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SUMMARY

Solving fully-coupled non-linear hygro-thermo-mechanical problems relative to the behavior of concrete
at high temperatures using monolithic models is nowadays a very interesting and challenging
computational problem. These models require an extensive use of computational resources, such
as main memory and computational time, due to the great number of variables and the numerical
characteristics of the coefficients of the linear systems involved.

In this paper a number of different variants of a frontal solver used within HITECOSP, an application
developed within the BRITE Euram III “HITECO” EU project, to solve multiphase porous media
problems, are presented and evaluated with respect to their numerical accuracy and performance.
When developing the variants, several optimization techniques have been adopted, such as data
structure, cache and branches optimizations. Specifically numerical accuracy has been evaluated using
a modified component-wise backward error analysis.

The main result of this work is a new solver which is both much faster and more accurate than the
original one. Specifically, the code runs over 5 times faster and numerical errors are reduced of up to
three order of magnitude. Copyright (© 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION
Many successful methods exist for the solution of algebraic equations arising from the

discretization of uncoupled problems. For coupled problems, especially if they involve several
fields, the problem is still open. As far as coupled thermo-hygro-mechanical problems are
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2 M. BIANCO ET AL.

concerned, several methods have been investigated or are under investigation, but a fully
satisfactory answer has not yet been found. The most reliable but also the most expensive
approach is the monolithic approach, where all field equations are solved simultaneously [1].
Operator split techniques like the staggered method [2, 3, 4] allow to solve smaller size problems
at each instant, but usually require iterations between the fields which reduce their advantage.
Recent investigations on two field problems have shown that the LATIN method behaves
rather well [5]. As far as parallel computing is concerned, domain decomposition [6, 7, §],
multifrontal techniques (single and multilevel) [6, 7, 8, 9] and asynchronous methods [10] have
been investigated. Except for the asynchronous methods, which, at least up to now have only
been made to work for linear two field problems, the overhead due to parallelization introduced
by these methods make them less attractive than the monolithic method. Algebraic multigrid
methods [11] which are currently under investigation seem however promising. Taking into
account this situation, the monolithic method is still much in use and we concentrate here on
this method trying to improve its performance.

First we explain why the coupled thermo-hygro-mechanical problems on which we work, are
so complicated to deserve special attention.

Two different approaches are usual in the simulation of hygro-thermal phenomena and
related mechanical effects in porous media. In the phenomenological approach, moisture and
heat transport are described by diffusive type differential equations with temperature- and
moisture content-dependent coefficients. The model coefficients are determined by inverse
problem solution, i.e., using known results of experimental tests to obtain the best agreement
between theoretical prediction and experimental evidence (e.g., in the sense of least square
method). Thus, they are very accurate for interpolation and rather poor for extrapolation of
the known experimental results. Moreover, various physical phenomena are lumped together,
there is no distinction between different phases of water, hence phase changes cannot be taken
into account and finally model parameters often have no clear physical interpretation

In mechanistic models which we use [12], governing equations are usually more complicated
formally, but their coefficients have clear physical meaning and often are related to classical
material parameters, like for example porosity, intrinsic permeability, diffusivity of vapour in
air, etc. When some relations between structure parameters and transport properties are found,
usually they are valid for a class of similar materials. Mass and energy fluxes are expressed by
means of gradients of thermodynamic potentials. Phase changes and mass- and energy sources
(sinks) related to them are taken into account. Moreover, some additional couplings, e.g. effect
of material damaging on intrinsic permeability or capillary and vapour pressures (moisture
content) on skeleton stresses, can be considered.

For these reasons the second approach is considered more complete from a physical point of
view, but results in a particularly complex mathematical system, in terms of both number of
equations and their coefficients, which are strongly nonlinear.

We concentrate here on a particular coupled multi-physics problem which deals with concrete
under high temperature conditions. Such a model allows for instance to make residual lifetime
prediction in concrete vessels of nuclear reactors or to predict the behaviour of concrete walls in
tunnel fires etc., [1, 13, 14]. The model has been implemented in the computer code HITECOSP
in the framework of the BRITE Euram IIT “HITECO?” [15] research project. This software uses
a frontal technique to solve the final system resulting from the FE implementation of the model.
The aim of our work to improve the efficiency of its frontal solver in terms of performance
as well as numerical accuracy, in order to exploit the various characteristics imposed by the
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A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 3

mechanistic model.

Improvements in term of performance have been obtained implementing a number of
optimizations (see Section 4.2), such as improving the data structures, enhancing the
spatial and temporal locality of the memory accesses, and branch optimizations. With these
optimizations execution times improves of a factor 4 with respect to original HITECOSP
program.

