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oupled non-linear hygro-thermo-me
hani
al problems relative to the behavior of 
on
reteat high temperatures using monolithi
 models is nowadays a very interesting and 
hallenging
omputational problem. These models require an extensive use of 
omputational resour
es, su
has main memory and 
omputational time, due to the great number of variables and the numeri
al
hara
teristi
s of the 
oeÆ
ients of the linear systems involved.In this paper a number of di�erent variants of a frontal solver used within HITECOSP, an appli
ationdeveloped within the BRITE Euram III \HITECO" EU proje
t, to solve multiphase porous mediaproblems, are presented and evaluated with respe
t to their numeri
al a

ura
y and performan
e.When developing the variants, several optimization te
hniques have been adopted, su
h as datastru
ture, 
a
he and bran
hes optimizations. Spe
i�
ally numeri
al a

ura
y has been evaluated usinga modi�ed 
omponent-wise ba
kward error analysis.The main result of this work is a new solver whi
h is both mu
h faster and more a

urate than theoriginal one. Spe
i�
ally, the 
ode runs over 5 times faster and numeri
al errors are redu
ed of up tothree order of magnitude. Copyright 

 2001 John Wiley & Sons, Ltd.key words: frontal method, performan
e optimization, numeri
al errors analysis1. INTRODUCTIONMany su

essful methods exist for the solution of algebrai
 equations arising from thedis
retization of un
oupled problems. For 
oupled problems, espe
ially if they involve several�elds, the problem is still open. As far as 
oupled thermo-hygro-me
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2 M. BIANCO ET AL.
on
erned, several methods have been investigated or are under investigation, but a fullysatisfa
tory answer has not yet been found. The most reliable but also the most expensiveapproa
h is the monolithi
 approa
h, where all �eld equations are solved simultaneously [1℄.Operator split te
hniques like the staggered method [2, 3, 4℄ allow to solve smaller size problemsat ea
h instant, but usually require iterations between the �elds whi
h redu
e their advantage.Re
ent investigations on two �eld problems have shown that the LATIN method behavesrather well [5℄. As far as parallel 
omputing is 
on
erned, domain de
omposition [6, 7, 8℄,multifrontal te
hniques (single and multilevel) [6, 7, 8, 9℄ and asyn
hronous methods [10℄ havebeen investigated. Ex
ept for the asyn
hronous methods, whi
h, at least up to now have onlybeen made to work for linear two �eld problems, the overhead due to parallelization introdu
edby these methods make them less attra
tive than the monolithi
 method. Algebrai
 multigridmethods [11℄ whi
h are 
urrently under investigation seem however promising. Taking intoa

ount this situation, the monolithi
 method is still mu
h in use and we 
on
entrate here onthis method trying to improve its performan
e.First we explain why the 
oupled thermo-hygro-me
hani
al problems on whi
h we work, areso 
ompli
ated to deserve spe
ial attention.Two di�erent approa
hes are usual in the simulation of hygro-thermal phenomena andrelated me
hani
al e�e
ts in porous media. In the phenomenologi
al approa
h, moisture andheat transport are des
ribed by di�usive type di�erential equations with temperature- andmoisture 
ontent-dependent 
oeÆ
ients. The model 
oeÆ
ients are determined by inverseproblem solution, i.e., using known results of experimental tests to obtain the best agreementbetween theoreti
al predi
tion and experimental eviden
e (e.g., in the sense of least squaremethod). Thus, they are very a

urate for interpolation and rather poor for extrapolation ofthe known experimental results. Moreover, various physi
al phenomena are lumped together,there is no distin
tion between di�erent phases of water, hen
e phase 
hanges 
annot be takeninto a

ount and �nally model parameters often have no 
lear physi
al interpretationIn me
hanisti
 models whi
h we use [12℄, governing equations are usually more 
ompli
atedformally, but their 
oeÆ
ients have 
lear physi
al meaning and often are related to 
lassi
almaterial parameters, like for example porosity, intrinsi
 permeability, di�usivity of vapour inair, et
. When some relations between stru
ture parameters and transport properties are found,usually they are valid for a 
lass of similar materials. Mass and energy 
uxes are expressed bymeans of gradients of thermodynami
 potentials. Phase 
hanges and mass- and energy sour
es(sinks) related to them are taken into a

ount. Moreover, some additional 
ouplings, e.g. e�e
tof material damaging on intrinsi
 permeability or 
apillary and vapour pressures (moisture
ontent) on skeleton stresses, 
an be 
onsidered.For these reasons the se
ond approa
h is 
onsidered more 
omplete from a physi
al point ofview, but results in a parti
ularly 
omplex mathemati
al system, in terms of both number ofequations and their 
oeÆ
ients, whi
h are strongly nonlinear.We 
on
entrate here on a parti
ular 
oupled multi-physi
s problem whi
h deals with 
on
reteunder high temperature 
onditions. Su
h a model allows for instan
e to make residual lifetimepredi
tion in 
on
rete vessels of nu
lear rea
tors or to predi
t the behaviour of 
on
rete walls intunnel �res et
., [1, 13, 14℄. The model has been implemented in the 
omputer 
ode HITECOSPin the framework of the BRITE Euram III \HITECO" [15℄ resear
h proje
t. This software usesa frontal te
hnique to solve the �nal system resulting from the FE implementation of the model.The aim of our work to improve the eÆ
ien
y of its frontal solver in terms of performan
eas well as numeri
al a

ura
y, in order to exploit the various 
hara
teristi
s imposed by theCopyright 
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A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 3me
hanisti
 model.Improvements in term of performan
e have been obtained implementing a number ofoptimizations (see Se
tion 4.2), su
h as improving the data stru
tures, enhan
ing thespatial and temporal lo
ality of the memory a

esses, and bran
h optimizations. With theseoptimizations exe
ution times improves of a fa
tor 4 with respe
t to original HITECOSPprogram.In order to improve numeri
al a

ura
y in solving the linear systems arising from theNewton-Raphson like pro
edure used for the me
hanisti
 model, several pivoting strategieshave been implemented and evaluated based on modi�ed 
omponent-wise ba
kward erroranalysis (see Se
tion 5) whi
h allows to plot the magnitude of the minimal perturbation ea
hequation sustains in order to obtain the approximated solution of the system. A
tually, theseperturbations 
an be 
ompared with the roundo� unit error. From this analysis it follows thatthe best strategy in terms of a

