
International Journal of Foundations of Computer Sciencec
 World Scienti�c Publishing Company
DETERMINISTIC BRANCH-AND-BOUND ONDISTRIBUTED MEMORY MACHINESKIERAN T. HERLEYDepartment of Computer Science, University College Cork, Cork, Ireland.k.herley@cs.ucc.ie.andANDREA PIETRACAPRINA and GEPPINO PUCCIDipartimento di Elettronica e Informatica, Universit�a di Padova, I-35131 Padova, Italy.fandrea,geppog@artemide.dei.unipd.itReceivedRevisedCommunicated byABSTRACTThe branch-and-bound problem involves determining the leaf of minimum cost in acost-labelled, heap-ordered tree, subject to the constraint that only the root is knowninitially and that the children of a node are revealed only by visiting their parent. Wepresent the �rst e�cient deterministic algorithm to solve the branch-and-bound problemfor a tree T of constant degree on a p-processor distributed-memory Optically ConnectedParallel Computer (OCPC). Let c� be the cost of the minimum-cost leaf in T , and let nand h be the number of nodes and the height, respectively, of the subtree T � � T of nodeswhose cost is at most c�. When accounting for both computation and communicationcosts, our algorithm runs in time O �n=p+ h(maxfp; log n log pg)2� for general values ofn, and can be made to run in time O ��n=p+ h log4 p� log log p� for n polynomial inp. For large ranges of the relevant parameters, our algorithm is provably optimal andimproves asymptotically upon the well-known randomized strategy by Karp and Zhang.Keywords: parallel branch-and-bound; distributed-memory machines; OCPC; load bal-ancing; information dispersal.1. IntroductionBranch-and-bound is a widely used and e�ective technique for solving hard opti-mization problems. It determines the optimum-cost solution of a problem through aselective exploration of a solution tree, whose internal nodes correspond to di�erentrelaxations of the problem and whose leaves correspond to feasible solutions. Theshape of the tree is generally not known in advance, since the subproblems associatedwith the nodes are generated dynamically in an irregular and unpredictable fash-ion. A suitable abstract framework for studying the balancing and communication1

issues involved in the parallel implementation of branch-and-bound is provided bythe branch-and-bound problem, introduced in [8], which can be speci�ed as follows.Let T be an arbitrary tree of �nite size. Initially, a pointer to the root is available,while pointers to children are revealed only after their parent is visited. A node canbe visited only if a pointer to it is available, and it is assumed that the visit takesconstant time. All nodes of T are labeled with distinct integer-valued costs, the costof each node being strictly less than the cost of its children (heap property). Thebranch-and-bound problem involves determining the cost c� of the minimum-costleaf. Note that any correct algorithm for the branch-and-bound problem must visitall those nodes whose costs are less than or equal to c�. These nodes form a subtreeT � of T . Throughout the paper, n and h will denote, respectively, the size and theheight of T �.The e�ciency of any parallel branch-and-bound algorithm crucially relies on abalanced on-line redistribution of the computational load (tree-node visits) amongthe processors. Clearly, the cost of balancing must not be much larger than thecost of the tree-visiting performed. Furthermore, since c� is not known in advance,one cannot immediately distinguish nodes in T � (all of which must be visited)from nodes in T � T � (whose visits represent wasted work). Ensuring that thealgorithm visits few super
uous nodes is nontrivial in a parallel setting as it requiresconsiderable coordination between processors.In this paper, we devise an e�cient deterministic parallel algorithm for thebranch-and-bound problem on a Distributed-Memory Machine (DMM) consistingof a collection of processor/memory pairs communicating through a complete net-work. The model assumes that in one time step, each processor can perform O(1)operations on locally stored data and send/receive one message to/from an arbi-trary processor. We consider the weakest DMM variant, also known as OpticallyConnected Parallel Computer (OCPC) in the literature [3], where concurrent trans-missions to the same processor are heavily penalized. Speci�cally, in the event thattwo or more processors simultaneously attempt to transmit to the same destination,the processors involved are informed of the collision but no message is received bythe destination.1.1. Related Work and New ResultsA simple sequential algorithm for the branch-and-bound problem is based onthe best-�rst strategy, where available (but not yet visited) nodes are stored in apriority queue and visited in increasing order of their cost. The O (n logn) runningtime of this simple strategy is dominated by the cost of the O (n) queue operations.In [2], Frederickson devised a clever sequential algorithm to select the k-th smallestitem in an in�nite heap in O (k) time. The algorithm can be easily adapted to yieldan optimal O (n) sequential algorithm for branch-and-bound.In parallel computation, the branch-and-bound problem has been studied on avariety of machine models. In [8], Karp and Zhang show, by a simple work/diameterargument, that any algorithm for the problem requires at least
 (n=p+ h) timeon any p-processor machine, and devise a general randomized algorithm, running2

