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ABSTRACT

The branch-and-bound problem involves determining the leaf of minimum cost in a
cost-labelled, heap-ordered tree, subject to the constraint that only the root is known
initially and that the children of a node are revealed only by visiting their parent. We
present the first efficient deterministic algorithm to solve the branch-and-bound problem
for a tree T' of constant degree on a p-processor distributed-memory Optically Connected
Parallel Computer (OCPC). Let ¢* be the cost of the minimum-cost leaf in T, and let n
and h be the number of nodes and the height, respectively, of the subtree 7™ C T" of nodes
whose cost is at most ¢*. When accounting for both computation and communication
costs, our algorithm runs in time O (n/p + h(max{p,lognlog p})Q) for general values of

n, and can be made to run in time O ((n/p+ hlog* p) log logp) for n polynomial in
p. For large ranges of the relevant parameters, our algorithm is provably optimal and
improves asymptotically upon the well-known randomized strategy by Karp and Zhang.

Keywords: parallel branch-and-bound; distributed-memory machines; OCPC; load bal-
ancing; information dispersal.

1. Introduction

Branch-and-bound is a widely used and effective technique for solving hard opti-
mization problems. It determines the optimum-cost solution of a problem through a
selective exploration of a solution tree, whose internal nodes correspond to different
relaxations of the problem and whose leaves correspond to feasible solutions. The
shape of the tree is generally not known in advance, since the subproblems associated
with the nodes are generated dynamically in an irregular and unpredictable fash-
ion. A suitable abstract framework for studying the balancing and communication



issues involved in the parallel implementation of branch-and-bound is provided by
the branch-and-bound problem, introduced in [8], which can be specified as follows.
Let T be an arbitrary tree of finite size. Initially, a pointer to the root is available,
while pointers to children are revealed only after their parent is visited. A node can
be visited only if a pointer to it is available, and it is assumed that the visit takes
constant time. All nodes of T are labeled with distinct integer-valued costs, the cost
of each node being strictly less than the cost of its children (heap property). The
branch-and-bound problem involves determining the cost ¢* of the minimum-cost
leaf. Note that any correct algorithm for the branch-and-bound problem must visit
all those nodes whose costs are less than or equal to ¢*. These nodes form a subtree
T* of T. Throughout the paper, n and h will denote, respectively, the size and the
height of 7.

The efficiency of any parallel branch-and-bound algorithm crucially relies on a
balanced on-line redistribution of the computational load (tree-node visits) among
the processors. Clearly, the cost of balancing must not be much larger than the
cost of the tree-visiting performed. Furthermore, since ¢* is not known in advance,
one cannot immediately distinguish nodes in T* (all of which must be visited)
from nodes in T' — T* (whose visits represent wasted work). Ensuring that the
algorithm visits few superfluous nodes is nontrivial in a parallel setting as it requires
considerable coordination between processors.

In this paper, we devise an efficient deterministic parallel algorithm for the
branch-and-bound problem on a Distributed-Memory Machine (DMM) consisting
of a collection of processor/memory pairs communicating through a complete net-
work. The model assumes that in one time step, each processor can perform O(1)
operations on locally stored data and send/receive one message to/from an arbi-
trary processor. We consider the weakest DMM variant, also known as Optically
Connected Parallel Computer (OCPC) in the literature [3], where concurrent trans-
missions to the same processor are heavily penalized. Specifically, in the event that
two or more processors simultaneously attempt to transmit to the same destination,
the processors involved are informed of the collision but no message is received by
the destination.

1.1. Related Work and New Results

A simple sequential algorithm for the branch-and-bound problem is based on
the best-first strategy, where available (but not yet visited) nodes are stored in a
priority queue and visited in increasing order of their cost. The O (nlogn) running
time of this simple strategy is dominated by the cost of the O (n) queue operations.
In [2], Frederickson devised a clever sequential algorithm to select the k-th smallest
item in an infinite heap in O (k) time. The algorithm can be easily adapted to yield
an optimal O (n) sequential algorithm for branch-and-bound.