ura
y is the best also in terms of performan
e. In parti
ularwe have noti
ed errors of the same order of magnitude of the roundo� unit error and a furtherspeed-up with respe
t to the optimized version of the original solver.The rest of the paper is organized as follows. In Se
tion 2 the mathemati
al model isdes
ribed, while Se
tion 4 deals with the various optimizations we have introdu
ed andthe pivoting strategy we have implemented. The metri
s adopted to evaluate a

ura
y andperforman
e are des
ribed in Se
tion 5. Finally, the test 
ases used to evaluate our solvers aredes
ribed in Se
tion 6 while our results are shown in Se
tion 7.2. MATHEMATICAL MODELIn the model presented here, 
on
rete is 
onsidered as a partially saturated porous material[1, 13℄ 
onsisting of a solid phase, two gas phases and three water phases. The theoreti
alframework is based on the works of Whitaker [16℄, Bear [17℄, Bear and Ba
hmat [18, 19℄,Hassanizadeh and Gray [20, 21, 22℄ and Lewis and S
hre
er [23℄.Re�nements su
h as non-linearities due to temperature and pressures, hydration-dehydration, evaporation-
ondensation, adsorption-desortpion, phenomena are 
onsidered,(see [1, 13℄). Di�erent physi
al me
hanisms governing the liquid and gas transport in the poresof partially saturated 
on
rete are 
learly distinguished, i.e. 
apillary water and gas 
ows drivenby their pressure gradients, adsorbed water surfa
e di�usion 
aused by saturation gradients, aswell as air and vapour di�usion driven by vapour density gradients, [1, 13℄. Con
rete damaginge�e
ts arising from 
oupled hygro-thermal and me
hani
al intera
tion are 
onsidered by useof the isotropi
 non-lo
al damage theory and a further 
oupling between intrinsi
 permeabilityand me
hani
al damage has been introdu
ed to take into a
-
ount the 
hanges of materialmi
rostru
ture. More-over improvements, regarding the possibility to simulate the behaviourof the material at temperatures whi
h largely ex
eed the 
riti
al point of water and the realbehaviour of gases present in the pores of 
on
rete, i.e. the gases are treated as real gas, havebeen re
ently introdu
ed in the model, [14℄.The �nal mathemati
al model 
onsists of four balan
e equations: mass 
onservationof dry air, mass 
onservation of the water spe
ies (both in liquid and gaseous state,taking phase 
hanges, i.e. evaporation-
ondensation, adsorption-desorption and hydration-dehydration pro
ess, into a

ount), enthalpy 
onservation of the whole medium (latent heatof phase 
hanges and heat e�e
ts of hydration or dehydration pro
esses are 
onsidered) andCopyright 
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4 M. BIANCO ET AL.linear momentum of the multiphase system. The sistem is 
ompleted with an appropriate setof 
onstitutive and state equations, as well as some thermodynami
 relationships, [23℄. Thegoverning equations of the model are expressed in terms of the 
hosen state variables: gaspressure pg , 
apillary pressure p
, temperature T and displa
ement ve
tor of the solid matrixu and are dire
tly derived from [23℄, where the 
onstitutive law for the solid skeleton densityand water density are experimentally determined. In parti
ular the density of solid skeletonhas to respe
t the solid mass 
onservation equation whi
h is not a basi
 equation of the model.The governing equations of the model proposed, 
onsidering negligible both the inertial for
esand the 
onve
tive heat 
ux related to solid phase and taking into a

ount the Bishops stresses[24℄, are the following:Dry air mass 
onservation equation:� n�Sw�t � �s (1� n)Sg �T�t + Sgr � vs + Sgn�a ��a�t + 1�ar � Jag++ 1�ar � (nSg�avgs) + (1� n)Sg�s ��s��hydr ��hydr�t = _mdehydr�s SgWater spe
ies (liquid + vapour) mass 
onservation equation:n (�w � �v) �Sw�t � �swg �T�t + (�vSg + �wSw)r � vs + Sgn ��v�t ++r � Jvg +r � (nSg�vvgs) +r � (nSw�wvws)++(1� n) (Sg�v + �wSw)�s ��s��hydr ��hydr�t = �vSg + �wSw � �s�s _mdehydrEnergy 
onservation equation (enthalpy balan
e):(�Cp)ef �T�t + ��wCwp vws + �gCgp vgs� � rT��r � (�efrT ) = � _mphase �Hphase + _mdehydr�HdehydrLinear momentum equation (equilibrium equation):div f�0 � I (pg � Swp
)g+ �g = 0For the 
losure of the model a set of thermodynami
 and 
onstitutive relationships areneeded. In the present work only few of them will be shown in detail, in parti
ular as far asdamage me
hani
s and absolute permeability-damage parameter 
oupling are 
on
erned. (Forfurther information see [23, 1, 13, 14, 24℄).3. NUMERICAL SOLUTIONThe system of governing equations of the model, formed by two mass 
onservation equations,one linear momentum 
onservation equation and an enthalpy 
onservation equation, afterappli
ation of the �nite element method for dis
retization in spa
e be
omes:Copyright 
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A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 5Cgg ��pg�t +Cg
 ��p
�t +Cgt ��T�t +Cgu ��u�t +Kgg�pg +Kg
�p
 +Kgt�T = fgC

��p
vt +C
t ��T�t +C
u ��u�t +K
g�pg +K

�p
 +K
t�T = f
Ct
 ��p
�t +Ctt ��T�t +Ctu ��u�t +Ktg�pg +Kt
�p
 +Ktt�T = ftKug�pg +Ku
�p
 +Kut�T+Kuu�u = fu (1)As usual, the primary variables are expressed by their nodal values and the shape fun
tionsas follows: pg =Np �pgp
 = Np �p
T =Nt �Tu = Nu �uFinite di�eren
es in time are used for the solution of the initial value problem. The methodused in this text produ
es an identi
al system of equations obteineded with the weightedresidual method in time with point 
ollo
ation. We 
an write the system (1) in a more 
on
iseform as B�X�t +CX = F (2)where the matri
es B, C, X and F are the following:C = 2664 Kgg Kg
 Kgt 0K
g K