in O (n=p+ h) steps, with high probability. Each step of the algorithm entailsa constant number of operations on local priority queues per processor, and therouting of a global communication pattern where a processor can be the recipientof � (log p= log log p) messages. A straightforward implementation of this algorithmon any DMM would require
 (log(n=p) + log p= log log p) time per step, with highprobability, if both priority queue and contention costs are to be fully accountedfor. The resulting algorithm is nonoptimal for all values of the parameters n, h andp. Kaklamanis and Persiano [7] present a deterministic branch-and-bound algo-rithm that runs in O �pnh logn� time on an n-node mesh. The mesh-speci�c tech-niques employed by the algorithm, coupled with their assumption that the mesh sizeand problem size are comparable, limit the applicability of their scheme to otherparallel architectures.A deterministic algorithm for the shared-memory EREW PRAM, based on aparallelization of the heap-selection algorithm of [2] appears in [6]. The main resultof this paper extends the approach of [6] to the distributed-memory OCPC withthe performance stated in the following theorem.Theorem 1 There is a deterministic algorithm running on a p-processor OCPCthat solves the branch-and-bound problem for any tree T of constant-degree in timeO�np + h(maxfp; logn log pg)2� :When n is polynomial in p, the algorithm can be also implemented to run in timeO��np + h log4 p� log log p� :Note that when n=maxfp3; p(logn log p)2g is large with respect to h, a typicalscenario in real applications, our algorithm achieves optimal � (n=p) running time.In this case, the implementation of the algorithm is very simple and the big-ohin the running time does not hide any large constant. In contrast, the secondimplementation is asymptotically better, although more complex, when the valuesof n=p and h are close, and it is indeed within a mere O (log log p) factor of optimalas long as h = O �n=(p log4 p)�, which is a weak balance requirement on the solutiontree.The rest of the paper is organized as follows. Section 2 reviews the genericbranch-and-bound strategy of [6], while Section 3 describes the two OCPC imple-mentations of the generic algorithm, whose running times are given in Theorem 1.Finally, Section 4 provides some concluding remarks and directions for future re-search.2. A Machine-Independent AlgorithmIn this section, we brie
y review the machine independent, parallel branch-and-bound strategy introduced in [6], which is at the base of the OCPC algorithmsdescribed in this paper. 3

Consider a branch-and-bound tree T and let s be an integer parameter which willbe speci�ed later. For simplicity, we assume that T is binary, although all our resultsimmediately extend to trees of any constant degree. We begin by summarizing someterminology introduced in [2, 6]. For a set of tree nodes N , let Best(N) denote theset containing the (at most) s nodes with smallest cost among those in N andtheir descendants. A set of nodes of the form Best(N) is called a clan, and nodesthemselves are referred to as the clan's members. The nodes of T can be organizedin a binary tree of clans T C as follows. Let r denote the root of T . The root of T Cis the clan R = Best(frg). Let C be a clan of T C, and suppose that C = Best(N)for some set N of nodes of T . De�ne O� (C) (o�spring) as the set of tree nodeswhich are children of members of C but are not themselves members of C, andde�ne PR(C) (poor relations) to be the set N � Best(N). Then, clan C has two(possibly empty) child clans C 0 and C 00 in T C, namely C 0 = Best(O� (C)) andC 00 = Best(PR(C)). Since T is binary, we have jO� (C)j; jPR(C)j � 2s, for everyclan C 2 T C. If a clan C has exactly s members, its cost , denoted by cost(C), isde�ned as the maximum cost of any of its members; if C has less than s members,then we set cost(C) to be 1 (note that in this last case, C is a leaf of T C). Sinceevery node in a clan C costs less than every node in O� (C) [PR(C), it is easyto show that both cost(C 0) and cost(C 00) are strictly greater than cost(C). As aconsequence, T C is heap-ordered with respect to clan cost. An example of clancreation is illustrated in Fig. 1. ����1������� HHHHHHj���� ����2 4����9 ����9XXXXz XXXXz���� ���� ���� ����7 3 8 5��� ��� ��� ���HHj HHj HHj HHj��������������������������������10 9 15 12 26 13 11 6�� �� �� �� �� �� �� ��	 	 	 	 	 	 	 	R R R R R R R R��43 22 16 32 18 28 38 49 29 63 21 79 20 14 17 19
���hhhhh����� ```̀ XXXXC1