In parallel computation, the branch-and-bound problem has been studied on a
variety of machine models. In [8], Karp and Zhang show, by a simple work/diameter
argument, that any algorithm for the problem requires at least  (n/p+ h) time
on any p-processor machine, and devise a general randomized algorithm, running



in O (n/p+ h) steps, with high probability. Each step of the algorithm entails
a constant number of operations on local priority queues per processor, and the
routing of a global communication pattern where a processor can be the recipient
of O (logp/ loglog p) messages. A straightforward implementation of this algorithm
on any DMM would require 2 (log(n/p) + log p/ loglog p) time per step, with high
probability, if both priority queue and contention costs are to be fully accounted
for. The resulting algorithm is nonoptimal for all values of the parameters n, h and
.

Kaklamanis and Persiano [7] present a deterministic branch-and-bound algo-
rithm that runs in O (\/ﬁlog n) time on an n-node mesh. The mesh-specific tech-
niques employed by the algorithm, coupled with their assumption that the mesh size
and problem size are comparable, limit the applicability of their scheme to other
parallel architectures.

A deterministic algorithm for the shared-memory EREW PRAM, based on a
parallelization of the heap-selection algorithm of [2] appears in [6]. The main result
of this paper extends the approach of [6] to the distributed-memory OCPC with
the performance stated in the following theorem.

Theorem 1 There is a deterministic algorithm running on a p-processor OCPC
that solves the branch-and-bound problem for any tree T of constant-degree in time

@) <% + h(max{p, lognlogp})2> .

When n is polynomial in p, the algorithm can be also implemented to run in time

0 <<E + hlog4p) 10glogp> .
p

Note that when n/max{p?, p(lognlogp)?} is large with respect to h, a typical
scenario in real applications, our algorithm achieves optimal © (n/p) running time.
In this case, the implementation of the algorithm is very simple and the big-oh
in the running time does not hide any large constant. In contrast, the second
implementation is asymptotically better, although more complex, when the values
of n/p and h are close, and it is indeed within a mere O (loglog p) factor of optimal
aslongash =0 (n/(p log* p)), which is a weak balance requirement on the solution
tree.

The rest of the paper is organized as follows. Section 2 reviews the generic
branch-and-bound strategy of [6], while Section 3 describes the two OCPC imple-
mentations of the generic algorithm, whose running times are given in Theorem 1.
Finally, Section 4 provides some concluding remarks and directions for future re-
search.

2. A Machine-Independent Algorithm

In this section, we briefly review the machine independent, parallel branch-and-
bound strategy introduced in [6], which is at the base of the OCPC algorithms
described in this paper.



Consider a branch-and-bound tree 7" and let s be an integer parameter which will
be specified later. For simplicity, we assume that 7' is binary, although all our results
immediately extend to trees of any constant degree. We begin by summarizing some
terminology introduced in [2, 6]. For a set of tree nodes N, let Best(/N) denote the
set containing the (at most) s nodes with smallest cost among those in N and
their descendants. A set of nodes of the form Best(N) is called a clan, and nodes
themselves are referred to as the clan’s members. The nodes of T' can be organized
in a binary tree of clans TC as follows. Let r denote the root of T'. The root of TC
is the clan R = Best({r}). Let C be a clan of TC, and suppose that C' = Best(N)
for some set N of nodes of T'. Define Off (C) (offspring) as the set of tree nodes
which are children of members of C' but are not themselves members of C, and
define PR(C) (poor relations) to be the set N — Best(N). Then, clan C has two
(possibly empty) child clans C' and C" in TC, namely C' = Best(Off (C)) and
C" = Best(PR(C)). Since T is binary, we have |Off (C)|, |PR(C)| < 2s, for every
clan C € TC. If a clan C has exactly s members, its cost, denoted by cost(C), is
defined as the maximum cost of any of its members; if C' has less than s members,
then we set cost(C') to be co (note that in this last case, C' is a leaf of TC). Since
every node in a clan C costs less than every node in Off (C) U PR(C), it is easy
to show that both cost(C') and cost(C") are strictly greater than cost(C). As a
consequence, TC is heap-ordered with respect to clan cost. An example of clan
creation is illustrated in Fig. 1.