In order to improve numerical accuracy in solving the linear systems arising from the
Newton-Raphson like procedure used for the mechanistic model, several pivoting strategies
have been implemented and evaluated based on modified component-wise backward error
analysis (see Section 5) which allows to plot the magnitude of the minimal perturbation each
equation sustains in order to obtain the approximated solution of the system. Actually, these
perturbations can be compared with the roundoff unit error. From this analysis it follows that
the best strategy in terms of accuracy is the best also in terms of performance. In particular
we have noticed errors of the same order of magnitude of the roundoff unit error and a further
speed-up with respect to the optimized version of the original solver.

The rest of the paper is organized as follows. In Section 2 the mathematical model is
described, while Section 4 deals with the various optimizations we have introduced and
the pivoting strategy we have implemented. The metrics adopted to evaluate accuracy and
performance are described in Section 5. Finally, the test cases used to evaluate our solvers are
described in Section 6 while our results are shown in Section 7.

2. MATHEMATICAL MODEL

In the model presented here, concrete is considered as a partially saturated porous material
[1, 13] consisting of a solid phase, two gas phases and three water phases. The theoretical
framework is based on the works of Whitaker [16], Bear [17], Bear and Bachmat [18, 19],
Hassanizadeh and Gray [20, 21, 22] and Lewis and Schrefler [23].

Refinements such as non-linearities due to temperature and pressures, hydration-
dehydration, evaporation-condensation, adsorption-desortpion, phenomena are considered,
(see [1, 13]). Different physical mechanisms governing the liquid and gas transport in the pores
of partially saturated concrete are clearly distinguished, i.e. capillary water and gas flows driven
by their pressure gradients, adsorbed water surface diffusion caused by saturation gradients, as
well as air and vapour diffusion driven by vapour density gradients, [1, 13]. Concrete damaging
effects arising from coupled hygro-thermal and mechanical interaction are considered by use
of the isotropic non-local damage theory and a further coupling between intrinsic permeability
and mechanical damage has been introduced to take into ac-count the changes of material
microstructure. More-over improvements, regarding the possibility to simulate the behaviour
of the material at temperatures which largely exceed the critical point of water and the real
behaviour of gases present in the pores of concrete, i.e. the gases are treated as real gas, have
been recently introduced in the model, [14].

The final mathematical model consists of four balance equations: mass conservation
of dry air, mass conservation of the water species (both in liquid and gaseous state,
taking phase changes, i.e. evaporation-condensation, adsorption-desorption and hydration-
dehydration process, into account), enthalpy conservation of the whole medium (latent heat

Y

of phase changes and heat effects of hydration or dehydration processes are considered) and
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linear momentum of the multiphase system. The sistem is completed with an appropriate set
of constitutive and state equations, as well as some thermodynamic relationships, [23]. The
governing equations of the model are expressed in terms of the chosen state variables: gas
pressure pY, capillary pressure p¢, temperature T and displacement vector of the solid matrix
u and are directly derived from [23], where the constitutive law for the solid skeleton density
and water density are experimentally determined. In particular the density of solid skeleton
has to respect the solid mass conservation equation which is not a basic equation of the model.
The governing equations of the model proposed, considering negligible both the inertial forces
and the convective heat flux related to solid phase and taking into account the Bishops stresses
[24], are the following:
Dry air mass conservation equation:
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Water species (liqguid + vapour) mass conservation equation:
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Energy conservation equation (enthalpy balance):

oT
(pCp)ef at + (pr;,“v“’s + ng;j VQS) v

-V ()\erT) = _mphase A-Z;Ip}’zase + mdehydrAHdehydr

Linear momentum equation (equilibrium equation):

div{c' —T(p? — Syp)} +pg =0

For the closure of the model a set of thermodynamic and constitutive relationships are
needed. In the present work only few of them will be shown in detail, in particular as far as
damage mechanics and absolute permeability-damage parameter coupling are concerned. (For
further information see [23, 1, 13, 14, 24]).

