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Abstract

This paper presents parallel algorithms for priority queue operations on a p-processor EREW-
PRAM. The algorithms are based on a new data structure, the Min-path Heap (MH), which
is obtained as an extension of the traditional binary-heap organization. Using an MH, it is
shown that insertion of a new item or deletion of the smallest item from a priority queue of n
elements can be performed in O(lo—%—" + loglog n) parallel time, while construction of an MH
from a set of n items takes O(% +logn) time. The given algorithms for insertion and deletion

achieve the best possible running time for any number of processors p, with p € O(ﬁog—n),
while the MH construction algorithm employs up to @(logn) processors optimally. The paper
ends with a brief discussion of the applicability of MH’s to the development of efficient parallel

algorithms for some important combinatorial problems.
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1 Introduction

A Priority Queue (PQ) is an abstract data type storing a set of integer-valued items and
providing operations such as insertion of a new item and deletion of the smallest stored item. In
this note we introduce the Min-path Heap (MH) data structure. We employ this new structure
to develop efficient parallel algorithms for the basic PQ operations of insertion, deletion and

construction on the EREW-PRAM [5] model of computation.

Several parallel implementations of PQ’s can be found in the literature. The first approach
to date is due to Biswas and Browne [2], subsequently improved by Rao and Kumar in [7].
In their schemes, p € O(logn) processors concurrently access a binary heap of n elements by
acquiring locks on the nodes of the heap. Insertions and deletions are executed in a pipelined
fashion, thus increasing the throughput of the structure from one to p simultaneous operations.
However, the time requirement for a single insertion or deletion remains O(logn). More recent
papers deal with the problem of speeding up a single heap operation. In this direction, optimal
parallel algorithms for heap construction have been devised for the PRAM model in [6] and [8].
As to insertion and deletion, we are only aware of the implementation devised by Zhang in [9]
which requires O(log nloglogn) work and O(loglogn) time with p = logn PRAM processors.
Note that the scheme fails to attain linear speedup by a factor of O(loglogn).

In the following sections we provide optimal parallel algorithms for PQ operations based
on the MH data structure. Our results are the following. Let M be an MH of n elements
stored in the shared memory of a p processor EREW-PRAM. We show how to insert a new
item or delete the smallest item from M in parallel time O (lﬂg—n + loglog n) Moreover, we
adapt the above referenced algorithms for parallel heap construction so that M can be built
from a set of n elements in time O (% + log n) Our insertion and deletion algorithms achieve

the best possible running time for any number of processors p, with p € O(lolgol%), while the

n
logn

MH construction algorithm employs up to ©( ) processors optimally.

2 Parallel Algorithms for MH Operations

Our MH data structure is obtained as an extension of the traditional binary heap organization.
Recall that a binary heap H is a complete binary tree (stored in vectorial form) where each
node i contains an item, H[i], whose value is less than the values H[2i] and H|[2i + 1] stored

at its children 2i and 2i 4+ 1'. For any node i of H, its min-path p; is the set of nodes defined

'For the sake of simplicity, we shall assume that all the items stored or to be inserted in an MH are distinct.
The handling of duplicates requires some trivial modifications to the algorithms, whose complexities remain



by the following recurrence:

1. i belongs to ;.

2. Let a non leaf node j belong to u;. If j has only one child u, then u belongs to ;.
Otherwise, if u and v are the children of j and H[u] < H][v], then u belongs to u;.

Informally, u; is the unique path in H from ¢ to a target leaf of address L;, such that each
internal node on the path stores an item whose value is less than the one stored at its sibling.
Note that since H is stored as a vector, we can easily determine the addresses of all the nodes
on p; from L;. More precisely, if h > 1 is the height of H and i is at level k, 1 < k < h, the
nodes on p; have addresses L; div 2/, with 0 < j < h—k. The importance of min-paths for the

realization of fast parallel algorithms for PQ operations will be made clear in subsection 2.2.

