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ABSTRACT

We present a general deterministic scheme to implement a shared memory abstrac-
tion on any distributed-memory machine which exhibits a clustered structure. More
specifically, we develop a memory distribution strategy and an access protocol for the
Decomposable BSP (D-BSP), a generic machine model whose bandwidth/latency pa-
rameters can be instantiated to closely reflect the characteristics of machines that admit
a hierarchical decomposition into independent clusters. Our scheme achieves provably
optimal slowdown for those machines where delays due to latency dominate over those
due to bandwidth limitations. For machines where this is not the case, the slowdown is
a mere logarithmic factor away from the natural bandwidth-based lower bound.
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1. Introduction

Providing a shared address space on a distributed-memory parallel system is

a fundamental problem which has been extensively investigated from both a the-

oretical and a practical perspective over the last two decades. In the theoretical

setting, the problem has been regarded as the simulation of the PRAM model of

parallel computation [1] over processor networks. More precisely, PRAM simula-

tion requires the development of a scheme to represent m shared objects (called

variables) onto a network of n ≤ m processor/memory pairs in such a way that

any n-tuple of variables can be read/written efficiently by the processors. The time

required by a parallel access to an arbitrary n-tuple of variables is referred to as the

slowdown of the scheme.

Both randomized and deterministic schemes have been proposed in the litera-

∗A preliminary version of this work appeared in the Proceedings of the 15th International
Parallel and Distributed Processing Symposium, San Francisco, CA April 2001.
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ture for a number of specific networks. Randomized schemes typically distribute

the variables among the memory modules local to the processors through one (or

more) hash functions, chosen from a suitable universal class. The properties of

these functions guarantee, with high probability, that the variables are evenly dis-

tributed among the modules so that an access to any n-tuple of variables incurs

low congestion both at the memory modules and across the network. Random-

ized schemes based on this strategy have been proposed to simulate a PRAM step,

with high probability, in O (log log log n log∗ n) time on the complete network [2],

in O (log n) time on the butterfly [3] and in O
(

dn1/d
)

time on the d-dimensional

mesh [4]. Work-optimal randomized schemes are presented in [5], to simulate an

(n log n)-processor PRAM on an n-processor hypercube with slowdown O (log n),

and in [6], to simulate an (n log log n)-processor PRAM on an n-processor Optical

Communication Parallel Computer with slowdown O (log log n).

In contrast, deterministic schemes require a redundant representation of the

address space where every variable is replicated into ρ copies distributed among

the memory modules through a map which exhibits suitable expansion properties.

The expansion properties are needed to avoid trivial worst cases where all of the

copies of some n-tuple of variables are confined within few memory modules, or,

more generally, within a low-bandwidth region of the network. The parameter ρ is

referred to as the redundancy of the scheme. The main idea, originally introduced

in [7] and subsequently refined in [8], is that any access (read or write) to a variable

is satisfied by reaching only a subset of its copies which is suitably chosen to reduce

congestion while ensuring consistency (i.e., a read access must always return the

most updated value of the variable).

Based on the above idea, deterministic schemes have been devised in the lit-

erature for a number of network topologies. In particular, for m polynomial in

n, schemes are known to simulate a PRAM step on a complete network in time

O (log n) [9], and on a mesh of trees with n processors and n2 switching elements

in time O
(

log2 n/ log log n
)

[10]. For arbitrary values of m, schemes achieving

polylogarithmic worst-case slowdown have been proposed for an expander-based

network [11], and for an augmented mesh of trees [12]. By employing suitable

splitting/combining techniques, the deterministic scheme presented in [13] attains

O
(

√

n log(m/n)
)

slowdown on the pruned butterfly (a variant of the fat tree), and

O
(

n1/d(log(m/n))1−1/d
)

slowdown on a d-dimensional mesh. In the same work, a

general argument is provided to bound from below the worst-case slowdown of any

deterministic simulation scheme as a function of certain bandwidth characteristics

of the interconnection.

All of the aforementioned deterministic schemes crucially exploit the specific

structure of the underlying network topology and, consequently, are not easily ap-

plicable to other topologies. Moreover, they require redundancy logarithmic in m

and rely on the existence of very powerful expanding graphs of nonconstant degree

for which no explicit construction is known.

The first deterministic schemes that are also fully constructive have been devised
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in [14] for the complete network. For m = Θ
(

n3/2
)

, m = Θ
(

n2
)

and m = Θ
(

n3
)

,

these schemes attain worst-case slowdown of O
(

n1/3
)

, O
(

n1/2
)

and O
(

n2/3
)

, re-

spectively, while using constant redundancy. In a recent work [15], a deterministic

scheme for an n-processor mesh has been presented, which achieves O (
√

n log n)

slowdown and features a novel memory organization based on weakly expanding

graphs that can be explicitly constructed for a range of memory sizes. Moreover,

the memory map exhibits a hierarchical structure tailored to the natural recursive

decomposition of the mesh into submeshes and shows promise to be portable to

other clustered architectures.

Building on the techniques of [15], in this paper we develop a general scheme to

implement shared memory on parallel machines with a clustered structure, achieving

a worst-case slowdown which is optimal, or close to optimal, with respect to the

limitations imposed by the machine’s bandwidth/latency characteristics. To achieve

generality, the scheme is designed for the D-BSP, a generic machine model that can

be efficiently supported on a wide class of clustered architectures by a suitable

setting of the model’s parameters.

