
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERINGInt. J. Numer. Meth. Engng 2001; 0:1{17 Prepared using nmeauth.ls [Version: 2000/01/19 v2.0℄A frontal solver tuned for fully-oupled non-linearhygro-thermo-mehanial problemsMauro Biano1, Gianfrano Bilardi1, Franeso Pesavento2,Geppino Pui1, and Bernhard A. Shreer31Dipartimento di Elettronia e Informatia, Universit�a di Padova, Padova, Italy.fbiano1,bilardi,geppog�dei.unipd.it2Dipartimento di Costruzioni e Trasporti, Universit�a di Padova, Padova, Italy.pesa�di.unipd.it3Corresponding author: Dipartimento di Costruzioni e Trasporti, Universit�a di Padovavia F. Marzolo, 9 35131 - Padova, Italy. email: bas�di.unipd.itTel. +39 049 827 5611, Fax. +39 049 827 5604,SUMMARYSolving fully-oupled non-linear hygro-thermo-mehanial problems relative to the behavior of onreteat high temperatures using monolithi models is nowadays a very interesting and hallengingomputational problem. These models require an extensive use of omputational resoures, suhas main memory and omputational time, due to the great number of variables and the numerialharateristis of the oeÆients of the linear systems involved.In this paper a number of di�erent variants of a frontal solver used within HITECOSP, an appliationdeveloped within the BRITE Euram III \HITECO" EU projet, to solve multiphase porous mediaproblems, are presented and evaluated with respet to their numerial auray and performane.When developing the variants, several optimization tehniques have been adopted, suh as datastruture, ahe and branhes optimizations. Spei�ally numerial auray has been evaluated usinga modi�ed omponent-wise bakward error analysis.The main result of this work is a new solver whih is both muh faster and more aurate than theoriginal one. Spei�ally, the ode runs over 5 times faster and numerial errors are redued of up tothree order of magnitude. Copyright  2001 John Wiley & Sons, Ltd.key words: frontal method, performane optimization, numerial errors analysis1. INTRODUCTIONMany suessful methods exist for the solution of algebrai equations arising from thedisretization of unoupled problems. For oupled problems, espeially if they involve several�elds, the problem is still open. As far as oupled thermo-hygro-mehanial problems areContrat/grant sponsor: This work was supported, in part, by MURST of Italy within the framework of theCentre for Siene and Appliation of Advaned Computation Paradigms of the University of Padova.Copyright  2001 John Wiley & Sons, Ltd.



2 M. BIANCO ET AL.onerned, several methods have been investigated or are under investigation, but a fullysatisfatory answer has not yet been found. The most reliable but also the most expensiveapproah is the monolithi approah, where all �eld equations are solved simultaneously [1℄.Operator split tehniques like the staggered method [2, 3, 4℄ allow to solve smaller size problemsat eah instant, but usually require iterations between the �elds whih redue their advantage.Reent investigations on two �eld problems have shown that the LATIN method behavesrather well [5℄. As far as parallel omputing is onerned, domain deomposition [6, 7, 8℄,multifrontal tehniques (single and multilevel) [6, 7, 8, 9℄ and asynhronous methods [10℄ havebeen investigated. Exept for the asynhronous methods, whih, at least up to now have onlybeen made to work for linear two �eld problems, the overhead due to parallelization introduedby these methods make them less attrative than the monolithi method. Algebrai multigridmethods [11℄ whih are urrently under investigation seem however promising. Taking intoaount this situation, the monolithi method is still muh in use and we onentrate here onthis method trying to improve its performane.First we explain why the oupled thermo-hygro-mehanial problems on whih we work, areso ompliated to deserve speial attention.Two di�erent approahes are usual in the simulation of hygro-thermal phenomena andrelated mehanial e�ets in porous media. In the phenomenologial approah, moisture andheat transport are desribed by di�usive type di�erential equations with temperature- andmoisture ontent-dependent oeÆients. The model oeÆients are determined by inverseproblem solution, i.e., using known results of experimental tests to obtain the best agreementbetween theoretial predition and experimental evidene (e.g., in the sense of least squaremethod). Thus, they are very aurate for interpolation and rather poor for extrapolation ofthe known experimental results. Moreover, various physial phenomena are lumped together,there is no distintion between di�erent phases of water, hene phase hanges annot be takeninto aount and �nally model parameters often have no lear physial interpretationIn mehanisti models whih we use [12℄, governing equations are usually more ompliatedformally, but their oeÆients have lear physial meaning and often are related to lassialmaterial parameters, like for example porosity, intrinsi permeability, di�usivity of vapour inair, et. When some relations between struture parameters and transport properties are found,usually they are valid for a lass of similar materials. Mass and energy uxes are expressed bymeans of gradients of thermodynami potentials. Phase hanges and mass- and energy soures(sinks) related to them are taken into aount. Moreover, some additional ouplings, e.g. e�etof material damaging