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1 IntroductionThe solution of a combinatorial optimization problem can often be obtained by the exploration of atree, whose internal nodes correspond to partial solutions (growing progressively more re�ned withincreasing depth) and whose leaves correspond to feasible solutions. Finding a solution of minimumcost involves searching the tree to identify a minimum-cost leaf. For many NP-hard optimizationproblems, an exhaustive search of the entire tree would be prohibitively expensive due to its size.In such cases great care needs to be exercised to explore only as much of the tree as is necessary toidentify the minimum-cost leaf. One of the most popular and frequently-used strategies of this kindis known as branch-and-bound. This technique relies on a branching procedure, used to generatethe children of the nodes, and a bounding procedure used to label each node with a cost whichis a lower bound to the cost of the best solution (if any) residing in that node's subtree. Thesearch for an optimal solution (i.e., the minimum-cost leaf) is guided by the costs associated withthe nodes and tends to favour the exploration of subtrees rooted at nodes of small cost, which,intuitively, are more likely to lead to the optimal solution. (See [PS82] for an extensive treatmentof branch-and-bound.)The computational structure of any branch-and-bound strategy is captured by the followingabstract search problem [KSW86]. Let T be an arbitrary tree of �nite size, whose nodes arelabelled with distinct integer-valued costs, the cost of each node being strictly less than the costof its children. The tree structure is not known in advance but is revealed incrementally as itsexploration unfolds. Initially, only a pointer to the root is available. Once a pointer to a nodeis available, the node can be visited, at which juncture pointers to its children are made availabletogether with their associated costs. We assume that the degree of any node is constant and thatvisiting a node takes constant time. The branch-and-bound problem involves determining the cost,c�, of the minimum cost leaf in T . Note that any correct algorithm for this problem must visitall those nodes whose costs are less than or equal to c�. These nodes form a subtree T � of T .Throughout the paper, n and h will denote, respectively, the size and the height of T �.There is a straightforward sequential algorithm for the branch-and-bound problem based on thebest-�rst strategy, which visits nodes in order of increasing cost. Such a strategy can be implementedby means of a sequential priority queue where nodes which are available but not yet visited arestored (using cost as key) and subsequently extracted in order of increasing cost. The O (n logn)running time of this simple strategy is dominated by the cost of the O (n) queue operations. Infact, it can be proved that any algorithm implementing a pure best-�rst strategy requires 
 (n logn)sequential time [Puc93].In [Fre93], Frederickson devised several sequential algorithms for the problem of selecting thek-th smallest item in a large heap. In particular, he provides a very elegant and simple algorithmwhich attains O (k log log k) time, and a rather complex recursive strategy to bring the time bounddown to the optimal O (k) time. Both the algorithms comply with the restriction that a node isvisited only after its parent has been visited. In fact, the latter algorithm can be adapted to yieldan optimal O (n) sequential algorithm for the branch-and-bound problem as follows. Let T be thebranch-and-bound tree and observe that the costs of the nodes of T satisfy the heap order. Thealgorithm executes a number of iterations: in the i-th iteration, Frederickson's algorithm is invokedto select the 2i-th smallest element in T , say xi. Once xi is known, the subtree of the 2i smallest1



elements in T can be easily enumerated in O �2i� time, using, for example, a modi�ed depth-�rstsearch. If the subtree contains at least one leaf of T , then the leaf associated with the smallestcost is returned. Otherwise, the next iteration is started. Clearly, an overall O (n) running time isattained.In a parallel setting, the development of e�cient branch-and-bound algorithms entails a delicatetrade-o� between an equitable distribution of the computational load (i.e., node visits) among theprocessors and the minimization of \super
