve the average time of a request. We remark 
that only latency is taken into account as a measure of 
distance, since the data to be retrieved is as small as 
8KBytes in the application under examination, and this 
makes the throughput be highly dependent on latency more 
than on bandwidth.  
     Earlier works also tried to characterize P2P file sharing 
application workloads in order to evaluate the improvements 
that topology-awareness would provide if included in the 
implementation. One such work is [GD+03], which analyzes 
the traces of Kazaa (uncached) traffic within the network of 
the University of Washington. The results suggest that, if 
content were cached, thus providing locality awareness, then 
about 60% of external bandwidth would be saved.  
     Trace analysis is also employed in [LP03], in the context 
of the PeerMetric project. The paper suggests that lasthop 
bandwidth is a major bottleneck and that latency-based 
optimization of the overlay embedding may be somewhat a 
less impacting issue, especially for bandwidth intensive P2P 
applications.  
     One of the first implementations of a topology-aware P2P 
system is Pastry [RD01]. In Pastry, a node comes with a 
random ID that identifies the position of the node in the 
overlay topology. To allow for locality optimization, a node 
can choose the nearest among kpotential neighbors (nodes 
whose ID is close to the node’s ID). The proximity metric 
chosen by Pastry is the number of Internet hops (an 
approximation of latency) in the path between two nodes.  
     The work presented in [RH+02] proposes a strategy to 
insert topology-awareness into CAN [RF+01] (the idea is 
however somewhat more general). In CAN the ID space is 
represented by a d-dimensional unitary cube in the ordinary 
Euclidean space. Upon joining, a node is given an ID within 
a large region of the cube that is then partitioned 

accordingly. In the method proposed in [RH+02], the node 
set is partitioned into bins, and a new node wanting to join 
must find a suitable bin where to fall. Then the node probes 
a set of predefined unconscious landmarks (a web server, a 
DNS server, etc.) in order to derive a bin identifier, that is, 
the list of the landmarks sorted by increasing distance. By 
looking for other nodes with the same bin identifier, 
performance can be improved by placing the node in the 
larger region among those of the nodes within its bin. The 
presented results show that topology-awareness can 
significantly help in improving performance (measured in 
terms of latency stretch).  
     GIA [CR+03] implements a strategy to make 
unstructured P2P systems topology-aware. Unlike 
structured P2P systems, unstructured ones allow users to 
retrieve objects that match partial queries. Gnutella is an 
example of this approach where an incoming query in a peer 
is matched against local items and forwarded to other peers 
in the overlay network. Gnutella, however, does not 
optimize for locality, hence a neighbor in the overlay 
network can be arbitrarily distant in the physical network. 
GIA adapts itself to the underlying network and to the peer’s 
capacity, i.e., the number of queries that a peer can process 
without being overloaded. Lookup protocols are then 
designed to guarantee an even utilization of the capacities of 
the peers by employing a token-based search protocol that 
relies on a biased random walk, where the next node in the 
path is chosen among the highest capacity neighbors for 
which the peer has a token. Results indicate that topology 
adaptation improves performance by orders of magnitudes 
with respect to the basic Gnutella system. From the point of 
view of this report, it is important to note that this is one of 
the few papers that also take into account the computational 
power of the peer, along with the traditional latency and 
bandwidth parameters.  
     The idea to organize the network with emphasis on high-
capacity nodes is also adopted in [SGL04]. The paper 
describes a method to build a hierarchical overlay topology 
where nodes are classified again in terms of their capacity. 
The nodes with highest capacity form a backbone structure, 
while lower capacity nodes refer hierarchically to higher 
capacity ones. The resulting topology is tree-like, 
reminiscent of a fattree with additional edges mainly for 
fault-tolerance. Results indicate that substantial bandwidth 
savings can be attained with respect to a random topology. 
Capacity is intentionally left undefined in [SGL04], thus 
allowing developers to adapt the definition to the application 
needs.  
     Another aspect impacting the overall performance of a 
P2P system is churn, that is, the rate at which peers join and 
leave the system, since maintenance overhead increases with 
churn. The work in [1] includes a description of Bamboo, a 
DHT that explicitly addresses the problem of routing 
performance under heavy churn. Results indicate that 
topology awareness attains lower latency under high churn, 
thus proving to be beneficial also in these conditions.  
     Few works try to face the problem of topology-awareness 