3. NUMERICAL SOLUTION

The system of governing equations of the model, formed by two mass conservation equations,
one linear momentum conservation equation and an enthalpy conservation equation, after
application of the finite element method for discretization in space becomes:
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op? op° oT ou _ . -
CQQW + Cgcﬁ + Cgtﬁ + Cgua + Kggpg + Kgcp + thT = fg
op° oT ou , . _
CCCW + CCtE + CCUE + chP +Kep + KT =f, (1)
op° oT ou =
tha—i + Cttﬁ + Ctua + Ki¢p? + Kiep” + KT =1

Kugf)g + I<ucf)C + KutT + Ky, a=f,

As usual, the primary variables are expressed by their nodal values and the shape functions
as follows:

joid :pr)g
pc:NpI_)C
T=N;T
u=N,ua

Finite differences in time are used for the solution of the initial value problem. The method
used in this text produces an identical system of equations obteineded with the weighted
residual method in time with point collocation. We can write the system (1) in a more concise

form as o
B— X=F 2
5 TC (2)

where the matrices B, C, X and F are the following:

Kgg Kgc th 0 ng Cgc Cgt Cgu
C = ch ch Kct 0 B= 0 Ccc Cct Ccu
K,y K Ky 0 ’ 0 Ci; Cu Cyuy
Kug Kuc Kut Kuu 0 0 0 0
f, p?
_ ) f _ ) p°
F=yse @ X711
f. i

The matrices B and C are non-symmetric and depend on X. The discretisation in the time
domain is carried out by the generalised trapezoidal method, also known as the generalised

midpoint rule:
(a_X> _ Xn+1 - Xn
0t ) ia At
0<f<1

Xn+0 - (1 - 0) Xn + 0Xn+1

where At is the time step length, X,, and X, 41 are the state vectors at times ¢,, and ¢,,41, and
where, depending of the value of 6, it is possible to obtain different schemes for integration of
the system in time:
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6 =1 fully implicit scheme (Euler backward);
f = 0.5 Crank-Nicholson scheme;
6 = 0 fully explicit scheme (Euler forward); then (2) at time ¢,49 becomes:

¥ (Xpt1) = [B+0AL C]n+0 Xny1+
~[B—(1-6) AtCl,,, X, — AtF,yy =0

Where .
U (Xps1) = [U7 (Xnt1), U (Xng1), U (Xnga), U (Xpy1) |

the matrices in (3) are evaluated at time 4.

An examination of the set of governing equations (3) reveals that the coupled system (2)
is non-linear; hence it requires linearising by an iterative Newton-Raphson procedure of the
form:

K i o
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nil AXG g, K=g,ct,u
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where the Jacobian matrix is defined by:
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and the increment vector of the primary variables is:
) ) : . 4T
AXG1 = [(APY) 5y (AP )y ATy, Al

where i is the iteration count.
During the computation, for each time step, the primary variable vector X,,;; is updated
after each iteration, i.e.:

X:L—:ll = X;z+1 + AX:’L—FI

In the Newton-Raphson method, the elements of the Jacobian matrix are updated after each
iteration, which is computationally expensive. Thus, in practice the modified Newton-Raphson
method is often preferred, where the Jacobian matrix is calculated only once at the beginning
of each time step or after a fixed number of iterations.

To take into account damage of concrete, a two stage solution strategy is applied at every
time step. First an intermediate problem, keeping the constant damage value obtained at the
previous time step, is solved. Then, starting from this intermediate state, the final solution
is obtained, for all state variables and damage parameter, by the modified Newton-Raphson
method, using the tangential or Jacobian matrix from the last iteration of the first stage. Such
an approach allowed us to avoid differentiation with respect to the damage and to obtain a
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A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 7

converging solution. Sometimes this derivative increases very rapidly until the damage reaches
its maximum value and then remains equal to zero, causing divergence of the solution.

An unoptimized version of the above model has been implemented in the computer code
HITECOSP, in the framework of the BRITE Euram IIT “HITECO” research project [15]. This
code provides the starting base upon which we develop our optimization strategies aiming at
improving both performance and numerical accuracy of the code.

4. FRONTAL METHOD: OVERVIEW AND IMPLEMENTATION

The large linear systems arising from the Newton-Raphson method described in Section (3)
are solved using the frontal method (see [25, 9] for a full description). The frontal method
solves a linear system by working, at each step, only on a portion of the matrix (called frontal
matriz), hence it is useful in those situations where core memory becomes the critical resource.
The method works by sequentially executing two phases on each element of the finite element
grid: an assembly phase and an elimination phase. During the assembly phase, the frontal
matrix is augmented by the appropriate number of columns and rows relative, respectively, to
the variables associated to the element and the equations containing those variables, and the
matrix entries are updated to account for the new element. An entry becomes fully-summed
if it will not receive further updates in any subsequent assembly phase. A column (resp., row)
becomes fully-summed when all its entries become fully summed. A variable corresponding to
a fully-summed column is also said fully-summed.

