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ABSTRACT
Motivated by the growing interest in mobile systems, we
study the dynamics of information dissemination between
agents moving independently on a plane. Formally, we con-
sider k mobile agents performing independent random walks
on an n-node grid. At time 0, each agent is located at a
random node of the grid and one agent has a rumor. The
spread of the rumor is governed by a dynamic communica-
tion graph process {Gt(r) | t ≥ 0}, where two agents are
connected by an edge in Gt(r) iff their distance at time t
is within their transmission radius r. Modeling the physical
reality that the speed of radio transmission is much faster
than the motion of the agents, we assume that the rumor
can travel throughout a connected component of Gt before
the graph is altered by the motion. We study the broad-
cast time TB of the system, which is the time it takes for
all agents to know the rumor. We focus on the sparse case
(below the percolation point rc ≈

√
n/k) where, with high

probability, no connected component in Gt has more than
a logarithmic number of agents and the broadcast time is
dominated by the time it takes for many independent ran-
dom walks to meet one other. Quite surprisingly, we show
that for a system below the percolation point, the broadcast
time does not depend on the transmission radius. In fact,
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we prove that TB = Θ̃
(
n/
√
k
)

for any 0 ≤ r < rc, even

when the transmission range is significantly larger than the
mobility range in one step, giving a tight characterization
up to logarithmic factors. Our result complements a recent
result of Peres et al. (SODA 2011) who showed that above
the percolation point the broadcast time is polylogarithmic
in k.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algorithms;
F.2.m [Analysis of Algorithms and Problem Com-
plexity]: Miscellaneous; G.2.2 [Discrete Mathematics]:
Graph Theory—network problems

General Terms
Algorithms, Theory

Keywords
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1. INTRODUCTION
The emergence of mobile computing devices has added

a new intriguing component, mobility, to the study of dis-
tributed systems. In fully mobile systems, such as wireless
mobile ad-hoc networks (MANETs), information is gener-
ated, transmitted and consumed within the mobile nodes,
and communication is carried out without the support of
static structures such as cell towers. These systems have
been implemented in vehicular networks and sensor net-
works attached to soldiers on a battlefield or animals in a
nature reserve [23, 14, 17, 26]. Characterizing the power
and limitations of mobile networks requires new models and
analytical tools that address the unique properties of these
systems [15, 8], which include:

• Small transmission radius: the transmission range of
individual agents is restricted by limitations on energy
consumption and interference from other agents;



• Planarity : agents reside, move and transmit on (sub-
sets of) a plane. Low diameter graphs that are often
used to model static communication networks are not
useful here;

• Dynamic communication graphs: communication
channels between agents are changing dynamically as
mobile agents move in and out of the transmission ra-
dius of other agents;

• Relative speeds: transmission speed is significantly
faster than the physical movement of the agents. A
message can execute several hops before the network
is altered by motion.

In this work we study the dynamics of information dissem-
ination between agents moving independently on a plane.
We consider a system of k mobile agents performing inde-
pendent random walks on an n-node grid, starting at time 0
in a uniform distribution over the grid nodes. We focus on
the fundamental communication primitive of broadcasting a
rumor originating at one arbitrary agent to all other agents
in the system. We characterize the broadcast time TB of the
system, which is the time it takes for all agents to receive
the rumor.

We model the spreading of information in a mobile system
by a dynamic communication graph process {Gt(r) | t ≥ 0},
where the nodes of Gt(r) are the mobile agents, and two
agents are connected by an edge iff their distance at time
t is within their transmission radius r. We are interested
in sparse systems in which the transmission radius is be-
low the percolation point rc ≈

√
n/k (i.e., the minimum

radius which guarantees that Gt(rc) features a giant con-
nected component), and where, with high probability, no
connected component of Gt(rc) has more than a logarith-
mic number of agents [24, 25]. The broadcast time in sparse
systems is dominated by the time it takes for many indepen-
dent random walks to meet one another. Incorporating the
fact that radio transmission is much faster than the motion
of the agents, we assume that the rumor can travel through-
out a connected component of Gt within one step, before
the graph is altered by the motion.

Our main result is quite surprising: we show that below
the percolation point the broadcast time does not depend on

the transmission radius. We prove that TB = Θ̃
(
n/
√
k
)

for

any r below rc, giving a tight characterization up to logarith-
mic factors1. Our bound holds both when the transmission
radius is significantly larger than the mobility range (i.e.,
the distance an agent can travel in one step), and when, in
contrast to previous work [7, 8], the transmission radius as
well as the the mobility range are very small. Our work
complements a recent result by Peres et al. [25] who proved
an upper bound polylogarithmic in k for the broadcast time
in a system of k mobile agents which follow independent
Brownian motions in Rd, with transmission radius above
the percolation point.