4  Paolo Bertasi et al 

 

for P2P computing (rather than file-sharing) systems, since 
there are not many such platforms yet. Zorilla [DNB06] is a 
prototype P2P supercomputing platform. An algorithm 
similar to the one implemented in Gnutella is used by 
Zorilla for discovering peers when allocating jobs. The 
scheduling algorithm automatically sets a radius for 
constraining the search of peers in the neighborhood of the 
initiating peer. Locality awareness is guaranteed by the 
topology-awareness of the overlay topology which is 
obtained using Bamboo. Zorilla’s peers that are close in the 
overlay topology are also close in the physical topology.  
     Zorilla tries to keep the spawned nodes close to the node 
that initiates the job submission, rather than randomly 
distributing them, as they are in Gnutella. This feature 
speeds up the initial phase of moving input files from the 
submitting node to the workers and the final collection of 
the results. While Zorilla’s approach may be reasonable, for 
special applications (e.g., the case of very long computations 
not featuring heavy I/O), it may be more convenient to 
confine the computation into a subnetwork which does not 
contain the initiator, since the initiator itself could be in a 
sub-network that is not able to execute efficiently the pattern 
of communications of the particular application.  
 
Table 1 : Computers used to perform experiments classified 
as slow or fast.  
 

Cat.  CPU  Clock Speed  O.S.  Distribution  

Slow  Pentium III  800 MHz  GNU/Linux 
2.6.18  

Debian Etch  

Slow  Pentium III  866 MHz  GNU/Linux 
2.6.18  

Debian Etch  

Slow  Pentium III  866 MHz  GNU/Linux 
2.6.18  

Debian Etch  

Fast  Pentium 4 HT  2.4 GHz  GNU/Linux 
2.4.20 smp  

Red Hat 9  

Fast  Pentium 4  1.7 GHz  GNU/Linux 
2.6.18  

Debian Etch  

Fast  Pentium 4 HT  3 GHz  GNU/Linux 
2.6.18 smp  

Debian Etch  

 
 
3. Design and implementation of initial tests  
 
This section describes a preliminary suite of experiments 
aimed at identifying the main characteristics that impact 
performance in a P2P system based on JXTA [Gra02], a P2P 
API built over JAVA which is becoming popular as a de 
facto standard for P2P platforms development. The tests 
have been implemented using the JXTASocket interface, 
which provides reliable bidirectional communications. 
Lower level interfaces (e.g., Pipes), although faster, have 
not been used because of their unreliability. Our objective is 
to measure key performance quantities at the user level, 
such as latency, bandwidth, and computing power. The 
machines employed during the experiments are identified as 
fast (>1.5GHz processors) or slow (<1GHz processors), 

according to the classification in Table 1. This distinction is 
necessary to evaluate the impact of the software layers on 
performance.  
     To measure latency, the core of the experiment is a 
simple pingtest, where a peer sends a small packet (8 bytes) 
to a selected peer, which then replies as soon as it receives 
the message. To filter out noise this process is iterated 
several times. The initiating peer then computes the round-
trip time by averaging over the iterations. Since JXTA is 
based on Java, it is important to quantify the software 
overhead. For this reason we have measured ping times 
between fast and slow computers and also compared them 
against the times obtained using the ICMP protocol. In 
Table 2 the latency measurements are showed. The table 
reports two ping times: the first is the time for JXTA-level 
ping messages, while the second time is obtained by running 
the ping command between pairs of machines. It possible to 
note that JXTA-level ping is up to three orders of magnitude 
slower than the ICMP one, because of the software overhead 
introduced by JXTA, hence the fastest times are obviously 
those among fast computers. It is also possible to note the 
following asymmetry: JXTA ping time from a slow 
computer to a fast computer is lower than the one from a 
fast computer to a slow computer. A similar phenomenon is 
also visible in the unidirectional bandwidth measurement 
presented in Figure 1.  
 

 
 
Figure 1 : Point-to-point bandwidth for different pairs of 
hosts. 
 