uous visits" (i.e., visits to nodes in T � T �). Moreover,the balancing of computational load must be accomplished on-line as the execution unfolds, thusintroducing an additional cost which must be kept under control. The attainment of these goalsis hampered by the unpredictable shape of T � and by the fact that c� is not known in advance,so that nodes in T � cannot be easily identi�ed by inspection. As a consequence, enforcing loadbalance might result in a higher number of super
uous visits, while, on the other hand, reducing thenumber of such visits requires a best-�rst-like exploration which may result in keeping processorsunnecessarily idle.A number of parallel branch-and-bound algorithms have been devised for a variety of distributed-memory architectures. It is easy to see that any algorithm for this problem requires at least
 (n=p+ h) time on any p-processor machine, since all n nodes of T � need to be visited and at leasth steps must be performed to visit the longest root-to-leaf path in T �. Karp and Zhang presenta randomized algorithm [KZ93], running in O (n=p+ h) (i.e., optimal) time with high probabil-ity on a complete network of processors. (See [Ran90] for a simpli�ed analysis of the algorithm.)The algorithm, however, features a collection of local priority queues whose maintenance costs arenot accounted for. For n > p2 log p, optimal running time is also achieved by the randomizedalgorithm of [LAB93] designed on their atomic message passing model, a variant of the completenetwork, which assumes that interprocessor communication is controlled by a centralized FIFO ar-biter. Kaklamanis and Persiano [KP95] present a deterministic branch-and-bound algorithm thatruns in O �pnh log n� time on an n-node mesh. The clever mesh-speci�c techniques exploited intheir algorithm rely on the assumption that the mesh size and the problem size are comparable.It is not clear whether the performance of the algorithm scales when the problem size increases.Several implementations of branch-and-bound on real machines, based on di�erent load balancingstrategies, are presented and compared in [LM92, DLR93]. In these works, however, performanceis evaluated experimentally rather than analytically.An easier variant of branch-and-bound is represented by the backtrack search problem, whereno costs are associated with the nodes (or, equivalently, all costs are the same) and all nodes ofthe tree T must be visited. Clearly, any fast algorithm for branch-and-bound also yields a fastbacktrack search algorithm, while the reverse is not true. Parallel algorithms for backtrack searchcan be found in [KZ93, Ran91, KP95, HPP96b].In this paper, we present a deterministic parallel algorithm for the branch-and-bound problembased on a parallelization of the O (k log log k) heap-selection algorithm of [Fre93], combined withthe use of parallel priority queues. The algorithm can be run on any machine for which an e�cientimplementation of parallel priority queues is available. Based on the work of [PP91], we show howto implement the algorithm on an EREW-PRAM consisting of p synchronous RAM processorswith direct access to a common memory, where in a single step each processor may read or write2



a distinct memory cell [J�aJ92]. The algorithm runs in O �n=p+ h log2(np)� time, which is optimalfor h = O �n=(p log2(np))�. We remark that the running time faithfully re
ects all computationand communication costs, some of which, such as those connected with the management of thelocal data structures, are disregarded in some of the aforementioned works (e.g., [KZ93, Ran90]).In Section 2 we recall some of the ideas employed in Frederickson's sequential selection algo-rithm [Fre93], which will be adopted in our branch-and-bound algorithm. A general strategy forparallel branch-and-bound is presented in Section 3, while its PRAM implementation is describedin Section 4. Section 5 closes with some �nal remarks and pointers to future research.2 Frederickson's StrategyConsider a bounded-degree tree T whose nodes are labelled with costs satisfying the heap property.In [Fre93], a clan is de�ned as a set of at most s nodes, where s is an integer parameter which willbe speci�ed by the analysis. The nodes in the clan are referred to as its members. A clan C isassociated with two additional sets of nodes: the o�spring O� (C), which is the set of children ofclan members which are not themselves members of C; and the poor relations PR(C), which willbe characterized later.For a set of tree nodes V , let Best(V ) denote the set containing the s cheapest nodes amongthose in V and their descendants. (If V and their descendants number less than s, Best(V ) containsall of them.) Frederickson's selection algorithm works by partitioning the nodes of T into clans.Such a partition induces a binary tree of clans C(T ) as follows. (The resulting clan tree is relatedto, but distinct from, the underlying branch-and-bound tree T .) Let r denote the root of T . Theroot of C(T ) is de�ned as the clan R = Best(frg). The corresponding set of poor relations is empty,i.e. PR(R) = ;). Each clan C 2 C(T ) has two child clans, C 0 and C 00, withC 0 = Best(O� (C)) and PR(C 0) = O� (C)� Best(O� (C))C 00 = Best(PR(C)) and PR(C 00) = PR(C)� Best(PR(C)):Note that the root R of C(T ) has only one child, since PR(R) = ;. Also, since T has boundeddegree, a simple argument shows that jO� (C)j = �(s) and jPR(C)j = �(s). If a clan C hasexactly s members, its cost , denoted by cost(C), is de�ned as the maximum cost of any of itsmembers; if C has fewer than s members, cost(C) =1. Note that in this latter case, C is a leaf ofC(T ). It is easy to see that every node in a clan C costs less than every node in O� (C) [ PR(C),hence both cost(C 0) and cost(C 00) are strictly greater than cost(C).Notice that since the determination of clan membership is largely driven by the cost of variousnodes, it may be the case that the members of a clan are not close to one another in the tree T . Asa consequence, the shape of C(T ) may be substantially di�erent from the shape of T . Furthermore,while a node may be a poor relation of one or more clans prior to becoming a member of someclan, every tree node is a member of exactly one clan, so the clans partition the nodes of T .In [Fre93], it is shown that the k-th smallest node of T is a member of one of the 2dk=seclans of minimum cost. These clans can be identi�ed through a sequential exploration of C(T )in increasing order of clan cost using a sequential priority queue. By adopting this strategy, and3



setting s = O(log k), the k-th smallest node of T can be found in nonoptimal O (k log log k) runningtime. As discussed in the Introduction, Frederickson improves the running time to O (k) throughthe application of a recursive strategy which, however, does not seem to lend itself easily to ane�cient parallelization.3 The Branch-and-Bound AlgorithmIn this section, we present a parallel deterministic algorithm for solving the branch-and-boundproblem on an arbitrary cost-labelled tree T of bounded degree. The algorithm is described fora generic p-processor machine, and relies on a parallel best-�rst exploration of the tree of clansC(T ) de�ned in the previous section. The algorithm makes use of a Parallel Priority Queue (PPQ)[PP91], a data structure containing a number of items each labelled with an integer-valued key.Two main operations are provided by a PPQ: Insert, that adds a p-tuple of new items into thequeue; Deletemin, that extracts the p items with the smallest keys in the queue. The PPQ Q isemployed to store clans of C(T ) generated during the execution, using their costs as keys.For 1 � i � p, let Pi denote the i-th processor of the machine. Processor Pi maintains a localvariable `i which, at any time during the execution of the algorithm, gives the cost of the cheapestleaf visited by Pi up to that point. The processors also maintain two global variables, q and `,whose values represent the minimum cost of a clan currently in the PPQ Q and the minimum ofthe `i quantities, respectively. At the beginning of the algorithm, Q is empty and a pointer to theroot r of T is available. Also, each of the `i quantities is initialized to1, and so is `. The algorithmis given below.Algorithm BB:1. Processor P1 produces clan R = Best(frg) and sets `1 to the cost of the minimum leaf inR, if any exists. Then, R is inserted into Q, and q and ` are set to the cost of R and to `1,respectively.2. The following substeps are iterated until ` < q.(a) Deletemin is invoked to extract the k = minfp; jQjg clans C1; C2; : : : ; Ck of smallestcost from Q. For 1 � i � k, clan Ci is assigned to Pi.(b) For 1 � i � k, Pi produces the two children of Ci, namely C 0i and C 00i , and updates `iaccordingly.(c) Insert is invoked (at most twice) to store the newly produced clans into Q. The values` and q are then updated accordingly.3. The value ` is returned.We say that a node is visited when the clan it belongs to is produced by Substep 2.(b). Recallthat c� denotes the cost of the minimum cost leaf, and T � the subtree of T consisting of all nodes ofcost less than or equal to c�. Also recall that n and h denote the size and height of T �, respectively.Lemma 1 Algorithm BB is correct. 4