Our analysis techniques are applicable to a number of in-
teresting related problems such as covering the grid with
many random walks and bounding the extinction time in
random predator-prey systems.

1The tilde notation hides polylogarithmic factors, e.g.
Õ (f(n)) = O (f(n) logc n) for some constant c.

1.1 Related Work
Information dissemination has been extensively studied

in the literature under a variety of scenarios and objectives.
Here we restrict our attention to the results more directly
related to our work.

A prolific line of research has addressed broadcasting and
gossiping in static graphs, where the nodes of the graph
represent active entities which exchange messages along in-
cident edges according to specific protocols (e.g., push, pull,
push-pull). The most recent results in this area relate the
performance of the protocols to expansion properties of the
underlying topology, with particular attention to the case of
social networks, where broadcasting is often referred to as
rumor spreading [6]. (For a relatively recent, comprehen-
sive survey on this subject, see [16].) Unfortunately, mobile
networks do not feature properties similar to those of social
networks, mostly because of the physical limitations of both
the movement and the radio transmission processes. Indeed,
as noted in [20], the short range of communication attain-
able by low-power antennas enforces the same local dynam-
ics typical of disease epidemics [11], which require physical
proximity to propagate. Indeed, the analysis of opportunis-
tic networks, where nodes relay messages as they come close
to one another, employs models from the study of human
mobility [5, 4].

Iin the theory community there has been growing inter-
est in modeling and analyzing information dissemination in
dynamic scenarios, where a number of agents move either
in a continuous space or along the nodes of some underlying
graph and exchange information when their positions satisfy
a specified proximity constraint. In [7, 8] the authors study
the time it takes to broadcast information from one of k mo-
bile agents to all others. The agents move on a square grid of
n nodes and in each time step an agent can (a) exchange in-
formation with all agents at distance at most r from it, and
(b) move to any random node at distance at most ρ from its
current position. The results in these papers only apply to
a very dense scenario where the number of agents is linear
in the number of grid nodes (i.e., k = Θ (n)). They show
that the broadcast time is Θ (

√
n/r) w.h.p., when ρ = O (r)

and r = Ω
(√

logn
)

[7], and it is O ((
√
n/ρ) + logn) w.h.p.,

when ρ = Ω
(
max{r,

√
logn}

)
[8]. These results crucially

rely on r + ρ = Ω
(√

logn
)
, which implies that the range of

agents’ communications or movements at each step defines
a connected graph.

In more realistic scenarios, like the one adopted in this pa-
per, the number of agents is decoupled from the number of
locations (i.e., the graph nodes) and a smoother dynamics is
enforced by limiting agents to move only between neighbor-
ing nodes. A reasonable model consists of a set of multiple,
simple random walks on a graph, one for each agent, with
communication between two agents occurring when they are
nodes whose distance is at most r ≥ 0 . One variant of this
setting is the so-called Frog Model, where initially one of k
agents is active (i.e., is performing a random walk), while the
remaining agents do not move. Whenever an active agent
hits an inactive one, the latter is activated and starts its own
random walk. This model was mostly studied in the infinite
grid focusing on the asymptotic (in time) shape of the set of
vertices containing all active agents [3, 18].

A model similar to our scenario is often employed to repre-
sent the spreading of computer viruses in networks, and the



spreading time is also referred to as infection time. Kesten
and Sidoravicius [19] characterized the rate at which an in-
fection spreads among particles performing continuous-time
random walks with the same jump rate. In [10], the au-
thors provide a general bound on the average infection time
when k agents (one of them initially affected by the virus)
move in an n-node graph. For general graphs, this bound is
O (t∗ log k), where t∗ denotes the maximum average meeting
time of two random walks on the graph, and the maximum
is taken over all pairs of starting locations of the random
walks. Also, in the paper tighter bounds are provided for
the complete graph and for expanders. Observe that the
O (t∗ log k) bound specializes to O (n logn log k) for the n-
node grid by applying the known bound on t∗ of [1]. A
tight bound of Θ ((n logn log k)/k) on the infection time on
the grid is claimed in [28], based on a rather informal argu-
ment where some unwarranted independence assumptions
are made. Our results show that this latter bound is incor-
rect.

Recent work by Peres et al. [25] studies a process in which
agents follow independent Brownian motions in Rd. They
investigate several properties of the system, such as detec-
tion, coverage and percolation times, and characterize them
as functions of the spatial density of the agents, which is as-
sumed to be greater than the percolation point. Leveraging
on these results, they show that the broadcast time of a mes-
sage is polylogarithmic in the number of agents, under the
assumption that a message spreads within a connected com-
ponent of the communication graph instantaneously, before
the graph is altered by agents’ motion.