on intrinsi permeability or apillary and vapour pressures (moistureontent) on skeleton stresses, an be onsidered.For these reasons the seond approah is onsidered more omplete from a physial point ofview, but results in a partiularly omplex mathematial system, in terms of both number ofequations and their oeÆients, whih are strongly nonlinear.We onentrate here on a partiular oupled multi-physis problem whih deals with onreteunder high temperature onditions. Suh a model allows for instane to make residual lifetimepredition in onrete vessels of nulear reators or to predit the behaviour of onrete walls intunnel �res et., [1, 13, 14℄. The model has been implemented in the omputer ode HITECOSPin the framework of the BRITE Euram III \HITECO" [15℄ researh projet. This software usesa frontal tehnique to solve the �nal system resulting from the FE implementation of the model.The aim of our work to improve the eÆieny of its frontal solver in terms of performaneas well as numerial auray, in order to exploit the various harateristis imposed by theCopyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls



A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 3mehanisti model.Improvements in term of performane have been obtained implementing a number ofoptimizations (see Setion 4.2), suh as improving the data strutures, enhaning thespatial and temporal loality of the memory aesses, and branh optimizations. With theseoptimizations exeution times improves of a fator 4 with respet to original HITECOSPprogram.In order to improve numerial auray in solving the linear systems arising from theNewton-Raphson like proedure used for the mehanisti model, several pivoting strategieshave been implemented and evaluated based on modi�ed omponent-wise bakward erroranalysis (see Setion 5) whih allows to plot the magnitude of the minimal perturbation eahequation sustains in order to obtain the approximated solution of the system. Atually, theseperturbations an be ompared with the roundo� unit error. From this analysis it follows thatthe best strategy in terms of auray is the best also in terms of performane. In partiularwe have notied errors of the same order of magnitude of the roundo� unit error and a furtherspeed-up with respet to the optimized version of the original solver.The rest of the paper is organized as follows. In Setion 2 the mathematial model isdesribed, while Setion 4 deals with the various optimizations we have introdued andthe pivoting strategy we have implemented. The metris adopted to evaluate auray andperformane are desribed in Setion 5. Finally, the test ases used to evaluate our solvers aredesribed in Setion 6 while our results are shown in Setion 7.2. MATHEMATICAL MODELIn the model presented here, onrete is onsidered as a partially saturated porous material[1, 13℄ onsisting of a solid phase, two gas phases and three water phases. The theoretialframework is based on the works of Whitaker [16℄, Bear [17℄, Bear and Bahmat [18, 19℄,Hassanizadeh and Gray [20, 21, 22℄ and Lewis and Shreer [23℄.Re�nements suh as non-linearities due to temperature and pressures, hydration-dehydration, evaporation-ondensation, adsorption-desortpion, phenomena are onsidered,(see [1, 13℄). Di�erent physial mehanisms governing the liquid and gas transport in the poresof partially saturated onrete are learly distinguished, i.e. apillary water and gas ows drivenby their pressure gradients, adsorbed water surfae di�usion aused by saturation gradients, aswell as air and vapour di�usion driven by vapour density gradients, [1, 13℄. Conrete damaginge�ets arising from oupled hygro-thermal and mehanial interation are onsidered by useof the isotropi non-loal damage theory and a further oupling between intrinsi permeabilityand mehanial damage has been introdued to take into a-ount the hanges of materialmirostruture. More-over improvements, regarding the possibility to simulate the behaviourof the material at temperatures whih largely exeed the ritial point of water and the realbehaviour of gases present in the pores of onrete, i.e. the gases are treated as real gas, havebeen reently introdued in the model, [14℄.The �nal mathematial model onsists of four balane equations: mass onservationof dry air, mass onservation of the water speies (both in liquid and gaseous state,taking phase hanges, i.e. evaporation-ondensation, adsorption-desorption and hydration-dehydration proess, into aount), enthalpy onservation of the whole medium (latent heatof phase hanges and heat e�ets of hydration or dehydration proesses are onsidered) andCopyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls



4 M. BIANCO ET AL.linear momentum of the multiphase system. The sistem is ompleted with an appropriate setof onstitutive and state equations, as well as some thermodynami relationships, [23℄. Thegoverning equations of the model are expressed in terms of the hosen state variables: gaspressure pg , apillary pressure p, temperature T and displaement vetor of the solid matrixu and are diretly derived from [23℄, where the onstitutive law for the solid skeleton densityand water density are experimentally determined. In partiular the density of solid skeletonhas to respet the solid mass onservation equation whih is not a basi equation of the model.The governing equations of the model proposed, onsidering negligible both the inertial foresand the onvetive heat ux related to solid phase and taking into aount the Bishops stresses[24℄, are the following:Dry air mass onservation equation:� n�Sw�t � �s (1� n)Sg �T�t + Sgr � vs + Sgn�a ��a�t + 1�ar � Jag++ 1�ar � (nSg�avgs) + (1� n)Sg�s ��s��hydr ��hydr�t = _mdehydr�s SgWater speies (liquid + vapour) mass onservation equation:n (�w � �v) �Sw�t � �swg �T�t + (�vSg + �wSw)r � vs + Sgn ��v�t ++r � Jvg +r � (nSg�vvgs) +r � (nSw�wvws)++(1� n) (Sg�v + �wSw)�s ��s��hydr ��hydr�t = �vSg + �wSw � �s�s _mdehydrEnergy onservation equation (enthalpy balane):(�Cp)ef �T�t + ��wCwp vws + �gCgp vgs� � rT��r � (�efrT ) = � _mphase �Hphase + _mdehydr�HdehydrLinear momentum equation (equilibrium equation):div f�0 � I (pg � Swp)g+ �g = 0For the losure of the model a set of thermodynami and onstitutive relationships areneeded. In the present work only few of them will be shown in detail, in partiular as far asdamage mehanis and absolute permeability-damage parameter oupling are onerned. (Forfurther information see [23, 1, 13, 14, 24℄).3. NUMERICAL SOLUTIONThe system of governing equations of the model, formed by two mass onservation equations,one linear momentum onservation equation and an enthalpy onservation equation, afterappliation of the �nite element method for disretization in spae beomes:Copyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls



A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 5Cgg ��pg�t +Cg ��p�t +Cgt ��T�t +Cgu ��u�t +Kgg�pg +Kg�p +Kgt�T = fgC��pvt +Ct ��T�t +Cu ��u�t +Kg�pg +K�p +Kt�T = fCt ��p�t +Ctt ��T�t +Ctu ��u�t +Ktg�pg +Kt�p +Ktt�T = ftKug�pg +Ku�p +Kut�T+Kuu�u = fu (1)As usual, the primary variables are expressed by their nodal values and the shape funtionsas follows: pg =Np �pgp = Np �pT =Nt �Tu = Nu �uFinite di�erenes in time are used for the solution of the initial value problem. The methodused in this text produes an idential system of equations obteineded with the weightedresidual method in time with point olloation. We an write the system (1) in a more oniseform as B�X�t +CX = F (2)where the matries B, C, X and F are the following:C = 2664 Kgg Kg Kgt 0Kg K Kt 0Ktg Kt Ktt 0Kug Ku Kut Kuu 3775 ; B = 2664 Cgg Cg Cgt Cgu0 C Ct Cu0 Ct Ctt Ctu0 0 0 0 3775F =8>><>>: fgfftfu 9>>=>>; ; X =8>><>>: �pg�p�T�u 9>>=>>;The matries B and C are non-symmetri and depend on X. The disretisation in the timedomain is arried out by the generalised trapezoidal method, also known as the generalisedmidpoint rule: ��X�t �n+� = Xn+1 �Xn�t 0 < � � 1Xn+� = (1� �)Xn + �Xn+1where �t is the time step length, Xn and Xn+1 are the state vetors at times tn and tn+1, andwhere, depending of the value of �, it is possible to obtain di�erent shemes for integration ofthe system in time:Copyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls



6 M. BIANCO ET AL.� = 1 fully impliit sheme (Euler bakward);� = 0:5 Crank-Niholson sheme;� = 0 fully expliit sheme (Euler forward); then (2) at time tn+� beomes:	 (Xn+1) = [B+ ��tC℄n+�Xn+1+� [B� (1� �) �tC℄n+�Xn ��tFn+� = 0 (3)Where 	 (Xn+1) = �	g (Xn+1) ; 	 (Xn+1) ; 	t (Xn+1) ; 	u (Xn+1) �Tthe matries in (3) are evaluated at time tn+�.An examination of the set of governing equations (3) reveals that the oupled system (2)is non-linear; hene it requires linearising by an iterative Newton-Raphson proedure of theform: 	� �Xin+1� = ��	��X ����Xin+1 �Xin+1; � = g; ; t; uwhere the Jaobian matrix is de�ned by:�	�X ����Xin+1 = 26666666664
�	g��pg �	g��p �	g��T �	g��u�	��pg �	��p �	��T �	��u�	t��pg �	t��p �	t��T �	t��u�	u��pg �	u��p �	u��T �	u��u

37777777775
���������������X=Xin+1and the inrement vetor of the primary variables is:�Xin+1 = h(��pg)in+1 ; (��p)in+1 ;��Tin+1;��uin+1iTwhere i is the iteration ount.During the omputation, for eah time step, the primary variable vetor Xn+1 is updatedafter eah iteration, i.e.: Xi+1n+1 = Xin+1 +�Xin+1In the Newton-Raphson method, the elements of the Jaobian matrix are updated after eahiteration, whih is omputationally expensive. Thus, in pratie the modi�ed Newton-Raphsonmethod is often preferred, where the Jaobian matrix is alulated only one at the beginningof eah time step or after a �xed number of iterations.To take into aount damage of onrete, a two stage solution strategy is applied at everytime step. First an intermediate problem, keeping the onstant damage value obtained at theprevious time step, is solved. Then, starting from this intermediate state, the �nal solutionis obtained, for all state variables and damage parameter, by the modi�ed Newton-Raphsonmethod, using the tangential or Jaobian matrix from the last iteration of the �rst stage. Suhan approah allowed us to avoid di�erentiation with respet to the damage and to obtain aCopyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls



A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 7onverging solution. Sometimes this derivative inreases very rapidly until the damage reahesits maximum value and then remains equal to zero, ausing divergene of the solution.An unoptimized version of the above model has been implemented in the omputer odeHITECOSP, in the framework of the BRITE Euram III \HITECO" researh projet [15℄. Thisode provides the starting base upon whih we develop our optimization strategies aiming atimproving both performane and numerial auray of the ode.4. FRONTAL METHOD: OVERVIEW AND IMPLEMENTATIONThe large linear systems arising from the Newton-Raphson method desribed in Setion (3)are solved using the frontal method (see [25, 9℄ for a full desription). The frontal methodsolves a linear system by working, at eah step, only on a portion of the matrix (alled frontalmatrix), hene it is useful in those situations where ore memory beomes the ritial resoure.The method works by sequentially exeuting two phases on eah element of the �nite elementgrid: an assembly phase and an elimination phase. During the assembly phase, the frontalmatrix is augmented by the appropriate number of olumns and rows relative, respetively, tothe variables assoiated to the element and the equations ontaining those variables, and thematrix entries are updated to aount for the new element. An entry beomes fully-summedif it will not reeive further updates in any subsequent assembly phase. A olumn (resp., row)beomes fully-summed when all its entries beome fully summed. A variable orresponding toa fully-summed olumn is also said fully-summed.During the elimination phase, Gaussian elimination is applied to the frontal matrix, hoosingthe pivot in the blok at the intersetion of fully-summed rows and fully-summed olumns. Ateah Gaussian elimination step, the pivot row is eliminated, i.e., it is stored somewhere intomemory (typially onto a disk, if the problem is too large to �t in main memory). After thelast elimination phase, bak substitution on the redued linear system is exeuted.4.1. Overview of pivoting strategiesReall that in the frontal method only a part of the matrix of the system is available atany given time, hene any pivoting strategy must be adopted to ope with this senario. Inpartiular, the pivot must always be hosen among those entries of the frontal matrix whihreside in fully-summed rows and fully-summed olumns.Many strategies have been developed either to speed up the frontal solver or to improve itsnumerial stability. In this setion we desribe those strategies whih we have implemented inorder to �nd a solution that ahieves the best tradeo� between stability and performane forour partiular physial problems.Let A be the frontal matrix in a given elimination step. Numerial pivoting [9℄ entailshoosing the pivot among the entries aij residing in fully-summed olumns suh thatjaij j � �maxk jaik j; (4)where 0 < � � 1 is a numerial onstant and i is the index of a fully-summed row. Numerialpivoting was adopted to redue the approximation error introdued by Gaussian eliminationfor the frontal method.Copyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls



8 M. BIANCO ET AL.If an eligible pivot is not found, then the next element is assembled and a new searh for apivot is performed. This strategy is alled postordering for stability [9℄. The algorithm learlyterminates sine eventually all the rows and all the olumns of the frontal matrix will beomefully-summed.Often it is laimed in the literature that postordering for stability a�ets performane onlyslightly, while numerial stability is substantially inreased. However, our experiments showthat this is not the ase for our physial problems. The failure of postordering in our senarioseems to be primarily due to the fat that the matrix entries in our mixed physial problemsan be up to 40 orders of magnitude apart. Moreover, when a pivot is hosen, during theelimination step, �ll-ins are produed in other rows, thus reating bonds among variables thatdo not belong to neighboring elements in the �nite element mesh. Often these bonds prevent arow to be eliminated sine the entries in its fully summed olumns do not satisfy ondition (4).In the next elimination steps this row ontinues to be �lled with additional nonzero entries,hene the likelihood that it will not be hosen for elimination keeps on inreasing, in a sort of\positive feedbak" e�et. Indeed we have observed extreme ases where rows entered in thefrontal matrix at the very beginning of the solver's ativity remains in the matrix until thevery end. This phenomenon introdues two problems: not only does it ause the frontal matrixto grow inordinately, slowing down the program, but also worsens the numerial stability ofthe method, sine a row that is present for a long time in the frontal matrix will sustain manyoperations on it, whih is likely to amplify aumulation errors.Another popular pivoting strategy is known as minimum degree [26, 9℄. This strategy wasproposed as a greedy way to redue �ll-ins when performing Gaussian elimination and wasproved to be suited for symmetri, positive-de�nite matries. Under minimum degree, the pivotis hosen as the diagonal element of a row with the minimum number of entries. Under thefrontal method, the minimum degree strategy may be applied to the frontal matrix, hoosingthe pivot on the diagonal entry of the row with minimum number of entries in the blok formedby the intersetion between fully summed rows and fully summed olumns. Sine the full matrixof our systems has a symmetri struture, hoosing pivots on the diagonal also preserves thissymmetry inside the frontal matrix, allowing the data strutures to be simpli�ed.It has to be remarked that the minimum degree strategy does not make any numerialonsideration on the hosen pivot and it was originally developed for matries that do notneed suh numerial preautions, e.g., positive de�nite symmetri matries. Although