During the elimination phase, Gaussian elimination is applied to the frontal matrix, choosing
the pivot in the block at the intersection of fully-summed rows and fully-summed columns. At
each Gaussian elimination step, the pivot row is eliminated, i.e., it is stored somewhere into
memory (typically onto a disk, if the problem is too large to fit in main memory). After the
last elimination phase, back substitution on the reduced linear system is executed.

4.1. Overview of pivoting strategies

Recall that in the frontal method only a part of the matrix of the system is available at
any given time, hence any pivoting strategy must be adopted to cope with this scenario. In
particular, the pivot must always be chosen among those entries of the frontal matrix which
reside in fully-summed rows and fully-summed columns.

Many strategies have been developed either to speed up the frontal solver or to improve its
numerical stability. In this section we describe those strategies which we have implemented in
order to find a solution that achieves the best tradeoff between stability and performance for
our particular physical problems.

Let A be the frontal matrix in a given elimination step. Numerical pivoting [9] entails
choosing the pivot among the entries a;; residing in fully-summed columns such that

la;;| > aml?x|aik|, (4)

where 0 < o < 1 is a numerical constant and i is the index of a fully-summed row. Numerical
pivoting was adopted to reduce the approximation error introduced by Gaussian elimination
for the frontal method.
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If an eligible pivot is not found, then the next element is assembled and a new search for a
pivot is performed. This strategy is called postordering for stability [9]. The algorithm clearly
terminates since eventually all the rows and all the columns of the frontal matrix will become
fully-summed.

Often it is claimed in the literature that postordering for stability affects performance only
slightly, while numerical stability is substantially increased. However, our experiments show
that this is not the case for our physical problems. The failure of postordering in our scenario
seems to be primarily due to the fact that the matrix entries in our mixed physical problems
can be up to 40 orders of magnitude apart. Moreover, when a pivot is chosen, during the
elimination step, fill-ins are produced in other rows, thus creating bonds among variables that
do not belong to neighboring elements in the finite element mesh. Often these bonds prevent a
row to be eliminated since the entries in its fully summed columns do not satisfy condition (4).
In the next elimination steps this row continues to be filled with additional nonzero entries,
hence the likelihood that it will not be chosen for elimination keeps on increasing, in a sort of
“positive feedback” effect. Indeed we have observed extreme cases where rows entered in the
frontal matrix at the very beginning of the solver’s activity remains in the matrix until the
very end. This phenomenon introduces two problems: not only does it cause the frontal matrix
to grow inordinately, slowing down the program, but also worsens the numerical stability of
the method, since a row that is present for a long time in the frontal matrix will sustain many
operations on it, which is likely to amplify accumulation errors.

Another popular pivoting strategy is known as minimum degree [26, 9]. This strategy was
proposed as a greedy way to reduce fill-ins when performing Gaussian elimination and was
proved to be suited for symmetric, positive-definite matrices. Under minimum degree, the pivot
is chosen as the diagonal element of a row with the minimum number of entries. Under the
frontal method, the minimum degree strategy may be applied to the frontal matrix, choosing
the pivot on the diagonal entry of the row with minimum number of entries in the block formed
by the intersection between fully summed rows and fully summed columns. Since the full matrix
of our systems has a symmetric structure, choosing pivots on the diagonal also preserves this
symmetry inside the frontal matrix, allowing the data structures to be simplified.

It has to be remarked that the minimum degree strategy does not make any numerical
consideration on the chosen pivot and it was originally developed for matrices that do not
need such numerical precautions, e.g., positive definite symmetric matrices. Although our
matrices, featuring great differences between numerical values of their entries, appear to be
unsuitable for an application of minimum degree pivoting, our experiments have shown that
the strategy is an effective way of reducing the accumulation error caused by postordering,
perhaps due to the fact that it substantially reduces the amount of floating point operations.
Indeed, a careful implementation of the minimum degree strategy has proven to feature both
excellent performance and numerical accuracy for our problems.

The original application, HITECOSP, from which this work started, uses the following hybrid
strategy. Before the pivot is chosen, if the absolute value of the previous pivot is less than a
fixed numerical threshold value (10~ in our cases), then the fully-summed rows are normalized
so they will contain only values included between —1 and 1. After that, the pivot is chosen
as the entry with the maximum absolute value among those in the intersection between fully-
summed rows and columns. No postordering is performed. This strategy seems to work well
for our physical problems. Namely, it exhibits good numerical accuracy and lends itself to
an efficient implementation, which however requires a complete redesign of the relevant data
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A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 9

structures.