     Bandwidth is measured through several tests. Each peer 
involved in the benchmark measures the time for receiving 
and/or sending the amount of data assigned to it. Measuring 
communication times requires some attention. Since 
receives are posted before the actual data arrives, receiving 
time is measured from the reception of the first bytes till the 
end of communication, which are clearly identified instants. 
Since the IP protocol stack in fact does not allow the 
buffering of large amounts of data before actual 
transmission, a send can be considered to be blocking. 
Hence, sending times are measured by timing the beginning 
and the end of the application-level send operations. 
Communication time is the time a peer spends executing 
sends and/or receives. Bandwidth is then computed as the 
sum of the outgoing and incoming bytes divided by the 
measured communication time. This bandwidth measure 



Obtaining Performance Measures through Microbenchmarking 

 

5 

captures both the capability of the peer, the state of 
congestion of the network, and provides a uniform measure 
of bandwidth and a clear way to compare results of different 
communication patterns.  
 

Table 2 : Application level vs ICMP ping times 
 

Sender  Receiver  Appl. Lev. (ms)  ICMP (ms)  
Fast  Fast  17.2  0.24  
Fast  Slow  70.4  0.16  
Slow  Fast  57.6  0.14  
Slow  Slow  85.5  0.22  

 
     When measuring bandwidth, a simple clock alignment 
algorithm is employed to ensure that peers start the 
measurement roughly at the same time to stress the network. 
To perform clock alignment, a selected peer measures 
latencies from itself to all other peers involved in the test, 
and then sends them the time they have to wait before 
starting the experiment. Although quite naive, this simple 
algorithm has been deemed sufficient in our preliminary 
experiments to provide a lightweight synchronization of the 
peers.  
     The first measurement concerns point-to-point bandwidth 
and is implemented by letting one peer send a given amount 
of data to another peer and wait for an acknowledgement 
from the receiver. The measured time is the time to send all 
the data at sender side, and the time between the first byte is 
received and the receive finish at the receiver side. Several 
message sizes have been employed to identify the point 
where the bandwidth saturates. Results are depicted in 
Figure 1, that shows a high dependency on the underlying 
architecture. When employing fast computers, the 
bandwidth is quite close to the peak bandwidth of the LAN 
(i.e., 12.5MB/s) while slow computers dramatically hamper 
communication speed. We note that fast-to-slow 
communication is consistently worse than slow-to-fast 
communication, and indeed the former is even worse than 
slow-to-slow communication. To gain a deeper insight into 
this phenomenon, we ran a microbenchmark to send raw 
TCP data from one host to another. It turns out that the 
differences in unidirectional bandwidth for fast-to-slow and 
slow-to-fast are in this case negligible and explainable in 
terms of measurement noise. This confirms that once again 
the observed asymmetry is imputable to the JXTA software 
layer, where certain pairings between processors of different 
computational power induce a definite performance penalty.  
     We also measure the execution times of gather (i.e., all-
to-one) and scatter (i.e., one-to-all) communication patterns, 
to evaluate the OC communication capabilities with respect 
to typical patterns arising in distributed applications. To 
measure the execution time of the gather pattern, the 
alignment algorithm is used to make all peers send the data 
to the collector roughly at the same time. The collector uses 
a number of receiving threads equal to the number of peers 
sending data to it. Similar considerations are valid for 

scatter: a distributor sends data to a number of involved 
peers. The distributor employs a number of threads equal to 
the number of receiving peers. All the bandwidth 
measurements have been carried out with different 
configurations involving fast and slow machines as 
collectors/distributors to provide insights over the software 
overheads. Since for gather and scatter a peer is exclusively 
a sender or a receiver, the measured times are the the times 
for sending and receiving the data, respectively.  
     Results for scatter are shown in Figures 2, as the size of 
the sent messages vary. Figure 2.a shows the results of a 
scatter performed from a slow sender to the others, while 
Figure 2.b depicts the scatter from a fast sender. Both the 
graphs exhibit the same trend. The difference in the graphs 
between the bars of the sender and the receivers is justified 
by the fact that the sender serializes the accesses to the 
network link. On the other hand, the bandwidths for 
scattering 1MB of data are all comparable. This is due to the 
fact that the packet size is too short to create congestion in 
the network. Hence, on our switched testbed platform, any 
direct measure of bandwidth must require at least 10MB of 
data. The same conclusion can be reached by looking at the 
unidirectional bandwidth experiments, noting that the 
bandwidth saturates when the messages reach a size of 
10MB.  

 
(a) 

 
(b) 

Figure 2 : Scatter measures from a slow sender to the others 
(Figure (a)), and from a fast sender to the others (Figure 
(b)). The plots show measured bandwidth at each peer along 
with the average value, as the size of the message received 
by each peer varies. 
 
