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1. INTRODUCTION

The discovery of frequent itemsets in transactional datasets is a fundamental prim-

itive that arises in the mining of association rules and in many other scenarios [Han

and Kamber 2001; Tan et al. 2006]. In its original formulation, the problem requires

that given a dataset D of transactions over a set of items I (i.e., a multiset D with

elements in 2I), and a support threshold s, all itemsets X ⊆ I with support at least

s in D (i.e., contained in at least s transactions) be returned. These high-support

itemsets are referred to as frequent itemsets.

Since the pioneering paper by Agrawal et al. [Agrawal et al. 1993], a vast literature

has flourished, addressing variants of the problem, studying foundational issues,

and presenting novel algorithmic strategies or clever implementations of known

strategies (see, e.g., [Goethals and Zaki 2003; Goethals et al. 2004]), but many

problems remain open [Han et al. 2007]. In particular, assessing the significance of

the discovered itemsets, or equivalently, flagging statistically significant discoveries

with a limited number of false positive outcomes, is still poorly understood and

remains one of the most challenging problems in this area.

The classical framework requires that the user decide what is significant by spec-

ifying the support threshold s. Unless specific domain knowledge is available, the

choice of such a threshold is often arbitrary [Han and Kamber 2001; Tan et al.

2006] and may lead to a large number of spurious discoveries (false positives) that

would undermine the success of subsequent analysis.

In this paper, we develop a rigorous and efficient novel approach for identify-

ing frequent itemsets featuring both a global and a pointwise guarantee on their

statistical significance. Specifically, we flag as significant a population of itemsets

extracted with respect to a certain threshold, if some global characteristics of the

population deviate considerably from what would be expected if the dataset were

generated randomly with no correlations between items. Also, we make sure that

a large fraction of the itemsets belonging to the returned population are individ-

ually significant by enforcing a small False Discovery Rate (FDR) [Benjamini and

Hochberg 1995] for the population.

1.1 The model

As mentioned above, the significance of a discovery in our framework is assessed

based on its deviation from what would be expected in a random dataset in which

individual items are placed in transactions independently.

Formally, let D be a dataset of t transactions on a set I of n items, where each

transaction is a subset of I. Let n(i) be the number of transactions that contain

item i and let fi = n(i)/t be the frequency of item i in the dataset. The support

of an itemset X ⊆ I is defined as the number of transactions that contain X.

Following [Silverstein et al. 1998], the dataset D is associated with a probability

space of datasets, all featuring the same number of transactions t on the same

set of items I as D, and in which item i is included in any given transaction

with probability fi, independently of all other items and all other transactions. A

similar model is used in [Purdom et al. 2004] and [Sayrafi et al. 2005] to evaluate
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the running time of algorithms for mining frequent itemsets. For a fixed integer

k ≥ 1, among all possible
(

n
k

)

itemsets of size k (k-itemsets) we are interested in

identifying statistically significant ones, that is, those k-itemsets whose supports

are significantly higher, in a statistical sense, than their expected supports in a

dataset drawn at random from the aforementioned probability space.

An alternative probability space of datasets, proposed in [Gionis et al. 2006],

considers all arrangements of n items into t transactions which match the exact

item frequencies and transaction lengths as in a given dataset D. Conceivably, the

technique of this paper could be adapted to this latter model as well.

1.2 Multi-hypothesis testing

In a simple statistical test, a null hypothesis H0 is tested against an alternative

hypothesis H1. A test consists of a rejection (critical) region C such that, if the

statistic (outcome) of the experiment is in C, then the null hypothesis is rejected,

and otherwise the null hypothesis is not rejected. The significance level of a test,

α = Pr(Type I error), is the probability of rejecting H0 when it is true (false

positive). The power of the test, 1−Pr(Type II error), is the probability of correctly

rejecting the null hypothesis. The p-value of a test is the probability of obtaining

an outcome at least as extreme as the one that was actually observed, under the

assumption that H0 is true.

In a multi-hypothesis statistical test, the outcome of an experiment is used to test

simultaneously a number of hypotheses. For example, in the context of frequent

itemsets, if we seek significant k-itemsets, we are in principle testing
(

n
k

)

null hy-

potheses simultaneously, where each null hypothesis corresponds to the support of a

given itemset not being statistically significant. In the context of multi-hypothesis

testing, the significance level cannot be assessed by considering each individual hy-

pothesis in isolation. To demonstrate the importance of correcting for multiplicity

of hypotheses, consider a simple real dataset of 1,000,000 transactions over 1,000

items, each with frequency 1/1000. Assume that we observed that a pair of items

(i, j) appears in at least 7 transactions. Is the support of this pair statistically

significant? To evaluate the significance of this discovery we consider a random

dataset where each item is included in each transaction with probability 1/1000,

independent of all items. The probability that the pair (i, j) is included in a given

transaction is 1/1,000,000, thus the expected number of transactions that include

this pair is 1. A simple calculation shows that the probability that (i, j) appears

in at least 7 transactions is about 0.0001. Thus, it seems that the support of (i, j)

in the real dataset is statistically significant. However, each of the 499,500 pairs

of items has probability 0.0001 to appear in at least 7 transactions in the random

dataset. Thus, even under the assumption that items are placed independently in

transactions, the expected number of pairs with support at least 7 is about 50. If

there were only about 50 pairs with support at least 7, returning the pair (i, j)

as a statistically significant itemset would likely be a false discovery since its fre-

quency would be better explained by random fluctuations in observed data. On

the other hand, assume that the real dataset contains 300 disjoint pairs each with
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support at least 7. The probability of that event in the random dataset is less

than
((1000

2 )
300

)

10−4×300 ≤ 2−300. Thus, it is very likely that the support of most of

these pairs would be statistically significant. A discovery process that does not

return these pairs will result in a large number of false negative errors. Our goal

is to design a rigorous methodology which is able to distinguish between these two

scenarios.

A natural generalization of the significance level to multi-hypothesis testing is

the Family Wise Error Rate (FWER), which is the probability of incurring at least

one Type I error in any of the individual tests. If we have m simultaneous tests

and we want to bound the FWER by α, then the Bonferroni method tests each

null hypothesis with significance level α/m. While controlling the FWER, this

method is too conservative in that the power of the test is too low, giving many

false negatives. There are a number of techniques that improve on the Bonferroni

method, but for large numbers of hypotheses all of these techniques lead to tests

with low power (see [Dudoit et al. 2003] for a good review).