4.2. Our solutions

In this section we describe the frontal solvers which we have implemented. Each variant is
characterized by a short name (in parentheses) which suggests the specific pivoting strategy
adopted by the variant. Our first intervention has aimed at improving performance of
the HITECOSP software (HIT) by providing an optimized implementation of its solver. In
particular, the greatest improvement in performance has been obtained by the redesign of the
main data structures in order to reduce at the minimum the number of linear searches inside
arrays.

Another important issue that has been considered in redesigning HITECOSP’s solver is the
enhancement of the temporal and spatial locality of the memory accesses performed. To this
purpose, extensive cache optimization has been applied, such as performing operations (e.g.,
row elimination, pivot search, etc.) within the solver by column rather that by row, in order
to exploit the column major allocation of matrices featured by the FORTRAN compiler.

Another important source of performance enhancement has come from conditional branch
optimization. As an example, consider that when computing on a sparse matrix, many
operations are performed to no effect on zero entries (e.g., divisions and multiplications).
However in most modern microprocessor architectures (and, in particular, on the ALPHA
platform where our experiments run), keeping these operations improves performance since
they take less cycles than those necessary by the processor to recover from a mispredicted
branch. Indeed, conditional branch elimination in HITECOSP has improved the performance
of the resulting code of up to 20%. This version of the frontal solver, implementing the same
pivoting strategy as HITECOSP, named BASE, exhibits rather good performance.

The above code optimizations have also been employed to speed up the execution of the
other solvers developed within our study. However, the main justification for designing new
solvers mainly stems from our desire to compare the efficiency and numerical stability of
the pivoting approach of HITECOSP with the other more established strategies described
in the previous section. As a first step, basic numerical pivoting (as illustrated before) was
implemented. Specifically we have developed a version without postordering that chooses as
pivot the element that maximizes the value of «w in (4) (NUMPIV), and another one implementing
postordering (NUMPPO) which set a = 1075 in (4).

Next, we have implemented the minimum degree strategy (MINDEG). This latter solver
chooses the pivot on the diagonal of the frontal matrix and is endowed with recovery features
when an entry in the diagonal is zero (however, this has never occurred in our experiments). A
further optimization stems from the fact that, since the structure of the frontal matrix depends
only on that of the finite element mesh, and, under the minimum degree strategy, the pivots
depend only on the structure of the matrix, the pivotal sequence remains the same for all the
executions of the frontal solver over the different iterations of the Newton-Raphson method
(unless the chosen pivot is zero, which requires special care). Hence, it is possible to store the
pivotal sequence during the first execution and to use it for the next ones, choosing the pivot,
at each stage, with a single memory access. Our version of the minimum degree algorithm
stores the pivotal sequence after the first execution of the frontal solver and uses it in the
subsequent, calls.

Finally, for the purpose of comparison, we have produced a further implementation (HSL)
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10 M. BIANCO ET AL.

which uses the free version of the HSL (Harvell Subroutine Library) library [27]. Specifically,
we have used the MA32 routine [28] that implements a frontal solver featuring a sophisticated
numerical pivoting strategy. Version HSL gives us insight to compare our strategies against
standard solutions available using third-party software.

5. COMPARISON METRICS

All the solver versions introduced in the previous section are evaluated in terms of their
numerical stability (limited to the solution of the linear system) and performance. The next
two sections discuss the metrics used to measure these two characteristics.

Evaluating numerical stability.

Let & be the computed (approximated) solution to one of the linear systems Az = b arising
during the solution of a FEM problem. Approximation errors have been evaluated using two
different metrics. The first is the two-norm of the residual r, that is,

7|l = [lb = AZ]| ()

This quantity gives an indirect indication of the distance between the real solution and the
approximated one.
The second metric adopted is the component-wise backward error [29]

w=min{e: (A+AA)T =b+ Ab,|AA| <e|A],|Ab| < ||} (6)

(The absolute values and the comparisons are intended to be component-wise). It can be
proved (see [29]) that, setting 0/0 = 0 and &/0 = oo if £ # 0, w can be computed as

|i]

I AT Tal + oD g

There is evidence in the literature that the component-wise backward error is more sensitive
to instability than the residual-based error. Intuitively, w measures the minimum variation
that the matrix of the system and the right hand side vector should sustain to obtain the
approximated Z solution.