 K
t 0Ktg Kt
 Ktt 0Kug Ku
 Kut Kuu 3775 ; B = 2664 Cgg Cg
 Cgt Cgu0 C

 C
t C
u0 Ct
 Ctt Ctu0 0 0 0 3775F =8>><>>: fgf
ftfu 9>>=>>; ; X =8>><>>: �pg�p
�T�u 9>>=>>;The matri
es B and C are non-symmetri
 and depend on X. The dis
retisation in the timedomain is 
arried out by the generalised trapezoidal method, also known as the generalisedmidpoint rule: ��X�t �n+� = Xn+1 �Xn�t 0 < � � 1Xn+� = (1� �)Xn + �Xn+1where �t is the time step length, Xn and Xn+1 are the state ve
tors at times tn and tn+1, andwhere, depending of the value of �, it is possible to obtain di�erent s
hemes for integration ofthe system in time:Copyright 
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6 M. BIANCO ET AL.� = 1 fully impli
it s
heme (Euler ba
kward);� = 0:5 Crank-Ni
holson s
heme;� = 0 fully expli
it s
heme (Euler forward); then (2) at time tn+� be
omes:	 (Xn+1) = [B+ ��tC℄n+�Xn+1+� [B� (1� �) �tC℄n+�Xn ��tFn+� = 0 (3)Where 	 (Xn+1) = �	g (Xn+1) ; 	
 (Xn+1) ; 	t (Xn+1) ; 	u (Xn+1) �Tthe matri
es in (3) are evaluated at time tn+�.An examination of the set of governing equations (3) reveals that the 
oupled system (2)is non-linear; hen
e it requires linearising by an iterative Newton-Raphson pro
edure of theform: 	� �Xin+1� = ��	��X ����Xin+1 �Xin+1; � = g; 
; t; uwhere the Ja
obian matrix is de�ned by:�	�X ����Xin+1 = 26666666664
�	g��pg �	g��p
 �	g��T �	g��u�	
��pg �	
��p
 �	
��T �	
��u�	t��pg �	t��p
 �	t��T �	t��u�	u��pg �	u��p
 �	u��T �	u��u

37777777775
���������������X=Xin+1and the in
rement ve
tor of the primary variables is:�Xin+1 = h(��pg)in+1 ; (��p
)in+1 ;��Tin+1;��uin+1iTwhere i is the iteration 
ount.During the 
omputation, for ea
h time step, the primary variable ve
tor Xn+1 is updatedafter ea
h iteration, i.e.: Xi+1n+1 = Xin+1 +�Xin+1In the Newton-Raphson method, the elements of the Ja
obian matrix are updated after ea
hiteration, whi
h is 
omputationally expensive. Thus, in pra
ti
e the modi�ed Newton-Raphsonmethod is often preferred, where the Ja
obian matrix is 
al
ulated only on
e at the beginningof ea
h time step or after a �xed number of iterations.To take into a

ount damage of 
on
rete, a two stage solution strategy is applied at everytime step. First an intermediate problem, keeping the 
onstant damage value obtained at theprevious time step, is solved. Then, starting from this intermediate state, the �nal solutionis obtained, for all state variables and damage parameter, by the modi�ed Newton-Raphsonmethod, using the tangential or Ja
obian matrix from the last iteration of the �rst stage. Su
han approa
h allowed us to avoid di�erentiation with respe
t to the damage and to obtain aCopyright 
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A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 7
onverging solution. Sometimes this derivative in
reases very rapidly until the damage rea
hesits maximum value and then remains equal to zero, 
ausing divergen
e of the solution.An unoptimized version of the above model has been implemented in the 
omputer 
odeHITECOSP, in the framework of the BRITE Euram III \HITECO" resear
h proje
t [15℄. This
ode provides the starting base upon whi
h we develop our optimization strategies aiming atimproving both performan
e and numeri
al a

ura
y of the 
ode.4. FRONTAL METHOD: OVERVIEW AND IMPLEMENTATIONThe large linear systems arising from the Newton-Raphson method des
ribed in Se
tion (3)are solved using the frontal method (see [25, 9℄ for a full des
ription). The frontal methodsolves a linear system by working, at ea
h step, only on a portion of the matrix (
alled frontalmatrix), hen
e it is useful in those situations where 
ore memory be
omes the 
riti
al resour
e.The method works by sequentially exe
uting two phases on ea
h element of the �nite elementgrid: an assembly phase and an elimination phase. During the assembly phase, the frontalmatrix is augmented by the appropriate number of 
olumns and rows relative, respe
tively, tothe variables asso
iated to the element and the equations 
ontaining those variables, and thematrix entries are updated to a

