Parallel Priority Queues®

Maria Cristina PINOTTI' and Geppino PUCCI#

Abstract

This paper introduces the Parallel Priority Queue (PPQ) abstract data type. A PPQ stores a
set of integer-valued items and provides operations such as insertion of n new items or deletion of
the n smallest ones. Algorithms for realizing PPQ operations on an n-processor CREW-PRAM
are based on two new data structures, the n-Bandwidth-Heap (n-H) and the n-Bandwidth-
Leftist-Heap (n-L), that are obtained as extensions of the well known sequential binary-heap
and leftist-heap, respectively. Using these structures, it is shown that insertion of n new items
in a PPQ of m elements can be performed in parallel time O(h + logn), where h = log ™", while
deletion of the n smallest items can be performed in time O(h + loglogn).

Keywords Data structures, parallel algorithms, analysis of algorithms, heaps, PRAM model.

*This work has been partly supported by the Ministero della Pubblica Istruzione of Italy and by the C.N.R.
project “Sistemi Informatici e Calcolo Parallelo”

Hstituto di Elaborazione dell'Informazione, C.N.R., Pisa, Italy

!Dipartimento di Informatica, Universita di Pisa, Pisa, Italy and International Computer Science Institute,
Berkeley, CA, USA

1 Introduction

A Priority Queue is an abstract data type used in a wide variety of algorithms, for storing a
set of labeled items and selecting the one associated with the smallest label [1]. In this note
we propose a new data type, that we call the Parallel Priority Queue (PPQ) and devise two
PPQ implementations for the CREW-PRAM. In this model of computation n RAM processors
Py, ..., P, have concurrent unit time access to a shared memory, with the provision that two or
more processors may read a cell simultaneously but concurrent write accesses to the same cell
are prohibited [6].

We require that a PPQ allows efficient simultaneous insertions of n new items, one for each
processor, or the removal of the n items associated with the n smallest labels. A PPQ can be
useful for the parallel implementation of techniques, such as Branch-and-Bound [9], which imply
the solution of several subproblems, each associated with a different cost. By using a PPQ),
at each stage the processors may efficiently select the n “more promising” subproblems to be

solved.

Formally, a PPQ @ is an abstract data type consisting of a collection of (possibly replicated)

items with associated integer-valued labels. Three operations are defined, namely:

o Insert(< iy,...,i, >, Q) for the insertion of items iy, ..., i, in Q.
e Deletemin(Q,n) for the deletion and return of the n smallest labelled items.

e Makequeue(S, Q) for the construction of () with the items of a set S.
An additional operation is provided by meldable PPQs, namely:
e Meld(Q1,Q2, Q) for the combination of PPQs @1 and Q5 into Q.

There have been several papers in the literature concerning the implementation of priority
queues in a parallel environment [2, 3, 7, 10]. All of the above works are based on traditional
heap structures and achieve only a limited degree of parallelism. The two PPQ implementations
devised in this paper make use of two new data structures, the n-Bandwidth-Heap (n-H), for
unmeldable PPQs, and the n-Bandwidth-Leftist-Heap (n-L), for meldable PPQs. These struc-
tures are obtained as extensions of the well known binary heap [5] and leftist heap [11] sequential

structures, respectively. We develop efficient PRAM algorithms for all the above PPQ opera-

tions on n-H and n-L. Let m be the number of items stored in an n-H (resp., n-L) and let

h =log ™. In the next sections we show that on an n processor CREW-PRAM:
e n items can be inserted in an n-H (resp., n-L) in time O(h + logn).
e The n smallest items stored in an n-H (resp., n-L) can be deleted in time O(h + loglogn).
¢ An n-H (resp., n-L) can be constructed from a set S of m items in time O(7: logn).