The False Discovery Rate (FDR) was suggested by Benjamini and Hochberg [Ben-

jamini and Hochberg 1995] as an alternative, less conservative approach to control

errors in multiple tests. Let V be the number of Type I errors in the individual

tests, and let R be the total number of null hypotheses rejected by the multiple

test. Then we define FDR to be the expected ratio of erroneous rejections among

all rejections, namely FDR = E[V/R], with V/R = 0 when R = 0. Designing a

statistical test that controls for FDR is not simple, since the FDR is a function

of two random variables that depend both on the set of null hypotheses and the

set of alternative hypotheses. Building on the work of [Benjamini and Hochberg

1995], Benjamini and Yekutieli [Benjamini and Yekutieli 2001] developed a general

technique for controlling the FDR in any multi-hypothesis test (see Theorem 5 in

Section 3.1).

1.3 Our Results

We address the classical problem of mining frequent itemsets with respect to a

certain minimum support threshold, and provide a rigorous methodology to estab-

lish a threshold that guarantees, in a statistical sense, that the returned family of

frequent itemsets contains significant ones with a limited FDR. Our methodology

crucially relies on the following Poisson approximation result, which is the main

theoretical contribution of the paper.

Consider a dataset D of t transactions on a set I of n items and let D̂ be random

dataset from the probability space associated with D as described in Section 1.1.

Let Qk,s be the observed number of k-itemsets with support at least s in D, and

let Q̂k,s be the corresponding random variable for D̂. We show that there exists a

minimum support value smin (which depends on the parameters of D and on k),

such that for all s ≥ smin the distribution of Q̂k,s is well approximated by a Poisson

distribution. Our result is based on a novel application of the Chen-Stein Poisson

approximation method [Arratia et al. 1990].

The minimum support smin provides the grounds to devise a rigorous method for
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establishing a support threshold for mining significant itemsets, both reducing the

overall complexity and improving the accuracy of the discovery process. Specifically,

for a fixed itemset size k, we test a small number of support thresholds s ≥ smin,

and, for each such threshold, we measure the p-value corresponding to the null

hypothesis H0 that the observed value Qk,s comes from a Poisson distribution of

suitable expectation. From the tests we can determine a threshold s∗ such that, with

user-defined significance level α, the number of k-itemsets with support at least s∗

is not sampled from a Poisson distribution and is therefore statistically significant.

Observe that the statistical significance of the number of itemsets with support at

least s∗ does not imply necessarily that each of the itemsets is significant. However,

our test is also able to guarantee a user-defined upper bound β on the FDR among

all discoveries. We remark that our approach works for any fixed itemset size k,

unlike traditional frequent itemset mining, where itemsets of all sizes are extracted

for a given threshold.

To grasp the intuition behind the above approach, recall that a Poisson distribu-

tion models the number of occurrences among a large set of possible events, where

the probability of each event is small. In the context of frequent itemset mining,

the Poisson approximation holds when the probability that an individual itemset

has support at least smin in D̂ is small, and thus the existence of such an event

in D is likely to be statistically significant. We stress that our technique discovers

statistically significant itemsets among those of relatively high support. In fact,

if the expected supports of individual itemsets vary in a large range, there may

exist itemsets with very low expected supports in D̂ which may have statistically

significant supports in D. These itemsets would not be discovered by our strat-

egy. However, any mining strategy aiming at discovering significant, low-support

itemsets is likely to incur high costs due to the large (possibly exponential) number

of candidates to be examined, although only a few of them would turn out to be

significant.

We validate our theoretical results by mining significant frequent itemsets from a

number of real datasets that are standard benchmarks in this field. Also, we com-

pare the performance of our methodology to a standard multi-hypothesis approach

based on [Benjamini and Yekutieli 2001], and provide evidence that the latter often

returns fewer significant itemsets, which indicates that our method has considerably

higher power.

1.4 Related Work

A number of works have explored various notions of significant itemsets and have

proposed methods for their discovery. Below, we review those most relevant to our

approach and refer the reader to [Han et al. 2007, Section 3] for further references.

Aggarwal and Yu [Aggarwal and Yu 1998] relate the significance of an itemset X

to the quantity ((1 − v(X))/(1 − E[v(X)])) · (E[v(X)]/v(X)), where v(X) repre-

sents the fraction of transactions containing some but not all of the items of X,

and E[v(X)] represents the expectation of v(X) in a random dataset where items

occur in transactions independently. This ratio provides an empirical measure of
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the correlation among the items of X that, according to the authors, is more ef-

fective than absolute support. In [Srikant and Agrawal 1996; DuMouchel 1999;

DuMouchel and Pregibon 2001], the significance of an itemset is measured as the

ratio R between its actual support and its expected support in a random dataset.

In order to make this measure more accurate for small supports, [DuMouchel 1999;

DuMouchel and Pregibon 2001] propose smoothing the ratio R using an empirical

Bayesian approach. Bayesian analysis is also employed in [Silberschatz and Tuzhilin

1996] to derive subjective measures of significance of patterns (e.g., itemsets) based

on how strongly they “shake” a system of established beliefs. In [Jaroszewicz and

Scheffer 2005], the significance of an itemset is defined as the absolute difference

between the support of the itemset in the dataset, and the estimate of this support

made from a Bayesian network with parameters derived from the dataset.

A statistical approach for identifying significant itemsets is presented in [Silver-

stein et al. 1998], where the measure of interest for an itemset is defined as the

degree of dependence among its constituent items, which is assessed through a χ2

test. Unfortunately, as reported in [DuMouchel 1999; DuMouchel and Pregibon

2001], there are technical flaws in the applications of the statistical test in [Sil-

verstein et al. 1998]. Nevertheless, this work pioneered the quest for a rigorous

framework for addressing the discovery of significant itemsets.

A common drawback of the aforementioned works is that they assess the sig-

nificance of each itemset in isolation, rather than taking into account the global

characteristics of the dataset from which they are extracted. As argued before, if

the number of itemsets considered by the analysis is large, even in a purely random

dataset some of them are likely to be flagged as significant if considered in isolation.

A few works attempt at accounting for the global structure of the dataset in the

context of frequent itemset mining. The authors of [Gionis et al. 2006] propose an

approach based on Markov chains to generate a random dataset that has identical

transaction lengths and identical frequencies of the individual items as the given

real dataset. The work suggests comparing the outcomes of a number of data min-

ing tasks, frequent itemset mining among the others, in the real and the randomly

generated datasets in order to assess whether the real datasets embody any sig-

nificant global structure. However, such an assessment is carried out in a purely

qualitative fashion without rigorous statistical grounding.

The problem of spurious discoveries in the mining of significant patterns is studied

in [Bolton et al. 2002]. The paper is concerned with the discovery of significant pairs

of items, where significance is measured through the p-value, that is, the probability

of occurrence of the observed support in a random dataset. Significant pairs are

those whose p-values are below a certain threshold that can be suitably chosen to

bound the FWER, or to bound the FDR. The authors compare the relative power

of the two metrics through experimental results, but do not provide methods to

set a meaningful support threshold, which is the most prominent feature of our

approach.