In the following two subsections we give a formal definition of the machine model

and outline the main results of the paper.

1.1. Machine Model

The Decomposable Bulk Synchronous Parallel (D-BSP) model was introduced in

[16] as an extension of Valiant’s BSP [17] aimed at capturing locality within clusters;

in this paper, we employ the following more regular version of the model (referred to

as recursive D-BSP in [16]). Let n be a power of two, and let g = (g0, g1, . . . , glog n)

anda ℓ = (ℓ0, ℓ1, . . . , ℓlog n). A D-BSP (n, g, ℓ) is a collection of n processor/memory

pairs communicating through a router. For 0 ≤ i ≤ log n, the n processors are

partitioned into 2i fixed, disjoint i-clusters C
(i)
0 , C

(i)
1 , · · · , C(i)

2i−1 of n/2i processors

each, where the processors of a cluster are able to communicate among themselves

independently of the other clusters. The clusters form a hierarchical, binary decom-

position tree of the D-BSP machine, specifically, C log n
j contains only processor Pj ,

for 0 ≤ j < n and C
(i)
j = C

(i+1)
2j ∪ C

(i+1)
2j+1 , for 0 ≤ i < log n and 0 ≤ j < 2i.

A D-BSP computation consists of a sequence of labelled supersteps. In an i-

superstep, 0 ≤ i ≤ log n, each processor executes internal computation on locally

held data and sends messages exclusively to processors within its i-cluster. The

superstep is terminated by a barrier, which synchronizes processors within each

i-cluster independently. It is assumed that messages sent in one superstep are

available at the destinations only at the beginning of the subsequent superstep. If

each processor performs at most w local operations, and the messages sent in the

superstep form an h-relation (i.e., each processor is source or destination of at most

h messages), then the cost of the i-superstep is upper bounded by w + hgi + ℓi. In

other words, an i-cluster in isolation behaves like a BSP of parameters gi and ℓi.

aIn this paper we use log x to indicate the base-2 logarithm.
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Although all of the D-BSP algorithms developed in this paper are correct inde-

pendently of g and ℓ, we will analyze their running time for a class of parameter

values of particular significance. Namely, let α and β be two arbitrary constants,

with 0 < α, β < 1. We will consider D-BSP (n, g(α), ℓ(β)) machines with
{

g
(α)
i = Θ

(

(n/2i)α
)

,

ℓ
(β)
i = Θ

(

(n/2i)β
)

,
0 ≤ i ≤ log n. (1)

Note that these parameters capture a wide family of machines whose clusters are

characterized by moderate bandwidth and moderate to high latency. For instance,

the values α = β = 1/d, for any integer d ≥ 1, yield a D-BSP machine whose

bandwidth/latency distribution reflects that of a d-dimensional array. Indeed, by

combining the routing results of [18] with those in [19] it can be shown that any re-

cursive network topology of bounded degree, with flux Ω (n−α) and diameter O
(

nβ
)

,

can support a D-BSP (n, g(α), ℓ(β))with at most polylogarithmic inefficiencyb.

1.2. New Results

The main result of the paper is summarized in the following theorem.

Theorem 1 For any value m upper bounded by a polynomial in n and for any

k ≥ 0 there exists a scheme to implement a shared memory of size m on a D-

BSP (n, g(α), ℓ(β)) with redundancy Θ
(

3k
)

and slowdown

O

(

2kn
α+

α(1−α)

2k(2−α) + knβ

)

.

The scheme requires only weakly expanding graphs of constant degree and can be

made fully constructive for m = O
(

n3/2
)

and α ≥ 1/2.

The following corollary is an immediate consequence of the theorem.

Corollary 1 For any value m upper bounded by a polynomial in n there exists a

scheme to implement a shared memory of size m on a D-BSP (n, g(α), ℓ(β)) with

optimal slowdown O
(

nβ
)

and constant redundancy, when α < β, and slowdown

O (nα log n) and redundancy O
(

log1.59 n
)

, when α ≥ β. The scheme requires only

weakly expanding graphs of constant degree and can be made fully constructive for

m = O
(

n3/2
)

and α ≥ 1/2.

The importance of the above results is twofold. First, the proposed scheme is

general and can be implemented on any machine supporting the D-BSP abstrac-

tion. Second, Corollary 1 shows, for the first time in the literature, that optimal

worst-case slowdowns for shared memory access are achievable with constant re-

dundancy for machines where latency overheads dominate over those due to band-

width limitations. On the other hand, the lower bound proved in [13] shows that

under reasonable assumptions, the performance of our scheme is not far from op-

timal for bandwidth-limited machines. Indeed, consider a machine that supports a

bRecall that the flux of a network G = (V, E) is defined as the minimum among all subsets
U ⊂ V , with |U | ≤ |V |/2, of |C(U, V − U)|/|U |, where C(U, V − U) denotes the edge-cut induced
by U [18].
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D-BSP (n, g(α), ℓ(β)) with α ≥ β, and assume that each subset of processors associ-

ated with an i-cluster is connected to the rest of the network by O
(

(n/2i)1−α
)

links

(note that such a machine cannot support a D-BSP (n, g(α′), ℓ(β)) with α′ < α).