In this work, in order to have a more detailed description of the approximation errors
introduced by our solvers, we have refined the component-wise backward error metric as
follows. Let a; denote the i-th row of A. Define the ith equation error to be

w; = min {e’:‘ : (ai + Aaz)i“ =b; + Ab;, \Aal\ < s|ai|, |Abl| < E|bl|} (8)

Value w; gives a measure of “how well” vector Z satisfies the ith equation of the system. We
have:

Theorem 1. Let v be a vector with v; = m Then w; = v;

Proof: Let Aa; and Ab; be a pair of minimal perturbations associated to w;. Since |Aa;| <
w;la;| and |Ab;| < w;|b;|, we have that

ri| = |bi — a;@| = |Aai@ — Ab;| < |Ady||F] + |Abi| < wi(las||Z| + |bs])

Y
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A FRONTAL SOLVER FOR FULLY-COUPLED PROBLEMS 11

whence w; > |v;|. Also, from the definition of v it follows that r; = v;(|a;||Z| +|b;|). Define now
Aa} = v;|a;|diag(sign(Z)) and Ab;, = —wv;|b;|. It is easy to see that (a; + Aa})E — (b; + Ab;) = 0.
Therefore, since |Aa}| = |vi||a;| and |Ab}| = |v;]|bs], it follows that w; < |v;|, and the theorem
follows. O

It is easy to see that AA = diag(v)|A|diag(sign(z)) and Ab = —diag(v)|b| are such that
|AA] < w|A|, |Ab| < wlb] and (A+ AA)Z — (b+ Ab) = 0. Moreover, the above theorem proves
that all the perturbations are the minimum possible, in the sense indicated by (8). Hence,
vector v provides a readily obtainable indication about the minimum perturbation that each
equation should sustain to obtain the approximated solution. In particular any element of v can
be compared against the roundoff unit error to gain immediate appreciation of the significance
of the corresponding perturbations. Finally, observe that the standard component-wise error
metric w can be obtained as w =|| v ||s0-

A plot of vector v (using the equation indices as the abscissae) can be used to ascertain
whether numerical errors tend to affect some groups of equations more than others. We feel
that this is particularly useful in multi-physics applications as the ones treated in this paper.

All the metrics described above have been collected over several iterations of each solver. No
significant variation of each metric has been observed over the different iterations. However,
in what follows, we report the maximum errors encountered on each test case.

Measuring performances.

Performance is measured both in terms of computational time and rate of floating point
operations (Mflops) relatively to the frontal solver only. While computational time is a direct
and well understood measure of performance, the rate of floating point operations is a more
technical one. A low rate implies that the solver spends most of the time in managing data
structures, in idle time due to data dependencies and outstanding accesses to main memory,
etc., but not in producing effective data for the output. Hence, the former measure provides
a direct indication of the efficiency of the chosen pivoting strategy, while the latter gives an
insight on how efficiently the code is exploiting the underlying architecture.

6. TEST CASES

The various solver versions have been tested on a number of test cases arising in several
practical scenarios and characterized by an increasing complexity of the underlying physical
system. As for the solver version, each test case is indicated by a short name (in parentheses):

1. small column (smcol): a regular 10 x 10 mesh of 100 elements in which all the degrees of
freedom, except for the ones related to displacements, are set to zero.

2. wall (wall): 69 elements lined up in a row where the fifth degree of freedom (y-
displacement) is fixed to zero;

3. container (cont): 288 elements outlining a container;

4. column (col): a square section of a column made of a 20 x 20 mesh of 400 elements;

5. big column (bigeol): like column but made of a 25 x 25 mesh of 625 elements;

Such a variety of test cases allows us to evaluate the behavior of the solver variants when

the complexity of the physics behind the problem to be solved varies, from simpler (smcol) to
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harder (bigcol).

7. RESULTS

The solver versions shown above have been tested on an Alpha workstation which uses a 21264
processor clocked at 666Mhz with two floating point units that make it capable of a 1354Mflops
peak performance

The next two subsections report the results obtained by evaluating the various versions
of the solvers described above. In section 7.1 we analyze the numerical stability properties
exhibited by the solvers with respect to the metrics discussed in section 5. In section 7.2 we
examine the performance achieved by the solvers.