Fig. 1. The clan creation process (s = 3). In the picture, C1 = Best({1})
has Off(C1) = {4,7,12,15}, PR(Cy1) = 0, and cost(C1) = 3. Clan
Cy = Best(Off(C1)) has Off(Cy) = {8,11,17,19}, PR(C») = {7,12,15},
and cost(Cz) = 6. Finally, C3 = Best(Off(Cz)), with cost(C3) = 13, and
C4 = Best(PR(C3)), with cost(Cs4) = 10. In TC, C; is the root, and Cs is its
sole child. C3 and C4 are the children of Cs.

In [2], Frederickson shows that the k-th smallest node of T is a member of one of
the 2[k/s] clans of minimum cost. Based on this property, he develops a sequential
algorithm that finds the k-th smallest node in T in linear time by performing a
clever exploration of 7C in increasing order of clan cost. Note that once such a



node is found, the k& nodes of smallest cost in 7' can be enumerated in linear time
as well. By repeatedly applying this strategy for exponentially increasing values of
k until the smallest-cost leaf is found, the branch-and-bound problem can be solved
for T in time proportional to the size of T™*.

The parallel branch-and-bound strategy proposed in [6] can be seen as a best-
first parallel exploration of 7C, where each clan is created in O (s) time by a single
processor using a straightforward adaptation of the heap-selection algorithm of [2].
Such a strategy is realized by the generic algorithm BB of Fig. 2, which applies
to any p-processor machine. In the next section, we will show how to implement
algorithm BB efficiently on the OCPC.

Let P; denote the i-th processor of the machine, for 1 < ¢ < p. P; maintains a
local variable £;, which is initialized to oc. Throughout the algorithm, variable ¢;
stores the cost of the cheapest leaf visited by P; so far. Also, a global variable £ is
maintained, which stores the minimum of the £;’s. At the core of the algorithm is a
Parallel Priority Queue (PPQ), a parallel data structure containing items labeled
with an integer-valued key [11]. Two main operations are provided by a PPQ: Insert,
that adds a p-tuple of new items into the queue; and Deletemin, that extracts the
p items with the smallest keys from the queue. The branch-and-bound algorithm
employs a PPQ @ to store clans, using their costs as keys. Together with @, a
global variable ¢ is maintained, denoting the minimum key currently in ). Initially,
() is empty and a pointer to the root r of T is available.

Algorithm BB:

1. P, produces clan R = Best({r}) and sets ¢; to the cost of the minimum
leaf in R, if any exists. Then, R is inserted into ), and ¢ and ¢ are
set to the cost of R and to ¢, respectively.

2. The following substeps are iterated until ¢ < gq.

(a) Deletemin is invoked to extract the k& = min{p,|Q|} clans
C1,Cs,...,Ck of smallest cost from ). For 1 < i < k, clan
C; is assigned to P;.

(b) For 1 < i < k, P; produces the two children of C;, namely C!
and C}', and updates ¢; accordingly.

(c) Insert is invoked (at most twice) to store the newly produced
clans into (). The values £ and ¢ are then updated accordingly.

3. The value ¢ is returned.

Fig. 2. The generic parallel branch-and-bound algorithm.

The following lemma was proved in [6].

Lemma 1 Algorithm BB is correct. Moreover, the number of iterations of Step 2
required to reach the termination condition is O (n/(ps) + hs).



3. OCPC Implementation

In this section, we show how algorithm BB can be efficiently implemented on
the OCPC. The implementation crucially relies on the availability of fast PPQ
operations, which is guaranteed by the following lemma.

Lemma 2 A PPQ @ storing items of constant size can be implemented on a p-
processor OCPC so that both Insert and Deletemin take O (log(|Q|/p)logp) time.

Proof. We make use of the p-Bandwidth Heap (p-BH) of [11], a binary heap
with large nodes, each maintaining p items sorted by their keys. On the OCPC,
we distribute the p items held by each p-BH node among the p memory modules.
Based on this allocation, the PRAM algorithms for Insert and Deletemin described
in [11] can be ported immediately to the OCPC by replacing PRAM sorting and
merging with bitonic sorting and merging on the OCPC [9], yielding the stated time
bound. O

If we adopted the naive approach of viewing each whole clan (with its ©(s)
members, offspring and poor relations) as a PPQ item, the complexity of the above
operations would increase by a factor of ©(s) a time penalty which is too large for
our purposes since each elementary step would entail the actual migration of the
clans involved among the processors. To overcome this problem, we store each clan
in a distinct cell of a virtual shared memory and represent the clan in the PPQ using
a constant-size record that includes its cost and its virtual cell’s address. Virtual
cells are suitably mapped onto the processors’ memories, in such a way that the
contents of p arbitrary cells can be efficiently retrieved. The mapping must guard
against the possibility that the p cells to be accessed might be concentrated in a small
number of memory modules, which would render the access unacceptably expensive
due to memory contention. Based on these ideas, we propose two implementations,
distinguished by the choice for s, and whose efficiency depends on the relative values
of n/p and h.