1.2 Organization of the Paper
The rest of the paper is organized as follows. In Section 2,

we define the quantities of interest and establish some tech-
nical facts which are used in the analysis. Section 3 contains
our main results: first, we prove the upper bound on the
broadcast time in the most restricted case, that is, when the
information exchange occurs through physical contact of the
agents (i.e., r = 0), and then we provide a matching lower
bound, which holds for every value of the transmission ra-
dius r below the percolation point. Finally, in Section 4 we
briefly discuss the connection between our result and other
interesting related problems and devise some future research
directions.

2. PRELIMINARIES
We study the dynamics of information exchange among

a set A of k agents performing independent random walks
on an n-node 2-dimensional square grid Gn, which is com-
monly adopted as a discrete model for the domain where
agents wander. We assume that n ≥ 2k, since sparse sce-
narios are the most interesting from the point of view of
applications; however, our analysis can be easily extended
to denser scenarios. We suppose that the agents are ini-
tially placed uniformly and independently at random on the
grid nodes. Time is discrete and agent moves are synchro-
nized. At each step, an agent residing on a node v with nv
neighbors (nv = 2, 3, 4), moves to any such neighbor with
probability 1/5 and stays on v with probability 1 − nv/5.
With these probabilities it is easy to see that at any time
step the agents are placed uniformly and independently at
random on the grid nodes. The following two lemmas con-

tain important properties of random walks on Gn, which will
be employed for deriving our results2.

Lemma 1. Consider a random walk on Gn, starting at
time t = 0 at node v0. There exists a positive constant c1
such that for any node v 6= v0, the probability p(v, v0) that v
is visited within (||v − v0||)2 steps is

p(v, v0) ≥ c1
max{1, log(||v − v0||)}

.

Proof. The Lemma is proved in [3, Theorem 2.2] for the
infinite grid Z2. By the “Reflection Principle” [13, Page 72],
for each walk in Z2 that started in Gn, crossed a boundary
and then crossed the boundary back to Gn, there is a walk
with the same probability that does not cross the boundary
and visits all the nodes in Gn that were visited by the first
walk. Thus, restricting the walks to Gn can only change the
bound by a constant factor.

Lemma 2. Consider the first ` steps of a random walk in
Gn which was at node v0 at time 0.

1. The probability that at any given step 1 ≤ i ≤ ` the
random walk is at distance at least ≥ λ

√
` from v0 is

at most 2e−λ
2/2.

2. There is a constant c2 such that, with probability
greater than 1/2, by time ` the walk has visited at least
c2`/ log ` distinct nodes in Gn.

Proof. We observe that the distance from v0 in each
coordinate defines a martingale with bounded difference 1.
Then, the first property follows from the Azuma-Hoeffding
Inequality [22, Theorem 2.6]. As for the second property,
let R` be the set of nodes reached by the walk in ` steps.
By Lemma 1, E [R`] = Ω (`/log `) (even when v0 is near a
boundary), while Var (R`) = Θ

(
`2/log4 `

)
(see [27]). The

result follows by applying Chebyshev’s inequality.

Let M be a set of messages, which will be referred to as
rumors henceforth, such that for each m ∈ M there is (at
least) one agent informed of m at time t = 0. W.l.o.g., we
can assume that the number of distinct rumors is at most
equal to the number of agent. We denote by Ma(t) the set
of rumors that agent a ∈ A is informed of at time t, for any
t ≥ 0; possibly, Ma(0) = ∅. We assume that each agent is
equipped with a transmission radius r ∈ N, representing the
maximum distance at which the agent can send information
in a single time step.

The spread of rumors can be represented by a dynamic
communication graph process {Gt(r) | t ≥ 0}, where Gt(r),
the visibility graph at time t, is a graph with vertex set A
and such that there is an edge between two vertices iff the
corresponding agents are within distance r at time t. Fol-
lowing a common assumption justified by the physical real-
ity that the speed of radio transmission is much faster than
the motion of the agents [25], we suppose that rumors can
travel throughout a connected component of Gt(r) before
the graph is altered by the motion. We assume that within
the same connected component agents exchange all rumors
they are informed of. Formally, let C be a connected com-
ponent of Gt(r): for all a ∈ C, Ma(t) =

⋃
a′∈CMa′(t − 1).

2Throughout the paper, the distance between two grid nodes
u and v, denoted by ||u−v||, is defined to be the Manhattan
distance. Also, all logarithms are taken to the base two.



Note that the sets Ma(t) can only grow over time, that is,
agents do not “forget” rumors. The following quantities will
be studied in this paper.

Definition 1 (Broadcast Time, Gossip Time).
The broadcast time TmB of a rumor m ∈ M is the first
time at which every agent is informed of m, that is, for
all t ≥ TmB and a ∈ A, m ∈ Ma(t). The gossip time
TG of the system is the first time at which every agent is
informed of every rumor, that is, for any t ≥ TG and a ∈ A,
Ma(t) = M .