Proof: Since the cost of a clan C is strictly less than the cost of any node in O� (C) [ PR(C), itfollows that at any time during the course of the algorithm all nodes in T with cost less than orequal to q have already been visited. Therefore, when ` becomes smaller than q, the algorithm hasvisited at least one leaf (the one with cost `) and all nodes (and, in particular, all leaves) with costless than or equal to q > `. This implies that ` = c�, hence the algorithm correctly identi�es theminimum cost leaf in the tree. 2We say that a clan C is good if cost(C) � c�, otherwise C is bad. Note that a good clan hasexactly s members which all belong to T �, while a bad clan either has less than s nodes or containsat least one node in T � T �. The performance of the algorithm crucially relies on the followingtechnical lemmas.Lemma 2 In each iteration of Step 2 at least one good clan is extracted from Q.Proof: Suppose that there is an iteration of Step 2 at the beginning of which the condition ` � qholds and such that no good clan is extracted from Q in Substep 2.(a). This implies that rightbefore the iteration starts we have q > c�. From the proof of Lemma 1 we know that all nodes withcost less than or equal to q have already been visited, hence we must have ` = c� < q, which is acontradiction. 2Lemma 3 All good clans belong to the �rst O (hs) levels of C(T ).Proof: In fact, we prove that any clan containing nodes of T � belongs to the �rst O (hs) levels ofC(T ), which is a stronger claim. It is clear that a node of T is a member of only one clan C, but itmay be a poor relation of a number of clans before C is produced. Notice, however, that the poorrelations of a clan constitute a proper subset of either the poor relations or the o�spring of theclan's parent in C(T ). Therefore, a node may belong to the poor relations of at most O (s) clansprior to becoming a member of a clan. If we number the levels of C(T ) top to bottom starting atthe root, we can see that if a node in T � is member of a clan at level k in C(T ), then its childrenmust be members of clans at level k + O (s) in C(T ). Hence, it follows that the maximum level inC(T ) of a clan containing nodes of T � is O (hs). 2Theorem 1 The number of iterations of Step 2 required to reach the termination condition isO (n=(ps) + hs).Proof: From Lemma 2 it follows that we only need to consider iterations in which at least one goodclan is extracted from Q. We say that an iteration is full if p good clans are extracted from Q, andpartial, otherwise. Since each good clan contains s members, which are all nodes of T �, it is clearthat there can be at most n=(ps) full iterations. Consider now a partial iteration and notice thatall the good clans present in the queue at that time are extracted. In this case, the minimum levelin C(T ) of any good clan in the queue increases of at least one by the end of the iteration. Sincethe level of any good clan is O (hs), there cannot be more than O (hs) partial iterations. 25



4 PRAM ImplementationThe PRAM implementation of Algorithm BB relies on the priority queue realization developed byPinotti and Pucci in [PP91]. For a PPQ Q storing m items of constant size, the authors provideO (logm)-time algorithms for Insert (insertion of p elements) and Deletemin (deletion of the pminima) on a p-processor EREW-PRAM�. Any clan produced by Algorithm BB is stored in thePRAM shared memory together with its o�spring and poor relations. The clan is represented inthe PPQ Q using constant space, by storing only its cost and a pointer to the shared-memoryregion where the clan resides.Theorem 2 The branch-and-bound problem for an arbitrary bounded-degree tree T can be solvedon a p-processor EREW-PRAM in timeO�np + h log2(np)� :Proof: It is easy to see that the running time of the algorithm is dominated by that of Step 2.By Theorem 1, there are O (n=(ps) + hs) iterations in this step; hence, since h � n, the queuecannot contain more than O (nsp) clans at any time. By using the PPQ algorithms of [PP91],Substeps 2.(a) and 2.(c) can then be executed in O (log(nsp)) time. Given a set V of O (s) nodes,Best(V ) can be computed by a single processor in O (s) time, by a straightforward adaptation ofFrederickson's linear-time selection algorithm, as follows. We incorporate the nodes of V into atemporary heap H, whose top O(log jV j) consist of k = O(jV j) \dummy" nodes with cost �1 andwhose lower levels are made up of the nodes of V and the subtrees rooted at those nodes. Notethat the construction of H takes O (s) time. Then, Frederickson's sequential, linear-time selectionalgorithm is invoked to select the (k + s)-th cheapest node in the heap, in O (k + s) = O (s) time.Finally, a simple search is used to obtain, in O (s) time, the k+ s nodes of minimum cost in H, thelast s of which identify the set Best(V ). Therefore, Substep 2.