3.1. Implementation 1

Let s = amax{p,lognlogp}, for some constant a > 0, and suppose that the
© (s) data stored in any virtual cell (i.e., members, offspring and poor relations
of some clan) are evenly distributed among the p memory modules, with O (s/p)
data per module. Consider an iteration of Step 2 of algorithm BB. Since each
clan is represented in the PPQ by a constant-size record, the Deletemin and Insert
operations required in Substeps 2.a and 2.c take O (lognlogp) time by Lemma 2
(note that Lemma 1 implies that at any time during the algorithm |Q| = O (nsp) ).
The generation of the child clans in Substep 2.b can be performed locally at each
processor using Frederickson’s algorithm in O (s) time. Also, all data movements
involved in Step 2 can be easily arranged as a set of O (s) fixed permutations that
take O (s) time. Thus, each iteration of Step 2 requires time O (s), which yields an
@) (n/p + th) running time for the entire algorithm. The first part of Theorem 1
follows by plugging in the chosen value for s.

It has to be remarked that our choice of s requires that the algorithm know



the value n = |T*| in advance, which is clearly an unrealistic assumption in most
real scenarios. In order to remove such an assumption while maintaining the same
running time (up to constant factors), we may proceed as follows. Let n; = p?,
and, for i > 1 let n; = (n;_1)2. We start running the algorithm guessing the value
ny for |T*|. If the algorithm does not terminate within time n;/p, we abort the
execution and run the algorithm again, guessing [T*| = ny = (n1)?. In general, on
the i-th iteration, we run the algorithm, guessing |T*| = n;, and abort execution
if it does not terminate within time n;/p. Let ¢ be the least positive index such
that n;_1 < n < n;. Then, it is easy to see that, depending on the actual values
of n and h, the iterated algorithm will terminate either at guess 7, or 7 + 1, or
7+ 2. Since the guessed values for n increase geometrically, the running time of
the algorithm is determined by the running time of the last iteration, which is
0] (n/p—l— hmax2{p,lognlogp})7 since logn;y; = O (logn), for 0 < j < 2.

3.2. Implementation 2

Note that Implementation 1 achieves optimal © (n/p) running time when n/p
is rather larger than h; however, it becomes progressively less profitable for more
unbalanced trees. In the latter scenario, it is convenient to choose a much smaller
value for s which, however, requires a more sophisticated mechanism to avoid mem-
ory contention. In particular, when s < p, it becomes necessary to introduce some
redundancy in the representation of virtual cells and to carefully select, for each
virtual cell, a subset of processors that store its (replicated) contents, so that any p
cells can be retrieved by the processors with low contention at the memory modules.
These ideas are explained in greater detail below.

In the following, we assume that n is polynomial in p, that the machine word
contains O (log p) bits, and that each node of the branch-and-bound tree T' is rep-
resented using a constant number of words. In this fashion, clans, as well as virtual
cells, can be regarded as strings of © (slogp) bits. Each cell is assigned a set of
d = O (log p) distinct memory modules as specified by a suitable memory map mod-
eled by means of a bipartite graph G = (U, V, E) with |U| inputs, corresponding to
the virtual cells, |V| = p outputs, corresponding to the OCPC memory modules,
and d edges connecting each virtual cell to the d modules assigned to it. The quan-
tity |U| = pP(M) is chosen as an upper bound to the total number of virtual cells
ever needed by the algorithm. We call d the degree of the memory map.