C4 C3 C2
Fig. 1. The clan creation process (s = 3). In the picture, C1 = Best(f1g)has O� (C1) = f4; 7; 12; 15g, PR(C1) = ;, and cost(C1) = 3. ClanC2 = Best(O� (C1)) has O� (C2) = f8; 11; 17; 19g, PR(C2) = f7; 12; 15g,and cost(C2) = 6. Finally, C3 = Best(O� (C2)), with cost(C3) = 13, andC4 = Best(PR(C2)), with cost(C4) = 10. In T C, C1 is the root, and C2 is itssole child. C3 and C4 are the children of C2.In [2], Frederickson shows that the k-th smallest node of T is a member of one ofthe 2dk=se clans of minimum cost. Based on this property, he develops a sequentialalgorithm that �nds the k-th smallest node in T in linear time by performing aclever exploration of T C in increasing order of clan cost. Note that once such a4

node is found, the k nodes of smallest cost in T can be enumerated in linear timeas well. By repeatedly applying this strategy for exponentially increasing values ofk until the smallest-cost leaf is found, the branch-and-bound problem can be solvedfor T in time proportional to the size of T �.The parallel branch-and-bound strategy proposed in [6] can be seen as a best-�rst parallel exploration of T C, where each clan is created in O (s) time by a singleprocessor using a straightforward adaptation of the heap-selection algorithm of [2].Such a strategy is realized by the generic algorithm BB of Fig. 2, which appliesto any p-processor machine. In the next section, we will show how to implementalgorithm BB e�ciently on the OCPC.Let Pi denote the i-th processor of the machine, for 1 � i � p. Pi maintains alocal variable `i, which is initialized to 1. Throughout the algorithm, variable `istores the cost of the cheapest leaf visited by Pi so far. Also, a global variable ` ismaintained, which stores the minimum of the `i's. At the core of the algorithm is aParallel Priority Queue (PPQ), a parallel data structure containing items labeledwith an integer-valued key [11]. Two main operations are provided by a PPQ: Insert,that adds a p-tuple of new items into the queue; and Deletemin, that extracts thep items with the smallest keys from the queue. The branch-and-bound algorithmemploys a PPQ Q to store clans, using their costs as keys. Together with Q, aglobal variable q is maintained, denoting the minimum key currently in Q. Initially,Q is empty and a pointer to the root r of T is available.Algorithm BB:1. P1 produces clanR = Best(frg) and sets `1 to the cost of the minimumleaf in R, if any exists. Then, R is inserted into Q, and q and ` areset to the cost of R and to `1, respectively.2. The following substeps are iterated until ` < q.(a) Deletemin is invoked to extract the k = minfp; jQjg clansC1; C2; : : : ; Ck of smallest cost from Q. For 1 � i � k, clanCi is assigned to Pi.(b) For 1 � i � k, Pi produces the two children of Ci, namely C 0iand C 00i , and updates `i accordingly.(c) Insert is invoked (at most twice) to store the newly producedclans into Q. The values ` and q are then updated accordingly.3. The value ` is returned.Fig. 2. The generic parallel branch-and-bound algorithm.The following lemma was proved in [6].Lemma 1 Algorithm BB is correct. Moreover, the number of iterations of Step 2required to reach the termination condition is O (n=(ps) + hs).5

3. OCPC ImplementationIn this section, we show how algorithm BB can be e�ciently implemented onthe OCPC. The implementation crucially relies on the availability of fast PPQoperations, which is guaranteed by the following lemma.Lemma 2 A PPQ Q storing items of constant size can be implemented on a p-processor OCPC so that both Insert and Deletemin take O (log(jQj=p) log p) time.Proof. We make use of the p-Bandwidth Heap (p-BH) of [11], a binary heapwith large nodes, each maintaining p items sorted by their keys. On the OCPC,we distribute the p items held by each p-BH node among the p memory modules.Based on this allocation, the PRAM algorithms for Insert and Deletemin describedin [11] can be ported immediately to the OCPC by replacing PRAM sorting andmerging with bitonic sorting and merging on the OCPC [9], yielding the stated timebound. 2If we adopted the naive approach of viewing each whole clan (with its �(s)members, o�spring and poor relations) as a PPQ item, the complexity of the aboveoperations would increase by a factor of �(s) { a time penalty which is too large forour purposes { since each elementary step would entail the actual migration of theclans involved among the processors. To overcome this problem, we store each clanin a distinct cell of a virtual shared memory and represent the clan in the PPQ usinga constant-size record that includes its cost and its virtual cell's address. Virtualcells are suitably mapped onto the processors' memories, in such a way that thecontents of p arbitrary cells can be e�ciently retrieved. The mapping must guardagainst the possibility that the p cells to be accessed might be concentrated in a smallnumber of memory modules, which would render the access unacceptably expensivedue to memory contention. Based on these ideas, we propose two implementations,distinguished by the choice for s, and whose e�ciency depends on the relative valuesof n=p and h.3.1. Implementation 1Let s = amaxfp; logn log pg, for some constant a > 0, and suppose that the� (s) data stored in any virtual cell (i.e., members, o�spring and poor relationsof some clan) are evenly distributed among the p memory modules, with O (s=p)data per module. Consider an iteration of Step 2 of algorithm BB. Since eachclan is represented in the PPQ by a constant-size record, the Deletemin and Insertoperations required in Substeps 2.a and 2.c take O (logn log p) time by Lemma 2(note that Lemma 1 implies that at any time during the algorithm jQj = O (nsp)).The generation of the child clans in Substep 2.b can be performed locally at eachprocessor using Frederickson's algorithm in O (s) time. Also, all data movementsinvolved in Step 2 can be easily arranged as a set of O (s) �xed permutations thattake O (s) time. Thus, each iteration of Step 2 requires time O (s), which yields anO �n=p+ hs2� running time for the entire algorithm. The �rst part of Theorem 1follows by plugging in the chosen value for s.It has to be remarked that our choice of s requires that the algorithm know6