Beyond frequent itemset mining, the issue of significance has also been addressed

in the realm of discovering association rules. In [Hämäläinen and Nykänen 2008],
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Dataset n [fmin; fmax] m t

Retail 16470 [1.13e-05 ; 0.57] 10.3 88162

Kosarak 41270 [1.01e-06 ; 0.61] 8.1 990002

Bms1 497 [1.68e-05 ; 0.06] 2.5 59602

Bms2 3340 [1.29e-05 ; 0.05] 5.6 77512

Bmspos 1657 [1.94e-06 ; 0.60] 7.5 515597

Pumsb∗ 2088 [2.04e-05 ; 0.79] 50.5 49046

Table I. Parameters of the benchmark datasets: n is the number of items; [fmin, fmax] is the

range of frequencies of the individual items; m is the average transaction length; and t is the

number of transactions.

the authors provide a variation of the well-known Apriori strategy for the efficient

discovery of a subset A of association rules with p-value below a given cutoff value,

while the results in [Megiddo and Srikant 1998] provide the means of evaluating

the FDR in A. The FDR metric is also employed in [Zhang et al. 2004] for the

discovery of significant quantitative rules, a variation of association rules. None of

these works is able to establish support thresholds such that the returned discoveries

feature small FDR.

1.5 Benchmark datasets

In order to validate the methodology, a number of experiments, whose results are

reported in Section 4, have been performed on datasets which are standard bench-

marks in the context of frequent itemsets mining. The main characteristics of the

datasets we use are summarized in Table I. A description of the datasets can be

found in the FIMI Repository (http://fimi.cs.helsinki.fi/data/), where they

are available for download.

1.6 Organization of the Paper

The rest of the paper is structured as follows. Section 2 presents the Poisson ap-

proximation result for the random variable Q̂k,s. The methodology for establishing

the support threshold s∗ is presented in Section 3, and experimental results are

reported in Section 4. Section 5 ends the paper with some concluding remarks.

2. POISSON APPROXIMATION RESULT

The Chen-Stein method [Arratia et al. 1990] is a powerful tool for bounding the error

in approximating probabilities associated with a sequence of dependent events by a

Poisson distribution. To apply the method to our case, we fix parameters k and s,

and define a collection of
(

n
k

)

Bernoulli random variables {ZX,s | X ⊂ I, |X| = k},
such that ZX,s = 1 if the k-itemset X appears in at least s transactions in the

random dataset D̂, and ZX,s = 0 otherwise. Also, let pX = Pr(ZX,s = 1). We are

interested in the distribution of Q̂k,s =
∑

X:|X|=k ZX,s.

For each set X we define the neighborhood set of X,

I(X) = {X ′ | X ∩X ′ 6= ∅, |X ′| = |X|}.

If Y 6∈ I(X) then ZY,s and ZX,s are independent. The following theorem is a
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straightforward adaptation of [Arratia et al. 1990, Theorem 1] to our case.

Theorem 1. Let U be a Poisson random variable such that E[U ] = E[Q̂k,s] =

λ <∞. The variation distance between the distributions L(Q̂k,s) of Q̂k,s and L(U)

of U is such that
∥

∥

∥L(Q̂k,s)− L(U)
∥

∥

∥ = sup
A
|Pr(Q̂k,s ∈ A)−Pr(U ∈ A)|

≤ b1 + b2,

where

b1 =
∑

X:|X|=k

∑

Y ∈I(X)

pXpY

and

b2 =
∑

X:|X|=k

∑

X 6=Y ∈I(X)

E[ZX,sZY,s].

We can derive analytic bounds for b1 and b2 in many situations. Specifically,

suppose that we generate t transactions in the following way. For each item x,

we sample a random variable Rx ∈ [0, 1] independently from some distribution R.

Conditioned on the Rx’s, each item x occurs independently in each transaction with

probability Rx. In what follows, we provide specific bounds for this situation that

depend on the moment E[R2s] of the random variable R.

As a warm-up, we first consider the specific case where each Rx is a fixed value

p = γ/n for some constant γ for all x. That is, each item appears in each transaction

with a fixed probability p, and the expected number of items per transaction is

constant. The more general case follows the same approach, albeit with a few more

technical difficulties.

Theorem 2. Consider an asymptotic regime where as n → ∞, we have k, s =

O(1) with s ≥ 2, each item appears in each transaction with probability p = γ/n for

some constant γ, and t = O(nc) for some positive constant 0 < c ≤ (k−1)(1−1/s).

Let U be a Poisson random variable such that E[U ] = E[Q̂k,s] = λ <∞. Then the

variation distance between the distributions L(Q̂k,s) of Q̂k,s and L(U) of U satisfies
∥

∥

∥L(Q̂k,s)− L(U)
∥

∥

∥ = O(1/n2s−2).

Proof. For a given set X of k items, let pX,i be the probability that X appears

in exactly i transactions, so that pX =
∑t

i=s pX,i and

pX,i =

(

t

i

)

(γ

n

)ki
(

1−
(γ

n

)k
)t−i

.

Applying Theorem 1 gives
∥

∥

∥L(Q̂k,s)− L(U)
∥

∥

∥ ≤ b1 + b2

where

b1 =
∑

X:|X|=k

∑

Y ∈I(S)

pXpY
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and

b2 =
∑

X:|S|=k

∑

Y 6=X∈I(S)

E[ZX,sZY,s].

We now evaluate b1 and b2. A direct calculation easily gives the value for b1 given

in the statement of the theorem. For the asymptotic analysis, we write
(

(

n

k

)2

−

(

n

k

)(

n− k

k

)

)

=

(

n

k

)2
(

1−

(

n−k
k

)

(

n
k

)

)

=

(

n

k

)2
(

1−
k−1
∏

i=0

n− k − i

n− i

)

= Θ(nk)2 ·Θ(1/n) = Θ(n2k−1)

and

pX,s =

(

t

s

)

(γ

n

)ks
(

1−
(γ

n

)k
)t−s

= Θ(ts) ·Θ(n−ks) · (1 + o(1)) = Θ
(

tsn−ks
)

,

where we have used the fact that t = o(nk) to obtain the asymptotics for the third

term. Also, we note that for any 1 ≤ i < t

pX,i+1

pX,i
=

t− i

i + 1

(γ

n

)k
(

1−
(γ

n

)k
)−1

and so

max
i∈{s,s+1,...,t−1}

pX,i+1

pX,i
= O(tn−k) = O(1/n).

Using a geometric series, it follows that

pX =
t
∑

i=s

pX,i = pX,s(1 + o(1)) = Θ
(

tsn−ks
)

.

Thus, we obtain

b1 = Θ(n2k−1) ·Θ
(

tsn−ks
)2

= Θ(t2sn2k(1−s)−1) = Θ(n2cs+2k(1−s)−1).