HIT BASE NEWPIV | NEWPPO | MINDEG HSL
[smeol [ J[r[[1-1007 [1-1007 1100 [1-100"[1-10 " [1-10° "~
w [3-100° [3.100™° [3-107™® [3.10°"° [ 3-107 "™ [ 4-107°
wall [[r[[5-100™]1-10 [7. 1007 [ 4.10° [6-10 " [7- 10"
w | 410 7 [1-10 P [1-10 " [ 3-10° [4-10 ™ | 1-10 °
[cont [ [6-10"™ 810" 3. 10°7[1-107% [6-10"" [1-10""
w [6-107 [5-10° [6-100"7 [ 2-10 " [ 6-10 ° [ 5-10 °
[col el {1100 2100 [2-100 " [ 3-10° [1-10 " [ 1-10°
w | 41072107 [ 2-10° | 2-10° [ 9-10°"° | 4-10 "
[bigeol [ JIr] [1-107 [ 1-100 | 1-10° | 4-10° | 7-100" [6-10""
w [2-1007[6-1007 [ 7.100° [ 5-100% [ 1-107™ | 5.107°

Table I. Residual errors and component-wise backward errors exhibited by the various solvers for each
test cases.

Table I reports error metrics (5) and (6) for all the solver versions and test cases described
before.

7.1. Numerical Quality

We note that MINDEG exhibits the least errors (in order of magnitude), scaling extremely well
as the physical problems become more complex. Also, the table shows that HIT and BASE do
not exhibit exactly the same errors, with BASE featuring slightly larger errors. This is explained
by the fact that HIT uses some extra heuristic precautions to reduce fill-ins. We have chosen
not to implement these expedients in BASE, since they complicate the code while not providing
significant improvements in term of either accuracy or performance.

If we compare NEWPIV with NEWPPO, implementing, respectively, numerical pivoting without
and with postordering, we see that the errors exhibited by the latter (in all cases except smcol)
are orders of magnitude worse than those exhibited by the former. Indeed, for the two largest
test cases, the errors exhibited by NEWPPO in the solution of the linear systems became so large
to prevent the Newton-Raphson method from converge. This provides numerical evidence that
postordering does not achieve its intended purpose in our physical scenario.

To achieve a more profound understanding on the numerical behavior of the implemented
variants, in Figure 1, we show all the components of the v vector (see sec. 5) for different solvers
running the bigeol test case, plotted (in logarithmic scale) against their respective indices. For
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Figure 1. Plot of the component-wise errors for the bigcol test case, exhibited by the various solvers.
The abscissae are the equations indices and the ordinates are the base 10 logarithms of the errors.

our specific physical problems, we have that indices between 1 and 2000 are relative gas pressure
equations, indices between 2001 and 4000 are relative to capillary pressure, indices between
4001 and 6000 are relative to temperatures, and, finally, the remaining indices are relative to
displacement equations. It is interesting to observe how errors tend to cluster according to the
type of equation.

It is clear from the figure that MINDEG exhibits extremely homogeneous errors that are all
close to the roundoff unit error (which is about 1076 for our machine), while BASE, although
still behaving quite well, tends to show a more varied range of errors, which implies that
different equations are solved with different degrees of accuracy. As for NEWPIV, we can see a
rather good behavior on average, but the plot highlights a nonnegligible set of outliers with
high values of the error (which, in turn, yields a high value of the metric w). Finally, looking
at the plot for HSL, we may note how it behaves very poorly for two entire groups of equations
(especially those related to pressures) while it is only slightly worse that BASE for the other
two groups.

7.2. Performances

Table II shows the execution times and the floating point operation rates (Mflops) exhibited
by the frontal solvers. Each test case involves several time steps, with each time step in turn
requiring the solution of a number of linear systems, one per Newton-Raphson iteration. More
specifically, the number of linear systems solved in each test case is about 120 for wall and smcol,
45 for cont and col, and 30 for bigcol. For the last three test cases, the most computationally
intensive ones, we have that the solver accounts for about 75% of the total time for MINDEG,
and goes up to 95% for HIT. This fact justifies our focusing on the solver only, rather than
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HIT BASE | NEWPIV | NEWPPO | MINDEG HSL

|u)all Time (s) 4.6 2.23 2.48 1.96 1.07 4.48

Mflops 59.54 | 109.18 | 134.15 | 163.08 | 161.34 | 231.73
lsmcol | Time (s) | 6.05 1.98 2.12 1.83 1.64 6.97

Mflops 50.28 164.3 | 168.94 | 179.05 | 180.45 | 201.91
lcont | Time (s) | 77.5 27.5 30.4 790.0 22.9 207.1
Mflops 79.63 | 237.63 | 232.06 98.4 262.02 | 206.47
|col Time (s) | 314.1 116.8 124.5 3212 96.5 1230.5
Mflops 54.08 | 224.09 | 222.62 7.89 256.93 | 154.76
|bigcol Time (s) | 1276.4 | 260.1 274.0 +00 225.9 | 1609.5
Mflops 30.58 | 232.53 | 226.6 - 261.77 | 137.47

Table II. Times and floating point operations rates (frontal solver only). Note the +oc entries in the
NEWPPO columns are related to that test cases for which the method does not converge as the errors
become too large.