Note that both TmB and TG depend on the transmission
radius r, but we will omit this dependence to simplify the
notation. We will also write TB instead of TmB when the
message m is clearly identified by the context.

3. BROADCASTING BELOW THE PER-
COLATION POINT

In this section we give bounds to the broadcast time TB

of a rumor when the transmission radius is below the per-
colation point rc ≈

√
n/k, that is, when all the connected

components of Gt(r) comprise at most a logarithmic number
of agents. In this regime, we show that quite surprisingly
TB does not depend on the transmission radius, the reason
being that the broadcast time is dominated by the time it
takes for many independent random walks to intersect one
another. In Subsection 3.1 we prove an upper bound on the
broadcast time TB in the extreme case r = 0, that is, when
agents can exchange information only when they meet on
a grid node. The same upper bound clearly holds for any
other r > 0. Then, in Subsection 3.2 we show that the up-
per bound is tight, within logarithmic factors, for all values
of the transmission radius below the percolation point. We
also argue that the bounds on TB easily extend to gossip
time TG.

3.1 Upper Bound on the Broadcast Time
The main technical ingredient of the analysis carried out

in this subsection is the following lower bound on the prob-
ability that two random walks ā, b̄ on the grid meet within
a given time interval and not too far from their starting
positions, which is a result of independent interest.

Lemma 3. Consider two independent simple random
walks on the grid ā = 〈a0, a1, . . .〉, and b̄ = 〈b0, b1, . . .〉, where
at and bt denote the locations of the walks at time t ≥ 0. Let
d = ||a0 − b0|| ≥ 1 and define D to be the set of nodes at
distance at most d from both a0 and b0. For T = d2, there
exists a constant c3 > 0 such that

Pā,b̄(T ) , Pr (∃t ≤ T such that at = bt ∈ D)

≥ c3/max{1, log d}.

Proof. The case d = 1 is immediate. Consider now the
case d > 1. Let Pt(w, x) denote the probability that a walk
that started at node w at time 0 is at node x at time t, and
let R(w, u,D, s) be the expected number of times that two
walks which started at nodes w and u at time 0 meet at
nodes of D during the time interval [0, s], then

R(w, u,D, s) =

s∑
t=0

∑
x∈D

Pt(w, x)Pt(u, x).

Let τ(a, b) be the first meeting time of the walks ā and b̄ at
a node of D. Then

R(a0, b0, D, T ) =

T∑
t=0

Pr (τ(a, b) = t)R(at, at, D, T − t)

≤ Pā,b̄(T ) max
x

R(x, x,D, T ).

Thus,

Pā,b̄(T ) ≥ R(a0, b0, D, T )

maxxR(x, x,D, T )
.

It is easy to verify that |D| ≥ d2/4. Applying Theorem 1.2.1
in [21] we have:

R(a0, b0, D, T ) ≥
T∑
t=0

∑
x∈D

Pt(a0, x)Pt(b0, x)

≥
T∑

t= T
2

+1

∑
x∈D

4

(
1

πt

)2

e−
||x−a0||

2+||x−b0||
2

t .

By bounding ||x−a0||2 and ||x− b0||2 from above with T in
the formula, easy calculations show that R(a0, b0, D, T ) =
Ω (1). Similarly, using the fact that there are no more than
4i nodes at distance exactly i from x, we have:

max
x

R(x, x,D, T ) ≤ 1 +

T∑
t=1

t∑
i=1

4i 4

(
1

πt

)2

2e−
i2

t

≤ 1 +

(
4

π

)2 T∑
t=1

1

t2

 √t∑
i=1

i

+

 t∑
i=1+

√
t

ie−i
2/t


≤ 1 +

(
4

π

)2 T∑
t=1

1

t2

 t

2
+

 t∑
i=1+

√
t

i2e−i
2/t


≤ 1 +

(
4

π

)2 T∑
t=1

1

t2

(
t

2
+

e

(e− 1)2
t

)
= O (log T ) .

We conclude that there is a constant c3 > 0 such that
Pā,b̄(T ) ≥ c3/ log d.

Observe that considering the difference random walk
ā − b̄ = 〈a0 − b0, a1 − b1, . . .〉 and computing the probabil-
ity that it hits the origin in the prescribed number of steps
does not provide any information about the place where the
meeting occurs, hence it is not immediate to derive the above
result through that approach.

The remainder of this section is devoted to proving the
following upper bound on the broadcast time of a single
rumor m in the case r = 0. We assume that Ma(0) = {m}
for some a ∈ A, and Ma′(0) = ∅ for any other a′ 6= a.