The result in [13, Theorem 9] implies that the minimal slowdown achievable by

any scheme like ours which dispatches an individual message for each copy to be

accessed is Ω
(

nα(log(m/n)/ log log(m/n))1−α
)

, and that in order to achieve such

slowdown redundancy Ω (log(m/n)/ log log(m/n)) is necessary.

As mentioned before, our scheme builds upon the one presented in [15], whose

design exploits the recursive decomposition of the underlying interconnection to

provide a hierarchical, redundant representation of the shared memory based on

k + 1 levels of logical modules. More specifically, each variable is replicated into

r = O (1) copies, and the copies are assigned to r logical modules of level 0. In

turn, the logical modules at the i-th level, 0 ≤ i < k are replicated into three copies,

which are assigned to three modules of level i + 1. This process eventually creates

r3k = Θ
(

3k
)

copies of each variable, and 3k−i replicas of each module at level i.

The number (resp., size) of the logical modules decreases (resp., increases) with the

level number, and their replicas are assigned for storing to distinct subnetworks of

appropriate size.

The key ingredients of the above memory organization are represented by the

bipartite graph that governs the distribution of the copies of the variables among

the modules of the first level, and those that govern the distribution of the replicas

of the modules at the subsequent levels. The former graph is required to exhibit

some weak expansion property and its existence can always be proved through com-

binatorial arguments although, for certain memory sizes, explicit constructions can

be given. In contrast, all the other graphs employed in the scheme require expansion

properties that can be obtained by suitable modifications of the BIBD graph [20],

and can always be explicitly constructed. In fact, the choice of these latter graphs

is where the memory organization adopted here mainly differs from the one pre-

sented in [15]. In particular, unlike [15], these graphs are not simply subgraphs of

the BIBD, but their construction requires some nontrivial rearrangements to make

them suitable for the clustered structure of the D-BSP while maintaining good

expansion properties.

For an n-tuple of variables to be read/written, the selection of the copies to

be accessed and the subsequent execution of the accesses of the selected copies

are performed through suitable protocols, similar to the ones in [15], which can

be implemented through a combination of prefix, sorting and routing primitives.

We employ efficient D-BSP implementations for these primitives, including a novel

optimal implementation of (k1, k2)-routing, to obtain the results stated above.

The rest of the paper is organized as follows. Section 2 presents the D-BSP

primitives employed in our scheme. Section 3 describes the memory organization

and the graphs involved. Section 4 describes the copy selection (Subsection 4.1)

and the subsequent access to the selected copies (Subsection 4.2). Section 5 briefly

discusses issues related to the constructivity of the scheme. Finally, Section 6 offers

5



some concluding remarks.

2. D-BSP Primitives

The scheme described in the following sections makes use of prefix, broadcast,

sorting and routing primitives. The following propositions state the complexities

of these primitives on a D-BSP (n, g(α), ℓ(β)). For ease of reference, the results are

summarized in Table 1.

Table 1. Execution times on D-BSP (n,g(α), `(β)) of some common primitives.

Problem Execution Time

Broadcast O
(

nα + nβ
)

Prefix computation O
(

nα + nβ
)

k-sorting O
(

knα + nβ
)

if k = poly(n)

(k1, k2)-routing
O
(

kα
mink

1−α
max nα + nβ

)

,
where kmin = min{k1, k2} and kmax = max{k1, k2}

Proposition 1 ([16]) Any instance of single-item broadcast or parallel prefix of n

items can be accomplished in time O
(

nα + nβ
)

on a D-BSP (n, g(α), ℓ(β)).

Let k-sorting denote a sorting problem in which k keys are initially assigned

to each one of the n D-BSP processors and are to be redistributed so that the k

smallest keys will be held by processor P0, the next k smallest ones by processor

P1, and so on. We have:

Proposition 2 Any instance of k-sorting, with k upper bounded by a polynomial

in n, can be executed in time Tsort(k, n) = O
(

knα + nβ
)

on a D-BSP (n, g(α), ℓ(β)).

Proof. Sort the k keys inside each processor sequentially, then simulate bitonic

sorting on a hypercube [21] using the merge-split rather than the compare-swap

operator, and mapping processors adjacent along the i-th dimension of the cube to

D-BSP processors within the same (log n − i − 1)-cluster, for 0 ≤ i < log n. This

yields an overall running time for k-sorting of

O

(

k log k +

log n−1
∑

i=0

(i + 1) (kgi + li)

)

,

which simplifies to O
(

knα + nβ
)

if k is upper bounded by a polynomial in n. 2

We call (k1, k2)-routing a routing problem where each processor is the source

of at most k1 packets and the destination of at most k2 packets. Observe that

any (k1, k2)-routing is a max{k1, k2}-relation, hence the “greedy” routing strategy

where all packets are delivered within the same superstep requires, in the worst case,

max{k1, k2} · nα + nβ time on a D-BSP (n, g(α), ℓ(β)). In the following proposition

we show that a careful exploitation of the submachine locality exhibited by the

model yields a better algorithm for (k1, k2)-routing.