the value n = jT �j in advance, which is clearly an unrealistic assumption in mostreal scenarios. In order to remove such an assumption while maintaining the samerunning time (up to constant factors), we may proceed as follows. Let n1 = p2,and, for i > 1 let ni = (ni�1)2. We start running the algorithm guessing the valuen1 for jT �j. If the algorithm does not terminate within time n1=p, we abort theexecution and run the algorithm again, guessing jT �j = n2 = (n1)2. In general, onthe i-th iteration, we run the algorithm, guessing jT �j = ni, and abort executionif it does not terminate within time ni=p. Let {̂ be the least positive index suchthat n{̂�1 < n < n{̂. Then, it is easy to see that, depending on the actual valuesof n and h, the iterated algorithm will terminate either at guess {̂, or {̂ + 1, or{̂ + 2. Since the guessed values for n increase geometrically, the running time ofthe algorithm is determined by the running time of the last iteration, which isO �n=p+ hmax2fp; logn log pg�, since logn{̂+j = �(logn), for 0 � j � 2.3.2. Implementation 2Note that Implementation 1 achieves optimal � (n=p) running time when n=pis rather larger than h; however, it becomes progressively less pro�table for moreunbalanced trees. In the latter scenario, it is convenient to choose a much smallervalue for s which, however, requires a more sophisticated mechanism to avoid mem-ory contention. In particular, when s� p, it becomes necessary to introduce someredundancy in the representation of virtual cells and to carefully select, for eachvirtual cell, a subset of processors that store its (replicated) contents, so that any pcells can be retrieved by the processors with low contention at the memory modules.These ideas are explained in greater detail below.In the following, we assume that n is polynomial in p, that the machine wordcontains � (log p) bits, and that each node of the branch-and-bound tree T is rep-resented using a constant number of words. In this fashion, clans, as well as virtualcells, can be regarded as strings of � (s log p) bits. Each cell is assigned a set ofd = �(log p) distinct memory modules as speci�ed by a suitable memory map mod-eled by means of a bipartite graph G = (U; V;E) with jU j inputs, corresponding tothe virtual cells, jV j = p outputs, corresponding to the OCPC memory modules,and d edges connecting each virtual cell to the d modules assigned to it. The quan-tity jU j = pO(1) is chosen as an upper bound to the total number of virtual cellsever needed by the algorithm. We call d the degree of the memory map.Consider a set of p newly created clans, C1; C2; : : : ; Cp, to be stored in thememory modules, and let processor Pi be in charge of clan Ci. First, a distinctunused cell ui is chosen for each clan Ci. Then, Pi recodes ui into a longer string ofsize 3juij and splits it into k = � log p components (� < 1), each of 3juij=k = �(s)bits (stored in � (s=k) words), by using an Information Dispersal Algorithm (IDA)[12, 13], so that any k=3 components su�ce to recreate the original contents ofui. The following lemma, proved in Subsection 3.2.1, establishes the complexity ofthese encoding/decoding operations.Lemma 3 A processor can transform a cell u into k components of �(s) bits each,in O (s log k) = O (s log log p) time, so that u can be recreated from any k=3 compo-7