Theorem 1. Let r = 0. For any k ≥ 2, with probability
at least 1− 1/n2,

TB = Õ

(
n√
k

)
.

We observe that since the diameter of Gn is 2
√
n− 2, we

can use Lemma 3 to show that with probability at least
1−1/n2, at time 8n log2 n an agent has met all other agents
walking in Gn. Thus, the theorem trivially holds for k =
O (poly log(n)).



From now on we concentrate on the case k = Ω
(
log3 n

)
.

We tessellate Gn into cells of side ` ,
√

14n log3 n/(c3k),
where c3 is defined in Lemma 3. We say that a cell Q is
reached at time tQ if tQ is the first time when a node of the
cell hosts an agent informed of the rumor, and we call this
first visitor the explorer of Q. We first show that, after a
suitably chosen number T1 = O

(
`2 log4 n

)
of steps past tQ,

there is a large number of informed agents within distance

O
(
` log5/2 n

)
from Q. Furthermore, we show that while the

rumor spreads to cells adjacent to Q, at any time t ≥ tQ+T1

a large number of informed agents are at locations close
to Q. These facts will imply that the exploration process
proceeds smoothly and that all agents are informed of the
rumor shortly after all cells are reached.

The above argument is made rigorous in the following se-
quence of lemmas.

Lemma 4. Consider an arbitrary ` × ` cell Q of the tes-
sellation. Let T1 = 16βγ`2 log4 n and c4 = 8

√
5βγ, where

β = 7/(2c1) and γ = 18/c3. By time τ1 = tQ + T1, at
least 4β log2 n agents are informed and are at distance at
most 2(1 + c4 log5/2 n)` from Q, with probability 1 − 1/n8,
for sufficiently large n.

Proof. Since at any given time the agents are at random
and independent locations, by the Chernoff bound we have
that the following density condition holds with probability
at least 1 − 1/n9, for sufficiently large n: for any cell Q′

and any time instant t ∈ [0, n log4 n], the number of agents
residing in cell Q′ at time t is at least (7 log3 n)/c3. In the
rest of the proof, we assume that the density condition holds.

First, we prove that, by time τ1, there are at least 4β log2 n
informed agents in the system. We assume that at every
time step t ∈ [tQ, τ1] there is always an uninformed agent
in the same cell where the explorer resides (otherwise the
sought property follows immediately by the density condi-
tion). For 1 ≤ i ≤ 4β log2 n, let ti ≥ tQ be the time at which
the explorer of Q informs the i-th agent. For notational con-
venience, we let t0 = tQ. To upper bound ti, for i > 0, we
consider a sequence of γ log2 n consecutive, non-overlapping
time intervals of length 4`2 beginning from time ti−1. By
the previous assumption, at the beginning of each interval
the cell where the explorer resides contains an uninformed
agent a. Hence, by Lemma 3, the probability that the ex-
plorer fails to meet an uninformed agent during all of these
intervals is

Pr
(
ti > ti−1 + 4γ`2 log2 n

)
≤ (1− c3/ log(2`))γ log2 n

≤ 1/n9,

where the last inequality holds for sufficiently large n by our
choice of γ. By iterating the argument for every i, we con-
clude that with probability at least 1 − 4β log2 n/n9, there
are at least 4β log2 n informed agents at time τ1. Let I de-
note the set of informed agents identified through the above
argument, and observe that each agent of I was in the cell
containing the explorer at some time step t ∈ [tQ, τ1].

To conclude the proof of the lemma, we note that, by
Lemma 2, the probability that the explorer, during the in-
terval [tQ, τ1], reaches a grid node at distance greater than

(c4 log5/2 n)` from its position at time tQ is bounded by
2T1/n

10. Consider an arbitrary agent a ∈ I. As observed
above, there must have been a time instant t̄ ∈ [tQ, τ1] when
a and the explorer were in the same cell, hence at distance at

most (2+c4 log5/2 n)` from Q. From time t̄ until time τ1 the
random walk of agent a proceeds independently of the ran-
dom walk of the explorer. By applying again Lemma 2, we
can conclude that the probability that one of the agents of I
is at distance greater than 2(1+c4 log5/2 n)` from Q at time
τ1 is at most 8β log2 n/n9. By adding up the upper bounds
to the probabilities that the event stated in the lemma does
not hold, we get 1/n9+4β log2 n/n9+2T1/n

10+8β log2 n/n9,
which is less than 1/n8 for sufficiently large n.