ourmatries, featuring great di�erenes between numerial values of their entries, appear to beunsuitable for an appliation of minimum degree pivoting, our experiments have shown thatthe strategy is an e�etive way of reduing the aumulation error aused by postordering,perhaps due to the fat that it substantially redues the amount of oating point operations.Indeed, a areful implementation of the minimum degree strategy has proven to feature bothexellent performane and numerial auray for our problems.The original appliation, HITECOSP, from whih this work started, uses the following hybridstrategy. Before the pivot is hosen, if the absolute value of the previous pivot is less than a�xed numerial threshold value (10�4 in our ases), then the fully-summed rows are normalizedso they will ontain only values inluded between �1 and 1. After that, the pivot is hosenas the entry with the maximum absolute value among those in the intersetion between fully-summed rows and olumns. No postordering is performed. This strategy seems to work wellfor our physial problems. Namely, it exhibits good numerial auray and lends itself toan eÆient implementation, whih however requires a omplete redesign of the relevant dataCopyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls



A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 9strutures.4.2. Our solutionsIn this setion we desribe the frontal solvers whih we have implemented. Eah variant isharaterized by a short name (in parentheses) whih suggests the spei� pivoting strategyadopted by the variant. Our �rst intervention has aimed at improving performane ofthe HITECOSP software (HIT) by providing an optimized implementation of its solver. Inpartiular, the greatest improvement in performane has been obtained by the redesign of themain data strutures in order to redue at the minimum the number of linear searhes insidearrays.Another important issue that has been onsidered in redesigning HITECOSP's solver is theenhanement of the temporal and spatial loality of the memory aesses performed. To thispurpose, extensive ahe optimization has been applied, suh as performing operations (e.g.,row elimination, pivot searh, et.) within the solver by olumn rather that by row, in orderto exploit the olumn major alloation of matries featured by the FORTRAN ompiler.Another important soure of performane enhanement has ome from onditional branhoptimization. As an example, onsider that when omputing on a sparse matrix, manyoperations are performed to no e�et on zero entries (e.g., divisions and multipliations).However in most modern miroproessor arhitetures (and, in partiular, on the ALPHAplatform where our experiments run), keeping these operations improves performane sinethey take less yles than those neessary by the proessor to reover from a mispreditedbranh. Indeed, onditional branh elimination in HITECOSP has improved the performaneof the resulting ode of up to 20%. This version of the frontal solver, implementing the samepivoting strategy as HITECOSP, named BASE, exhibits rather good performane.The above ode optimizations have also been employed to speed up the exeution of theother solvers developed within our study. However, the main justi�ation for designing newsolvers mainly stems from our desire to ompare the eÆieny and numerial stability ofthe pivoting approah of HITECOSP with the other more established strategies desribedin the previous setion. As a �rst step, basi numerial pivoting (as illustrated before) wasimplemented. Spei�ally we have developed a version without postordering that hooses aspivot the element that maximizes the value of � in (4) (NUMPIV), and another one implementingpostordering (NUMPPO) whih set � = 10�6 in (4).Next, we have implemented the minimum degree strategy (MINDEG). This latter solverhooses the pivot on the diagonal of the frontal matrix and is endowed with reovery featureswhen an entry in the diagonal is zero (however, this has never ourred in our experiments). Afurther optimization stems from the fat that, sine the struture of the frontal matrix dependsonly on that of the �nite element mesh, and, under the minimum degree strategy, the pivotsdepend only on the struture of the matrix, the pivotal sequene remains the same for all theexeutions of the frontal solver over the di�erent iterations of the Newton-Raphson method(unless the hosen pivot is zero, whih requires speial are). Hene, it is possible to store thepivotal sequene during the �rst exeution and to use it for the next ones, hoosing the pivot,at eah stage, with a single memory aess. Our version of the minimum degree algorithmstores the pivotal sequene after the �rst exeution of the frontal solver and uses it in thesubsequent alls.Finally, for the purpose of omparison, we have produed a further implementation (HSL)Copyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls



10 M. BIANCO ET AL.whih uses the free version of the HSL (Harvell Subroutine Library) library [27℄. Spei�ally,we have used the MA32 routine [28℄ that implements a frontal solver featuring a sophistiatednumerial pivoting strategy. Version HSL gives us insight to ompare our strategies againststandard solutions available using third-party software.5. COMPARISON METRICSAll the solver versions introdued in the previous setion are evaluated in terms of theirnumerial stability (limited to the solution of the linear system) and performane. The nexttwo setions disuss the metris used to measure these two harateristis.Evaluating numerial stability.Let ~x be the omputed (approximated) solution to one of the linear systems Ax = b arisingduring the solution of a FEM problem. Approximation errors have been evaluated using twodi�erent metris. The �rst is the two-norm of the residual r, that is,jjrjj = jjb�A~xjj (5)This quantity gives an indiret indiation of the distane between the real solution and theapproximated one.The seond metri adopted is the omponent-wise bakward error [29℄w = minf" : (A+�A)~x = b+�b; j�Aj � "jAj; j�bj � "jbjg (6)(The absolute values and the omparisons are intended to be omponent-wise). It an beproved (see [29℄) that, setting 0=0 = 0 and �=0 =1 if � 6= 0, w an be omputed asw = maxi jrij(jAj j~xj+ jbj)i (7)There is evidene in the literature that the omponent-wise bakward error is more sensitiveto instability than the residual-based error. Intuitively, w measures the minimum variationthat the matrix of the system and the right hand side vetor should sustain to obtain theapproximated ~x solution.In this work, in order to have a more detailed desription of the approximation errorsintrodued by our solvers, we have re�ned the omponent-wise bakward error metri asfollows. Let ai denote the i-th row of A. De�ne the ith equation error to bewi = min f" : (ai +�ai)~x = bi +�bi; j�aij � "jaij; j�bij � "jbijg : (8)Value wi gives a measure of \how well" vetor ~x satis�es the ith equation of the system. Wehave:Theorem 1. Let v be a vetor with vi = ri(jAj j~xj+jbj)i : Then wi = viProof: Let �âi and �b̂i be a pair of minimal perturbations assoiated to wi. Sine j�âij �wijaij and j�b̂ij � wijbij, we have thatjrij = jbi � ai~xj = j�âi~x��b̂ij � j�âijj~xj+ j�b̂ij � wi(jaijj~xj+ jbij);Copyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls



A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 11whene wi � jvij. Also, from the de�nition of v it follows that ri = vi(jaijj~xj+ jbij). De�ne now�a0i = vijaijdiag(sign(~x)) and �b0i = �vijbij. It is easy to see that (ai+�a0i)~x� (bi+�b0i) = 0:Therefore, sine j�a0ij = jvijjaij and j�b0ij = jvijjbij, it follows that wi � jvij, and the theoremfollows.It is easy to see that �Â = diag(v)jAjdiag(sign(~x)) and �b̂ = �diag(v)jbj are suh thatj�Âj � wjAj, j�b̂j � wjbj and (A+�Â)~x� (b+�b̂) = 0. Moreover, the above theorem provesthat all the perturbations are the minimum possible, in the sense indiated by (8). Hene,vetor v provides a readily obtainable indiation about the minimum perturbation that eahequation should sustain to obtain the approximated solution. In partiular any element of v anbe ompared against the roundo� unit error to gain immediate appreiation of the signi�aneof the orresponding perturbations. Finally, observe that the standard omponent-wise errormetri w an be obtained as w =k v k1.A plot of vetor v (using the equation indies as the absissae) an be used to asertainwhether numerial errors tend to a�et some groups of equations more than others. We feelthat this is partiularly useful in multi-physis appliations as the ones treated in this paper.All the metris desribed above have been olleted over several iterations of eah solver. Nosigni�ant variation of eah metri has been observed over the di�erent iterations. However,in what follows, we report the maximum errors enountered on eah test ase.Measuring performanes.Performane is measured both in terms of omputational time and rate of oating pointoperations (Mops) relatively to the frontal solver only. While omputational time is a diretand well understood measure of performane, the rate of oating point operations is a moretehnial one. A low rate implies that the solver spends most of the time in managing datastrutures, in idle time due to data dependenies and outstanding aesses to main memory,et., but not in produing e�etive data for the output. Hene, the former measure providesa diret indiation of the eÆieny of the hosen pivoting strategy, while the latter gives aninsight on how eÆiently the ode is exploiting the underlying arhiteture.6. TEST CASESThe various solver versions have been tested on a number of test ases arising in severalpratial senarios and haraterized by an inreasing omplexity of the underlying physialsystem. As for the solver version, eah test ase is indiated by a short name (in parentheses):1. small olumn (smol): a regular 10� 10 mesh of 100 elements in whih all the degrees offreedom, exept for the ones related to displaements, are set to zero.2. wall (wall): 69 elements lined up in a row where the �fth degree of freedom (y-displaement) is �xed to zero;3. ontainer (ont): 288 elements outlining a ontainer;4. olumn (ol): a square setion of a olumn made of a 20� 20 mesh of 400 elements;5. big olumn (bigol): like olumn but made of a 25� 25 mesh of 625 elements;Suh a variety of test ases allows us to evaluate the behavior of the solver variants whenthe omplexity of the physis behind the problem to be solved varies, from simpler (smol) toCopyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls



12 M. BIANCO ET AL.harder (bigol). 7. RESULTSThe solver versions shown above have been tested on an Alpha workstation whih uses a 21264proessor loked at 666Mhz with two oating point units that make it apable of a 1354Mopspeak performaneThe next two subsetions report the results obtained by evaluating the various versionsof the solvers desribed above. In setion 7.1 we analyze the numerial stability propertiesexhibited by the solvers with respet to the metris disussed in setion 5. In setion 7.2 weexamine the performane ahieved by the solvers.HIT BASE NEWPIV NEWPPO MINDEG HSLsmol jjrjj 1 � 10�12 1 � 10�12 1 � 10�12 1 � 10�12 1 � 10�12 1 � 10�12w 3 � 10�16 3 � 10�16 3 � 10�16 3 � 10�16 3 � 10�16 4 � 10�16wall jjrjj 5 � 10�14 1 � 10�13 7 � 10�12 4 � 10�8 6 � 10�14 7 � 10�14w 4 � 10�14 1 � 10�13 1 � 10�11 3 � 10�6 4 � 10�16 1 � 10�6ont jjrjj 6 � 10�14 8 � 10�14 3 � 10�12 1 � 10�3 6 � 10�14 1 � 10�12w 6 � 10�13 5 � 10�13 6 � 10�11 2 � 10�4 6 � 10�16 5 � 10�3ol jjrjj 1 � 10�14 2 � 10�14 2 � 10�11 3 � 10�5 1 � 10�14 1 � 10�13w 4 � 10�12 2 � 10�12 2 � 10�5 2 � 10�3 9 � 10�16 4 � 10�4bigol jjrjj 1 � 10�13 1 � 10�13 1 � 10�6 4 � 10�5 7 � 10�14 6 � 10�13w 2 � 10�12 6 � 10�13 7 � 10�5 5 � 10�3 1 � 10�15 5 � 10�5Table I. Residual errors and omponent-wise bakward errors exhibited by the various solvers for eahtest ases.Table I reports error metris (5) and (6) for all the solver versions and test ases desribedbefore.7.1. Numerial QualityWe note that MINDEG exhibits the least errors (in order of magnitude), saling extremely wellas the physial problems beome more omplex. Also, the table shows that HIT and BASE donot exhibit exatly the same errors, with BASE featuring slightly larger errors. This is explainedby the fat that HIT uses some extra heuristi preautions to redue �ll-ins. We have hosennot to implement these expedients in BASE, sine they ompliate the ode while not providingsigni�ant improvements in term of either auray or performane.If we ompare NEWPIV with NEWPPO, implementing, respetively, numerial pivoting withoutand with postordering, we see that the errors exhibited by the latter (in all ases exept smol)are orders of magnitude worse than those exhibited by the former. Indeed, for the two largesttest ases, the errors exhibited by NEWPPO in the solution of the linear systems beame so largeto prevent the Newton-Raphson method from onverge. This provides numerial evidene thatpostordering does not ahieve its intended purpose in our physial senario.To ahieve a more profound understanding on the numerial behavior of the implementedvariants, in Figure 1, we show all the omponents of the v vetor (see se. 5) for di�erent solversrunning the bigol test ase, plotted (in logarithmi sale) against their respetive indies. ForCopyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls
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Figure 1. Plot of the omponent-wise errors for the bigol test ase, exhibited by the various solvers.The absissae are the equations indies and the ordinates are the base 10 logarithms of the errors.our spei� physial problems, we have that indies between 1 and 2000 are relative gas pressureequations, indies between 2001 and 4000 are relative to apillary pressure, indies between4001 and 6000 are relative to temperatures, and, �nally, the remaining indies are relative todisplaement equations. It is interesting to observe how errors tend to luster aording to thetype of equation.It is lear from the �gure that MINDEG exhibits extremely homogeneous errors that are alllose to the roundo� unit error (whih is about 10�16 for our mahine), while BASE, althoughstill behaving quite well, tends to show a more varied range of errors, whih implies thatdi�erent equations are solved with di�erent degrees of auray. As for NEWPIV, we an see arather good behavior on average, but the plot highlights a nonnegligible set of outliers withhigh values of the error (whih, in turn, yields a high value of the metri w). Finally, lookingat the plot for HSL, we may note how it behaves very poorly for two entire groups of equations(espeially those related to pressures) while it is only slightly worse that BASE for the othertwo groups.7.2. PerformanesTable II shows the exeution times and the oating point operation rates (Mops) exhibitedby the frontal solvers. Eah test ase involves several time steps, with eah time step in turnrequiring the solution of a number of linear systems, one per Newton-Raphson iteration. Morespei�ally, the number of linear systems solved in eah test ase is about 120 for wall and smol,45 for ont and ol, and 30 for bigol. For the last three test ases, the most omputationallyintensive ones, we have that the solver aounts for about 75% of the total time for MINDEG,and goes up to 95% for HIT. This fat justi�es our fousing on the solver only, rather thanCopyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls



14 M. BIANCO ET AL.HIT BASE NEWPIV NEWPPO MINDEG HSLwall Time (s) 4.6 2.23 2.48 1.96 1.07 4.48Mops 59.54 109.18 134.15 163.08 161.34 231.73smol Time (s) 6.05 1.98 2.12 1.83 1.64 6.97Mops 50.28 164.3 168.94 179.05 180.45 201.91ont Time (s) 77.5 27.5 30.4 790.0 22.9 207.1Mops 79.63 237.63 232.06 98.4 262.02 206.47ol Time (s) 314.1 116.8 124.5 3212 96.5 1230.5Mops 54.08 224.09 222.62 7.89 256.93 154.76bigol Time (s) 1276.4 260.1 274.0 +1 225.9 1609.5Mops 30.58 232.53 226.6 { 261.77 137.47Table II. Times and oating point operations rates (frontal solver only). Note the +1 entries in theNEWPPO olumns are related to that test ases for whih the method does not onverge as the errorsbeome too large.