Consider a set of p newly created clans, Cq,Cy,...,Cp, to be stored in the
memory modules, and let processor P; be in charge of clan C;. First, a distinct
unused cell u; is chosen for each clan C;. Then, P; recodes u; into a longer string of
size 3|u;| and splits it into k = elogp components (e < 1), each of 3|u;|/k = O (s)
bits (stored in © (s/k) words), by using an Information Dispersal Algorithm (IDA)
[12, 13], so that any k/3 components suffice to recreate the original contents of
u;. The following lemma, proved in Subsection 3.2.1, establishes the complexity of
these encoding/decoding operations.

Lemma 3 A processor can transform a cell u into k components of © (s) bits each,
in O (slogk) = O (sloglogp) time, so that u can be recreated from any k/3 compo-



nents within the same time bound.

After the encoding, P; replicates each component of u; into a = d/k = O (1)
copies, referred to as component copies, and attempts to store the resulting d com-
ponent copies of u; into the d modules assigned to the cell by the memory map G,
in parallel for every 1 < ¢ < p. The operation terminates as soon as all processors
effectively store at least 2d/3 component copies each.

Consider now the case when the processors need to fetch the contents of p
cells from the memory modules. Each processor attempts to access the d modules
that potentially store the component copies of the cell and stops as soon as any
2d/3 modules are accessed. Although not all accessed modules may effectively
contain component copies of the cell, we are guaranteed that at least d/3 component
copies, hence k/3 distinct components, will be retrieved. This is sufficient for each
processor to reconstruct the entire cell. The following lemma will be proved in
Subsection 3.2.2.

Lemma 4 For a suitable constant a > 1, there exists a memory map G = (U,V, E)
with |U| = p°®Y), |V| = p and with each node in U of degree d = aelogp, under
which any set S of p virtual cells can be stored/retrieved in the OCPC memory
modules in O (s + log® plog logp) time.

Putting it all together, the extraction of the p clans of minimum cost among
those represented in the PPQ ) can be accomplished as follows. First, the ad-
dresses of the corresponding cells are extracted from @ in time O (log(|Q|/p) logp) =
0 (log2 p) and distributed one per processor. Then, by Lemma 4, k/3 compo-
nents for each cell are retrieved in O (s +log” plog logp) time. Finally, the con-
tents of each clan C are reconstructed in O (|C|logk) = O (sloglogp) time, by
Lemma 3. By combining all of the above contributions we obtain a running time
of O (slog log p + log” plog logp) for parallel clan extraction. In a similar fashion,
one can show that the insertion of p new clans in the queue can be accomplished
within the same time bound.

The complexity of algorithm BB is dominated by that of Step 2. Each it-
eration of this step entails one extraction and at most two insertions of p clans
(O (5 loglog p + log” plog logp) time), the generation of at most two new clans per
processor (O (s) time), and a number of other simple operations all executable in
O (logp) time. Hence, an iteration requires O (sloglogp + log2ploglogp) time.
Since, by Lemma 1, there are O (n/(ps) + hs) iterations, the second part of The-
orem 1 follows by choosing s = log” p. Note that, unlike Implementation 1, this
choice of s does not require advance knowledge of the shape of 7, hence no guessing
is needed.

3.2.1. Proof of Lemma 3

We will only describe the encoding procedure, since the reconstruction procedure
is based on the same ideas and exhibits the same running time. Consider a virtual
cell u, and view it as a rectangular © (s) x (k/3) bit-array A,,, with every row stored
in a separate word. By using IDA [12, 13], each row can be independently recoded

into a string of k bits, so that any k/3 such bits are sufficient to reconstruct the



entire row. The resulting O (s) x k bit-array A!, is then “repackaged” so that each of
its k O (s)-bit columns can be stored as a sequence of © (s/k) words. Each of these
© (s/k)-word sequences constitutes a distinct component. A pictorial representation
of the encoding procedure is given in Fig. 3.

k/3 ~—k —»
O(s/k)
I | | | - | IM
O(s) | Au DA Al Repackage “ | | | | ”k
I | | | | |
(c)
(a) (b)

Fig. 3. Encoding of a clan into components: (a) clan contents are arranged
into © (s) strings of k/3 bits each; (b) each row is encoded into a k-bit string
through IDA; (c) each column is packaged into © (s/k) words, thus making a
component.

