
Parallel Priority Queues�Maria Cristina PINOTTIy and Geppino PUCCIz
AbstractThis paper introduces the Parallel Priority Queue (PPQ) abstract data type. A PPQ stores aset of integer-valued items and provides operations such as insertion of n new items or deletion ofthe n smallest ones. Algorithms for realizing PPQ operations on an n-processor CREW-PRAMare based on two new data structures, the n-Bandwidth-Heap (n-H) and the n-Bandwidth-Leftist-Heap (n-L), that are obtained as extensions of the well known sequential binary-heapand leftist-heap, respectively. Using these structures, it is shown that insertion of n new itemsin a PPQ of m elements can be performed in parallel time O(h+ logn), where h = log mn , whiledeletion of the n smallest items can be performed in time O(h+ log logn).Keywords Data structures, parallel algorithms, analysis of algorithms, heaps, PRAM model.

�This work has been partly supported by the Ministero della Pubblica Istruzione of Italy and by the C.N.R.project \Sistemi Informatici e Calcolo Parallelo"yIstituto di Elaborazione dell'Informazione, C.N.R., Pisa, ItalyzDipartimento di Informatica, Universit�a di Pisa, Pisa, Italy and International Computer Science Institute,Berkeley, CA, USA

1 IntroductionA Priority Queue is an abstract data type used in a wide variety of algorithms, for storing aset of labeled items and selecting the one associated with the smallest label [1]. In this notewe propose a new data type, that we call the Parallel Priority Queue (PPQ) and devise twoPPQ implementations for the CREW-PRAM. In this model of computation n RAM processorsP1; : : : ; Pn have concurrent unit time access to a shared memory, with the provision that two ormore processors may read a cell simultaneously but concurrent write accesses to the same cellare prohibited [6].We require that a PPQ allows e�cient simultaneous insertions of n new items, one for eachprocessor, or the removal of the n items associated with the n smallest labels. A PPQ can beuseful for the parallel implementation of techniques, such as Branch-and-Bound [9], which implythe solution of several subproblems, each associated with a di�erent cost. By using a PPQ,at each stage the processors may e�ciently select the n \more promising" subproblems to besolved.Formally, a PPQ Q is an abstract data type consisting of a collection of (possibly replicated)items with associated integer-valued labels. Three operations are de�ned, namely:� Insert(< i1; : : : ; in >;Q) for the insertion of items i1; : : : ; in in Q.� Deletemin(Q;n) for the deletion and return of the n smallest labelled items.� Makequeue(S;Q) for the construction of Q with the items of a set S.An additional operation is provided by meldable PPQs, namely:� Meld(Q1; Q2; Q) for the combination of PPQs Q1 and Q2 into Q.There have been several papers in the literature concerning the implementation of priorityqueues in a parallel environment [2, 3, 7, 10]. All of the above works are based on traditionalheap structures and achieve only a limited degree of parallelism. The two PPQ implementationsdevised in this paper make use of two new data structures, the n-Bandwidth-Heap (n-H), forunmeldable PPQs, and the n-Bandwidth-Leftist-Heap (n-L), for meldable PPQs. These struc-tures are obtained as extensions of the well known binary heap [5] and leftist heap [11] sequentialstructures, respectively. We develop e�cient PRAM algorithms for all the above PPQ opera-1