We have just shown that in order to have fast access to min-path information it suffices
to maintain, for each node ¢ of H, the address of its target leaf L;. Therefore, we define a

Min-path Heap M to be a data structure whose representation consists of two vectors:

e My, where the items are stored in a binary heap fashion.

e My, with My[i] storing L;, that is, the address of the target leaf of node 1.

In addition to restoring the heap order on My, insertion and deletion algorithms for an MH
M have to update the min-path information stored in Mp. We also associate M with an
integer variable, Vs, denoting the number of nodes currently stored in M. Note that an MH
induces only a constant factor increase in space over the traditional binary heap organization.
Moreover, its representation is simple and compact (compare it with the structure in [9], where

some nodes have to store a table of O(loglogn) entries).

In the following sections we will sometimes refer to M, My and My using the classical
binary tree terminology. For instance, we will say that h = |log Nas| + 1 is the height of M,

Mg or My and will use terms like leaf or sibling to denote particular locations in the vectors.

In order to describe the EREW-PRAM algorithms for the basic operations on an MH, we

introduce the following conventions. Let S be a set of processor indices. The statement

for 1 € S do in parallel statement list endfor

unaltered.



denotes |S| parallelizable executions of the statement list, one execution for each index i € S.
If a statement is not within the scope of a for ... endfor construct, it is executed in parallel

by all the active processors. Within a for ... endfor construct, the statement
P; : BROADCAST(X = z)

denotes the computation needed to broadcast the value z from the processor P; in charge of
the " instance of the statement list to all the active processors. These processors will store
the received value in their local variable X. This operation can be realized in time O(logp)
on an EREW-PRAM, where p is the number of active processors. Finally, if M is an MH of

height h and L is the address of one of its leaves, the function
SIBLING(M, L,i) = let K = L div 2" in K + (—-1)¥ mod 2

returns the address of the sibling of the i** node on the path in M from the root to L.

2.1 Insertion

The algorithm for inserting a new item I in an MH M of height h proceeds in two phases:

1. The processors determine the position that item I has to occupy in the insertion path
pr from the root to the first vacant leaf of My (which has address Nj; = Ny + 1) so
that the heap order in My is not violated. Note that the i** node on the insertion path,
starting from the root, has address n; = N}, div 2h=% for 1 < 4 < h. Once such position
ng has been determined, all the items stored in MH[nj], k < j < h —1 are shifted to

position My [n;11] and I is stored in My [ng].

2. The processors recompute the new target leaves for the nodes of yi;. For nodes nj, k < j <

h, it must be My [n;] = N}, as in the updated My we have My[SIBLING(M, N}, j)] >
Mp(nj], for k +1 < j < h, because of the heap property and the shift performed on 1.
For nodes nj, 1 < j <k — 1, the target leafs may be different only if their min-path u,,,
prior to the insertion, went through nj or SIBLING (M, N}, k) (this can be easily checked
by comparing My [n;] with My [ny] and M [SIBLING(M, N}, k)]). The new target leaf
for such nodes will be N}, if I < My [SIBLING(M, N),, k)] and My [SIBLING(M, Nj,. k)]

otherwise.

Note that the above strategy still yields a valid MH when we insert an item starting from

any empty leaf of address different from Nj,. In particular, the deletion algorithm described



in the following subsection creates a “hole” in the structure at the target leaf of the root,

L = Mp[1]. The hole is then refilled by performing an insertion starting from L.