Rather than actually running the information dispersal algorithm, we can use
a precomputed look-up table of 2¥/3 = p¢/3 entries accessible in constant time.
The i-th entry of the table, holds the k-bit encoding of the (k/3)-bit binary string
corresponding to integer i. Note that this table need only be computed once and
made available to each node of the machine. (A similar table with 2¥ = p¢ entries
will be needed for decoding.)

The repackaging of the columns of A!, into sequences of words can be achieved
by sequentially transposing each of the © (s/k) k x k-blocks of Al (k consecutive
rows). Specifically, the transposition of a k& x k block is performed by first swap-
ping its northeast and southwest quadrants and then recursively and independently
transposing the four k/2 x k/2 quadrants in place (see Fig. 4 below).

a b |c d a b|[i i a e i m

e f [8 h (a) e ffm n (b) b f j n
):4 —_— —_—

i ik 1 c d][x 1 c & k o
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Fig. 4. Transposing a 4 x 4 block: (a) NE and SW quadrants are swapped; (b)
each quadrant is independently and recursively transposed.

Note that the swaps implied by the above algorithm can be realized through a
sequence of fixed bit-wise logical operations using masks. Since each of the logk
levels of recursion requires k such operations and a constant number of masks, a
block can be transposed in O (klog k) time using O (log k) masks.

The running time of the encoding procedure is dominated by the repackaging
cost, which is O(slogk) = O (sloglogp). Note that the encoding/decoding activi-
ties are performed locally at each processor and require no external communication.



3.2.2. Proof of Lemma 4

Consider a memory map G = (U, V, F) and a set S C U of p cells, and let E(S)

denote the set of edges incident on nodes of S. A c-bundle for S of congestion ¢ is
a subset B C E(S) where each u € S has degree ¢ and any v € V has degree at
most ¢ with respect to the edges in B. The following claim demonstrates that there
exists a suitable G which guarantees that a (2d/3)-bundle of low congestion exists
for every set S of p (or fewer) cells, and that such a bundle may be determined
efficiently.
Claim 1 For d = aelogp, for a sufficiently large positive constant a, there exists a
memory map G of degree d such that, for any given set S of p cells, there is a (2d/3)-
bundle of congestion ¢ = O (d). Moreover, one such bundle can be determined in
O (dlogp) = O (log” p) time on the OCPC.

Proof. Choose d = aelogp to be an odd multiple of 3. We map the cell compo-
nents to the memory modules according to a (A, d, d/3,1/d)-generalized expander, a
bipartite graph G = (V, U, E) whose existence for |U| = p®1), |V| = p, and suitable
constants @ > 1 and A < 1 was proved in [4, Theorem 4]. Such a map has the
following expansion property: For any set S’ of at most p/d cells in U, and any k-
bundle B’ for S', with k > d/3, the set ' (S") of memory modules containing those
components of cells in S’ corresponding to edges in B’ has size |[['(S')| > Ak|S'|.

Based on this property, we can determine a low-congestion 2d/3-bundle for any
given set S of p cells by applying a simple variant of the whittling protocol of [5],
which can be shortly described as follows. Starting from E(S), each step of the
protocol prunes the set of edges by selecting 2d/3 edges each for some of the cells
in S, and discarding the remaining d/3. The prunings are performed in such a way
that the congestion of the final 2d/3 bundle for S does not exceed a given congestion
threshold ¢ = O (d). More specifically, at the beginning of each step, a cell in S
is said to be alive if the 2d/3 edges for the cell have not been selected yet, and
dead otherwise. Let S; be the set of live variables at the beginning of the i-th step,
for ¢ > 1. During the step, the processors first identify the set V; C V of “heavily
loaded” modules, i.e., those modules storing more than g components of cells in Sj,
and then select arbitrary sets of 2d/3 edges incident on modules in V — V; for all
those cells which have at least that many components stored outside V;. Any such
cell is marked dead, and its d/3 unselected components are discarded.

From a minor variation of [5, Lemma 8] it follows that |S;| < p/di~!, for i > 1.
As a consequence, 1+ log,p = O (log p/ loglog p) steps suffice to determine a 2d/3-
bundle for S, which, by construction, has congestion at most ¢ = O (d).