Proposition 3 Any instance of (k1, k2)-routing can be executed on a D-
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BSP (n, g(α), ℓ(β)) in time

Trout(k1, k2, n) = O
(

kα
mink1−α

maxnα + nβ
)

,

where kmin = min{k1, k2} and kmax = max{k1, k2}.
Proof. We accomplish (k1, k2)-routing on a D-BSP in two phases as follows.

1. For i = log n − 1 down to 0, in parallel within each C
(i)
j , 0 ≤ j < 2i: evenly

redistribute messages with origins in C
(i)
j among the processors of the cluster.

2. For i = 0 to log n − 1, in parallel within each C
(i)
j , 0 ≤ j < 2i: send the

messages destined to C
(i+1)
2j to such cluster, so that they are evenly distributed

among the processors of the cluster. Do the same for messages destined to

C
(i+1)
2j+1 .

Note that the above algorithm does not require that the values of k1 and k2 be

known a priori. It is easy to see that at the end of iteration i of the first phase

each processor holds at most ai = min{k1, k22
i} messages, while at the end of

iteration i of the second phase, each message is in its destination (i + 1)-cluster,

and each processor holds at most di = min{k2, k12
i+1} messages. Note also that

iteration i of the first (resp., second) phase can be implemented through a constant

number of prefix operations and one routing of an ai-relation (resp., di-relation)

within i-clusters. Putting it all together, the running time of the above algorithm

on a D-BSP (n, g(α), ℓ(β)) is

O

(

log n−1
∑

i=0

(

max{ai, di}
( n

2i

)α

+
( n

2i

)β
)

)

.

The theorem follows by plugging in the above formula the bounds for ai and di

derived before. 2

It must be remarked that all the aforementioned primitives yield optimal

algorithms when prominent interconnections (such as arrays) simulate a D-

BSP (n, g(α), ℓ(β)) machine with matching bandwidth/latency parameters.

3. Memory Organization

The Hierarchical Memory Organization Scheme (HMOS) that governs the dis-

tribution of the copies of the m shared variables among the local memories of the

n processors is a cascade of bipartite graphs obtained as a modification of the one

introduced in [15]. A sample HMOS is depicted in Figure 1. In what follows we

briefly recall how the HMOS is structured and point out the differences with the

version in [15].

Let V denote the set of variables, and let Ui, 0 ≤ i ≤ k, denote a set of nodes

referred to as i-modules, where k = O (log log n) is a suitable nonnegative integer

that will be specified in the analysis. The Ui’s can be regarded as nested collections
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Fig. 1. A sample HMOS built upon |V | = m = 8 variables, with k = 2 levels
of i-modules, |U0| = 8 0-modules, |U1| = 4 1-modules, |U2| = 3 2-modules and
r = 5. To reduce the size of the HMOS, thus making it easier to read, the
figure does not respect all the constraints on the parameters that are listed in
Section 3. For the same reason, only the edges associated with the copies of
variable v4 are shown.

of variables, and are obtained as follows. First, each variable is replicated into

r = O (1) copies, r odd, which are assigned to distinct 0-modules. The contents of

each 0-module, viewed as an indivisible unit, are in turn replicated into 3 copies,

which are assigned to distinct 1-modules. In general, the contents of each (i − 1)-

module, viewed as an indivisible unit, are replicated into 3 copies, which are assigned

to distinct i-modules, for 0 < i ≤ k. The above process will eventually create 3k−i

replicas of each i-module and r3k copies per variable. An example of the content of

i-modules and of the whole memory is given by Figures 2 and 3. We will reserve the

term copy to denote the replica of a variable, and i-block to denote the replica of an

i-module. (Note that with this terminology k-modules and k-blocks coincide.) A k-

module is composed of (k−1)-blocks, which in turn are composed of (k−2)-blocks,

and so on. Finally, 0-blocks contain copies of variables.

The mapping between variables and 0-modules is represented by a bipartite

graphc (V, U0), where each variable v ∈ V is adjacent to the r 0-modules whose

0-blocks hold the copies of v. Similarly, the mapping between (i − 1)-modules

and i-modules is represented by a bipartite graph (Ui−1, Ui), 1 ≤ i ≤ k, where

each (i − 1)-module u is adjacent to the 3 i-modules whose i-blocks contain the

(i − 1)-blocks of u. We assume that m = nτ , for some constant τ > 1. Let us fix

cFor ease of presentation, we identify a bipartite graph by the sets of input and output nodes
only.
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Fig. 2. Contents of i-modules, 0 ≤ i ≤ 2, according to the HMOS of Figure 1.
Variable v4 is first replicated into r = 5 copies, which are assigned to 0-modules,

then 3 copies of each such module are assigned to suitable 1-modules. Finally,
each 1-module is replicated into 3 copies. As a whole, the process creates
5 · 32 = 45 copies of v4.
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Fig. 3. Contents of the aggregate memory of the D-BSP according to the
HMOS of Figure 1. The mapping process ensures that each i-block, 0 < i ≤ k,
is recursively assigned to a distinct D-BSP cluster.
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m0 = |U0| = n and mi = |Ui| = Θ
(

n1/2i

)

, for 1 ≤ i ≤ k. We assume that the

quantity di = ⌈3mi−1/mi⌉ is a power of 2, and that every u ∈ Ui has degree at

most di in (Ui−1, Ui), for 1 ≤ i ≤ k. Later, we will show how the various graphs can

be chosen to satisfy all of the above constraints on the parameters, while exhibiting

suitable expansion properties, which are needed to ensure low parallel access time.