ount for the new element. An entry be
omes fully-summedif it will not re
eive further updates in any subsequent assembly phase. A 
olumn (resp., row)be
omes fully-summed when all its entries be
ome fully summed. A variable 
orresponding toa fully-summed 
olumn is also said fully-summed.During the elimination phase, Gaussian elimination is applied to the frontal matrix, 
hoosingthe pivot in the blo
k at the interse
tion of fully-summed rows and fully-summed 
olumns. Atea
h Gaussian elimination step, the pivot row is eliminated, i.e., it is stored somewhere intomemory (typi
ally onto a disk, if the problem is too large to �t in main memory). After thelast elimination phase, ba
k substitution on the redu
ed linear system is exe
uted.4.1. Overview of pivoting strategiesRe
all that in the frontal method only a part of the matrix of the system is available atany given time, hen
e any pivoting strategy must be adopted to 
ope with this s
enario. Inparti
ular, the pivot must always be 
hosen among those entries of the frontal matrix whi
hreside in fully-summed rows and fully-summed 
olumns.Many strategies have been developed either to speed up the frontal solver or to improve itsnumeri
al stability. In this se
tion we des
ribe those strategies whi
h we have implemented inorder to �nd a solution that a
hieves the best tradeo� between stability and performan
e forour parti
ular physi
al problems.Let A be the frontal matrix in a given elimination step. Numeri
al pivoting [9℄ entails
hoosing the pivot among the entries aij residing in fully-summed 
olumns su
h thatjaij j � �maxk jaik j; (4)where 0 < � � 1 is a numeri
al 
onstant and i is the index of a fully-summed row. Numeri
alpivoting was adopted to redu
e the approximation error introdu
ed by Gaussian eliminationfor the frontal method.Copyright 
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8 M. BIANCO ET AL.If an eligible pivot is not found, then the next element is assembled and a new sear
h for apivot is performed. This strategy is 
alled postordering for stability [9℄. The algorithm 
learlyterminates sin
e eventually all the rows and all the 
olumns of the frontal matrix will be
omefully-summed.Often it is 
laimed in the literature that postordering for stability a�e
ts performan
e onlyslightly, while numeri
al stability is substantially in
reased. However, our experiments showthat this is not the 
ase for our physi
al problems. The failure of postordering in our s
enarioseems to be primarily due to the fa
t that the matrix entries in our mixed physi
al problems
an be up to 40 orders of magnitude apart. Moreover, when a pivot is 
hosen, during theelimination step, �ll-ins are produ
ed in other rows, thus 
reating bonds among variables thatdo not belong to neighboring elements in the �nite element mesh. Often these bonds prevent arow to be eliminated sin
e the entries in its fully summed 
olumns do not satisfy 
ondition (4).In the next elimination steps this row 
ontinues to be �lled with additional nonzero entries,hen
e the likelihood that it will not be 
hosen for elimination keeps on in
reasing, in a sort of\positive feedba
k" e�e
t. Indeed we have observed extreme 
ases where rows entered in thefrontal matrix at the very beginning of the solver's a
tivity remains in the matrix until thevery end. This phenomenon introdu
es two problems: not only does it 
ause the frontal matrixto grow inordinately, slowing down the program, but also worsens the numeri
al stability ofthe method, sin
e a row that is present for a long time in the frontal matrix will sustain manyoperations on it, whi
h is likely to amplify a

umulation errors.Another popular pivoting strategy is known as minimum degree [26, 9℄. This strategy wasproposed as a greedy way to redu
e �ll-ins when performing Gaussian elimination and wasproved to be suited for symmetri
, positive-de�nite matri
es. Under minimum degree, the pivotis 
hosen as the diagonal element of a row with the minimum number of entries. Under thefrontal method, the minimum degree strategy may be applied to the frontal matrix, 
hoosingthe pivot on the diagonal entry of the row with minimum number of entries in the blo
k formedby the interse
tion between fully summed rows and fully summed 
olumns. Sin
e the full matrixof our systems has a symmetri
 stru
ture, 
hoosing pivots on the diagonal also preserves thissymmetry inside the frontal matrix, allowing the data stru
tures to be simpli�ed.It has to be remarked that the minimum degree strategy does not make any numeri
al
onsideration on the 
hosen pivot and it was originally developed for matri
es that do notneed su
h numeri
al pre
autions, e.g., positive de�nite symmetri
 matri
es. Although ourmatri
es, featuring great di�eren
es between numeri
al values of their entries, appear to beunsuitable for an appli
ation of minimum degree pivoting, our experiments have shown thatthe strategy is an e�e
tive way of redu
ing the a

umulation error 
aused by postordering,perhaps due to the fa
t that it substantially redu
es the amount of 
oating point operations.Indeed, a 
areful implementation of the minimum degree strategy has proven to feature bothex
ellent performan
e and numeri
al a

ura
y for our problems.The original appli
ation, HITECOSP, from whi
h this work started, uses the following hybridstrategy. Before the pivot is 
hosen, if the absolute value of the previous pivot is less than a�xed numeri
al threshold value (10�4 in our 
ases), then the fully-summed rows are normalizedso they will 
ontain only values in
luded between �1 and 1. After that, the pivot is 
hosenas the entry with the maximum absolute value among those in the interse
tion between fully-summed rows and 
olumns. No postordering is performed. This strategy seems to work wellfor our physi
al problems. Namely, it exhibits good numeri
al a

ura
y and lends itself toan eÆ
ient implementation, whi
h however requires a 
omplete redesign of the relevant dataCopyright 
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A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 9stru
tures.4.2. Our solutionsIn this se
tion we des
ribe the frontal solvers whi
h we have implemented. Ea
h variant is
hara
terized by a short name (in parentheses) whi
h suggests the spe
i�
 pivoting strategyadopted by the variant. Our �rst intervention has aimed at improving performan
e ofthe HITECOSP software (HIT) by providing an optimized implementation of its solver. Inparti
ular, the greatest improvement in performan
e has been obtained by the redesign of themain data stru
tures in order to redu
e at the minimum the number of linear sear
hes insidearrays.Another important issue that has been 
onsidered in redesigning HITECOSP's solver is theenhan
ement of the temporal and spatial lo
ality of the memory a

esses performed. To thispurpose, extensive 
a
he optimization has been applied, su
h as performing operations (e.g.,row elimination, pivot sear
h, et
.) within the solver by 
olumn rather that by row, in orderto exploit the 
olumn major allo
ation of matri
es featured by the FORTRAN 
ompiler.Another important sour
e of performan
e enhan
ement has 
ome from 
onditional bran
hoptimization. As an example, 
onsider that when 
omputing on a sparse matrix, manyoperations are performed to no e�e
t on zero entries (e.g., divisions and multipli
ations).However in most modern mi
ropro
essor ar
hite
tures (and, in parti
ular, on the ALPHAplatform where our experiments run), keeping these operations improves performan
e sin
ethey take less 
y
les than those ne
essary by the pro
essor to re
over from a mispredi
tedbran
h. Indeed, 
onditional bran
h elimination in HITECOSP has improved the performan
eof the resulting 
ode of up to 20%. This version of the frontal solver, implementing the samepivoting strategy as HITECOSP, named BASE, exhibits rather good performan
e.The above 
ode optimizations have also been employed to speed up the exe
ution of theother solvers developed within our study. However, the main justi�
ation for designing newsolvers mainly stems from our desire to 
ompare the eÆ
ien
y and numeri
al stability ofthe pivoting approa
h of HITECOSP with the other more established strategies des
ribedin the previous se
tion. As a �rst step, basi
 numeri
al pivoting (as illustrated before) wasimplemented. Spe
i�
ally we have developed a version without postordering that 
hooses aspivot the element that maximizes the value of � in (4) (NUMPIV), and another one implementingpostordering (NUMPPO) whi
h set � = 10�6 in (4).Next, we have implemented the minimum degree strategy (MINDEG). This latter solver
hooses the pivot on the diagonal of the frontal matrix and is endowed with re
overy featureswhen an entry in the diagonal is zero (however, this has never o