Lemma 5. Consider an arbitrary ` × ` cell Q of the tes-
sellation. Let T1, τ1, c4 and β be defined as in Lemma 4,
and let T2 = (2(2 + c4 log5/2 n)`)2, τ2 = τ1 + T2, and
c5 = (4

√
log 16)c4. Then, the following two properties hold

with probability at least 1− 1/n6 for n sufficiently large:

1. For Q and for each of its adjacent cells, there exists a
time t, with τ1 ≤ t ≤ τ2, at which there is an informed
agent in the cell;

2. At any time t, with τ1 ≤ t ≤ τ2 +T1, there are at least
β log2 n informed agents at distance at most (2+(2c4+

c5) log5/2 n)` from Q.

Proof. We condition on the event stated in Lemma 4,
which occurs with probability 1−1/n8. Hence, assume that
by time τ1 there are at least 4β log2 n informed agents at
distance at most d4 , 2(1 + c4 log5/2 n)` from Q. Consider
the center node v of Q (resp., Q′ adjacent to Q), so that at
τ1 there are at least 4β log2 n informed agents at distance
at most d4 + 2` from v. By Lemma 1 the probability that
v is not touched by an informed agent between τ1 and τ2

is at most (1− (c1/ log(d4 + 2`)))4β log2 n, which is less than
1/n7, for sufficiently large n, by our choice of β. Thus,
Point 1 follows.

As for Point 2, consider an informed agent a which, at
time τ1, is at a node x at distance at most d4 from Q. Fix
a time t ∈ [τ1, τ2 +T1]. By Lemma 2 the probability that at

time t agent a is at distance greater than (c5 log5/2 n)` from
x is at most 1/2. Hence, at time t the average number of

informed agents at distance at most d4 + (c5 log5/2 n)` from
Q is at least 2β log2 n. Since agents move independently,
Point 2 follows by applying the Chernoff bound to bound
the probability that at time t there are less than β log2 n
informed agents at distance at most d4 + (c5 log5/2 n)` from
Q, and by applying the union bound over all time steps of
the interval [τ1, τ2 + T1].

We are now ready to prove the main theorem of this sub-
section:

Proof of Theorem 1. As observed at the beginning of
the subsection, we can limit ourselves to the case k =
Ω
(
log3 n

)
. Consider the tessellation of Gn into ` × ` cells

defined before, and focus on a cell Q reached for the first
time at tQ. By Lemma 5, we know that with probability
at least 1 − 1/n6, in each time step t ∈ [τ1, τ2 + T1] there
are at least β log2 n informed agents at distance at most
d5 , (2 + (2c4 + c5) log5/2 n)` from Q and there exists a
time t′ ∈ [τ1, τ2] such that an informed agent is again in-
side Q. By applying again the lemma, we can conclude
that, with probability at least (1− 1/n6)2, at any time step
t′′ ∈ [t′+T1, t

′+2T1 +T2] there are at least β log2 n informed
agents at distance at most d5 from Q. Note that the two
time intervals [τ1, τ2 +T1] and [t′+T1, t

′+ 2T1 +T2] overlap



and the latter one ends at least T1 time steps later. Thus,
by applying the lemma n log4 n times, we ensure that, with

probability at least (1 − 1/n6)n log4 n ≥ 1 − log4 n/n5, from
time τ1 until the end of the broadcast, there are always at
least β log2 n informed agents at distance at most d5 from
Q.

Lemma 5 shows that each of the neighboring cells of Q
is reached within time τ2 = tQ + T1 + T2 with probability
1− 1/n6. Therefore, all cells are reached within time T ∗ =
(2
√
n/`)(T1 +T2) with probability at least 1− 1/n5. Hence,

by applying a union bound over all cells, we can conclude
that with probability at least (1−1/n5)(1−log4 n/n4) ≥ 1−
1/n3 there are at least β log2 n informed agents at distance
at most d5 from each cell of the tessellation, from time T ∗+
T1 until the end of the broadcast.

Consider now an agent a which at time T ∗ + T1 is un-
informed and resides in a certain cell Q. By an argument
similar to the one used to prove Lemma 4, we can prove that
a meets at least one of the informed agents around Q within
O
(
`2 log5 n

)
time steps with probability at least 1 − 1/n6.

A union bound over all uninformed agents completes the
proof.

Observe that the broadcast time is a non-increasing func-
tion of the transmission radius. Therefore, the upper bound
developed for the case r = 0 holds for any r > 0, as stated
in the following corollary.

Corollary 1. For any k ≥ 2 and r > 0, TB =

Õ
(
n/
√
k
)

with probability at least 1− 1/n2.

As another immediate corollary of the above theorem, we
can prove that the gossiping of multiple distinct rumors com-
pletes within the same time bound, with high probability.

Corollary 2. For any k ≥ 2 and r > 0, TG =

Õ
(
n/
√
k
)

with probability at least 1− 1/n.