The HMOS is mapped onto the D-BSP by assigning each i-block to a cluster

of appropriate size, in the following recursive fashion. Each of the mk k-blocks is

assigned to a distinct cluster with tk = n/2⌈log mk⌉ processors. The (at most) dk

(k − 1)-blocks contained in a k-block, as prescribed by (Uk−1, Uk), are assigned to

distinct subclusters of size tk−1 = tk/dk of the cluster assigned to the k-block. In

general, for 2 ≤ i ≤ k, the (at most) di (i − 1)-blocks contained in an i-block are

assigned to distinct subclusters of size ti−1 = ti/di of the cluster assigned to the

i-block. Consequently, an i-block, 1 ≤ i ≤ k, is mapped to a cluster with

ti =
n

2⌈log2 mk⌉
∏k

j=i+1 dj

processors. Tedious but simple calculations show that

ti = Θ
(

3i−kn1−1/2i
)

, 1 ≤ i ≤ k. (2)

Moreover, ti is a power of 2 and, since k = O (log log n), we have that ti > 1 if n is

large enough. Finally, the (at most) d1 = Θ (
√

n) 0-blocks contained in a 1-block are

evenly distributed among the t1 = Θ
(√

n/3k
)

processors belonging to the cluster

assigned to the 1-block, and each such processor stores the copies of the variables

contained in every 0-block it receives. In this way, each processor stores a total of

O
(

r3km/n
)

copies of variables, which ensures a balanced distribution of the copies

among the processors.

As mentioned before, suitable expansion properties are required of the compo-

nent graphs of the HMOS in order to ensure that, for any set of variables to be

accessed, their copies be well spread among the processors’ memories, thus yielding

low access time.

Definition 1 Let G = (X, Y ) be a bipartite graph where each node in X has degree

d. For 0 < σ ≤ 1, 0 < ǫ < 1 and 1 ≤ µ ≤ d, G has (σ, ǫ, µ)-expansion if

for any subset S ⊆ X, S ≤ σ|X |, and for any set E of µ|S| edges, µ outgoing

edges for each node in S, the set ΓE(S) ⊆ Y reached by the chosen edges has size

|ΓE(S)| = Ω
(

|S|1−ǫ
)

.

We will choose (V, U0) to have odd input degree r and output degree mr/n, and to

exhibit (n/m, ǫ, (r + 1)/2)-expansion, where ǫ < 1 is a suitable constant that will

be chosen by the analysis. The existence of such a graph is proved in [15, Lemma

5.1] through the probabilistic method; however, explicit constructions are currently

known for certain ranges of the parameters (see Section 5).

The main difference between the HMOS presented here and the one in [15]

concerns the structure of the graphs (Ui−1, Ui), 1 ≤ i ≤ k. Specifically, we need

these graphs to exhibit similar expansion and constructivity properties as in [15],
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but we are now forced to comply with different and stricter constraints on the

parameters, which require nontrivial modifications to the construction presented in

that paper. The following lemma provides the new crucial technical step through

which the graphs are obtained.

Lemma 1 For every positive integer w a bipartite graph G = (X, Y ) with |X | = w

can be explicitly constructed such that

(i)
√

6w < |Y | < 6 + 6
√

6w;

(ii) Every node of X has degree 3;

(iii) Every node of Y has degree at most d = ⌈3w/|Y |⌉, and d is a power of 2;

(iv) For every subset S ⊂ X whose nodes are all adjacent to some y ∈ Y and

for every selection of ν|S| edges, ν incident on every s ∈ S, the nodes of Y

reached by the selected edges are at least (ν − 1)|S|/4 + 1.

Proof. The base of our construction is the one presented in [15] for a (z, 3)-

BIBD (Balanced Incomplete Block Design) [20], where z is any power of three.

A (z, 3)-BIBD is a bipartite graph GBIBD = (A, B) with z = |B| a power of 3,

|A| = z(z − 1)/6, and such that for any two nodes b1, b2 ∈ B there is exactly one

node a ∈ A adjacent to both. Such graph has the following property: for every

subset S ⊆ A of nodes all adjacent to some node y ∈ B and any selection of ν|S|
edges, ν incident on every s ∈ S, the nodes of B reached by the selected edges are

at least (ν−1)|S|+1. We fix z to be the smallest power of 3 such that |A| ≥ w. By

employing the techniques presented in [15] we can extract a subgraph G′ = (X, B)

of GBIBD with X ⊆ A, |X | = w, and such that each node of X has degree 3 and

each node of B has degree either ⌊3w/z⌋ or ⌈3w/z⌉.
Let d be the largest power of 2 not exceeding ⌊3w/z⌋, and let B = {bi : 0 ≤

i < z}. We index the edges of G′ from 1 to 3w so that all edges incident on the

same node bi have consecutive indices, and, for j < i, edges incident on bj have

indices smaller than those incident on bi. Observe that by the BIBD property, for

every 0 < i < z there is at most one node x ∈ X adjacent to both bi−1 and bi. This

allows us to rearrange the indices of the edges incident on bi, for every i, so that if

there are two edges (x, bi−1) and (x, bi), for some x ∈ X , the indices of these two

edges differ by at least d. This is obtained by sequentially examining all pairs of

nodes 〈bi−1, bi〉 starting from 〈b0, b1〉: if there exists a pair of edges (x, bi−1) and