urred in our experiments). Afurther optimization stems from the fa
t that, sin
e the stru
ture of the frontal matrix dependsonly on that of the �nite element mesh, and, under the minimum degree strategy, the pivotsdepend only on the stru
ture of the matrix, the pivotal sequen
e remains the same for all theexe
utions of the frontal solver over the di�erent iterations of the Newton-Raphson method(unless the 
hosen pivot is zero, whi
h requires spe
ial 
are). Hen
e, it is possible to store thepivotal sequen
e during the �rst exe
ution and to use it for the next ones, 
hoosing the pivot,at ea
h stage, with a single memory a

ess. Our version of the minimum degree algorithmstores the pivotal sequen
e after the �rst exe
ution of the frontal solver and uses it in thesubsequent 
alls.Finally, for the purpose of 
omparison, we have produ
ed a further implementation (HSL)Copyright 
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10 M. BIANCO ET AL.whi
h uses the free version of the HSL (Harvell Subroutine Library) library [27℄. Spe
i�
ally,we have used the MA32 routine [28℄ that implements a frontal solver featuring a sophisti
atednumeri
al pivoting strategy. Version HSL gives us insight to 
ompare our strategies againststandard solutions available using third-party software.5. COMPARISON METRICSAll the solver versions introdu
ed in the previous se
tion are evaluated in terms of theirnumeri
al stability (limited to the solution of the linear system) and performan
e. The nexttwo se
tions dis
uss the metri
s used to measure these two 
hara
teristi
s.Evaluating numeri
al stability.Let ~x be the 
omputed (approximated) solution to one of the linear systems Ax = b arisingduring the solution of a FEM problem. Approximation errors have been evaluated using twodi�erent metri
s. The �rst is the two-norm of the residual r, that is,jjrjj = jjb�A~xjj (5)This quantity gives an indire
t indi
ation of the distan
e between the real solution and theapproximated one.The se
ond metri
 adopted is the 
omponent-wise ba
kward error [29℄w = minf" : (A+�A)~x = b+�b; j�Aj � "jAj; j�bj � "jbjg (6)(The absolute values and the 
omparisons are intended to be 
omponent-wise). It 
an beproved (see [29℄) that, setting 0=0 = 0 and �=0 =1 if � 6= 0, w 
an be 
omputed asw = maxi jrij(jAj j~xj+ jbj)i (7)There is eviden
e in the literature that the 
omponent-wise ba
kward error is more sensitiveto instability than the residual-based error. Intuitively, w measures the minimum variationthat the matrix of the system and the right hand side ve
tor should sustain to obtain theapproximated ~x solution.In this work, in order to have a more detailed des
ription of the approximation errorsintrodu
ed by our solvers, we have re�ned the 
omponent-wise ba
kward error metri
 asfollows. Let ai denote the i-th row of A. De�ne the ith equation error to bewi = min f" : (ai +�ai)~x = bi +�bi; j�aij � "jaij; j�bij � "jbijg : (8)Value wi gives a measure of \how well" ve
tor ~x satis�es the ith equation of the system. Wehave:Theorem 1. Let v be a ve
tor with vi = ri(jAj j~xj+jbj)i : Then wi = viProof: Let �âi and �b̂i be a pair of minimal perturbations asso
iated to wi. Sin
e j�âij �wijaij and j�b̂ij � wijbij, we have thatjrij = jbi � ai~xj = j�âi~x��b̂ij � j�âijj~xj+ j�b̂ij � wi(jaijj~xj+ jbij);Copyright 
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A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 11when
e wi � jvij. Also, from the de�nition of v it follows that ri = vi(jaijj~xj+ jbij). De�ne now�a0i = vijaijdiag(sign(~x)) and �b0i = �vijbij. It is easy to see that (ai+�a0i)~x� (bi+�b0i) = 0:Therefore, sin
e j�a0ij = jvijjaij and j�b0ij = jvijjbij, it follows that wi � jvij, and the theoremfollows.It is easy to see that �Â = diag(v)jAjdiag(sign(~x)) and �b̂ = �diag(v)jbj are su
h thatj�Âj � wjAj, j�b̂j � wjbj and (A+�Â)~x� (b+�b̂) = 0. Moreover, the above theorem provesthat all the perturbations are the minimum possible, in the sense indi
ated by (8). Hen
e,ve
tor v provides a readily obtainable indi
ation about the minimum perturbation that ea
hequation should sustain to obtain the approximated solution. In parti
ular any element of v 
anbe 
ompared against the roundo� unit error to gain immediate appre
iation of the signi�
an
eof the 
orresponding perturbations. Finally, observe that the standard 
omponent-wise errormetri
 w 
an be obtained as w =k v k1.A plot of ve
tor v (using the equation indi
es as the abs
issae) 
an be used to as
ertainwhether numeri
al errors tend to a�e
t some groups of equations more than others. We feelthat this is parti
ularly useful in multi-physi
s appli
ations as the ones treated in this paper.All the metri
s des
ribed above have been 
olle
ted over several iterations of ea
h solver. Nosigni�
ant variation of ea
h metri
 has been observed over the di�erent iterations. However,in what follows, we report the maximum errors en
ountered on ea
h test 
ase.Measuring performan
es.Performan
e is measured both in terms of 
omputational time and rate of 
oating pointoperations (M
ops) relatively to the frontal solver only. While 
omputational time is a dire
tand well understood measure of performan
e, the rate of 
oating point operations is a morete
hni
al one. A low rate implies that the solver spends most of the time in managing datastru
tures, in idle time due to data dependen
ies and outstanding a