On the OCPC, the i-th step of the whittling protocol, for ¢ > 1, can be im-
plemented using a constant number of sorting and prefix computations on a set of
d|S;| < p/di=? items. As a consequence, the overall running time of the protocol is
dominated by the time of the first step, which is O (dlogp) = O (log” p). O

Let us now consider the problem of writing a set S of p cells, ui,us,...,up
(the problem of reading p cells is similar). First, each processor P; encodes the
cell u; it wishes to write into d component copies using the IDA-based techniques
described before, and then all processors cooperate to construct a (2d/3)-bundle
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B of congestion O (d) for S using the whittling protocol described in the proof of
Claim 1. At the end of the protocol, we assume that P; knows the edges in B that
are incident on cell u; and on the i-th memory module v;. It is important to note
that the whittling protocol merely indicates to each processor P; the locations to
which the 2d/3 component copies of its cell u; should be written: the actual physical
movement of the component copies of u;, each consisting of © (s/k) words, must be
implemented as a separate step. This is a nontrivial task, since each processor P;
must dispatch (resp., receive) one component copy for each edge in B incident on u;
(resp., v;); hence, the processor must dispatch 2d/3 component copies and receive
O (d) of them. In particular, the transmission of copies must be coordinated so as
to avoid “collisions” at the receiving processors.

Standard routing techniques based on sorting [9] cannot be applied in our con-
text, since they would yield an Q (dslogp/k) = Q (slogp) component routing time
that is too slow for our purposes. Hence, we resort to a more sophisticated approach
based on edge coloring. More specifically, let A = ©(d) denote the maximum de-
gree of a node in U UV with respect to the edges in B. Then, any O (A)-edge
coloring of B would allow us to decompose component routing into O (A) stages,
each requiring O (s/k) time, for an overall O (As/k) = O (ds/k) = O (s) time. It
remains to show that such an edge coloring for B can be computed efficiently by
the OCPC processors. We establish the following result.

Claim 2 A (2A —1)-edge coloring for B may be computed in O(A®log A) time on
the OCPC.

Proof. It is easy to extend the whittling protocol of Claim 1, so that, together
with B, it produces a O(A?)-edge coloring for B within the same time bound. In
fact, the extra work needed amounts to the maintenance of one color-tag for each
edge, which is suitably updated during the sorting and prefix steps. We transform
this initial O(A?)-coloring into a (2A — 1)-coloring in two stages: in the first stage,
we produce an intermediate O(A log A)-coloring, which is then refined in the second
stage to yield the desired (2A — 1)-coloring.

Stage 1 In the first stage, we make use of a (v,2r — 1,7, 0 (1/r))-generalized
expander G = (U',V',E'), with [U'| = © (A?%), V' = AlogA, v = O(1) and
r = O©(log A), akin to the one underlying Claim 1, to map each of the O(A?) colors
into 2r — 1 values in [1..Alog A]. This mapping has the property that for any set of
colors D C [1..0 (A?)], with [D| < A, we may select, for each z € D, a palette of r
values in [1..Alog A] such that the same value occurs in at most O(1) palettes. The
selection of these subsets is accomplished by running the whittling protocol akin to
that of Claim 1, with ¢ = O(1), to determine an r-bundle of congestion ¢ for D.
Following the proof of [5, Lemma 8] one can easily show that 1 + log A whittling
steps suffice.

By repeating the r-bundle selection procedure for each set of at most A colors
associated with edges of B incident on either one of the p cells u or a memory
module v, we determine, for each edge (u,v) € B, two palettes Left, ., Right,, ,
C [1..AlogA] such that |Left, ,| = |Right
chosen out of a set of 2r — 1 values, they must have nonempty intersection. We pick

r. Since the two palettes were

u,v| -
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one of the values in the intersection as the new color of (u,v).

Although the above procedure successfully reduces the number of colors to
Alog A, the resulting (Alog A)-coloring may not be legal, since up to ¢ edges of B
of the same color may be incident on the same vertex u € U or v € V. However,
we can now easily produce a valid coloring by increasing the number of colors by a
factor of g2 = O (1) as follows. We first assign consecutive ranks to all same-colored
edges in B incident on the same node u € U or v € V (note that each edge is thus
ranked twice). Let now edge (u,v) of color z be the i-th xz-colored edge outgoing
from node u and the j-th z-colored edge incoming into node v, with 1 <i,j < g.
We recolor (u,v) with color (x,4,7). The proof that the new coloring is a valid
@) (qu log A)—coloring is straightforward.