e Two n-L structures of m; and my elements can be melded in time O (h; + hy + loglogn),

where hy; = log 1 and hg = log =2,
2 Background and Definitions

Let us briefly review some of the properties of the mentioned sequential structures. Both of them
are based on heap-ordered binary trees, that is, trees where the label of each node is smaller
than or equal to the labels of its children. A binary heap is a complete binary tree, where some
rightmost nodes of the last level may be absent. Hence, a binary heap has a logarithmic depth
and can be stored in an array, with positions 2¢ and 2i + 1 containing the left and right children

of node 7 [5].
Recall that the rank of a node z of a binary tree is defined as:

0 if z is void
rank(z) = ¢ 1 if z is a leaf
1 + min{rank(left(z)), rank(right(z))} otherwise

where left(z) and right(z) denote the left and right children of z. A leftist heap is a heap-ordered
leftist tree, that is, a binary tree such that, for each node z, rank(left(z)) > rank(right(z)). It
can be shown that, in a leftist tree, the path from the root to the rightmost leaf is one of the
shortest paths in the tree (i.e., containing the least number of nodes), and that this path has at
most logarithmic length in the number of nodes. Note that, unlike binary heaps, a leftist heap

must be stored as a linked structure, with the ranks explicitly stored with the nodes.

It is not clear how to use binary or leftist heaps for an efficient parallel implementation of
PPQ operations. In particular, the fast retrieval of the n smallest items, needed by Deletemin,
seems to be difficult on these structures. To find the n minima in O(1) parallel time, we will
store a set of n items at each node of the structure, so that the maximum label in the set is
equal to or smaller than all the labels stored at the node’s descendants. Under this organization,

that we call extended heap order, the n smallest values are found in the root.

Formally, we define an n-Bandwidth-Heap (n-H) and an n-Bandwidth-Leftist-Heap (n-L),
respectively, as a binary heap and a leftist heap, whose nodes, each containing n items, are
arranged in extended heap order. Letting m = f(n) - n be the number of items stored in the
heap, with f(n) being any increasing integer function of n, we denote the height of an n-H, or
the length of the rightmost path of an n-L, by A € O(log). The n-bandwidth heaps can be
realized like their sequential counterparts, with the only difference that each node contains a
vector of n items. For implementation purposes, we require that the items at a node appear in

sorted order.

3 PPQ Operations

Let us present the algorithms to realize PPQ operations on n-H and n-L. The building blocks of
such algorithms are the procedures PARALLEL-SORT(S) and PARALLEL-MERGE(E, E»),
where S denotes a set of integer items to be sorted and E;, Fy are two ordered sequences to be
merged. Sorting and merging are employed to efficiently establish and preserve the extended
heap order during the heap operations. Recall that, with an n-processor CREW-PRAM, n items
can be sorted in time [4]

Ts € O(logn) (1)

while merging two vectors of cardinality k; and ko can be done in time [8]

k1 + ko
n

Ty €6 < + log log n) (2)

As a particular case of relation 2, we have that two vectors of size n can be merged in time

O(loglogn) using n processors.
3.1 PPQ Operations on n-H

Let Ep denote the ordered sequence of n items stored in node P of an n-H @, and let max(Ep)
denote the maximum element of Ep. Moreover, a path m = P;,..., P, is a sequence of nodes
of @ from the root P; to a leaf Py, and, for a given path w, E, denotes the concatenation
Ep Ep, ... Ep,. Note that F; is an ordered sequence. However, when we perform insertions or
deletions, we will replace the set stored in P, or P by another ordered set, which may violate the
overall order on E;. To reorder E, after such a replacement, we define the following procedure

on a path m:

procedure REARRANGE(7, P € {Py, P }):
begin
E := PARALLEL-MERGE(Ep, E,_p);
Let E',..., EI™l be the |n| consecutive subsequences of E of cardinality n;
for i := 1 to |7| do Ep, := E' endfor
end.