esses to main memory,et
., but not in produ
ing e�e
tive data for the output. Hen
e, the former measure providesa dire
t indi
ation of the eÆ
ien
y of the 
hosen pivoting strategy, while the latter gives aninsight on how eÆ
iently the 
ode is exploiting the underlying ar
hite
ture.6. TEST CASESThe various solver versions have been tested on a number of test 
ases arising in severalpra
ti
al s
enarios and 
hara
terized by an in
reasing 
omplexity of the underlying physi
alsystem. As for the solver version, ea
h test 
ase is indi
ated by a short name (in parentheses):1. small 
olumn (sm
ol): a regular 10� 10 mesh of 100 elements in whi
h all the degrees offreedom, ex
ept for the ones related to displa
ements, are set to zero.2. wall (wall): 69 elements lined up in a row where the �fth degree of freedom (y-displa
ement) is �xed to zero;3. 
ontainer (
ont): 288 elements outlining a 
ontainer;4. 
olumn (
ol): a square se
tion of a 
olumn made of a 20� 20 mesh of 400 elements;5. big 
olumn (big
ol): like 
olumn but made of a 25� 25 mesh of 625 elements;Su
h a variety of test 
ases allows us to evaluate the behavior of the solver variants whenthe 
omplexity of the physi
s behind the problem to be solved varies, from simpler (sm
ol) toCopyright 
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12 M. BIANCO ET AL.harder (big
ol). 7. RESULTSThe solver versions shown above have been tested on an Alpha workstation whi
h uses a 21264pro
essor 
lo
ked at 666Mhz with two 
oating point units that make it 
apable of a 1354M
opspeak performan
eThe next two subse
tions report the results obtained by evaluating the various versionsof the solvers des
ribed above. In se
tion 7.1 we analyze the numeri
al stability propertiesexhibited by the solvers with respe
t to the metri
s dis
ussed in se
tion 5. In se
tion 7.2 weexamine the performan
e a
hieved by the solvers.HIT BASE NEWPIV NEWPPO MINDEG HSLsm
ol jjrjj 1 � 10�12 1 � 10�12 1 � 10�12 1 � 10�12 1 � 10�12 1 � 10�12w 3 � 10�16 3 � 10�16 3 � 10�16 3 � 10�16 3 � 10�16 4 � 10�16wall jjrjj 5 � 10�14 1 � 10�13 7 � 10�12 4 � 10�8 6 � 10�14 7 � 10�14w 4 � 10�14 1 � 10�13 1 � 10�11 3 � 10�6 4 � 10�16 1 � 10�6
ont jjrjj 6 � 10�14 8 � 10�14 3 � 10�12 1 � 10�3 6 � 10�14 1 � 10�12w 6 � 10�13 5 � 10�13 6 � 10�11 2 � 10�4 6 � 10�16 5 � 10�3
ol jjrjj 1 � 10�14 2 � 10�14 2 � 10�11 3 � 10�5 1 � 10�14 1 � 10�13w 4 � 10�12 2 � 10�12 2 � 10�5 2 � 10�3 9 � 10�16 4 � 10�4big
ol jjrjj 1 � 10�13 1 � 10�13 1 � 10�6 4 � 10�5 7 � 10�14 6 � 10�13w 2 � 10�12 6 � 10�13 7 � 10�5 5 � 10�3 1 � 10�15 5 � 10�5Table I. Residual errors and 
omponent-wise ba
kward errors exhibited by the various solvers for ea
htest 
ases.Table I reports error metri
s (5) and (6) for all the solver versions and test 
ases des
ribedbefore.7.1. Numeri
al QualityWe note that MINDEG exhibits the least errors (in order of magnitude), s
aling extremely wellas the physi
al problems be
ome more 
omplex. Also, the table shows that HIT and BASE donot exhibit exa
tly the same errors, with BASE featuring slightly larger errors. This is explainedby the fa
t that HIT uses some extra heuristi
 pre
autions to redu
e �ll-ins. We have 
hosennot to implement these expedients in BASE, sin
e they 
ompli
ate the 
ode while not providingsigni�
ant improvements in term of either a

ura
y or performan
e.If we 
ompare NEWPIV with NEWPPO, implementing, respe
tively, numeri
al pivoting withoutand with postordering, we see that the errors exhibited by the latter (in all 
ases ex
ept sm
ol)are orders of magnitude worse than those exhibited by the former. Indeed, for the two largesttest 
ases, the errors exhibited by NEWPPO in the solution of the linear systems be
ame so largeto prevent the Newton-Raphson method from 
onverge. This provides numeri
al eviden
e thatpostordering does not a
hieve its intended purpose in our physi
al s
enario.To a
hieve a more profound understanding on the numeri
al behavior of the implementedvariants, in Figure 1, we show all the 
omponents of the v ve
tor (see se
. 5) for di�erent solversrunning the big
ol test 
ase, plotted (in logarithmi
 s
ale) against their respe
tive indi
es. ForCopyright 
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Figure 1. Plot of the 
omponent-wise errors for the big
ol test 
ase, exhibited by the various solvers.The abs
issae are the equations indi
es and the ordinates are the base 10 logarithms of the errors.our spe
i�
 physi
al problems, we have that indi
es between 1 and 2000 are relative gas pressureequations, indi
es between 2001 and 4000 are relative to 
apillary pressure, indi
es between4001 and 6000 are relative to temperatures, and, �nally, the remaining indi
es are relative todispla
ement equations. It is interesting to observe how errors tend to 
luster a

ording to thetype of equation.It is 
lear from the �gure that MINDEG exhibits extremely homogeneous errors that are all
lose to the roundo� unit error (whi
h is about 10�16 for our ma
hine), while BASE, althoughstill behaving quite well, tends to show a more varied range of errors, whi
h implies thatdi�erent equations are solved with di�erent degrees of a

ura
y. As for NEWPIV, we 
an see arather good behavior on average, but the plot highlights a nonnegligible set of outliers withhigh values of the error (whi
h, in turn, yields a high value of the metri
 w). Finally, lookingat the plot for HSL, we may note how it behaves very poorly for two entire groups of equations(espe
ially those related to pressures) while it is only slightly worse that BASE for the othertwo groups.7.2. Performan
esTable II shows the exe
ution times and the 
oating point operation rates (M
ops) exhibitedby the frontal solvers. Ea
h test 
ase involves several time steps, with ea
h time step in turnrequiring the solution of a number of linear systems, one per Newton-Raphson iteration. Morespe
i�
ally, the number of linear systems solved in ea
h test 
ase is about 120 for wall and sm
ol,45 for 
ont and 
ol, and 30 for big
ol. For the last three test 
ases, the most 
omputationallyintensive ones, we have that the solver a