nents within the same time bound.After the encoding, Pi replicates each component of ui into a = d=k = O (1)copies, referred to as component copies, and attempts to store the resulting d com-ponent copies of ui into the d modules assigned to the cell by the memory map G,in parallel for every 1 � i � p. The operation terminates as soon as all processorse�ectively store at least 2d=3 component copies each.Consider now the case when the processors need to fetch the contents of pcells from the memory modules. Each processor attempts to access the d modulesthat potentially store the component copies of the cell and stops as soon as any2d=3 modules are accessed. Although not all accessed modules may e�ectivelycontain component copies of the cell, we are guaranteed that at least d=3 componentcopies, hence k=3 distinct components, will be retrieved. This is su�cient for eachprocessor to reconstruct the entire cell. The following lemma will be proved inSubsection 3.2.2.Lemma 4 For a suitable constant a > 1, there exists a memory map G = (U; V;E)with jU j = pO(1), jV j = p and with each node in U of degree d = a� log p, underwhich any set S of p virtual cells can be stored/retrieved in the OCPC memorymodules in O �s+ log2 p log log p� time.Putting it all together, the extraction of the p clans of minimum cost amongthose represented in the PPQ Q can be accomplished as follows. First, the ad-dresses of the corresponding cells are extracted fromQ in time O (log(jQj=p) log p) =O �log2 p� and distributed one per processor. Then, by Lemma 4, k=3 compo-nents for each cell are retrieved in O �s+ log2 p log log p� time. Finally, the con-tents of each clan C are reconstructed in O (jCj log k) = O (s log log p) time, byLemma 3. By combining all of the above contributions we obtain a running timeof O �s log log p+ log2 p log log p� for parallel clan extraction. In a similar fashion,one can show that the insertion of p new clans in the queue can be accomplishedwithin the same time bound.The complexity of algorithm BB is dominated by that of Step 2. Each it-eration of this step entails one extraction and at most two insertions of p clans(O �s log log p+ log2 p log log p� time), the generation of at most two new clans perprocessor (O (s) time), and a number of other simple operations all executable inO (log p) time. Hence, an iteration requires O �s log log p+ log2 p log log p� time.Since, by Lemma 1, there are O (n=(ps) + hs) iterations, the second part of The-orem 1 follows by choosing s = log2 p. Note that, unlike Implementation 1, thischoice of s does not require advance knowledge of the shape of T �, hence no guessingis needed.3.2.1. Proof of Lemma 3We will only describe the encoding procedure, since the reconstruction procedureis based on the same ideas and exhibits the same running time. Consider a virtualcell u, and view it as a rectangular � (s)�(k=3) bit-array Au, with every row storedin a separate word. By using IDA [12, 13], each row can be independently recodedinto a string of k bits, so that any k=3 such bits are su�cient to reconstruct the8

entire row. The resulting � (s)�k bit-array A0u is then \repackaged" so that each ofits k �(s)-bit columns can be stored as a sequence of � (s=k) words. Each of these� (s=k)-word sequences constitutes a distinct component. A pictorial representationof the encoding procedure is given in Fig. 3.
(a)Au����(s)?

6 k=3�- -IDA (b)A
0u� � �

k� - -Repackage � � �� � �� � ���� 6?k
�(s=k)� -

(c)Fig. 3. Encoding of a clan into components: (a) clan contents are arrangedinto � (s) strings of k=3 bits each; (b) each row is encoded into a k-bit stringthrough IDA; (c) each column is packaged into � (s=k) words, thus making acomponent.Rather than actually running the information dispersal algorithm, we can usea precomputed look-up table of 2k=3 = p�=3 entries accessible in constant time.The i-th entry of the table, holds the k-bit encoding of the (k=3)-bit binary stringcorresponding to integer i. Note that this table need only be computed once andmade available to each node of the machine. (A similar table with 2k = p� entrieswill be needed for decoding.)The repackaging of the columns of A0u into sequences of words can be achievedby sequentially transposing each of the � (s=k) k � k-blocks of A0u (k consecutiverows). Speci�cally, the transposition of a k � k block is performed by �rst swap-ping its northeast and southwest quadrants and then recursively and independentlytransposing the four k=2� k=2 quadrants in place (see Fig. 4 below).a b c de f g hi j k lm n o p���	 -(a) a b i je f m nc d k lg h o p -(b) a e i mb f j nc g k od h l pFig. 4. Transposing a 4� 4 block: (a) NE and SW quadrants are swapped; (b)each quadrant is independently and recursively transposed.Note that the swaps implied by the above algorithm can be realized through asequence of �xed bit-wise logical operations using masks. Since each of the log klevels of recursion requires k such operations and a constant number of masks, ablock can be transposed in O (k log k) time using O (log k) masks.The running time of the encoding procedure is dominated by the repackagingcost, which is O(s log k) = O (s log log p). Note that the encoding/decoding activi-ties are performed locally at each processor and require no external communication.9