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Figure 2. Time taken by the various solvers on a single linear system as a funtion of the size of thesystem itself.other parts of the program, suh as the numerial integration routines.In �gure 2 we plot the time taken by the various solvers on a single linear system as afuntion the size of the system itself. We want to remark that the size of the system is not,however, the only parameter that a�ets performane, sine, depending on the solver used,other peuliarities may inuene exeution times, suh as, for example, the shape of the mesh.Looking at Table II, we note that MINDEG exhibits the by far best performane. Togetherwith the numerial stability data presented in the previous setion, this implies that MINDEGahieves both performane and auray at the same time, whih is somewhat surprising sinean inrease in auray often omes at the expense of a deterioration of performane.Copyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls
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Figure 3. Floating point operations rates exhibited by the solvers varying the size of the systemsresolved.Unlike HIT and HSL, MINDEG, BASE, and NEWPIV seem to be able to sustain high ops ratewhen the size of the problem inreases (see �g. 3). Suh salability rewards our redesign ofthe data strutures, whih a�ords aess times to data whih are independent of the amountof the data itself. Comparing BASE against HIT, we see that redesigning the data strutures,optimizing data aesses and arefully eliminating onditional branhes alone made the solvermore than 4 times faster. Changing the pivoting strategy yielded an extra time saving: indeed,MINDEG is more than 5.6 times faster than HIT for the bigol test ase.Looking at the numerial pivoting strategies, we note that HSL exhibits a ratherunsatisfatory performane. This seems to be mainly due to postordering. Comparing NEWPPOto NEWPIV, for the test ases for whih both strategies onverge, we note that when postorderingis extensively used (as for ont and ol test ases), the exeution time explodes. This an beexplained by the feedbak e�et desribed in setion 4.1 and due to postordering. It has to beremarked that HSL behaves quite well for the wall and smol test ases, for whih it exhibitsthe highest ops rate. In fat, when the physial problem is simple, HSL beomes ompetitive.However, as the problem beomes more omplex, the time performane of HSL degrades, eventhough its oating point operations rate remains quite high. As a bottomline we an say thatHSL features a very good implementation (high ops rate), but its pivoting strategy, however,turns out to be a poor hoie for our physial problems.Going bak to NEWPIV and NEWPPO, we note that for the wall and smol test ases, the latterexhibits better exeution times than the former. This is due to the fat that, while NEWPIVmaximizes � in equation (4), NEWPPO simply piks the �rst element whih satis�es (4) for a�xed � = 10�6. This strategy proves to be bene�ial for performane sine fewer entries ofthe frontal matrix need to be sanned. The gain in performane is however limited to thosesimple ases where postordering is rarely applied. We have hosen not to pik the best possiblepivot when implementing postordering sine we have observed that otherwise some rows wouldCopyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls



16 M. BIANCO ET AL.remain longer in the frontal matrix, whih has detrimental e�ets on both time performaneand auray. 8. CONCLUSIONWhen solving very non linear and stritly oupled physial problems where there may be manyorders of magnitude among the numerial values involved, our experiments suggest that thebest strategy is to strive for simpliity. Indeed, the MINDEG version of the solver does not do anynumerial onsideration when hoosing the pivot in Gaussian elimination, but only struturalones. Yet, this suÆes to get exellent performane and good auray.Redesigning the data strutures and performing ode optimizations has proved to be themost e�etive way to speed-up the program onsidering that BASE ahieves an improvementof a fator 4 with respet to HIT. A further improvement is then obtained by simplifying thepivoting strategy.A possible further improvement in performane, that we mean to investigate, is to �ndthe right tradeo� between avoiding linear searhes inside the arrays and limiting indiretaddressing. Spei�ally, osserve that data strutures designed to avoid linear searhes makelarge use of indiret addressing, whih, however, may disrupt temporal loality and slow downthe algorithm by foring the proessor to wait for the data to beome available from mainmemory.A further way to improve performane is parallelizing the ode. This implies hoosingbetween a number of arhiteture-dependent alternatives, suh as adopting a full multi-frontal[9, 30℄ versus a multiple fronts strategy [31℄, and a well suited partitioning algorithm dependingon the of problems that have to be resolved.REFERENCES1. Gawin D, Majorana CE, Pesavento F, Shreer BA. A fully oupled multiphase FE model of hygro-thermo- mehanial behaviour of onrete at high temperature. In Computational Mehanis., Onate, E.& Idelsohn, S.R. (eds.), New Trends and Appliations:, Pro. of the 4th World Congress on ComputationalMehanis, Buenos Aires 1998; 1{19. Barelona: CIMNE, 1998.2. Park KC, Felippa CA. Partitioned analysis of oupled system, in Computational Methods for TransientAnalysis, T. Belytshko and T.R.J. Hughes (eds), Elsevier, Amsterdam, 1983; 157-2193. Turska E, Wisniewiski K, Shreer BA. Error propagation of staggered solution proedures for transientproblems, Computer Methods in Appl. Meh. and Engng., 1994; 144:177{188.4. Turska E, Shreer BA. On onvergene onditions of partitioned solution proedures for onsolidationsproblems, Computer Methods in Applied Meh. and Engng.,1993; 106:51{63.5. Dureisseix D, Ladeveze P, Shreer BA. LATIN strategy for oupled uid-solid problems in the domain,from Computational Fluid and Solid Mehanis, Vol.2 (K.J. Bathe ed.) Elsevier, 2001; 1143{1146.6. Wang X, Gawin D, Shreer BA. A parallel algorithm for thermo-hydro-mehanial analysis of deformingporous media, Computational Mehanis, 1996; 19:94{104.7. Wang X, Shreer BA. A multifrontal parallel algorithm for oupled thermo-hydro-mehanial analysis ofdeforming porous media, Int. J. Num. Meth. Engng., 1998; 43:1069{10838. Wang X, Baggio P, Shreer BA. A multi-level frontal algorithm for �nite element analysis and itsimplementation on parallel omputation, Engineering Computations, 1999; 16(4):406{427.9. Du� IS, Erisman AM, Reid JK. Diret Methods for Sparse Matries, Clarendon Press, 1986.10. Wang X, Matteazzi R, Shreer BA, Zienkiewiz OC. An asynhronous parallel algorithm for onsolidationproblems, hapter 3 from `Modeling in Geodynamis', M. Zaman, J.R. Booker, G. Gioda, eds., Wiley,Chihester, 2000; 51{64.Copyright  2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 0:1{17Prepared using nmeauth.ls
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