We now turn our attention to b2. Consider sets X 6= Y of k items, let g = |X∩Y |,
and suppose that g > 0. Then if ZX,sZY,s = 1, there exist disjoint subsets A, B,C ∈
{1, . . . , t} such that 0 ≤ |A| ≤ s, |B| = |C| = s − |A|, all of the transactions in

A contain both X and Y , all of the transactions in B contain X, and all of the

transactions in C contain Y .
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Therefore,

E[ZX,sZY,s] ≤
s
∑

i=0

(

t

i; s− i; s− i

)

(γ

n

)(2k−g)i+2k(s−i)

,

where the notation
(

m
x;y;z

)

is a shorthand for
(

m
x

)(

m−x
y

)(

m−x−y
z

)

.

It follows that

b2 ≤
k−1
∑

g=1

(

n

g; k − g; k − g

)

×
s
∑

i=0

(

t

i; s− i; s− i

)

(γ

n

)(2k−g)i+2k(s−i)

=
k−1
∑

g=1

(

n

g; k − g; k − g

)

(γ

n

)2ks

×
s
∑

i=0

(

t

i; s− i; s− i

)(

n

γ

)gi

=
k−1
∑

g=1

(

n

g; k − g; k − g

)

(γ

n

)2ks

×
s
∑

i=0

(

t

i; s− i; s− i

)(

n

γ

)gi

=
k−1
∑

g=1

Θ(n2k−g+2cs)
(γ

n

)2ks s
∑

i=0

n−ic

(

n

γ

)gi

= Θ(n2k(1−s)+2cs)
k−1
∑

g=1

n−g
s
∑

i=0

γ−gin(g−c)i

= Θ(n2k(1−s)+2cs)
k−1
∑

g=1

n−g

{

Θ(1) g ≤ c

Θ(n(g−c)s) g > c

= Θ(n2k(1−s)+2cs) ·Θ(n−(k−1)+(k−1−c)s)

= Θ(n2k(1−s)+s(k−1+c)−k+1)

Note that, in the summation where there are two cases depending on whether

g ≤ c or g > c, we have used the assumption that c ≤ (k − 1)(1 − 1/s) to ensure

the next equality. Finally, it is simple to check that both b1 and b2 are O(1/n2s−2)

if c ≤ (k − 1)(1− 1/s).

We now provide the more general theorem.

Theorem 3. Consider an asymptotic regime where as n → ∞, we have k, s =

O(1) with s ≥ 2, E[R2s] = O(n−a) for some constant 2 < a ≤ 2s, and t = O(nc)

for some positive constant c. Let U be a Poisson random variable such that E[U ] =
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E[Q̂k,s] = λ <∞. If

c ≤
(k − 1)(a− 2) + min(2a− 6, 0)

2s
,

then the variation distance between the distributions L(Q̂k,s) of Q̂k,s and L(U) of

U satisfies
∥

∥

∥
L(Q̂k,s)− L(U)

∥

∥

∥
= O(1/n).

Proof. Applying Theorem 1 gives
∥

∥

∥
L(Q̂k,s)− L(U)

∥

∥

∥
≤ b1 + b2

where

b1 =
∑

X:|X|=k

∑

Y ∈I(X)

pXpY

and

b2 =
∑

X:|X|=k

∑

Y 6=X∈I(X)

E[ZX,sZY,s].

We now evaluate b1 and b2. Letting ~R denote the vector of the Rx’s, we have

that for any set X of k items

Pr(ZX,s = 1 | ~R) ≤

(

t

s

)

∏

x∈X

Rs
x.

Since the Rx’s are independent with common distribution R,

pX = E[Pr(ZX,s = 1 | ~R)] ≤

(

t

s

)

E[Rs]k.

Using Jensen’s inequality, we now have

b1 =
∑

X:|X|=k

∑

Y ∈I(X)

pXpY

≤

(

(

n

k

)2

−

(

n

k

)(

n− k

k

)

)

(

t

s

)2

E[Rs]2k

≤

(

n

k

)2
(

1−

(

n−k
k

)

(

n
k

)

)

(

t

s

)2

E[R2s]k

=

(

n

k

)2
(

1−
k−1
∏

i=0

n− k − i

n− i

)

(

t

s

)2

E[R2s]k

= Θ(nk)2 ·Θ(1/n) ·O(n2cs) ·O(n−ka)

= O(nk(2−a)+2cs−1)
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We now turn our attention to b2. Consider sets X 6= Y of k items, and suppose

g = |X ∩ Y | > 0. If ZX,sZY,s = 1, there exist disjoint subsets A, B,C ∈ {1, . . . , t}
such that 0 ≤ |A| ≤ s, |B| = |C| = s−|A|, all of the transactions in A contain both

X and Y , all of the transactions in B contain X, and all of the transactions in C

contain Y . Therefore,

E[ZX,sZY,s | ~R] ≤
s
∑

i=0

(

t

i; s− i; s− i

)

(

∏

x∈X∪Y

Ri
x

)

×

(

∏

x∈X

Rs−i
x

)





∏

y∈Y

Rs−i
y





=
s
∑

i=0

(

t

i; s− i; s− i

)

(

∏

x∈X∩Y

R2s−i
x

)

×

(

∏

x∈X−Y

Rs
x

)





∏

y∈Y −X

Rs
y



 .

Applying independence of the Rx’s and Jensen’s inequality gives

E[ZX,sZY,s] = E[E[ZX,sZY,s | ~R]]

≤
s
∑

i=0

(

t

i; s− i; s− i

)

E[R2s−i]gE[Rs]2(k−g)

≤
s
∑

i=0

t2s−iE[R2s]
g(2s−i)

2s E[R2s]k−g

=
s
∑

i=0

t2s−iE[R2s]k−ig/2s

≤ O(1)
s
∑

i=0

n(2s−i)c−a(k−ig/2s)

= O(n2sc−ak)

s
∑

i=0

ni( ag
2s −c)

= O
(

n2sc−ak+max{0,s( ag
2s −c)}

)

It follows that

b2 ≤
k−1
∑

g=1

(

n

g; k − g; k − g

)

O
(

n2sc−ak+max{0,s( ag
2s −c)}

)

= O(n2k+2sc−ak)
k−1
∑

g=1

n−gO
(

nmax{0,s( ag
2s −c)}

)
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Now, for 2sc/a < g < k, we have (using the fact that a ≥ 2)

n−gnmax{0,s( ag
2s −c)} = ng( a

2−1)−sc ≤ n(k−1)( a
2−1)−sc.

Thus

b2 = O(n2k+sc−ak+(k−1)( a
2−1)).

(Here we are using the fact that our choice of c satisfies c ≤ (k − 1)(a − 2)/2s to

ensure that n(k−1)( a
2−1)−cs = Ω(1).)