3.2.2. Proof of Lemma 4Consider a memory map G = (U; V;E) and a set S � U of p cells, and let E(S)denote the set of edges incident on nodes of S. A c-bundle for S of congestion q isa subset B � E(S) where each u 2 S has degree c and any v 2 V has degree atmost q with respect to the edges in B. The following claim demonstrates that thereexists a suitable G which guarantees that a (2d=3)-bundle of low congestion existsfor every set S of p (or fewer) cells, and that such a bundle may be determinede�ciently.Claim 1 For d = a� log p, for a su�ciently large positive constant a, there exists amemory map G of degree d such that, for any given set S of p cells, there is a (2d=3)-bundle of congestion q = O (d). Moreover, one such bundle can be determined inO (d log p) = O �log2 p� time on the OCPC.Proof. Choose d = a� log p to be an odd multiple of 3. We map the cell compo-nents to the memory modules according to a (�; d; d=3; 1=d)-generalized expander, abipartite graph G = (V; U;E) whose existence for jU j = pO(1), jV j = p, and suitableconstants a > 1 and � < 1 was proved in [4, Theorem 4]. Such a map has thefollowing expansion property: For any set S0 of at most p=d cells in U , and any k-bundle B0 for S0, with k � d=3, the set �B0(S0) of memory modules containing thosecomponents of cells in S0 corresponding to edges in B0 has size j�(S0)j � �kjS0j.Based on this property, we can determine a low-congestion 2d=3-bundle for anygiven set S of p cells by applying a simple variant of the whittling protocol of [5],which can be shortly described as follows. Starting from E(S), each step of theprotocol prunes the set of edges by selecting 2d=3 edges each for some of the cellsin S, and discarding the remaining d=3. The prunings are performed in such a waythat the congestion of the �nal 2d=3 bundle for S does not exceed a given congestionthreshold q = O (d). More speci�cally, at the beginning of each step, a cell in Sis said to be alive if the 2d=3 edges for the cell have not been selected yet, anddead otherwise. Let Si be the set of live variables at the beginning of the i-th step,for i � 1. During the step, the processors �rst identify the set Vi � V of \heavilyloaded" modules, i.e., those modules storing more than q components of cells in Si,and then select arbitrary sets of 2d=3 edges incident on modules in V � Vi for allthose cells which have at least that many components stored outside Vi. Any suchcell is marked dead, and its d=3 unselected components are discarded.From a minor variation of [5, Lemma 8] it follows that jSij � p=di�1, for i � 1.As a consequence, 1+ logd p = O (log p= log log p) steps su�ce to determine a 2d=3-bundle for S, which, by construction, has congestion at most q = O (d).On the OCPC, the i-th step of the whittling protocol, for i � 1, can be im-plemented using a constant number of sorting and pre�x computations on a set ofdjSij � p=di�2 items. As a consequence, the overall running time of the protocol isdominated by the time of the �rst step, which is O (d log p) = O �log2 p�. 2Let us now consider the problem of writing a set S of p cells, u1; u2; : : : ; up(the problem of reading p cells is similar). First, each processor Pi encodes thecell ui it wishes to write into d component copies using the IDA-based techniquesdescribed before, and then all processors cooperate to construct a (2d=3)-bundle10

B of congestion O (d) for S using the whittling protocol described in the proof ofClaim 1. At the end of the protocol, we assume that Pi knows the edges in B thatare incident on cell ui and on the i-th memory module vi. It is important to notethat the whittling protocol merely indicates to each processor Pi the locations towhich the 2d=3 component copies of its cell ui should be written: the actual physicalmovement of the component copies of ui, each consisting of � (s=k) words, must beimplemented as a separate step. This is a nontrivial task, since each processor Pimust dispatch (resp., receive) one component copy for each edge in B incident on ui(resp., vi); hence, the processor must dispatch 2d=3 component copies and receiveO (d) of them. In particular, the transmission of copies must be coordinated so asto avoid \collisions" at the receiving processors.Standard routing techniques based on sorting [9] cannot be applied in our con-text, since they would yield an
 (ds log p=k) =
 (s log p) component routing timethat is too slow for our purposes. Hence, we resort to a more sophisticated approachbased on edge coloring. More speci�cally, let � = �(d) denote the maximum de-gree of a node in U [V with respect to the edges in B. Then, any O (�)-edgecoloring of B would allow us to decompose component routing into O (�) stages,each requiring � (s=k) time, for an overall O (�s=k) = O (ds=k) = O (s) time. Itremains to show that such an edge coloring for B can be computed e�ciently bythe OCPC processors. We establish the following result.Claim 2 A (2�� 1)-edge coloring for B may be computed in O(�2 log�) time onthe OCPC.Proof. It is easy to extend the whittling protocol of Claim 1, so that, togetherwith B, it produces a O(�2)-edge coloring for B within the same time bound. Infact, the extra work needed amounts to the maintenance of one color-tag for eachedge, which is suitably updated during the sorting and pre�x steps. We transformthis initial O(�2)-coloring into a (2�� 1)-coloring in two stages: in the �rst stage,we produce an intermediate O(� log�)-coloring, which is then re�ned in the secondstage to yield the desired (2�� 1)-coloring.Stage 1 In the �rst stage, we make use of a (
; 2r � 1; r;�(1=r))-generalizedexpander G = (U 0; V 0; E0), with jU 0j = � ��2�, V 0 = � log�,
 = O (1) andr = �(log�), akin to the one underlying Claim 1, to map each of the O(�2) colorsinto 2r�1 values in [1::� log�]. This mapping has the property that for any set ofcolors D � [1::� ��2�], with jDj � �, we may select, for each x 2 D, a palette of rvalues in [1::� log�] such that the same value occurs in at most O(1) palettes. Theselection of these subsets is accomplished by running the whittling protocol akin tothat of Claim 1, with q = O(1), to determine an r-bundle of congestion q for D.Following the proof of [5, Lemma 8] one can easily show that 1 + log� whittlingsteps su�ce.By repeating the r-bundle selection procedure for each set of at most � colorsassociated with edges of B incident on either one of the p cells u or a memorymodule v, we determine, for each edge (u; v) 2 B, two palettes Leftu;v;Rightu;v� [1::� log�] such that jLeftu;vj = jRightu;v j = r. Since the two palettes werechosen out of a set of 2r�1 values, they must have nonempty intersection. We pick11