(x, bi), for some x ∈ X , then the indexing is changed so that (x, bi−1) is given the

lowest index among the edges incident on bi−1, and (x, bi) is given the lowest index

among the edges incident on bi. Note that Step i of this procedure does not disrupt

the work done in the previous steps: if for some x′ ∈ X there exists a pair of edges

(x′, bi−2) and (x′, bi−1), which has been dealt with in Step i − 1, then the distance

between the indices of these edges can only increase as a consequence of Step i.

We construct G = (X, Y ) by grouping the edges of G′ into ⌈3w/d⌉ bundles of

d consecutively indexed edges each (the last bundle may have less than d edges),

and by creating a distinct node of Y for each bundle, which becomes the new right

endpoint for all edges in the bundle.
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Note that Properties (ii) and (iii) stated in the lemma follow easily from the

above construction. To show that Property (i) holds, observe that the choice of z

ensures that w ≤ |A| < z2/6, whence |Y | ≥ |B| = z >
√

6w. Similarly, the upper

bound on |Y | follows from the inequalities w > (z/3−1)2/6 and |Y | ≤ 2|B|. Finally,

the construction of the bundles guarantees that the edges incident on every node

y ∈ Y were previously adjacent to at most 2 nodes of B, therefore for every pair of

nodes in Y there are no more than four nodes in X adjacent to both. By applying

this observation to the nodes in S (that are all adjacent to a single node y ∈ Y ) it

is straightforward to show that for each y′ ∈ Y , y′ 6= y, there are at most 4 nodes of

S adjacent to y′. Let now Γ ⊆ Y be the set of nodes reached by the selected edges:

from the previous observations, Γ has cardinality at least (ν − 1)|S|/4 + 1. 2

Given U0 we apply the above lemma to construct the graph (U0, U1), thus fixing

the size of U1. Once the size of U1 is known, we apply the lemma again to construct

the graph (U1, U2), thus fixing the size of U2. By iterating this process we can

construct every graph (Ui−1, Ui), 1 ≤ i ≤ k. By Property (i) of Lemma 1 such a

process yields mi = |Ui| = Θ
(

n1/2i

)

, for 1 ≤ i ≤ k, as required.

4. Access Protocol

Suppose that m shared variables are distributed among the n D-BSP processors

according to the HMOS described above. In this section, we show how any n-tuple

of variables can be efficiently accessed when every processor requires read or write

access to a distinct variable. Note that the case of concurrent accesses to the same

variable can be reduced to the case of exclusive accesses by means of straightforward,

sorting-based techniques which do not affect the overall running time. The access

protocol has the same overall structure as the one presented in [15], but it differs

in the implementation which fully exploits the explicit hierarchical nature of the

machine model.

Let S denote the set of variables to be accessed, with every processor in charge

of a distinct variable of S. As customary in redundant shared memory implementa-

tion schemes, a suitable set of copies for the variables in S must be chosen, so that

accessing these copies will enforce data consistency and generate low memory con-

tention and network congestion. We first recall how copy selection is accomplished

and then show how the selected copies can be efficiently reached.

4.1. Copy Selection

The hierarchical structure of the HMOS provides a geographical distribution of

the copies into the D-BSP clusters. Copy selection essentially aims at limiting the

number of copies that have to be accessed in any block at any level of the HMOS,

in order to reduce the traffic into/from the cluster storing the block. Consider a

directed version H of the HMOS, where edges in every constituent bipartite graph

are directed from the left to the right node set. Note that H is a dag and that

the r3k copies of a variable v are in one-to-one correspondence with the source-sink
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paths of the subdag Hv ⊂ H induced by v and by all of its descendants. In order to

guarantee consistency, we require that the selected copies for every variable v ∈ S

form a target set, defined as follows. A set of copies Cv of v is a target set for v if,

by coloring the nodes in Hv along the paths corresponding to the copies in Cv, it

turns out that each colored node has a majority of its children colored. Specifically,

µ = (r + 1)/2 children of the root v and two children of every colored node x 6= v

must be colored. It is easy to see that any two target sets for v share at least one

copy. Consistency is enforced since a read access will always reach at least one most

updated copy, which can be identified by means of timestamps [8].

Copy selection for the set of variables S is accomplished in k + 1 iterations,

numbered from 0 to k, during which in every Hv, v ∈ S, the nodes along the paths

corresponding to the copies being selected are colored level by level from the source

to the sinks. Since, in general, a node of the HMOS belongs to several Hv’s, we use

a distinct color γv for each variable v ∈ S, and allow a node to be assigned a set

of colors. Initially, the color set of every node is empty. Iteration 0 assigns the set

{γv} to the source v and adds γv to the color sets of µ of its adjacent 0-modules, for

every v ∈ S. Iteration i, 0 < i ≤ k, selects two adjacent i-modules for every colored

(i − 1)-module u, and adds to their color sets the one assigned to u. (Clearly, if an

i-module is selected for two or more colored (i − 1)-modules, it receives the union

of the color sets of these (i − 1)-modules.) In this fashion, for every v ∈ S, at the

end of Iteration i the nodes whose color sets contain γv form exactly µ2i distinct

paths from the source to nodes at level i in Hv. We call such paths γv-colored paths.