tions on n-H and n-L. Let m be the number of items stored in an n-H (resp., n-L) and leth = log mn . In the next sections we show that on an n processor CREW-PRAM:� n items can be inserted in an n-H (resp., n-L) in time O(h+ log n).� The n smallest items stored in an n-H (resp., n-L) can be deleted in time O(h+log logn).� An n-H (resp., n-L) can be constructed from a set S of m items in time O(mn logn).� Two n-L structures of m1 and m2 elements can be melded in time O (h1 + h2 + log logn),where h1 = log m1n and h2 = log m2n .2 Background and De�nitionsLet us brie
y review some of the properties of the mentioned sequential structures. Both of themare based on heap-ordered binary trees, that is, trees where the label of each node is smallerthan or equal to the labels of its children. A binary heap is a complete binary tree, where somerightmost nodes of the last level may be absent. Hence, a binary heap has a logarithmic depthand can be stored in an array, with positions 2i and 2i+1 containing the left and right childrenof node i [5].Recall that the rank of a node x of a binary tree is de�ned as:rank(x) = 8><>: 0 if x is void1 if x is a leaf1 + minfrank(left(x)); rank(right(x))g otherwisewhere left(x) and right(x) denote the left and right children of x. A leftist heap is a heap-orderedleftist tree, that is, a binary tree such that, for each node x, rank(left(x)) � rank(right(x)). Itcan be shown that, in a leftist tree, the path from the root to the rightmost leaf is one of theshortest paths in the tree (i.e., containing the least number of nodes), and that this path has atmost logarithmic length in the number of nodes. Note that, unlike binary heaps, a leftist heapmust be stored as a linked structure, with the ranks explicitly stored with the nodes.It is not clear how to use binary or leftist heaps for an e�cient parallel implementation ofPPQ operations. In particular, the fast retrieval of the n smallest items, needed by Deletemin,seems to be di�cult on these structures. To �nd the n minima in O(1) parallel time, we willstore a set of n items at each node of the structure, so that the maximum label in the set isequal to or smaller than all the labels stored at the node's descendants. Under this organization,that we call extended heap order, the n smallest values are found in the root.2

Formally, we de�ne an n-Bandwidth-Heap (n-H) and an n-Bandwidth-Leftist-Heap (n-L),respectively, as a binary heap and a leftist heap, whose nodes, each containing n items, arearranged in extended heap order. Letting m = f(n) � n be the number of items stored in theheap, with f(n) being any increasing integer function of n, we denote the height of an n-H, orthe length of the rightmost path of an n-L, by h 2 O(log mn). The n-bandwidth heaps can berealized like their sequential counterparts, with the only di�erence that each node contains avector of n items. For implementation purposes, we require that the items at a node appear insorted order.3 PPQ OperationsLet us present the algorithms to realize PPQ operations on n-H and n-L. The building blocks ofsuch algorithms are the procedures PARALLEL-SORT(S) and PARALLEL-MERGE(E1; E2),where S denotes a set of integer items to be sorted and E1; E2 are two ordered sequences to bemerged. Sorting and merging are employed to e�ciently establish and preserve the extendedheap order during the heap operations. Recall that, with an n-processor CREW-PRAM, n itemscan be sorted in time [4] TS 2 �(log n) (1)while merging two vectors of cardinality k1 and k2 can be done in time [8]TM 2 ��k1 + k2n + log logn� (2)As a particular case of relation 2, we have that two vectors of size n can be merged in timeO(log logn) using n processors.3.1 PPQ Operations on n-HLet EP denote the ordered sequence of n items stored in node P of an n-H Q, and let max(EP)denote the maximum element of EP . Moreover, a path � = P1; : : : ; Pk is a sequence of nodesof Q from the root P1 to a leaf Pk, and, for a given path �, E� denotes the concatenationEP1EP2 : : : EPk . Note that E� is an ordered sequence. However, when we perform insertions ordeletions, we will replace the set stored in P1 or Pk by another ordered set, which may violate theoverall order on E�. To reorder E� after such a replacement, we de�ne the following procedureon a path �: 3