Now, we have

b1 = O(1/n)

since

c ≤
(k − 1)(a− 2)

2s
≤

k(a− 2)

2s
,

and

b2 = O(1/n)

since

c ≤
k(a− 2) + (a− 4)

2s
.

Thus

b1 + b2 = O(1/n).

It is easy to see that for fixed k, the quantities b1 and b2 defined in Theorem 1 are

both decreasing in s. In the following, we will use the notation b1(s) and b2(s) to

indicate explicitly that both quantities are functions of s. Therefore, for a chosen

ǫ, with 0 < ǫ < 1, we can define

smin = min{s ≥ 1 : b1(s) + b2(s) ≤ ǫ}. (1)

It immediately follows that for every s in the range [smin,∞), the variation

distance between the distribution of Q̂k,s and the distribution of a Poisson variable

with the same expectation is less than ǫ. In other words, for every s ≥ smin the

number of k-itemsets with support at least s is well approximated by a Poisson

variable. Theorems 2 and 3 proved above establish the existence of meaningful

ranges of s for which the Poisson approximation holds, under certain constraints on

the individual item frequencies in the random dataset and on the other parameters.

2.1 A Monte Carlo method for determining smin

While the analytical results of the previous subsection require that the individual

item frequencies in the random dataset be drawn from a given distribution, in

what follows we give experimental evidence that the Poisson approximation for the

distribution of Q̂k,s holds also when the item frequencies are fixed arbitrarily, as

is the case of our reference random model. More specifically, we present a method
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which approximates the support threshold smin defined by Equation 1, based on

a simple Monte Carlo simulation which returns estimates of b1(s) and b2(s). This

approach is also convenient in practice since it avoids the inevitable slack due to

the use of asymptotics in Theorem 3.

For a given configuration of item frequencies and number of transactions, let s̃

be the maximum expected support of any k-itemset in a random dataset sampled

according to that configuration, that is, the product of the k largest item frequen-

cies. Conceivably, the value b1(s̃) is rather large, hence it makes sense to search for

an smin larger than s̃. We generate ∆ random datasets and from each such dataset

we mine all of the k-itemsets of support at least s̃. Let W be the set of itemsets

extracted in this fashion from all of the generated datasets. For each s ≥ s̃ we can

estimate b1(s) and b2(s) by computing for each X ∈ W the empirical probability

pX of the event ZX,s = 1, and for each pair X, Y ∈ W , with X ∩ Y 6= ∅, the

empirical probability pX,Y of the event ZX,sZY,s = 1. Note that for itemsets not in

W these probabilities are estimated as 0. If it turns out that b1(s̃) + b2(s̃) > ǫ/4,

then we let ŝmin be the minimum s > s̃ such that b1(s) + b2(s) ≤ ǫ/4. Otherwise,

if b1(s̃) + b2(s̃) ≤ ǫ/4, we repeat the above procedure starting from s̃/2. (Based on

the above considerations this latter case will be unlikely.) Algorithm 1 implements

the above ideas.

The following theorem provides a bound on the probability that ŝmin be a con-

servative estimate of smin, that is, ŝmin ≥ smin.

Theorem 4. If ∆ = O (log(1/δ)/ǫ), the output ŝmin of the Monte-Carlo process

satisfies

Pr(b1(ŝmin) + b2(ŝmin) ≤ ǫ) ≥ 1− δ.

Proof. Let assume b1(ŝmin) + b2(ŝmin) > ǫ. Note that b1(ŝmin) ≤ b2(ŝmin),

therefore we have b2(ŝmin) > ǫ/2. Let B be the random variable corresponding to

∆ times the estimate of b2(ŝmin) obtained with Algorithm 1. Thus E[B] > ∆ǫ/2.

Since Algorithm 1 returns ŝmin as estimate of smin, we have that B ≤ ∆ǫ/4. Let

∆ =
8 log(1/δ)

ǫ
,

and c < 1 be such that:

(1− c)E[B] = ∆ǫ/4.

Since E[B] > ∆ǫ/2, we have c ≥ 1/2. Using Chernoff bound, we have that:

Pr(B ≤ ∆ǫ/4) ≤ e−
c2E[B]

2

≤ e−
1
4

8 log(1/δ)
2 ≤ δ.

Thus Pr(b1(ŝmin) + b2(ŝmin) > ǫ) ≤ δ.

For each dataset D of Table I and for itemset sizes k = 2, 3, 4, we applied Al-

gorithm 1 setting ∆ = 1, 000 and ǫ = 0.01. The values of ŝmin we obtained are

reported in Table II (we added the prefix “Rand” to each dataset name, to de-
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Algorithm 1 FindPoissonThreshold

Input: Dataset D of t transactions over n items, vector ~f of item frequencies, k,

∆, ε;

Output: Estimate ŝmin of smin;

1: s̃← highest expected support of a k-itemset;

2: smax ← 0;

3: W ← ∅;
4: for i← 1 to ∆ do

5: D̂i ← random dataset with parameters t,n,~f ;

6: W ←W ∪
{

frequent k-itemsets in D̂i w.r.t. s̃
}

;

7: if W = ∅ then

8: s̃← s̃/2;

9: goto 4;

10: if (smax = 0) then

11: smax ← max
X∈W,D̂i

{

support of X in D̂i

}

+ 1;

12: for s← s̃ to smax do

13: for all X ∈W do

14: pX(s)← empirical probability of {ZX,s = 1};
15: for all X, Y ∈W : X ∩ Y 6= ∅ do

16: pX,Y (s)← empirical probability of {ZX,sZY,s = 1};

17: b1(s)←
∑

X,Y ∈W ;Y ∈I(X)

pX(s)pY (s);

18: b2(s)←
∑

X,Y ∈W ;X 6=Y ∈I(X)

pX,Y (s);

19: if b1(s̃) + b2(s̃) ≤ ε/4 then

20: smax ← s̃;

21: s̃← s̃/2;

22: goto 3;

23: ŝmin ← min {s > s̃ : b1(s) + b2(s) ≤ ε/4};
24: return ŝmin;

note the fact that the dataset is random and features the same parameters as the

corresponding real one).

3. PROCEDURES FOR THE DISCOVERY OF HIGH-SUPPORT SIGNIFICANT

ITEMSETS

For a given itemset size k, the value smin identifies a region of (relatively high)

supports where we concentrate our quest for statistically significant k-itemsets. In

this section we develop procedures to identify a family of k-itemsets (among those

of support greater than or equal to smin) which are statistically significant with a

controlled FDR. More specifically, in Subsection 3.1 we show that a family with

the desired properties can be obtained as a subset of the frequent k-itemsets with

ACM Journal Name, Vol. V, No. N, Month 20YY.

Page 39 of 48 Journal of the Association for Computing Machinery

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

16 · Adam Kirsch et al.