     Clearly these observations are only valid in the context of 
our toy experiments, where the underlying interconnection 
is a homogeneous LAN. Different thresholds (but likely 



6  Paolo Bertasi et al 

 

similar behaviors) are to be expected when performing the 
experiments on a wide-area network in presence of a bottle-
neck link. We characterize this phenomenon in the 
following when the congestion is taken into account. Gather 
measurements involve similar considerations as scatter, we 
report Figure 3 for completeness, which shows the 
bandwidth measures while executing a gather to a fast peer. 
What can be noted here is that the receiver receives almost 
at the peak speed of the link, while the senders share the 
bandwidth of the link to the receiver.  

 

 
 
Figure 3 : Gather from to fast receiver from all the others 
varying message size. 
 
     A global measure of bandwidth can be provided by 
running an all-to-all communication pattern, where every 
peer sends the same amount of data to all the other peers. 
We remark that applications heavily employing this pattern 
may prove less attractive for execution on an OC, since, 
most likely, the availability of large network bandwidth 
would be required for the OC execution to be competitive. 
Figure 4 shows the result for an all-to-all pattern among 5 
peers. Each peer has four receiving threads and four sending 
threads. Each peer measures the time spent in receiving and 
sending. Each peer computes the bandwidth by dividing the 
amount of data sent and received during the execution. The 
switched environment allows for a good use of the available 
bandwidth with respect to the gather and scatter 
communication patterns. As we show below, the presence of 
a bottleneck link highly affects the performance.  
 

 
 
Figure 4 : All-to-All communication pattern among 5 peers. 
 
     Since the results shown above has been obtained in a 
100Mb/s switched network, what has been measured is 

basically the software overhead of JXTA. To measure the 
effects of network congestion, another set of similar 
experiments had been carried out introducing an artificial 
band-width bottleneck as a 10Mb/s ethernet hub. We 
measured the bandwidth as before but placing a peer behind 
the hub, thus evaluating the impact of a single weak 
connection in the network, as depicted in Figure 5.  
 

 
 
Figure 5 : Network configuration used for testing the 
presence of a bottleneck link. The bottleneck link has 1/10 
the bandwidth of other links. 
 
     Figure 6.a shows the bandwidths measured at each peer 
while placing a fast peer behind the hub. In this example the 
sender has as many sending threads as the number of 
receivers. Each thread sends data independently from the 
other, but the sequential access to the network guarantees 
that a large portion of the peak bandwidth of the hub 
(1.25MB/s) is used. On the other hand, Figure 6.b shows the 
same setting while executing a gather communication. The 
receiver is behind the hub and has as many receiving threads 
as the number of senders. In this case, however, the senders 
try to access the bottleneck link concurrently, thus 
competing for reaching the destination. This degrades the 
overall performance with respect to a scatter communication 
pattern since, in the other case the competition were not 
present. Note that one of the fast senders consistently 
measures higher bandwidth for short messages. Awakening 
a process in this machine is faster that on the other, with 
respect to the latencies on the network. This let this peer 
acquire the network quickly and access the network in 
absence of contention. For shorter messages this leads to a 
greater measured bandwidth, while for long messages the 
randomization of the network access makes the peers to 
behave evenly. This phenomenon highlights the importance 
of the algorithm to synchronize the starting of the 
experiment. Indeed, it is caused by the alignment algorithm 
that does not take into account the runtime system overhead 
for awakening processes, which may have some impact in 
our setting where latencies are very small, and messages too 
short for the gather experiment.  
     In these experiments the message sizes had to be reduced 
with respect to the switched network. This has been possible 
since the lower bandwidth is saturated by far smaller 
messages, as the pictures highlight. As before the 
experiments has been repeated several times to filter out 



Obtaining Performance Measures through Microbenchmarking 

 

7 

noise. The results when a slow peer is placed behind the hub 
exhibits the same characteristics as when a fast peer is 
placed behind the hub. For completeness we include Figure 
7, that shows the bandwidths while executing a scatter 
pattern from a slow peer behind the hub. This image is 
almost identical to Figure 6.a confirming that, when the 
bandwidth is the bottleneck the computational overhead 
becomes negligible.  
 

 
(a) 

 

 
(b) 

 
Figure 6 : Measures of scatter from a fast sender to the 
others (Figure (a)), and gather to a fast receiver from the 
others (Figure (b)). The sender for the scatter and the 
receiver for the gather was connected to a 10MB/s hub. 
 