procedure REARRANGE(�, P 2 fP1; Pkg):beginE := PARALLEL-MERGE(EP , E��P);Let E1; : : : ; Ej�j be the j�j consecutive subsequences of E of cardinality n;for i := 1 to j�j do EPi := Ei endforend.Since the copy of the Ei's into the EPi 's takes parallel time O(j�j), the parallel complexity CRof REARRANGE is dominated by the time required by PARALLEL-MERGE for two sequencesof length n and n(j�j � 1) with n processors. From 2 we have:CR 2 O(j�j+ log logn) (3)Insertion. To insert n new items into an n-H Q, we �rst place them, in sorted order,in the leftmost vacant leaf VL of Q; then we rearrange the path � from the root of Q to VLwith REARRANGE(�; VL). It is crucial to note that this operation preserves the extended heaporder. In fact, for each node Pi 2 �, max(EPi) is not incremented by REARRANGE. Thus,the minimum elements stored in the children of Pi are both greater than max(EPi). A simpleprogram for insertion is the following:program INSERT(fi1; : : : ; ing; Q):beginLet VL be the leftmost vacant leaf of Q;EVL := PARALLEL-SORT(fi1; : : : ; ing);Determine the path � from the root to VL;REARRANGE(�, VL)end.Since j�j = h, � can be determined in time O(h). Hence the time complexity CI of INSERT isdominated by the initial sorting phase and by the complexity of REARRANGE. From 1 and 3it easily follows that: CI 2 O(h+ logn) (4)Deletion. Let a minimum path � of Q be recursively de�ned as:1. The root of Q belongs to �.2. Let a non leaf node P belong to �. If X and Y are the children of P and either Y is voidor max(EX) � max(EY), then X belongs to �.We de�ne a procedure ADJUST on a minimum path �:4

procedure ADJUST(�):beginforeach P 2 � doif Sibling(x) exists thenE := PARALLEL-MERGE(EP , ESibling(P));Let E1, E2 be the left and right halves of E;EP := E1;ESibling(P) := E2endifendforend.Note that ADJUST does not violate the extended heap order. Furthermore, this procedurerearranges the elements stored in the nodes along � and their siblings so that we can \shift" �up of one position and still preserve the extended heap order. This feature of ADJUST will beused in the implementation of the DELETEMIN operation. A straightforward implementationof ADJUST on the PRAM takes time O(h log logn). However, a better time complexity isachieved by assigning max ��nh� ; 1	 processors to each node of � to perform the PARALLEL-MERGE operation between that node and its sibling. The algorithm will then consist of lhnmphases, each performing minfh; ng instances of PARALLEL-MERGE on distinct pairs of nodes.Since each phase requires O(minfh; ng + log logn) time (from 2), ADJUST can be realized intotal time: CA 2 O(h+ log logn) (5)Let now R and FR respectively denote the root and the rightmost non vacant leaf of Q atheight h. Deletion is performed by the program DELETEMIN given below. Recalling that theset ER contains the n smallest elements of Q, at �rst DELETEMIN returns ER, and replaces theset in R by the elements in FR. Then ADJUST and REARRANGE are called on the minimumpath � of Q to re-establish the extended heap order. Note that in the ordered sequence E�,created by REARRANGE, some elements previously residing on Pi 2 � may now be assignedto its father Pi�1. However, the extended heap order is not violated as ADJUST has modi�ed� so that max(EPi) (hence all the values of EPi) become smaller than the minimum value ofESibling(Pi).program DELETEMIN(Q;n):beginLet R;FR be the the root and the rightmost non vacant leaf of Q;return ER;ER := EFR ; 5