Since the copy of the E'’s into the Ep,’s takes parallel time O(|r|), the parallel complexity Cg
of REARRANGE is dominated by the time required by PARALLEL-MERGE for two sequences

of length n and n(|w| — 1) with n processors. From 2 we have:
Cr € O(|| + loglogn) (3)

Insertion. To insert n new items into an n-H (), we first place them, in sorted order,
in the leftmost vacant leaf Vi of @); then we rearrange the path 7 from the root of Q) to Vi
with REARRANGE(7, V7). It is crucial to note that this operation preserves the extended heap
order. In fact, for each node P; € m, max(Ep,) is not incremented by REARRANGE. Thus,
the minimum elements stored in the children of P; are both greater than max(Ep,). A simple
program for insertion is the following:
program INSERT ({i1,...,in}, Q):
begin
Let Vi, be the leftmost vacant leaf of Q;
Ey, := PARALLEL-SORT ({i1,...,in});
Determine the path 7 from the root to Vz;

REARRANGE(~, V1)
end.

Since |7| = h, 7 can be determined in time O(h). Hence the time complexity C; of INSERT is
dominated by the initial sorting phase and by the complexity of REARRANGE. From 1 and 3

it easily follows that:
Cr € O(h +logn) (4)

Deletion. Let a minimum path p of Q be recursively defined as:
1. The root of @ belongs to p.

2. Let a non leaf node P belong to u. If X and Y are the children of P and either Y is void

or max(FEx) < max(Ey), then X belongs to u.

We define a procedure ADJUST on a minimum path u:

procedure ADJUST (u):
begin
foreach P € u do
if Sibling(z) exists then
E := PARALLEL-MERGE(Ep, Esipling(P));
Let E', E? be the left and right halves of E;

Ep:=E";
Egibling(p) == E?
endif
endfor

end.

Note that ADJUST does not violate the extended heap order. Furthermore, this procedure
rearranges the elements stored in the nodes along y and their siblings so that we can “shift” u
up of one position and still preserve the extended heap order. This feature of ADJUST will be
used in the implementation of the DELETEMIN operation. A straightforward implementation
of ADJUST on the PRAM takes time O(hloglogn). However, a better time complexity is
achieved by assigning max {|%|,1} processors to each node of i to perform the PARALLEL-
MERGE operation between that node and its sibling. The algorithm will then consist of [%-‘
phases, each performing min{h,n} instances of PARALLEL-MERGE on distinct pairs of nodes.
Since each phase requires O(min{h,n} + loglogn) time (from 2), ADJUST can be realized in
total time:

Ca € O(h +loglogn) (5)

Let now R and Fg respectively denote the root and the rightmost non vacant leaf of @) at
height h. Deletion is performed by the program DELETEMIN given below. Recalling that the
set E'r contains the n smallest elements of @), at first DELETEMIN returns Eg, and replaces the
set in R by the elements in Fr. Then ADJUST and REARRANGE are called on the minimum
path 4 of @ to re-establish the extended heap order. Note that in the ordered sequence E,,
created by REARRANGE, some elements previously residing on P; € y may now be assigned
to its father P, ;. However, the extended heap order is not violated as ADJUST has modified

p so that max(Ep,) (hence all the values of Ep,) become smaller than the minimum value of
Esibling(p;)-

program DELETEMIN(Q,n):
begin
Let R, Fr be the the root and the rightmost non vacant leaf of Q);

return Ep;
ER = EFR;

Determine the minimum-path pu ;
ADJUST (p);
REARRANGE(u, R)

end.

The time complexity Cp of Deletemin is dominated by the execution of REARRANGE and
ADJUST, since the other operations take altogether O(h) time. Hence:

Cp € O(h + loglogn) (6)

Note that, for b > loglogn (i.e., m > nlogn) DELETEMIN takes time proportional to the n-H
height. The slowdown, for the case h < loglogn is due to the merge algorithm, which cannot
attain linear speedup if the number of processors is close to the number of elements to be merged
8].