 
 
Figure 7 : Scatter from a slow sender behind a 10Mb/s hub 
varying message size. 
 
     When executing an all-to-all in presence of a peer behind 
the hub, what can be noted is that the performance is 
dominated by the bottleneck link. Figure 8 shows the 
bandwidths measured while performing a all-to-all among 5 
peers. Differently from Figure 4, which shows a all-to-all in 

a switched network, in this experiment a slow peer has been 
placed behind a 10MB/s hub. The algorithm executed and 
the measured quantities are the same as in the fully switched 
network. What can be noted is that the bottleneck link 
makes the all measured bandwidths to be below the peak 
bandwidth of such a link. When placing a fast computer 
behind the hub the situation is not different, since the 
bottleneck link forces to slowdown the communication.  
 

 
 
Figure 8 : All-to-All communication pattern among 5 peers. 
A slow peer is placed behind the hub. As it may be seen, 
bandwidth is dominated by the slow link. 
 
     To measure the computing power of a remote host in an 
uncooperative P2P setting we use a quiz-like approach 
[LZ+04]. The remote peer is required to perform a given 
computation and the execution time is measured by the 
inquiring peer (that needs to filter out communication time). 
In order to be effective, the computation needs to exhibit the 
following characteristics: 1) requiring both a small input and 
a small output; and 2) requiring a given amount of 
computation that cannot be avoided. The first requirement is 
necessary since we do not want the network to become a 
bottleneck, the second allows for a trusted measure, since 
the inquired peer cannot employ faster algorithms to provide 
the right answer. A computation that matches these 
requirements is given by a random number generator where 
the input is the seed and the output is the number generated 
after either a given number of iterations or a given amount 
of time. A fairly simple generator has been chosen, whose 
main iteration is seed=MOD(8121*seed+28411, 134456).  
     Figure 9 shows the results of CPU performance 
measurements. The plot shows the outcome of four tests: 
two of them fix the number of iterations to be performed, 
respectively on a slow and fast CPU; while the other two fix 
the computing time, respectively on a slow and fast CPU (in 
this latter case data are again plotted against the number of 
iterations performed in the allotted time). Even though the 
measurement is influenced by the fluctuations of the 
computational load of the inquired peer, the results indicate 
that such a test may be employed if a sufficiently large 
number of iterations are executed by the remote peer to deal 
with the clock resolution. For instance, from the plot we can 
say that 4 million iterations are sufficient to get a reasonable 
measure of computing power, which is equivalent to about 
300ms of fast CPU time and 800ms of slow CPU time.  



8  Paolo Bertasi et al 

 

 
 
Figure 9 : CPU power measurements obtained fixing by the 
number of iterations and the total execution time on a slow 
and fast CPU, respectively. 
 
4. Conclusions and future work  
 
In this paper we dealt with the issue of measuring 
performance in an P2P-based OC, focusing on parameters 
such as the computing power of participating hosts, latency, 
and bandwidth for communication patterns arising in typical 
applications. After reviewing some relevant state-of-the-art 
measurement approaches employed in globally distributed 
system, we developed a suite of microbenchmarking 
experiments for measuring performance an OC built over 
JXTA. Preliminary results have shown that different 
patterns exhibit highly different behaviors, suggesting that 
the efficient execution of an application requires a careful 
choice of the executing nodes. Measuring systems should 
also provide adeguate countermeasures against selfishness 
and free riders, especially for what concerns estimating the 
computing power of a given node.  
     Future work will aim at extending the 
microbenchmarking suite to produce a complete 
measurement toolkit to be employed in an OC and to extend 
the experiments to large heterogeneous testbeds (such as 
PlanetLab) to fully assess the effectiveness of the proposed 
approach.  
 
Bibliography  
 
[CR+03] Y. Chawathe, S. Ratnasamy, L. Breslau, N. 

Lanham, S. Shenker. Making Gnutella-like P2P 
Systems Scalable. In Proc. SIGCOMM, 407–418, 2003.  

[DC+04] F. Dabek, R. Cox, F. Kaashoek, R. Morris. Vi-
valdi: A decentralized Network Coordinate System. 
Proc. SIGCOMM, 15–26, 2004.  