ŝmin

Dataset k = 2 k = 3 k = 4

RandRetail 9237 4366 784

RandKosarak 273266 100543 20120

RandBms1 268 23 5

RandBms2 168 13 4

RandBmspos 76672 15714 2717

RandPumsb∗ 29303 21893 16265

Table II. Values of ŝmin for ǫ = 0.01 and for k = 2,3,4, in random datasets with the same values

of n, t, and with the same frequencies of the items as the corresponding benchmark datasets.

respect to smin, selected based on a standard multi-comparison test. However, the

size of the returned family may be rather small, due to the correction required to

account for the possibly large number of null hypotheses, thus incurring a large

number of false negatives. To achieve higher effectiveness, in Subsection 3.2 we

devise a more sophisticated procedure which identifies a support threshold s∗ ≥ smin

such that all frequent k-itemsets with respect to s∗ are statistically significant with

a controlled FDR. In the next section we will provide experimental evidence that

in many cases the latter procedure yields much fewer false negatives.

3.1 A procedure based on a standard multi-comparison test

We present a first, simple procedure to discover significant itemsets with controlled

FDR, based on the following well established result in multi-comparison testing.

Theorem 5 [Benjamini and Yekutieli 2001]. Assume that we are testing

for m null hypotheses. Let p(1) ≤ p(2) ≤ · · · ≤ p(m) be the ordered observed p-

values of the m tests. For a given parameter β, with 0 < β < 1, define

ℓ = max

{

i ≥ 0 : p(i) ≤
i

m
∑m

j=1
1
j

β

}

, (2)

and reject the null hypotheses corresponding to tests (1), . . . , (ℓ). Then, the FDR

for the set of rejected null hypotheses is upper bounded by β.

Let D denote an input dataset consisting of t transactions over n items, and let

k be the fixed itemset size. Recall that smin is the minimum support threshold

for which the distribution of Q̂k,s is well approximated by a Poisson distribution.

First, we mine from D the set of frequent k-itemsets F(k)(smin). Then, for each

X ∈ F(k)(smin), we test the null hypothesis HX
0 that the observed support of X in

D is drawn from a Binomial distribution with parameters t and fX (the product

of the individual frequencies of the items of X), setting the rejection threshold as

specified by condition (2), with parameters β and m =
(

n
k

)

. Based on Theorem 5,

the itemsets of F(k)(smin) whose associated null hypothesis is rejected can be re-

turned as significant, with FDR upper bounded by β. The pseudocode Procedure 1

implements the strategy described above. We want to remark that the application

of Theorem 5 made in the procedure is conservative. In fact, while all itemsets of

size k are considered by setting the number of null hypotheses m =
(

n
k

)

, p-values
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are calculated only for itemsets in F(k)(smin). It is easy to argue that in this fashion

the returned family of itemsets is a subset of the family the would be returned if

p-values were calculated for all m itemsets, which, however, would be extremely

time consuming even for small values of k, and would nullify the purpose of having

a support threshold.

Procedure 1

Input: Dataset D of t transactions over n items, vector ~f of item frequencies, k,

β ∈ (0, 1);

Output: Family of significant k-itemsets with FDR ≤ β;

Determine smin and compute F(k)(smin) from D;

for all X ∈ F(k)(smin) do

sX ← support of X in D;

fX ← Πi∈Xfi;

p(X) ← Pr(Bin(t, fX) ≥ sX);

Let p(1), p(2), . . . , be the sorted sequence of the values p(X), with X ∈ F(k)(smin);

m←
(

n
k

)

;

ℓ = max
{

0, i : p(i) ≤
i

m
Pm

j=1
1
j

β
}

;

return
{

X ∈ F(k)(smin) : p(X) = p(i), 1 ≤ i ≤ ℓ
}

;

3.2 Establishing a support threshold for significant frequent itemsets

Let α and β be two constants in (0, 1). We seek a threshold s∗ such that, with

confidence 1−α, the k-itemsets in F(k)(s
∗) can be flagged as statistically significant

with FDR at most β. The threshold s∗ is determined through a robust statistical

approach which ensures that the number Qk,s∗ = |F(k)(s
∗)| deviates significantly

from what would be expected in a random dataset, and that the magnitude of the

deviation is sufficient to guarantee the bound on the FDR.

Let smin be the minimum support such that the Poisson approximation for the

distribution of Q̂k,s holds for s ≥ smin, and let smax be the maximum support of an

item (hence, of an itemset) inD. Our procedure performs h = ⌊log2(smax−smin)⌋+1

comparisons. Let s0 = smin and si = smin+2i, for 1 ≤ i < h. In the i-th comparison,

with 0 ≤ i < h, we test the null hypothesis Hi
0 that the observed value Qk,si

is

drawn from the same Poisson distribution as Q̂k,si . We choose as s∗ the minimum

of the si’s, if any, for which the null hypothesis Hi
0 is rejected.

For the correctness of the above procedure, it is crucial to specify a suitable

rejection condition for each Hi
0. Assume first that, for 0 ≤ i < h, we reject the

null hypothesis Hi
0 when the p-value of the observed value Qk,si is smaller than αi,

where the αi’s are chosen so that
∑h−1

i=0 αi = α. Then, the union bound shows that

the probability of rejecting any true null hypothesis is less than α. However, this

approach does not yield a bound on the FDR for the set F(k)(s
∗). In fact, some

itemsets in F(k)(s
∗) are likely to occur with high support even under Hi

0, hence they

would represent false discoveries. The impact of this phenomenon can be contained
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by ensuring that the FDR is below a specified level β. To this purpose, we must

strengthen the rejection condition, as explained below.

Fix suitable values β0, β1, . . . , βh−1 such that
∑h−1

i=0 β−1
i ≤ β. For 0 ≤ i < h, let

λi = E[Q̂k,si
]. We now reject Hi

0 when the p-value of Qk,si
is smaller than αi, and

Qk,si ≥ βiλi. The following theorem establishes the correctness of this approach.

Theorem 6. With confidence 1− α, F(k)(s
∗) is a family of statistically signifi-

cant frequent k-itemsets with FDR at most β.

Proof. Observe that since
∑h−1

i=0 αi ≤ α, we have that all rejections are correct,

with probability at least 1−α. Let Ei be the event “Hi
0 is rejected” or equivalently,

“the p-value of Qk,si
is smaller than αi and Qk,si

≥ βiλi”. Suppose that Hi
0 is the

first rejected null hypothesis, for some index i, whence s∗ = si and Qk,si itemsets

are flagged as significant. Let Vi be the number of false discoveries among the Qk,si

itemsets of support at least si, given that Hi
0 is the first rejected null hypothesis.