one of the values in the intersection as the new color of (u; v).Although the above procedure successfully reduces the number of colors to� log�, the resulting (� log�)-coloring may not be legal, since up to q edges of Bof the same color may be incident on the same vertex u 2 U or v 2 V . However,we can now easily produce a valid coloring by increasing the number of colors by afactor of q2 = O (1) as follows. We �rst assign consecutive ranks to all same-colorededges in B incident on the same node u 2 U or v 2 V (note that each edge is thusranked twice). Let now edge (u; v) of color x be the i-th x-colored edge outgoingfrom node u and the j-th x-colored edge incoming into node v, with 1 � i; j � q.We recolor (u; v) with color (x; i; j). The proof that the new coloring is a validO �q2� log��-coloring is straightforward.Processor Pi computes O (�) palettes sequentially, namely, Leftui;v for each(ui; v) 2 B and Rightu;vi for each (u; vi) 2 B. Using sequential integer sorting andpre�x to implement the whittling procedure, this task is accomplished in O (�) timeper palette, for a total of O ��2� local computation time. Then, the sets Leftui;vjand Rightui;vj are exchanged between Pi and Pj , so that both processors may selectthe same color x 2 [1::� log�] for (ui; vj). Subsequently, processor Pi performs theprescribed edge-ranking for the edges outgoing from ui and the edges incoming intovi in O (�) time and, �nally, Pj sends the rank information for (ui; vj) to Pi so thatthe latter processor is able to compute the �nal, legitimate color of (ui; vj). Basedon the initial O ��2�-coloring of B, all the communications needed in Stage 1 canbe completed in O ��2 log�� time, which is also the total time required by thestage.Stage 2 In order to re�ne the intermediate O (� log�)-coloring to produce a (2��1)-coloring, we use the following standard, greedy technique. For each intermediatecolor in [1::O(� log�)] in turn, the processors examine the edges with that colorand recolor each such edge (u; v) with the smallest color in [1::2��1] which has notalready been assigned to any other edge incident on either u or v. The correctnessof the above protocol follows immediately from the observations that in a valid edgecoloring, edges sharing the same color form a partial matching, and that each edgeof the bundle is adjacent to at most 2�� 2 other edges.For each intermediate color in [1::O (� log�)], the OCPC processors perform theprescribed recoloring of the corresponding edges in O (�) time. As a consequence,the overall running time of Stage 2 is O ��2 log��, which is also the �nal runningtime for the entire coloring procedure. 2Lemma 4 follows from Claims 1 and 2 by adding up the times needed to deter-mine the bundle B, to compute the (2�� 1)-coloring, and to route the componentcopies corresponding to the edges in B.It has to be observed that the edge coloring procedure may be considerablysimpli�ed by skipping Stage 1 altogether and by re�ning the initial O ��2� col-oring directly into a (2� � 1)-coloring, by means of the iterative procedure ofStage 2 with O ��2� iterations. However, the overall time requirement of the col-oring would increase to � ��3� = � �log3 p�, which would then force us to chooses = � �log3 p= log log p� (rather than s = � �log2 p�). In turn, this higher value of12