ounts for about 75% of the total time for MINDEG,and goes up to 95% for HIT. This fa
t justi�es our fo
using on the solver only, rather thanCopyright 
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14 M. BIANCO ET AL.HIT BASE NEWPIV NEWPPO MINDEG HSLwall Time (s) 4.6 2.23 2.48 1.96 1.07 4.48M
ops 59.54 109.18 134.15 163.08 161.34 231.73sm
ol Time (s) 6.05 1.98 2.12 1.83 1.64 6.97M
ops 50.28 164.3 168.94 179.05 180.45 201.91
ont Time (s) 77.5 27.5 30.4 790.0 22.9 207.1M
ops 79.63 237.63 232.06 98.4 262.02 206.47
ol Time (s) 314.1 116.8 124.5 3212 96.5 1230.5M
ops 54.08 224.09 222.62 7.89 256.93 154.76big
ol Time (s) 1276.4 260.1 274.0 +1 225.9 1609.5M
ops 30.58 232.53 226.6 { 261.77 137.47Table II. Times and 
oating point operations rates (frontal solver only). Note the +1 entries in theNEWPPO 
olumns are related to that test 
ases for whi
h the method does not 
onverge as the errorsbe
ome too large.
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Figure 2. Time taken by the various solvers on a single linear system as a fun
tion of the size of thesystem itself.other parts of the program, su
h as the numeri
al integration routines.In �gure 2 we plot the time taken by the various solvers on a single linear system as afun
tion the size of the system itself. We want to remark that the size of the system is not,however, the only parameter that a�e
ts performan
e, sin
e, depending on the solver used,other pe
uliarities may in
uen
e exe
ution times, su
h as, for example, the shape of the mesh.Looking at Table II, we note that MINDEG exhibits the by far best performan
e. Togetherwith the numeri
al stability data presented in the previous se
tion, this implies that MINDEGa
hieves both performan
e and a

ura
y at the same time, whi
h is somewhat surprising sin
ean in
rease in a

ura
y often 
omes at the expense of a deterioration of performan
e.Copyright 
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Figure 3. Floating point operations rates exhibited by the solvers varying the size of the systemsresolved.Unlike HIT and HSL, MINDEG, BASE, and NEWPIV seem to be able to sustain high 
ops ratewhen the size of the problem in
reases (see �g. 3). Su
h s
alability rewards our redesign ofthe data stru
tures, whi
h a�ords a

ess times to data whi
h are independent of the amountof the data itself. Comparing BASE against HIT, we see that redesigning the data stru
tures,optimizing data a

esses and 
arefully eliminating 
onditional bran
hes alone made the solvermore than 4 times faster. Changing the pivoting strategy yielded an extra time saving: indeed,MINDEG is more than 5.6 times faster than HIT for the big
ol test 
ase.Looking at the numeri
al pivoting strategies, we note that HSL exhibits a ratherunsatisfa
tory performan
e. This seems to be mainly due to postordering. Comparing NEWPPOto NEWPIV, for the test 
ases for whi
h both strategies 
onverge, we note that when postorderingis extensively used (as for 
ont and 
ol test 
ases), the exe
ution time explodes. This 
an beexplained by the feedba
k e�e
t des
ribed in se
tion 4.1 and due to postordering. It has to beremarked that HSL behaves quite well for the wall and sm
ol test 
ases, for whi
h it exhibitsthe highest 
ops rate. In fa
t, when the physi
al problem is simple, HSL be
omes 
ompetitive.However, as the problem be
omes more 
omplex, the time performan
e of HSL degrades, eventhough its 
oating point operations rate remains quite high. As a bottomline we 
an say thatHSL features a very good implementation (high 
ops rate), but its pivoting strategy, however,turns out to be a poor 
hoi
e for our physi
al problems.Going ba
k to NEWPIV and NEWPPO, we note that for the wall and sm
ol test 
ases, the latterexhibits better exe
ution times than the former. This is due to the fa
t that, while NEWPIVmaximizes � in equation (4), NEWPPO simply pi
ks the �rst element whi
h satis�es (4) for a�xed � = 10�6. This strategy proves to be bene�
ial for performan
e sin
e fewer entries ofthe frontal matrix need to be s
anned. The gain in performan
e is however limited to thosesimple 
ases where postordering is rarely applied. We have 
hosen not to pi
k the best possiblepivot when implementing postordering sin
e we have observed that otherwise some rows wouldCopyright 
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16 M. BIANCO ET AL.remain longer in the frontal matrix, whi
h has detrimental e�e
ts on both time performan
eand a

ura
y. 8. CONCLUSIONWhen solving very non linear and stri
tly 
oupled physi
al problems where there may be manyorders of magnitude among the numeri
al values involved, our experiments suggest that thebest strategy is to strive for simpli
ity. Indeed, the MINDEG version of the solver does not do anynumeri
al 
onsideration when 
hoosing the pivot in Gaussian elimination, but only stru
turalones. Yet, this suÆ
es to get ex
ellent performan
e and good a