The expectation of Vi is E[Xi|Ei, Ēi−1, . . . , Ē0], where Xi is a Poisson random

variable with expectation λi. Since Qk,si
≥ βiλi when Hi

0 is rejected, by the law of

total probability we have

FDR ≤
h−1
∑

i=0

E

[

Vi

Qk,si

]

Pr(Ei, Ēi−1, . . . , Ē0)

≤
h−1
∑

i=0

E [Vi]

βiλi
Pr(Ei, Ēi−1, . . . , Ē0)

≤
h−1
∑

i=0

E[Xi | Ei, Ēi−1, . . . , Ē0]

βiλi
Pr(Ei, Ēi−1, . . . , Ē0)

=

h−1
∑

i=0

∑

j≥0 jPr(Xi = j, Ei, Ēi−1, . . . , Ē0)

βiλi

≤
h−1
∑

i=0

λi

βiλi
=

h−1
∑

i=0

1

βi
≤ β.

The pseudocode Procedure 2 specifies more formally our approach to determine

the support threshold s∗. Note that estimates for the λi’s needed in the for-loop of

Lines 7-9 can be obtained from the same random datasets generated in Algorithm 1,

which are used there for the estimation of smin.

We remark that the number h of null hypotheses tested in our approach is kept

small purposely, namely logarithmic in the maximum support of an itemset (hence

in the number of transactions), so that only a moderate correction due to the

multiplicity of hypotheses is required, at the expense of a reasonably controlled loss

of precision in determining the support threshold s∗. In particular, the parameters

αi and βi, with 0 ≤ i < h, can be set to values which are not excessively small, so

that higher effectiveness can be achieved.
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Procedure 2

Input: Dataset D of t transactions over n items, vector ~f of item frequencies, k,

α, β ∈ (0, 1);

Output: s∗ such that, with confidence 1 − α, F(k)(s
∗) is a family of significant

k-itemsets with FDR ≤ β;

1: Determine smin and compute F(k)(smin) from D;

2: smax ← maximum support of an item;

3: i← 0; s0 ← smin;

4: h← ⌊log2(smax − smin)⌋+ 1;

5: Fix α0, . . . , αh−1 ∈ (0, 1) s.t.
∑h−1

i=0 αi = α;

6: Fix β0, . . . , βh−1 ∈ (0, 1) s.t.
∑h−1

i=0 β−1
i = β;

7: for i← 0 to h− 1 do

8: Compute λi = E[Q̂k,si
];

9: while i < h do

10: Compute Qk,si
;

11: if (Pr(Poisson(λi) ≥ Qk,si) ≤ αi) and (Qk,si ≥ βiλi) then

12: return s∗ ← si;

13: si+1 ← smin + 2i+1;

14: i← i + 1;

15: return s∗ ←∞;

Example: To demonstrate the power of Procedure 2, and to compare it to the

standard FDR method, Procedure 1, we consider a simple dataset of 106 transac-

tions over 104 items and frequency 10−3 per item. The dataset has 600 disjoint

pairs that each appear in exactly 10 transactions, The remaining 8800 items are

placed randomly in the transactions. We compare the outcome of the two proce-

dures when testing for statistically significant frequent itemsets of size 2, with FDR

β = 0.1.

Consider first the standard FDR test, Procedure 1. The p-value for the hypothesis

that a given pair appears in at least 10 transactions is
(

106

10

)

(10−3)20 > 1.1× 10−7.

Since there are
(

104

2

)

hypothesis, Procedure 1 does not flag any pair of items as

statistically significant.

Consider now the application of our method to this input. Using Algorithm 1

we derive smin = 10. Thus, Procedure 2 tests all pairs with support at least 10.

The expected number of such pairs among the items placed at random is less than

6. Since the maximum support of an item is 103, 10 hypothesis are tested. By the

Poisson the approximation, the probability of observing 606 pairs with support at

least 10 in the null hypothesis is extremely small (< 10−32), and thus Procedure 2

flags the 606 pairs with supports at least 10 with α = 0.05, correctly reporting all

the significant itemsets and, and the expected number of false positive is no more

than 6, thus the FDR is indeed bounded by β = 0.1.
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4. EXPERIMENTAL RESULTS

In order to show the potential of our approach, in this section we report on a

number of experiments performed on the benchmark datasets of Table I. First,

in Subsection 4.1, we validate experimentally the methodology implemented by

Procedure 2, while in Subsection 4.2, we compare Procedure 2 against the more

standard Procedure 1, with respect to their ability to discover significant itemsets.

4.1 Experiments on benchmark datasets

For each benchmark dataset in Table I and for k = 2, 3, 4, we apply Procedure 2

with α = β = 0.05, and αi = β−1
i = 0.05/h. The results are displayed in Table III,

where, for each dataset and for each value of k, we show: the support s∗ returned

by Procedure 2, the number Qk,s∗ of k-itemsets with support at least s∗, and the

expected number λ(s∗) of itemsets with support at least s∗ in a corresponding

random dataset.

k = 2 k = 3 k = 4

Dataset s∗ Qk,s∗ λ(s∗) s∗ Qk,s∗ λ(s∗) s∗ Qk,s∗ λ(s∗)

Retail ∞ 0 0 ∞ 0 0 848 6 0.01

Kosarak ∞ 0 0 ∞ 0 0 21144 12 0.01

Bms1 276 56 0.19 23 258859 0.06 5 27M 0.05

Bms2 168 429 0.73 13 36112 0.25 4 714045 0.01

Bmspos ∞ 0 0 16226 22 0.01 2717 891 0.38

Pumsb∗ 29303 29 0.05 21893 406 0.35 16265 6293 1.37

Table III. Results obtained by applying Procedure 2 with α = 0.05, β = 0.05 and

k = 2, 3, 4 to the benchmark datasets of Table I.

We observe that for most pairs (dataset,k) the number of significant frequent

k-itemsets obtained is rather small, but, in fact, at support s∗ in random instances

of those datasets, less than two (often much less than one) frequent k-itemsets

would be expected. These results provide evidence that our methodology not only

defines significance on statistically rigorous grounds, but also provides the mining

task with suitable support thresholds that avoid explosion of the output size (the

widely recognized “Achilles’ heel” of traditional frequent itemset mining). This

feature crucially relies on the identification of a region of “rare events” provided

by the Poisson approximation. As discussed in Section 1.3, the discovery of signif-

icant itemsets with low support (not returned by our method) would require the

extraction of a large (possibly exponential) number of itemsets, that would make

any strategy aiming to discover these itemsets unfeasible. Instead, we provide an

efficient method to identify, with high confidence level, the family of most frequent

itemsets that are statistically significant without overwhelming the user with a huge

number of discoveries.