s would yield a larger running time of O ��(n=p) log log p+ h log6 p�� for the entirebranch-and-bound algorithm.4. ConclusionsIn this paper, we have devised two distinct implementations of the generic,deterministic parallel algorithm for branch-and-bound of [6] for the distributed-memory, Optically Connected Parallel Computer (OCPC).Implementation 1 achieves linear speedup for large solution trees complying witha rather mild balance requirement (namely, n=maxfp3; p(logn log p)2g =
(h)),which is likely to be met by most practical scenarios, where branch-and-bound isemployed for the exploration of hard combinatorial optimization problems on coarse-grained parallel platforms featuring few processing elements. Implementation 1 isextremely simple and relies on the e�cient management of a Parallel Priority Queueproviding p-wise insertions and min-extractions. Moreover, for trees exhibiting theabove-mentioned balance requirement, its optimal running time asymptotically out-performs the one of the randomized algorithm of [8] by a � (logn) factor on theOCPC.In contrast, Implementation 2 aims at better handling the more challengingcase of trees characterized by small n=h ratios. To this end, we must resort torather involved shared memory simulation techniques, needed to enable an e�cientuse of pointers in a distributed environment. In addition, such techniques rely onnonuniform memory maps, based on highly expanding graphs, which are hard toconstruct [4]. Finding simpler yet e�cient strategies to deal with unbalanced treeson the OCPC and, in general, on distributed-memory machines, remains an openproblem.Another interesting direction for future work is to test our theoretically e�cientbranch-and-bound strategies (possibly simpli�ed) for the solution of optimizationproblems arising in practical applications on real parallel platforms, and to comparetheir performance against that of known strategies, such as those proposed in [10, 1].AcknowledgmentsThe authors wish to thank the anonymous referees of IRREGULAR'99 for theirvaluable feedback on the conference version of the paper. This research was sup-ported, in part, by the CNR of Italy under Grant CNR97.03207.CT07 Load Balanc-ing and Exhaustive Search Techniques for Parallel Architectures, and by MURST ofItaly in the framework of the ProjectMethodologies and Tools of High PerformanceSystems for Multimedia Applications.References1. R. Diekmann, R. L�uling, and A. Reinefeld, \Distributed combinatorial optimiza-tion," Proc. 20th Seminar on Current Trends in Theory and Practice of Informatics- SOFSEM'93, Hrdo�nov, CZ, Dec. 1993, pp. 33{60.2. G. Frederickson, \The information theory bound is tight for selection in a heap,"Proc. 22nd ACM Symp. on Theory of Computing, Baltimore, MD, May 1990, pp.13

26{33.3. L.A. Goldberg, M. Jerrum, F.T. Leighton and S. Rao, \A doubly logarithmic com-munication algorithm for the completely connected optical communication parallelcomputer," Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, Velen,D, Jun./Jul. 1993, pp. 300{309.4. K. Herley, \Representing shared data on distributed-memory parallel computers,"Math. Syst. Theory 29 (1996) 111{156.5. K. Herley, A. Pietracaprina and G. Pucci, \Implementing shared memory on multi-dimensional meshes and on the fat-tree," in Algorithms { ESA'95, Proc. 3rd AnnualEuropean Symp. on Algorithms, ed. P. Spirakis (Springer, Berlin, 1995) pp. 60{74.6. K. Herley, A. Pietracaprina and G. Pucci, \Fast deterministic parallel branch-and-bound," Parallel Proc. Lett. (1999). To appear.7. C. Kaklamanis and G. Persiano, \Branch-and-bound and backtrack search on mesh-connected arrays of processors," Math. Syst. Theory 27 (1995) 471{489.8. R.M. Karp and Y. Zhang, \Randomized parallel algorithms for backtrack searchand branch and bound computation," J. of the ACM 40 (1993) 765{789.9. F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays � Trees� Hypercubes (Morgan Kaufmann, San Mateo, CA, 1992).10. R. L�uling and B. Monien, \Load balancing for distributed branch & bound algo-rithms," Proc. 6th Int. Parallel Processing Symp., Beverly Hills, CA, Mar. 1992,pp. 543{549.11. M.C. Pinotti and G. Pucci, \Parallel priority queues," Inf. Proc. Lett. 40 (1991)33{40.12. F.P. Preparata, \Holographic dispersal and recovery of information," IEEE Trans.on Inf. Theory IT-35 (1989) 1123{1124.13. M.O. Rabin, \E�cient dispersal of information for security, load balancing, andfault tolerance" J. of the ACM 36 (1989) 335{348.14. E. Upfal and A. Wigderson, \How to share memory in a distributed system," J. ofthe ACM 34 (1987) 116{127.

14