Construction. We are finally left with implementing n-H construction. Let S[1, ..., n]
be the set of n elements to be stored in the new heap (). We first build an n-H tree whose nodes
contain sorted items. These nodes do not necessarily satisfy the extended heap order, which
is subsequently created, level by level, starting from the leaves . Specifically, for each subtree
T at level k, its minimum-path pur is determined, adjusted and rearranged. Construction is

performed by the following program:

program MAKEQUEUE(S, Q):
begin
for i :== 1 to ™ — 1 do {»x sorting phase »x}
Qlin+1,...,(i + 1)n] := PARALLEL-SORT(S[in + 1,..., (i + 1)n])
endfor;
for k := h downto 1 do {** heapify phase *x}
for each node P at level k£ do
Let T be the tree rooted at P;
Determine the minimum-path pr;
ADJUST (ur);
REARRANGE (ur, P)
endfor
endfor
end.

The correctness of the above algorithm can be easily proved by induction on the height of the
n-H. As to its time complexity, from 1 it follows that the sorting phase can be accomplished in
parallel time O(7 logn). During the heapify phase, at each node P of level k, all processors

operate in parallel to re-establish the extended heap order in the subtree rooted at P. Hence,

each step of the inner loop takes time O(h — k + loglogn) for a total time of

h
m . m
@) (Z ﬁ(] + loglogn)) =0 (Eloglogn)

j=1

Therefore, the complexity Cyrqg of MAKEQUEUE is altogether:
CMQ €0 <% log n> (7)
3.2 PPQ Operations on n-L

Due to their vectorial representation, n-H cannot efficiently realize meldable PPQs. Melding is
instead the basic operation for n-L, since it provides the basis for all the other PPQ operations

of insertion, deletion and heap construction.

Melding To meld two n-L, @1 and @Q9, into an n-L), we combine their paths p; and
p2 from the roots to the rightmost leaves into a single path p of length h = hy + hy, where
hi = |p1| and hg = |p3|, h1 < hy. The remaining nodes of)1 and @, are then attached to this
path opportunely. Finally rank readjustment is performed, to guarantee the leftist property of
Q.

We represent a node P of an n-L by a record P = (E, left, right, rank), where P.E is the
sorted sequence of the n values stored in P (denoted by Ep in section 3.1); Pleft and P.right
are the pointers to the left and right children of P, respectively; and P.rank is the rank of P.
Furthermore, for a node P, we define L(P) as the pair (P.left, max(P.E)). As before, we denote
by E,,, with i = 1,2, the concatenation of the lists P.E stored at the nodes of path p;. Similarly,
we define L, to be the sequence of the pairs relative to the nodes of p;. We say that L, is
ordered, because the second components of its pairs appear in non decreasing order. Melding is
performed by the program MELD given below. (Note the use of the Pascal-like notation new(P)
and PT, to denote a new record to be created, and its fields).
program MELD(Q1, Q2, Q):

begin

Let p1 and pso be the rightmost paths of Q1 and @3, respectively;
Let hl = |p1| and hg = |p2‘;

E := PARALLEL-MERGE(E,,, E,,);

L := PARALLEL-MERGE(L,,, L,,):

{#x The merge of L, and L,, is based on the total order
defined over the second field of the pairs %}

Let E',..., E"*h2 be the (hy + ho) consecutive subsequences of E of cardinality n;
Let L', ..., L *h2 be the (hy 4 hs) first components of the pairs in L;

h:=hy + ha;

new(P); Pt:= (E", L", nil, 1);

for : := h — 1 downto 1 do
N := (E', L}, P,1);
if (N.right?).rank > (N.left1).rank

then swap(V.left, N.right)

endif
N.rank := (N.right?).rank +1;
new(P); P:= N

endfor;

Q:=P

end.

Note that the for loop in MELD performs both the path construction and the rank read-
justment phases. To show that the above algorithm is correct, we observe that the construction
of the rightmost path p guarantees the extended heap order as, for each left subtree T pointed
at by a node P in p, the values in P.F can only be less or equal to the ones in the node of p; or
po that originally pointed to T'. As to the time complexity C'yy of MELD, it can be easily seen
that it is determined by the PARALLEL-MERGE step needed to create E and L, (all the other

phases are performed in O(hy + hy) time). From 2 we have:
Cy € O(hy + ho +1oglogn) = O(h + loglogn) (8)

Hence, for hy + hy € Q(loglogn) the meld operation takes time proportional to the height of

the resulting tree.