3.2 Lower Bound on the Broadcast Time
In this subsection we prove that the result of Corollary 1 is

indeed tight, up to logarithmic factors, for any value r of the
transmission radius below the percolation point. Note that
this result is also a lower bound on TG if there are multiple
rumors in the system. First observe that with probability
at least 1−2−(k−1), there exists an agent placed at distance
at least

√
n/2 from the source of m. W.l.o.g., we assume

that the x-coordinates of the positions occupied by such an
agent and the source agent differ by at least

√
n/4 and that

the latter is at the left of the former. (The other cases can
be dealt with through an identical argument.) In the proof,
we cannot solely rely on a distance-based argument since
we need to take into account the presence of “many” agents
which may act as relay to deliver the rumor.

We define the informed area I(t) at time t as the set of
grid nodes visited by any informed agent up to time t, and
let x(t) to be the rightmost grid node in I(t). We will show
that there is a sufficiently large value T such that, at time
T , there is at least one uniformed agent right of x(T ). We
need the following definition:

Definition 2 (Island). Let A be the set of agents.
For any γ > 0, let Gt(γ) be the graph with vertex set A
and such that there is an edge between two vertices iff the
corresponding agents are within distance γ at time t. Then

any connected component of Gt(γ) is called an island of pa-
rameter γ at time t.

Next, we prove an upper bound on the size of the islands.

Lemma 6. Let γ =
√
n/(4e6k). Then, the probability

that there exists an island of parameter γ with more than
logn agents at any time t, with 0 ≤ t ≤ 8n log2 n, is at most
1/n2.

Proof. Since at any given time the agents are uniformly
distributed in Gn, the probability that a given agent is within
distance γ of another given agent at time t0 is bounded
by 4γ2/n. Fix a time t0 and let Bw(t0) denote the event
that there exists an island with at least w > logn elements
at time t0. Then, recalling that ww−2 is the number of
unrooted trees over w labeled nodes, we have that

Pr (Bw(t0)) ≤

(
k

w

)
ww−2

(
4γ2

n

)w−1

≤
(
ek

w

)w
ww−2

(
4γ2

n

)w−1

.

Using definition of γ and the bound w ≥ 1+logn and k ≤ n,
we have

Pr (Bw(t0)) ≤ ek

w2
e−5(w−1) ≤ en

w2

1

n5
≤ 1

n4
,

for a sufficiently large n. Applying the union bound over
O
(
n log2 n

)
time steps concludes the proof.

Next we show that, with high probability, for values of r
below percolation, the informed area cannot expand to the
right too fast.

Lemma 7. Suppose r ≤
√
n/(64e6k). Let γ =√

n/(4e6k) and let t0 and t1 = t0 + γ2/(144 logn) be two
time steps. Then, with probability 1− 2/n2,

||x(t1)− x(t0)|| ≤ γ logn.

Proof. By Lemma 2, with probability 1 − 2/n3 an
agent cannot cover a distance of more than (γ − r)/2 in
γ2/(144 logn) time steps. Thus with probability 1 − 1/n2,
any two agents belonging to distinct islands of Gt0(γ) can-
not come within distance r of each other in the interval
[t0, t1]. Therefore, in that time interval, the rumor can
propagate exclusively among agents belonging to those is-
lands of Gt0(γ) containing at least one informed agent. By
Lemma 6 we conclude that with probability 1 − 2/n2, in
the interval [t0, t1], x(t) can move to the right of at most
γ(logn− 1) + (γ − r)/2 < γ logn positions.

Finally, we can prove the main theorem of the subsection:

Theorem 2. Let k ≥ 2 and suppose that r ≤√
n/(64e6k). Then, with probability 1 − (2−(k−1) + 1/n +

2/n2),

TB = Ω

(
n√

k log2 n

)
.

Proof. As mentioned before, with probability at least
1 − 2−(k−1) there exists an agent a placed at distance at
least

√
n/2 from the source of the rumor; we may assume

that their x-coordinates differ by at least
√
n/4 and that the

uninformed agent is to the right of the source agent. Let T =



n/(2304e3
√
k log2 n) and γ =

√
n/(4e6k). By Lemma 7,

with probability 1−1/n the frontier cannot move right in T
steps more than (γ logn/2)T/(γ2/(144 logn)) <

√
n/8. By

Lemma 2, with probability 1 − 2/n2, agent a cannot move
left more than 2

√
T logn <

√
n/8, so that agent a cannot

be informed by time T . Hence, the broadcast time is at

least TB > T = Ω
(
n/(
√
k log2 n)

)
with probability at least

1− (2−(k−1) + 1/n+ 2/n2).