(b) can be executed in O (s) time.Thus, the overall complexity of the algorithm, as a function of s isO�� nps + hs� (log(nsp) + s)� :The theorem follows by choosing any s = �(log(np)). 2Note that the above choice of s requires that the algorithm knows the value n in advance, whichis an unrealistic assumption in many practical contexts. In order to remove this assumption,we run the algorithm a number of times, choosing s based on exponentially increasing guessesfor n. More precisely, we start by running the algorithm guessing the value n1 = p2 for n andsetting s1 = log(n1p) = O (log p). If the algorithm does not terminate within time an1=p, fora suitable constant a, we abort the execution and run the algorithm again guessing n2 = (n1)2and s2 = log(n2p). In general, at the i-th guess, we run the algorithm with ni = (ni�1)2 and�In fact, the PPQ implementation of [PP91] is for the CREW-PRAM and achieves a slightly better time boundfor the Deletemin operation. The EREW implementation can be obtained by by simply replacing the use of theCREW merging routine in the PPQ algorithms with the EREW merging of [BN89].6



si = log(nip) and abort the execution if it does not terminate within time ani=p. This process isiterated until the �rst run for which the algorithm terminates within the chosen bound. Let j bethe �rst index for which nj � n. Since h � n and p � pnj, we have that npsj+1 + hsj+1! (log(nsj+1p) + sj+1) = O�nj+1p � :Therefore, if constant a is suitably chosen, the algorithm must terminate at some run i � j + 1and, upon termination, the current value of s is O (log(np)). Moreover, the overall running time ofthe algorithm is dominated by that of the last run, which is within the stipulated bound.Notice that the choice s = log(np) is not necessarily optimal. In fact, it can be proved that theoptimal choice is s = lpn=(ph)m. For this value of s the running time of the algorithm becomesO�np + h log(np) �r nph�� ;which is always O �np + h log2(np)� and is asymptotically smaller for h > n=(p log2(np)). However,since h is usually not known, guessing the above optimal value for s may not be feasible in practice.5 Further ResearchIn our branch-and-bound algorithm, interaction among the processors is mainly con�ned to themanagement of the PPQ. Therefore, the algorithm can be immediately ported to any distributed-memory architecture for which an e�cient implementation of PPQ operations is available. Fur-thermore, the PRAM algorithms for PPQ operations devised in [PP91] rely on standard pre�x andsorting routines, which are well studied and e�ciently supported primitives on most architectures.However, these algorithms can guarantee fast running times only under the assumption that eachPPQ item can be represented in constant space, while in our case the PPQ stores clans, whose sizeis nonconstant. Although this does not constitute a problem in a shared-memory environment suchas the PRAM, where each PPQ item may simply store a pointer to a clan, in a distributed mem-ory machine queue operations may involve the actual movement of clans among memory modules,which considerably increases the overhead associated with such operations.An implementation of the general branch-and-bound algorithm was devised in [HPP96a] for theOptically Connected Parallel Computer (OCPC), a machine consisting of p processors, each with aprivate local memory module, communicating through a complete optical interconnection [AM88].On such an architecture, the algorithm attains near-optimal performance but its implementationrelies on rather involved shared memory simulation techniques, needed to enable the use of pointersin a distributed environment. Finding a simpler implementation for the OCPC or, in general, simpleand e�cient implementations for other distributed memory machines remains an interesting openquestion.Another interesting direction for future work is to implement our theoretically e�cient branch-and-bound algorithm, or some simpli�ed version of it, on real parallel platforms and to compareits performance against that of other strategies, such as those proposed in [LM92, DLR93], in the7
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