There are, however, a few cases where the number of itemsets returned is still

considerably high. Their large number may serve as a sign that the results call for

further analysis, possibly using clustering techniques [Xin et al. 2005] or limiting
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the search to closed itemsets [Pasquier et al. 1999]1. For example, consider dataset

Bms1 with k = 4 and the corresponding value s∗ = 5 from Table III. Extracting

the closed itemsets of support greater or equal to s∗ in that dataset revealed the

presence of a closed itemset of cardinality 154 with support greater than 7 in the

dataset. This itemset, whose occurrence by itself represents an extremely unlikely

event in a random dataset, accounts for more than 22M non-closed subsets with

the same support among the 27M reported as significant.

It is interesting to observe that the results obtained for dataset Retail provide

further evidence for the conclusions drawn in [Gionis et al. 2006], which suggested

random behavior for this dataset (although the random model in that work is

slightly different from ours, in that the family of random datasets also maintains

the same transaction lengths as the real one). Indeed, no support threshold s∗

could be established for mining significant k-itemsets with k = 2, 3, while the

support threshold s∗ identified for k = 4 yielded as few as 6 itemsets. However, the

conclusion drawn in [Gionis et al. 2006] was based on a qualitative assessment of

the discrepancy between the numbers of frequent itemsets in the random and real

datasets, while our methodology confirms the findings on a statistically sound and

rigorous basis.

Observe also that for some other pairs (dataset,k) our procedure does not identify

any support threshold useful for mining statistically significant itemsets. This is

an evidence that, for the specific k and for the high supports considered by our ap-

proach, these datasets do not present a significant deviation from the corresponding

random datasets.

Finally, in order to assess the validity of our methodology we applied it to random

datasets. Specifically, for each benchmark dataset of Table I and for k = 2, 3, 4, we

generated 100 random instances with the same parameters as those of the bench-

mark, and applied Procedure 2 to each instance, searching for a support threshold

s∗ for mining significant itemsets. In Table IV we report the number of times Proce-

dure 2 was successful in returning a finite value for s∗. As expected, the procedure

returned s∗ =∞, in all cases but for 2 of the 100 instances of the random dataset

with the same parameters as dataset Pumsb∗ with k = 2. However, in these two

latter cases, mining at the identified support threshold only yielded a very small

number of significant itemsets (one and two, respectively).

4.2 Relative effectiveness of Procedures 1 and 2

In order to assess the relative effectiveness of the two procedures presented in the

previous section, we applied them to the benchmark datasets of Table I. Specifically,

we compared the number of itemsets extracted using the threshold s∗ provided by

Procedure 2, with the number of itemsets flagged as significant using the more stan-

dard method based on Benjamini and Yekutieli’s technique (Procedure 1), imposing

the same upper bound β = 0.05 on the FDR.

The results are displayed in Table V, where for each pair (dataset,k), we report

1An itemset is closed if it is not properly contained in another itemset with the same support.
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s∗ < ∞

Dataset k = 2 k = 3 k = 4

RandomRetail 0 0 0

RandomKosarak 0 0 0

RandomBms1 0 0 0

RandomBms2 0 0 0

RandomBmspos 0 0 0

RandomPumsb∗ 2 0 0

Table IV. Results for Procedure 2 with α = 0.05, β = 0.05 for random versions of benchmark

datasets; each entry reports the number of times, out of 100 trials, the procedure returned a finite

value for s∗.

the cardinality of the family R of k-itemsets flagged as significant by Procedure 1,

and the ratio r = Qk,s∗/|R|, where Qk,s∗ is the number of k-itemsets of support at

least s∗, which are returned as significant with the methodology of Subsection 3.2.

We observe that in all cases where Procedure 2 returned a finite value of s∗ the

ratio r is greater than or equal to 1 (except for dataset Bms1 and k = 2, and dataset

Bmspos and k = 3, where r is however very close to 1). Moreover, in some cases

the ratio r is rather large. Since both methodologies identify significant k-itemsets

among all those of support at least smin, these results provide evidence that the

methodology of Subsection 3.2 is often more (sometimes much more) effective. The

methodology succeeds in identifying more significant itemsets, since it evaluates

the significance of the entire set F(k)(s
∗) by comparing Qk,s∗ to Q̂k,s∗ . In contrast,

Procedure 1 must implicitly test considerably more hypotheses (corresponding to

the significance all possible k-itemsets), thus the power of the test (1-Pr(Type-II

error)) is significantly smaller.

Observe that the cases where r = 0 in Table V correspond to pairs (dataset,k) for

which Procedure 2 returned s∗ =∞, that is, the procedure was not able to identify

a threshold for mining significant k-itemsets. Note, however, that in all of these

cases the number of significant k-itemsets returned by Procedure 1 is extremely

small (between 1 and 3). Hence, for these pairs, both methodologies indicate that

there is very little significant information to be mined at high supports.

k = 2 k = 3 k = 4

Dataset |R| r |R| r |R| r

Retail 3 0 3 0 6 1.0

Kosarak 1 0 1 0 12 1.0

Bms1 60 0.933 64367 4.441 219706 122.9

Bms2 429 1.0 25906 1.394 60927 11.72

Bmspos 2 0 23 0.957 891 1.0

Pumsb∗ 29 1.0 406 1.0 6288 1.001

Table V. Results using Test 1 to bound the FDR with β = 0.05 for itemsets of support ≥ smin.
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5. CONCLUSIONS

The main technical contribution of this work is the proof that in a random dataset

where items are placed independently in transactions, there is a minimum support

smin such that the number of k-itemsets with support at least smin is well approxi-

mated by a Poisson distribution. The expectation of the Poisson distribution and

the threshold smin are functions of the number of transactions, number of items,

and frequencies of individual items.

This result is at the base of a novel methodology for mining frequent itemsets

which can be flagged as statistically significant incurring a small FDR. In partic-

ular, we use the Poisson distribution as the distribution under the null hypothesis

in a novel multi-hypothesis statistical approach for identifying a suitable support

threshold s∗ ≥ smin for the mining task. We control the FDR of the output in a

way which takes into account global characteristics of the dataset, hence it turns

out to be more powerful than other standard statistical tools (e.g., [Benjamini and

Yekutieli 2001]). The results of a number of experiments, reported in the paper,

provide evidence of the effectiveness of our approach.

To the best of our knowledge, our methodology represents the first attempt at

establishing a support threshold for the classical frequent itemset mining problem

with a quantitative guarantee on the significance of the output.

We note that our method is most powerful when all items have similar frequencies.

When there are large differences between the frequencies of individual items there

can be itemsets with small expected support in the corresponding random dataset.

Such itemsets can have statistically significant support in the actual dataset al-

though their supports are not above the threshold for the Poisson approximation,

and they are not among the most frequent itemsets. Our current technique does

not flag such discoveries. A possible solution for this problem that requires further

research is to stratify the observed data according to frequencies and analyze the

statistical significance in each group separately.
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