4. FURTHER RESULTS AND FUTURE RE-
SEARCH

In this work we took a step toward a better understand-
ing of the dynamics of information spreading in mobile net-
works. We proved a tight bound (up to logarithmic factors)
on the broadcast of a rumor in a mobile network where
agents perform independent random walks on a grid and
the transmission radius defines a system below the perco-
lation point. Our results complement the work of Peres et
al. [25], who studied the behavior of a similar system above
the percolation point. A similar bound holds for the gossip
problem in this model, where at time 0 each agent has a
distinct rumor and all agents need to receive all rumors.

Our analysis techniques are applicable to some interest-
ing related problems. For example, similar bounds on the
broadcast time TB can be obtained for the Frog Model [3],
where only informed agents move and uninformed agents re-
main at their initial positions. In particular, we can show
that the broadcast time in the Frog Model is upper bounded

by TB = Õ
(
n/
√
k
)

. The argument is similar to the proof of

Theorem 1, where Lemma 3 is replaced with Lemma 1 and
the analysis of the initial phase of the information dissemi-
nation process is carried out by using Point 2 of Lemma 2.
Also, a closer look at Theorem 2 reveals that the same argu-
ment employed in our dynamic model to bound TB from be-
low applies to the Frog Model. Thus, we have tight bounds,
up to logarithmic factors, in this latter model as well.

Another measure of interest in systems of mobile agents
is the coverage time TC, that is, the first time at which
every grid node has been visited at least once by an informed
agent [25]. While in the Frog Model the broadcast time is
obviously upper bounded by the coverage time, this relation
is not so obvious in our dynamic model, since the coverage
of the grid nodes does not imply that all agents have been
informed of the rumor. Nevertheless, one can verify that, in

our model, TC ≈ TB = Õ
(
n/
√
k
)

. Indeed, by Point 2 of

Lemma 5 and by Lemma 1, after O
(
`2
)

steps from the first
time at which an informed agent reached a given cell, all the
nodes of that cell have been visited by some informed agent.
Hence, by the cell-by-cell spreading process devised in the
proof of Theorem 1, we can conclude that the coverage time

is bounded by Õ
(
n/
√
k
)

. (In fact, the same tight relation

between TC and TB can be proved in the Frog Model.)
Another by-product of our techniques is a high-probability

upper bound O
(
(n log2 n)/k + n logn

)
on the cover time of

k independent random walks on the n-grid (i.e., the time
until each grid node has been touched by at least one such
walk), improving on the previous results of [2, 12] which pro-
vide the same bound only for the expected value. Finally,
in a closely related scenario, namely a random predator-prey
system where k = Ω (log n) predators are to catch moving

preys on an n-node grid by performing independent ran-
dom walks [9], our techniques yield a high-probability upper
bound O

(
(n log2 n)/k

)
on the extinction time of the preys.

In an effort to go beyond the pure mathematical contri-
bution, we are now working on extending our analysis tech-
niques to more complex scenarios that are interesting from
the point of view of applications. Introducing mobility and
communication barriers seems a first natural extension to be
considered. Another dimension of mobile networks that we
plan to further explore is the communication complexity of
generic distributed computations among the moving agents
of the system. Finally, the most challenging future direction
leads to formulate sound analytical mobility models repre-
senting the dynamics of people travelling on road or subway
networks, whereas, up to now, these types of systems have
been studied by physicists, transportation scientists and en-
gineers only by means of empirical or simulative techniques.
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[12] R. Elsässer and T. Sauerwald. Tight bounds for the



cover time of multiple random walks. In Proc. ICALP,
pages 415–426, 2009.

[13] W. Feller. An Introduction to Probability Theory and
Its Applications, Vol. I. Wiley, 3 edition, 1968.

[14] M. Gerla. From battlefields to urban grids: New
research challenges in ad hoc wireless networks.
Pervasive and Mobile Computing, 1(1):77–93, 2005.

[15] M. Grossglauser and D. N. C. Tse. Mobility increases
the capacity of ad hoc wireless networks. IEEE/ACM
Transactions on Networking, 10(4):477–486, 2002.

[16] J. Hromkovic, R. Klasing, A. Pelc, P. Ruzicka, and
W. Unger. Dissemination of Information in
Communication Networks. Springer, Berlin, 2005.

[17] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh,
and D. Rubenstein. Energy-efficient computing for
wildlife tracking: Design tradeoffs and early
experiences with zebranet. In Proc. ASPLOS, pages
96–107, 2002.

[18] H. Kesten and V. Sidoravicius. A shape theorem for
the spread of an infection. arXiv:math/0312511v1
[math.PR], 2003.

[19] H. Kesten and V. Sidoravicius. The spread of a rumor
or infection in a moving population. The Annals of
Probability, 33(6):2402–2462, 2005.

[20] J. Kleinberg. The wireless epidemic. Nature,
449(7160):287–288, 2007.

[21] G. F. Lawler. Intersections of random walks.
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