Determine the minimum-path � ;ADJUST(�);REARRANGE(�, R)end.The time complexity CD of Deletemin is dominated by the execution of REARRANGE andADJUST, since the other operations take altogether O(h) time. Hence:CD 2 O(h+ log log n) (6)Note that, for h � log logn (i.e., m � n logn) DELETEMIN takes time proportional to the n-Hheight. The slowdown, for the case h < log log n is due to the merge algorithm, which cannotattain linear speedup if the number of processors is close to the number of elements to be merged[8].Construction. We are �nally left with implementing n-H construction. Let S[1; : : : ; n]be the set of n elements to be stored in the new heap Q. We �rst build an n-H tree whose nodescontain sorted items. These nodes do not necessarily satisfy the extended heap order, whichis subsequently created, level by level, starting from the leaves . Speci�cally, for each subtreeT at level k, its minimum-path �T is determined, adjusted and rearranged. Construction isperformed by the following program:program MAKEQUEUE(S, Q):beginfor i := 1 to mn � 1 do f?? sorting phase ??gQ[in+ 1; : : : ; (i + 1)n] := PARALLEL-SORT(S[in+ 1; : : : ; (i+ 1)n])endfor;for k := h downto 1 do f?? heapify phase ??gfor each node P at level k doLet T be the tree rooted at P ;Determine the minimum-path �T ;ADJUST(�T);REARRANGE(�T , P)endforendforend.The correctness of the above algorithm can be easily proved by induction on the height of then-H. As to its time complexity, from 1 it follows that the sorting phase can be accomplished inparallel time O(mn log n). During the heapify phase, at each node P of level k, all processorsoperate in parallel to re-establish the extended heap order in the subtree rooted at P . Hence,6

each step of the inner loop takes time O(h� k + log logn) for a total time ofO0@ hXj=1 mn2j (j + log log n)1A = O�mn log log n�Therefore, the complexity CMQ of MAKEQUEUE is altogether:CMQ 2 O�mn log n� (7)3.2 PPQ Operations on n-LDue to their vectorial representation, n-H cannot e�ciently realize meldable PPQs. Melding isinstead the basic operation for n-L, since it provides the basis for all the other PPQ operationsof insertion, deletion and heap construction.Melding To meld two n-L, Q1 and Q2, into an n-L Q, we combine their paths �1 and�2 from the roots to the rightmost leaves into a single path � of length h = h1 + h2, whereh1 = j�1j and h2 = j�2j, h1 � h2. The remaining nodes of Q1 and Q2 are then attached to thispath opportunely. Finally rank readjustment is performed, to guarantee the leftist property ofQ. We represent a node P of an n-L by a record P = (E, left, right, rank), where P:E is thesorted sequence of the n values stored in P (denoted by EP in section 3.1); P:left and P:rightare the pointers to the left and right children of P , respectively; and P:rank is the rank of P .Furthermore, for a node P , we de�ne L(P) as the pair (P:left, max(P:E)). As before, we denoteby E�i , with i = 1; 2, the concatenation of the lists P:E stored at the nodes of path �i. Similarly,we de�ne L�i to be the sequence of the pairs relative to the nodes of �i. We say that L�i isordered, because the second components of its pairs appear in non decreasing order. Melding isperformed by the program MELD given below. (Note the use of the Pascal-like notation new(P)and P", to denote a new record to be created, and its �elds).program MELD(Q1, Q2, Q):beginLet �1 and �2 be the rightmost paths of Q1 and Q2, respectively;Let h1 = j�1j and h2 = j�2j;E := PARALLEL-MERGE(E�1 , E�2);L := PARALLEL-MERGE(L�1 , L�2);f?? The merge of L�1 and L�2 is based on the total orderde�ned over the second �eld of the pairs ??gLet E1; : : : ; Eh1+h2 be the (h1 + h2) consecutive subsequences of E of cardinality n;Let L1; : : : ; Lh1+h2 be the (h1 + h2) �rst components of the pairs in L;7