We choose Cv as the set of copies of v corresponding to the µ2k γv-colored paths

in Hv at the end of the last iteration. In order to identify the selected copies of

each v ∈ S, the processor issuing the access request for v keeps track of the coloring

being performed on Hv.

We define the weight w(u) of an i-module u ∈ Ui, 0 ≤ i ≤ k, as the sum, over

all v ∈ S, of the number of γv-colored paths containing u. The above coloring

ensures that for every u ∈ Ui with nonempty color set, only 2k−i i-blocks of u

contain copies in
⋃

v∈S Cv, with exactly w(u) copies per block. Using the expansion

properties of the HMOS, we are able to establish suitably low bounds for the w(u)’s.

The following lemmas provide such bounds and evaluate the running times of the

iterations on a D-BSP (n, g(α), ℓ(β)).

Lemma 2 If (V, U0) has (n/m, ǫ, µ)-expansion, Iteration 0 can be executed in time

O
(

nα + nβ
)

, in such a way that, for every u ∈ U0

w(u) = O (nǫ) .

Proof. At the beginning of the iteration, every processor Pv in charge of a variable

v ∈ S creates r packets of type [Pv, v, u], where u is the name of a distinct 0-module

adjacent to v in Hv. Upon creation, all packets are regarded as unmarked. Then,

the following steps are executed until µ packets for each variable are marked and

all other packets are destroyed.

1. (Sort) Sort all unmarked packets by their third component (i.e., the associated
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0-module).

2. (Select) Let a be a suitable constant. For each u ∈ U0, if there are at most

arnǫ packets with third component u in the sorted sequence, then all such

packets are marked. Otherwise, none of them is marked. Subsequently, all

the packets are sent back to their origins.

3. (Count) For each v ∈ S, the total number of marked packets relative to v

are counted. If these are at least µ, then exactly µ of them are kept and the

remaining µ − 1 (either marked or unmarked) are destroyed.

Finally, for every v ∈ S the nodes in Hv corresponding to the µ marked packets

picked for v receive color γv. Based on the expansion of (V, U0) it can be shown

[15, Lemma 4.4] that at the end of the whole procedure the bound on w(u) holds

for every u ∈ U0; moreover, after the ith execution of the Sort, Select and Count

steps, packets relative to at most n/2i variables remain unmarked. Hence, the ith

execution of these three steps can be implemented through r-sorting and prefix

within an (i − 1)-cluster, which yields the desired running time by applying the

results of Propositions 1 and 2. 2

Lemma 3 For 1 ≤ i ≤ k, Iteration i can be executed in time O
(

2inα + nβ
)

in

such a way that, for every u ∈ Ui

w(u) = O
(

2in1−(1−ǫ)/2i
)

.

Proof. We can adopt the same implementation of Iteration i as in [15], which

essentially requires a constant number of O
(

2i
)

-sorting and prefix operations. The

running time follows from Propositions 1 and 2, while the bound on w(u) is obtained

by repeating the argument in [15] and tuning the constants to reflect the different

expansion property of the graphs defined in Lemma 1 with respect to the ones

adopted in that paper. 2

The following theorem is an immediate consequence of the above lemmas and

the preceding discussion.

Theorem 2 Copy selection requires time O
(

2knα + knβ
)

and ensures that every

i-block, 0 ≤ i ≤ k, contains at most O
(

2in1−(1−ǫ)/2i

)

selected copies.

4.2. Access to the Selected Copies

After copy selection is completed, for every v ∈ S the processor in charge of v

creates µ2k distinct messages to access the copies in Cv. Each message is routed to

its destination (i.e., the processor whose memory stores the requested copy) where

the read/write access is performedd. Messages are delivered to the destinations in

k+1 stages through smaller and smaller clusters, thus taking advantage of the good

distribution of the copies among the i-blocks, for every i.

dFor the case of read accesses, the return of the accessed data to the requesting processors is
dealt with in a symmetric fashion, hence we omit its description.
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For 1 ≤ i ≤ k, let τi = log n − log ti and recall that every i-block is assigned to

a distinct cluster with ti processors, that is, a τi-cluster. Let also τk+1 = 0. The

stages are numbered from k + 1 down to 1. For k + 1 ≥ i ≥ 2, Stage i is executed

in parallel and independently in every τi-cluster and sends all messages residing in

the cluster to arbitrary positions in the internal τi−1-clusters associated with their

destination (i−1)-blocks, in such a way that the processors in the same τi−1-cluster

receive approximately the same number of messages. The intermediate destination

of each message is easily established via sorting and ranking. Finally, in Stage 1

every message is sent to its final destination, in parallel and independently within

every τ1-cluster.

Let δi be the maximum number of messages held by any processor at the begin-

ning of Stage i, k + 1 ≥ i ≥ 1. By virtue of the message balancing described above,

δi is upper bounded by the maximum number of selected copies within a single

i-block divided by the size of a τi-cluster. Moreover, at the end of Stage 1, O(nǫ)

messages per 0-block reach the processor storing the block in its local memory.