ura
y.Redesigning the data stru
tures and performing 
ode optimizations has proved to be themost e�e
tive way to speed-up the program 
onsidering that BASE a
hieves an improvementof a fa
tor 4 with respe
t to HIT. A further improvement is then obtained by simplifying thepivoting strategy.A possible further improvement in performan
e, that we mean to investigate, is to �ndthe right tradeo� between avoiding linear sear
hes inside the arrays and limiting indire
taddressing. Spe
i�
ally, osserve that data stru
tures designed to avoid linear sear
hes makelarge use of indire
t addressing, whi
h, however, may disrupt temporal lo
ality and slow downthe algorithm by for
ing the pro
essor to wait for the data to be
ome available from mainmemory.A further way to improve performan
e is parallelizing the 
ode. This implies 
hoosingbetween a number of ar
hite
ture-dependent alternatives, su
h as adopting a full multi-frontal[9, 30℄ versus a multiple fronts strategy [31℄, and a well suited partitioning algorithm dependingon the of problems that have to be resolved.REFERENCES1. Gawin D, Majorana CE, Pesavento F, S
hre
er BA. A fully 
oupled multiphase FE model of hygro-thermo- me
hani
al behaviour of 
on
rete at high temperature. In Computational Me
hani
s., Onate, E.& Idelsohn, S.R. (eds.), New Trends and Appli
ations:, Pro
. of the 4th World Congress on ComputationalMe
hani
s, Buenos Aires 1998; 1{19. Bar
elona: CIMNE, 1998.2. Park KC, Felippa CA. Partitioned analysis of 
oupled system, in Computational Methods for TransientAnalysis, T. Belyts
hko and T.R.J. Hughes (eds), Elsevier, Amsterdam, 1983; 157-2193. Turska E, Wisniewiski K, S
hre
er BA. Error propagation of staggered solution pro
edures for transientproblems, Computer Methods in Appl. Me
h. and Engng., 1994; 144:177{188.4. Turska E, S
hre
er BA. On 
onvergen
e 
onditions of partitioned solution pro
edures for 
onsolidationsproblems, Computer Methods in Applied Me
h. and Engng.,1993; 106:51{63.5. Dureisseix D, Ladeveze P, S
hre
er BA. LATIN strategy for 
oupled 
uid-solid problems in the domain,from Computational Fluid and Solid Me
hani
s, Vol.2 (K.J. Bathe ed.) Elsevier, 2001; 1143{1146.6. Wang X, Gawin D, S
hre
er BA. A parallel algorithm for thermo-hydro-me
hani
al analysis of deformingporous media, Computational Me
hani
s, 1996; 19:94{104.7. Wang X, S
hre
er BA. A multifrontal parallel algorithm for 
oupled thermo-hydro-me
hani
al analysis ofdeforming porous media, Int. J. Num. Meth. Engng., 1998; 43:1069{10838. Wang X, Baggio P, S
hre
er BA. A multi-level frontal algorithm for �nite element analysis and itsimplementation on parallel 
omputation, Engineering Computations, 1999; 16(4):406{427.9. Du� IS, Erisman AM, Reid JK. Dire
t Methods for Sparse Matri
es, Clarendon Press, 1986.10. Wang X, Matteazzi R, S
hre
er BA, Zienkiewi
z OC. An asyn
hronous parallel algorithm for 
onsolidationproblems, 
hapter 3 from `Modeling in Geodynami
s', M. Zaman, J.R. Booker, G. Gioda, eds., Wiley,Chi
hester, 2000; 51{64.Copyright 

 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.
ls



A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 1711. Wang X, S
hre
er BA. Fully 
oupled thermo-hydro-me
hani
s analysis by an algebrai
 multigrid method,submitted for publi
ation12. S
hre
er BA. Me
hani
s and thermodynami
s of saturated-unsaturated porous materials and quantitativesolutions, submitted for publi
ation13. Gawin D, Majorana CE, S
hre
er BA. Numeri
al analysis of hygro-thermi
 behaviour and damage of
on
rete at high temperature. In Me
h. Cohes.-Fri
t. Mater. 1999; 4:37{74.14. Gawin D, Pesavento F, S
hre
er BA. Modelling of hygro-thermal behaviour and damage of 
on
rete attemperature above the 
riti
al point of water. Submitted for publi
ation.15. BRITE Euram III BRPR-CT95-0065 1999 "HITECO". Understanding and industrial appli
ations of HighPerforman
e Con
rete in High Temperature Environment, Final Report, 1999.16. Whitaker S. Simultaneous heat mass and momentum transfer in porous media: a theory of drying. InAdvan
es in heat transfer 13. New York: A

ademi
 Press, 1977.17. Bear J. Dynami
s of Fluids in Porous Media. New York: Dover, 1988.18. Bear J, Ba
hmat Y. Ma
ros
opi
 modelling of transport phenomena in porous media, 2: appli
ations tomass momentum and energy transfer. In Transp. in Porous Media, 1986; 1:241{269.19. Bear J, Ba
hmat Y. Introdu
tion to Modelling of Transport Phenomena in Porous Media. Dordre
ht:Kluwer, 1990.20. Hassanizadeh M, Gray WG. General 
onservation equations for multiphase systems: 1. Averagingte
hnique. In Adv. Water Res. 1979; 2:131{144.21. Hassanizadeh M, Gray WG. General 
onservation equations for multiphase systems: 2 Mass, momenta,energy and entropy equations. In Adv. Water Res. 1979; 2:191{203.22. Hassanizadeh M, Gray WG. General 
onservation equations for multiphase systems: 3 Constitutive Theoryfor Porous Media. In Adv. Water Res. 1980; 3:25{40.23. Lewis RW, S
hre
er BA. The Finite Element Method in the Stati
 and Dynami
 Deformation andConsolidation of Porous Media. Chi
hester: Wiley & Sons, 1998.24. S
hre
er BA, Gawin D. The e�e
tive stress prin
iple: in
remental or �nite form? Int. J. for Num. andAnal. Meth. in Geome
hani
s, 1996; 20(11):785{815.25. Irons BM. A frontal solution program for �nite element analysis Int. J. Numer. Meth. Engng, 1970; 2:5{32.26. Tinney WF, Walker JW. Dire
t solutions of sparse network equations by optimally ordered triangularfa
torization, Pro
. IEEE 55, 1967; 1801{1809,27. HSL (Formerly the Harwell Subroutine Library).http://www.
se.
lr
.a
.uk/A
tivity/HSL28. Du� IS, Reid JK. MA32 - a pa
kage for solving sparse unsymmetri
 systems using the frontal method,Report R.10079, HMSO, London, 1981.29. Oettli W, Prager W. "Compatibility of Approximate Solution of Linear Equations with Given ErrorBounds for CoeÆ
ients and Right-Hand Sides", Numeris
he Mathematik, 1964; 6:405{409.30. Du� IS, Reid JK. The multifrontal solution of unsymmetri
 sets of linear equations SIAM J. S
i. Stat.Comput., September 1984; 5(3):633{641,31. Du� IS, S
ott JA. The use of multiple fronts in Gaussian Elimination, Te
hni
al Report RAL-TR-94-040,Department for Computation and Information, Rutherford Appleton Laboratory, September 1994.

Copyright 

 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.
ls