[DL+04] F. Dabek, J. Li, E. Sit, J. Robertson, F. Kaashoek,  
R. Morris. Designing a DHT for Low Latency and High 
Throughput. Proc. of the 1st Symposium on Networked 
System Design and Implementation (NSDI ’04), 2004.  

[DNB06] N. Drost, R. Nieuwpoort, H. E. Bal. Simple 
Locality-Aware Coallocation in Peer-to-Peer 
Supercomputing. In Proc. IEEE CCGRID, 14, 2006  

[Gra02] J.D. Gradecki Mastering JXTA: Building Java 
Peer-to-Peer Applications. Wiley, 2002.  

[GIMPS] GIMPS: Great Internet Mersenne Prime Search. 
www.mersenne.org  

[GL99] W. Gropp, E.L. Lusk. Reproducible Measurements 
of MPI Performance Characteristics. In Proc. 6th 
European PVM/MPI Users’ Group Meeting, LNCS 
1697, 11–18, 1999  

[GC01] D. Grove, P. Coddington. Precise MPI performance 
measurement using MPIBench. In Proc. HPC Asia, 
2001.  

[GD+03] K.P. Gummadi, R.J. Dunn, S. Saroiu, S.D. Gribble, 
H.M. Levy, J. Zahorjan. Measurements, Modeling, and 
Analysis of a Peer-to-Peer File-Sharing Workload. In 
Proc. 18th ACM SOPS, 314–329, 2003.  

[HS05] N. Hu, P. Steenkiste. Exploiting Internet Route 
Sharing for Large Scale Available Bandwidth 
Estimation. In Proc. of Internet Measurement Conf., 
187– 192, 2005  

[KZ04] M. Kleis, X. Zhou. A Placement Scheme for Peer-
to-Peer Networks Based on Principles from Geometry. 
In Proc. 4th IEEE Intl. Conf. on P2P Computing, 134– 
141, Aug. 2004.  

[LP03] K. Lakshminarayanan, V.N. Padmanabhan. Network 
Performance of Broadband Hosts. Microsoft Research, 
Tech. Rep. MSR-TR-2003-15, 2003.  

[LZ+04] V. Lo, D. Zhou, D. Zappala, Y. Liu, and S. Zhao. 
Cluster Computingon the Fly: P2P Scheduling of Idle 
Cycles in the Internet. In Proc. 3rd Int.l Workshop on 
P2P Systems, 227–236, 2004.  

[NZ02] E. Ng, H. Zhang. Predicting Interne Network 
Distance with Coordinates-Based Approach. In Proc. 
IEEE INFOCOM, 170–179, 2002.  

[RF+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. 
Shenker. A Scalable Content-Addressable Network. In 
Proc. ACM SIGCOMM, 161–172, 2001.  

[RH+02] S. Ratnasamy, M. Handley, R. Karp, S. Shenker. 
Topologically Aware Overlay Construction and Server 
Selection. In Proc. IEEE INFOCOM, 1190–1199, 2002.  

[1] S. Rhea, D. Geels, T. Roscoe, J. Kubiatowicz.Handling 
Churn in a DHT. In Proc. USENIX Annual Techical 
Conference, 127–140, Boston, MA, USA, June 2004.  

[RD01] A. Rowstron, P. Druschel. Pastry: Scalable, 
Distributed Object Location and Routing for Large 
Scale Peer-to-Peer Systems. In Proc. IFIP/ACM Int.l 
Conf. on Distributed System Platforms (Middleware), 
329– 350, 2001.  

[SETI] SETI@Home Project. setiathome.berkeley.edu  
[SS05] S. Sodhi, J. Subhlok. Automatic Construction and 

Evaluation of Performance Skeletons. In Proc. 19th 
IEEE IPDPS, 88–97, 2005.  

[SGL04] M. Srivatsa, B. Gedik, L. Liu. Scaling 
Unstructured Peer-to-Peer Networks With Multi-Tier 
Capacity-Aware Overlay Topoloies. In Proc. 10th Int.l 
Conference on Parallel and Distributed Systems, 17– 
24, 2004.  

[SM+01] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. 
Balakrishnam. Chord: a Scalable Peer-to-Peer Lookup 
Service for Internet Applications. In Proc. ACM 
SIGCOMM, 149–160, 2001.  

[TD05] G. Tsouloupas, M D. Dikaiakos. GridBench: A 
Workbench for Grid Benchmarking. In Advances in 
Grid Computing -EGC 2005, 211-225, 2005  