h := h1 + h2;new(P); P":= (Eh; Lh, nil, 1);for i := h� 1 downto 1 doN := (Ei; Li; P; 1);if (N:right"):rank > (N:left"):rankthen swap(N:left, N:right)endifN:rank := (N:right"):rank +1;new(P); P":= Nendfor;Q := Pend.Note that the for loop in MELD performs both the path construction and the rank read-justment phases. To show that the above algorithm is correct, we observe that the constructionof the rightmost path � guarantees the extended heap order as, for each left subtree T pointedat by a node P in �, the values in P:E can only be less or equal to the ones in the node of �1 or�2 that originally pointed to T . As to the time complexity CM of MELD, it can be easily seenthat it is determined by the PARALLEL-MERGE step needed to create E and L, (all the otherphases are performed in O(h1 + h2) time). From 2 we have:CM 2 O(h1 + h2 + log log n) = O(h+ log log n) (8)Hence, for h1 + h2 2
(log log n) the meld operation takes time proportional to the height ofthe resulting tree.All the other operations on n-L heaps are based on melding. To insert n new items into ann-L Q, we make them into a one-node n-L heap and meld it with Q. To delete the n minimafrom Q, we remove its root and meld the remaining left and right subtrees, which are in turnn-L heaps. Finally, the n-L construction can be realized by �rst building a list L of mn one-node heaps, and then iteratively melding the elements of L until only one remains. From easycalculations, it follows that the time complexities CI , CD and CMQ of these three operationsare exactly as in the n-H case.4 ConclusionsThe PPQ data type introduced in this paper is based on the idea of extending the sequentialPriority Queue structures to a parallel context. Adopting the CREW-PRAM model of parallelcomputation, we have de�ned two PPQ data structures, the n-H and the n-L, respectively8

realizing unmeldable and meldable queues. We have then employed optimal algorithms forsorting and merging devised for the CREW-PRAM for the e�cient implementation of the basicoperations of insert, deletemin, makequeue and meld.For a better assessment of the e�ciency of our structures, consider a parallel version ofHeapsort, made of a Makequeue followed by mn Deletemin operations, where m and n are theelements to be sorted and the number of available processors, respectively. Letting CHS(m;n)be the time complexity of such parallel Heapsort, from 6 and 7 we have:CHS(m;n) 2 O0@mn log n+ log mnXj=1 mn2j (log mn � j + log log n)1A = O�mn logm�which is clearly optimal for any value of m and n, with m � n. The optimality of the abovealgorithm is due to the use of Cole's O(log n) complex parallel sorting. However, for m >n log log n, we can slightly adapt the sorting phase of makequeue to use simpler sorting algorithms[8] without increasing the overall running time.Finally, we want to point out that the extended heap order, as de�ned in section 2, does notrequire that the elements at each node be sorted. We are currently investigating the techniquesneeded to implement PPQ operations without making use of sorting but still achieving the sametime complexities.Acknowledgements We thank Fabrizio Luccio and Andrea Pietracaprina for helpfuldiscussions concerning this work. We also thank an anonymous referee for a number of excellentsuggestions and for pointing out reference [8].References[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman. The Design and Analysis of Computer Algo-rithms. Addison-Wesley, Reading, Mass., 1974.[2] F. Bauern�oppel and H. Jung. Implementing Abstract Data Structures in Hardware. In Proc.13th Conf. on Mathematical Foundations of Computer Science, LNCS 324, Springer, Berlin,Germany, 1988, 172-179.[3] J. Biswas and J.C. Browne. Simultaneous Update of Priority Structures. In Proc. of the1987 Int. Conf. on Parallel Processing, 1987, 124-131.[4] R. Cole. Parallel Merge Sort. SIAM Journal of Computing, 17(4), 1988, 130-145.[5] R.W. Floyd. Algorithm 245: Treesort. Communications of the ACM, 7(12), 1964, 701.[6] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proc. 10th AnnualACM Symp. on Theory of Computing, 1978, 114-118.9

[7] D.W. Jones. Concurrent Operations on Priority Queues. Communications of the ACM,32(1), 1989, 132-137.[8] C.P. Kruskal. Searching, Merging and Sorting in Parallel Computation. IEEE Transactionson Computers, C-32(10), 1983, 942-946.[9] R. Karp, M. Saks and A. Wigderson. On a Search Problem Related to Branch-and-BoundProcedures. In Proc. 27th Symp. on Foundations of Computer Science, 1986, 19-28.[10] V.N. Rao and V. Kumar. Concurrent Access of Priority Queues. IEEE Trans. on Computers,C-37(12), 1988, 1657-1665.[11] R.E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadelphia, Penn., 1983.

10