—+ HIT

-©- BASE
-0~ NEWPIV
—% NEWPPO
10" |- | %= MINDEG
—— HSL

BIGCOL X

Solution time per linear system (s)

o
o
8]
=
%)

I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of the system (number of variables)

10°

Figure 2. Time taken by the various solvers on a single linear system as a function of the size of the
system itself.

other parts of the program, such as the numerical integration routines.

In figure 2 we plot the time taken by the various solvers on a single linear system as a
function the size of the system itself. We want to remark that the size of the system is not,
however, the only parameter that affects performance, since, depending on the solver used,
other peculiarities may influence execution times, such as, for example, the shape of the mesh.

Looking at Table II, we note that MINDEG exhibits the by far best performance. Together
with the numerical stability data presented in the previous section, this implies that MINDEG
achieves both performance and accuracy at the same time, which is somewhat surprising since
an increase in accuracy often comes at the expense of a deterioration of performance.
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Figure 3. Floating point operations rates exhibited by the solvers varying the size of the systems
resolved.

Unlike HIT and HSL, MINDEG, BASE, and NEWPIV seem to be able to sustain high flops rate
when the size of the problem increases (see fig. 3). Such scalability rewards our redesign of
the data structures, which affords access times to data which are independent of the amount
of the data itself. Comparing BASE against HIT, we see that redesigning the data structures,
optimizing data accesses and carefully eliminating conditional branches alone made the solver
more than 4 times faster. Changing the pivoting strategy yielded an extra time saving: indeed,
MINDEG is more than 5.6 times faster than HIT for the bigcol test case.

Looking at the numerical pivoting strategies, we note that HSL exhibits a rather
unsatisfactory performance. This seems to be mainly due to postordering. Comparing NEWPPO
to NEWPIV, for the test cases for which both strategies converge, we note that when postordering
is extensively used (as for cont and col test cases), the execution time explodes. This can be
explained by the feedback effect described in section 4.1 and due to postordering. It has to be
remarked that HSL behaves quite well for the wall and smcol test cases, for which it exhibits
the highest flops rate. In fact, when the physical problem is simple, HSL becomes competitive.
However, as the problem becomes more complex, the time performance of HSL degrades, even
though its floating point operations rate remains quite high. As a bottomline we can say that
HSL features a very good implementation (high flops rate), but its pivoting strategy, however,
turns out to be a poor choice for our physical problems.

Going back to NEWPIV and NEWPPQO, we note that for the wall and smcol test cases, the latter
exhibits better execution times than the former. This is due to the fact that, while NEWPIV
maximizes « in equation (4), NEWPPQ simply picks the first element which satisfies (4) for a
fixed @ = 107%. This strategy proves to be beneficial for performance since fewer entries of
the frontal matrix need to be scanned. The gain in performance is however limited to those
simple cases where postordering is rarely applied. We have chosen not to pick the best possible
pivot when implementing postordering since we have observed that otherwise some rows would
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remain longer in the frontal matrix, which has detrimental effects on both time performance
and accuracy.

8. CONCLUSION

When solving very non linear and strictly coupled physical problems where there may be many
orders of magnitude among the numerical values involved, our experiments suggest that the
best strategy is to strive for simplicity. Indeed, the MINDEG version of the solver does not do any
numerical consideration when choosing the pivot in Gaussian elimination, but only structural
ones. Yet, this suffices to get excellent performance and good accuracy.

Redesigning the data structures and performing code optimizations has proved to be the
most effective way to speed-up the program considering that BASE achieves an improvement
of a factor 4 with respect to HIT. A further improvement is then obtained by simplifying the
pivoting strategy.

A possible further improvement in performance, that we mean to investigate, is to find
the right tradeoff between avoiding linear searches inside the arrays and limiting indirect
addressing. Specifically, osserve that data structures designed to avoid linear searches make
large use of indirect addressing, which, however, may disrupt temporal locality and slow down
the algorithm by forcing the processor to wait for the data to become available from main
memory.

A further way to improve performance is parallelizing the code. This implies choosing
between a number of architecture-dependent alternatives, such as adopting a full multi-frontal
[9, 30] versus a multiple fronts strategy [31], and a well suited partitioning algorithm depending
on the of problems that have to be resolved.
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