Since the number of 0-blocks assigned to a single processor is Θ
(

3k
)

, the maximum

number of messages delivered to a processor at the end of the access protocol is

δ0 = O
(

3knǫ
)

. By plugging in the bounds derived in Theorem 2 and Equation 2

we obtain:

δi =

{

µ2k for i = k + 1,

O
(

2i3k−inǫ/2i

)

for k ≥ i ≥ 0.

Stage i can be easily implemented by means of a constant number of δi-sorting

and prefix operations and one instance of (δi, δi−1)-routing within τi-clusters. From

Propositions 1, 2 and 3 it then follows that the time required to access the selected

copies is

O

((

2kn
(1−α)ǫ

2k +

k
∑

i=1

2i3(1−α)(k−i)n
(2−α)ǫ−α

2i

)

nα + knβ

)

. (3)

Note that the above time always dominates over the time for copy selection. Let us

now choose the expansion parameter ǫ of (V, U0) to be strictly less than α/(2− α).

Simple manipulations of Equation 3 then suffice to prove the following theorem on

the overall slowdown of our simulation scheme.

Theorem 3 Any n-tuple of variables can be accessed by the D-BSP processors in

time

O

(

2kn
α+

α(1−α)

2k(2−α) + knβ

)

.

In order to achieve the best possible tradeoff between performance and redundancy

on a specific D-BSP (n, g(α), ℓ(β)), we need to choose a suitable value for k as a

function of α and β. More specifically, when α < β, it suffices to choose k = O (1)

large enough to obtain optimal O(nβ) slowdown with constant redundancy. This

result demonstrates that optimal worst-case slowdown is achievable on machines

where delays due to latency dominate over those due to bandwidth. Instead, when
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α ≥ β, by choosing k = log log n, we obtain a minimal slowdown of O (nα log n)

with redundancy Θ
(

loglog2 3 n
)

= O
(

log1.59 n
)

.

5. Constructivity Issues

It must be remarked that the performance of the access protocol analyzed in

the previous section relies on the (n/m, ǫ, µ)-expansion of (V, U0). Although such

level of expansion is considerably milder than those required by most schemes in

the literature (e.g., ǫ = O (1/ logn) in [8, 9, 13]), in general we can only show

the existence of (V, U0) through the probabilistic method. However, unlike the

aforementioned schemes, ours can take advantage of the few explicit constructions

known in the literature. For example, in [14] an efficient construction is provided

for a bipartite graph with m inputs, n′ = Θ
(

m2/3
)

outputs, input degree r = 3,

and output degree Θ
(

m1/3
)

, which exhibits (1, 1/3, 2)-expansion. This graph can

be employed to implement (V, U0) for every value m = O
(

n3/2
)

. Note that for

m = o
(

n3/2
)

, the number n′ of output nodes in the graph is o(n). In this case,

in order to obtain |U0| = n, we simply replace each output node by n/n′ new

outputs, subdividing the incoming edges evenly among these new nodes. Clearly,

the expansion property is not affected by this modification. Also it is easy to see

that by plugging ǫ = 1/3 and α ≥ 1/2 in Equation 3, the overall running time

of the access protocol reduces to the one stated in Theorem 3, thus yielding the

constructivity result of Theorem 1.

6. Conclusions

We have presented a deterministic PRAM simulation scheme for the Decom-

posable BSP (D-BSP), a machine abstraction belonging to the class of band-

width/latency models. As argued in [19], D-BSP is an effective model for a wide

class of distributed-memory machines, in that its parameters are a succinct yet suf-

ficiently descriptive summary of the bandwidth/latency characteristics of a typical

networked architecture, and affords the exploitation of submachine locality without

giving up generality. Indeed, D-BSP can be efficiently supported on several promi-

nent architectures, including multidimensional arrays and the hypercube [16, 19].

The scheme presented in this paper generalizes the one in [15], specifically tai-

lored to the mesh topology, by making nontrivial modifications to the memory orga-

nization and by expressing the access protocol in terms of a few general primitives,

so that it can adapt to the hierarchical structure of different architectures. More

specifically, its novel features mainly include new expanding component graphs of

the HMOS, required to fit the clustered structure of the D-BSP model, and a gen-

eral routing algorithm for unbalanced communication which does not exploit the

fine details of the interconnection. Our scheme can be immediately ported to any

architecture supporting D-BSP.

For the sake of concreteness, in the paper we have analyzed the slowdown for a

spectrum of machine parameters, showing that close to optimal performance can be
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obtained for machines characterized by moderate bandwidth (e.g., multidimensional

arrays). As a corollary, the instantiation of the scheme on the mesh yields the results

in [15]. Moreover, we have shown that optimality can be achieved on machines where

delays due to latency dominate over those due to bandwidth limitations. In fact,

none of the schemes previously developed in the literature for specific networks had

been able to uncover this fact.

Common to all previous works on deterministic PRAM simulation, a challenging

open problem is the explicit construction of expanding bipartite graphs that could

make the scheme fully constructive for any number m of shared variables. As

argued in the paper, explicit constructions are known only to deal with the case

m = O(n3/2), which however is sufficient to simulate any NC algorithm [1].
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