Processor P; computes O (A) palettes sequentially, namely, Left,, , for each
(ui,v) € B and Right,, ,, for each (u,v;) € B. Using sequential integer sorting and
prefix to implement the whittling procedure, this task is accomplished in O (A) time
per palette, for a total of O (A2) local computation time. Then, the sets Left,, .,
and Right
the same color z € [1..Alog A] for (u;,v;). Subsequently, processor P; performs the

u;,v; are exchanged between P; and Pj, so that both processors may select
prescribed edge-ranking for the edges outgoing from u; and the edges incoming into
v; in O (A) time and, finally, P; sends the rank information for (u;,v;) to P; so that
the latter processor is able to compute the final, legitimate color of (u;,v;). Based
on the initial O (Az)—coloring of B, all the communications needed in Stage 1 can
be completed in O (A2 log A) time, which is also the total time required by the
stage.

Stage 2 In order to refine the intermediate O (A log A)-coloring to produce a (2A —
1)-coloring, we use the following standard, greedy technique. For each intermediate
color in [1..O(Alog A)] in turn, the processors examine the edges with that color
and recolor each such edge (u,v) with the smallest color in [1..2A — 1] which has not
already been assigned to any other edge incident on either u or v. The correctness
of the above protocol follows immediately from the observations that in a valid edge
coloring, edges sharing the same color form a partial matching, and that each edge
of the bundle is adjacent to at most 2A — 2 other edges.

For each intermediate color in [1..0 (Alog A)], the OCPC processors perform the
prescribed recoloring of the corresponding edges in O (A) time. As a consequence,
the overall running time of Stage 2 is O (A?log A), which is also the final running
time for the entire coloring procedure. a

Lemma 4 follows from Claims 1 and 2 by adding up the times needed to deter-
mine the bundle B, to compute the (2A — 1)-coloring, and to route the component
copies corresponding to the edges in B.

It has to be observed that the edge coloring procedure may be considerably
simplified by skipping Stage 1 altogether and by refining the initial O (AQ) col-
oring directly into a (2A — 1)-coloring, by means of the iterative procedure of
Stage 2 with O (A2) iterations. However, the overall time requirement of the col-
oring would increase to © (A3) =0 (log3 p), which would then force us to choose
s =0 (log3 p/loglogp) (rather than s = © (log2 p)). In turn, this higher value of
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s would yield a larger running time of O (((n/p)loglogp + hlog® p)) for the entire
branch-and-bound algorithm.

4. Conclusions

In this paper, we have devised two distinct implementations of the generic,
deterministic parallel algorithm for branch-and-bound of [6] for the distributed-
memory, Optically Connected Parallel Computer (OCPC).

Implementation 1 achieves linear speedup for large solution trees complying with
a rather mild balance requirement (namely, n/max{p® p(lognlogp)?} = Q(h)),
which is likely to be met by most practical scenarios, where branch-and-bound is
employed for the exploration of hard combinatorial optimization problems on coarse-
grained parallel platforms featuring few processing elements. Implementation 1 is
extremely simple and relies on the efficient management of a Parallel Priority Queue
providing p-wise insertions and min-extractions. Moreover, for trees exhibiting the
above-mentioned balance requirement, its optimal running time asymptotically out-
performs the one of the randomized algorithm of [8] by a © (logn) factor on the
OCPC.

In contrast, Implementation 2 aims at better handling the more challenging
case of trees characterized by small n/h ratios. To this end, we must resort to
rather involved shared memory simulation techniques, needed to enable an efficient
use of pointers in a distributed environment. In addition, such techniques rely on
nonuniform memory maps, based on highly expanding graphs, which are hard to
construct [4]. Finding simpler yet efficient strategies to deal with unbalanced trees
on the OCPC and, in general, on distributed-memory machines, remains an open
problem.

Another interesting direction for future work is to test our theoretically efficient
branch-and-bound strategies (possibly simplified) for the solution of optimization
problems arising in practical applications on real parallel platforms, and to compare
their performance against that of known strategies, such as those proposed in [10, 1].
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