All the other operations on n-L heaps are based on melding. To insert n new items into an
n-L), we make them into a one-node n-L heap and meld it with (). To delete the n minima
from @), we remove its root and meld the remaining left and right subtrees, which are in turn
n-L heaps. Finally, the n-L construction can be realized by first building a list £ of 7 one-
node heaps, and then iteratively melding the elements of £ until only one remains. From easy
calculations, it follows that the time complexities C7, Cp and Chrq of these three operations

are exactly as in the n-H case.

4 Conclusions

The PPQ data type introduced in this paper is based on the idea of extending the sequential
Priority Queue structures to a parallel context. Adopting the CREW-PRAM model of parallel

computation, we have defined two PPQ data structures, the n-H and the n-L, respectively

realizing unmeldable and meldable queues. We have then employed optimal algorithms for
sorting and merging devised for the CREW-PRAM for the efficient implementation of the basic

operations of insert, deletemin, makequeue and meld.

For a better assessment of the efficiency of our structures, consider a parallel version of
Heapsort, made of a Makequeue followed by * Deletemin operations, where m and n are the
elements to be sorted and the number of available processors, respectively. Letting Crg(m,n)
be the time complexity of such parallel Heapsort, from 6 and 7 we have:

log ™

m m m m
Crs(m,n) € O (ﬁ logn +]ZI E(logg —J —i—loglogn)) =0 <E logm)

which is clearly optimal for any value of m and n, with m > n. The optimality of the above
algorithm is due to the use of Cole’s O(logn) complex parallel sorting. However, for m >
n loglog n, we can slightly adapt the sorting phase of makequeue to use simpler sorting algorithms
[8] without increasing the overall running time.

Finally, we want to point out that the extended heap order, as defined in section 2, does not
require that the elements at each node be sorted. We are currently investigating the techniques
needed to implement PPQ operations without making use of sorting but still achieving the same
time complexities.

Acknowledgements We thank Fabrizio Luccio and Andrea Pietracaprina for helpful
discussions concerning this work. We also thank an anonymous referee for a number of excellent

suggestions and for pointing out reference [8].

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, Mass., 1974.

[2] F.Bauernoppel and H. Jung. Implementing Abstract Data Structures in Hardware. In Proc.
13th Conf. on Mathematical Foundations of Computer Science, LNCS 324, Springer, Berlin,
Germany, 1988, 172-179.

[3] J. Biswas and J.C. Browne. Simultaneous Update of Priority Structures. In Proc. of the
1987 Int. Conf. on Parallel Processing, 1987, 124-131.

[4] R. Cole. Parallel Merge Sort. STAM Journal of Computing, 17(4), 1988, 130-145.
[5] R.W. Floyd. Algorithm 245: Treesort. Communications of the ACM, 7(12), 1964, 701.

[6] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proc. 10th Annual
ACM Symp. on Theory of Computing, 1978, 114-118.

[7] D.W. Jones. Concurrent Operations on Priority Queues. Communications of the ACM,
32(1), 1989, 132-137.

[8] C.P. Kruskal. Searching, Merging and Sorting in Parallel Computation. IEEE Transactions
on Computers, C-32(10), 1983, 942-946.

9] R. Karp, M. Saks and A. Wigderson. On a Search Problem Related to Branch-and-Bound
Procedures. In Proc. 27th Symp. on Foundations of Computer Science, 1986, 19-28.

[10] V.N. Rao and V. Kumar. Concurrent Access of Priority Queues. IEEE Trans. on Computers,
C-37(12), 1988, 1657-1665.

[11] R.E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadelphia, Penn., 1983.

10