The following procedure INSERT implements the above ideas. Parameter L is the address
of a leaf, while parameter [ is the item to be inserted. INSERT uses the auxiliary vectors Vg
and Vr to perform operations on the elements stored along the insertion path p; and their

target leaves.

procedure INSERT(L,I):
h := |log L| + 1; { height of My}
fori e {1,...,h—1} do in parallel
Vili] == My[L div 2"
Vi[i] == Mr[L div 2"
{copy the elements and target leaves stored along 7}

endfor;
for i € {1} do in parallel

Vi[0] := —o0

Vilh] := +o00

{these two dummy elements are needed for the next parallel steps}
endfor;

for i € {1,...,h} do in parallel
if Vgli] > T and Vi — 1] < I
then P; : BROADCAST(Pos = i)
{i is the position where I must be inserted}
fi
endfor;
for i € {Pos,...,h — 1} do in parallel
TEMP := Vyl[i]; Vili + 1] := TEMP;
{ shift the items greater than I ... }
Vili+1] == L;
{ ...and set their target leaves to L}
endfor;
for i € {Pos} do in parallel
if 7 > 1 then
if Viy[i] > My[SIBLING(M, L, i)]
then P, : BROADCAST(L; = M [SIBLING(M, L, 1))
else P, : BROADCAST(L;, = V[i])
fi;
{if Vi[j] = L, for j <Pos, then V7 [j] must be set...}
if I < My[SIBLING (M, L, )]
then P, : BROADCAST(L, = L)
else P, : BROADCAST(L, = M [SIBLING (M, L, 4)])

fi
{ ... to LQ}
fi;
Vili] = I; Vi [i] = L;
endfor;



for i € {1,...,Pos — 1} do in parallel

if Vi[i] = Ly
then VL[Z] = L2
fi
endfor;

for i € {1,...,h} do in parallel
Mpy[L div 2" .= Vy[i;
M [L div 2" = Vi [i];
{ copy the updated path back}
endfor
end INSERT.

To insert a new item I, we first increment Njs and then call INSERT(Nys,I). The time
complexity of INSERT on an MH of n elements and with p < logn processors is determined by
the BROADCAST operations (time O(loglogn)) and by the parallel execution of constant-time

operations on at most O(logn) nodes (time O (13%—”)) for a total time

logn

Cre0O < + log logn)

It should be noted that the above procedure INSERT can be employed to provide an
implementation of the useful decrease-key operation [4]. In MH terms, decrease-key is given a
pointer to a node k of My and a value v smaller than Mpg[k]. The algorithm sets Mgl[k| to
v and then re-establishes the heap property on Mpy. Such readjustment can be obtained by
simply considering k as a leaf node and running a slight variant of INSERT with parameters k

and v. The details of the algorithm are omitted for the sake of brevity.

2.2 Deletion

The algorithm for deleting the root of an MH M proceeds in three phases:

1. Let 3 = {ny = 1,...,n, = L = Mg[1]} be the min-path of the root of M. The root
item Mp[1] is returned and the target leaf of the root L = Mp[1] is broadcast to all the

Pprocessors.

2. Nodes ng,...,n;, are shifted one position above, that is, Mg[n;| := Mg[n;;1] (for tech-
nical reasons, we set M[n,] = +00). Note that this operation restores the heap order in

Mz, but disrupts the target leaf information in My, for the nodes in u;.

3. The target leaves for the nodes on p; are recomputed and the “hole” in position L is

filled by invoking INSERT(L,Mp[Nys]). Finally, Ny, is decremented.



It remains to explain how to recompute My[n;], 1 < i < h, once p; is shifted upwards.
Consider the new min-paths for nodes n; in the updated structure. Starting from the root
and proceeding along the nodes of 1, the min-path will follow the same route as before if the
new values stored at nodes n; are still smaller than the ones stored at their siblings. However,
whenever we reach a node nj whose sibling SIBLING (M, L, k) contains now a smaller value,
the min-path “deviates” and reaches the target leaf M [SIBLING (M, L, k)]. This observation
suggests the following strategy to rebuild Mj, efficiently in parallel. In the following, RANKI,
RANK2, RANK3 and RANK4 are auxiliary vectors of h positions.

1. Each value Myr[n;], 2 <14 < h is compared with its sibling value My [SIBLING(M, L, 7)].
If My[n;] is smaller, then RANKI1[:] is set to 0, otherwise RANK1[7] is set to 1 (the
values 1 indicate a “deviation” of the min-path). Note that at least RANK1[A] will be

initialized to 1, as we set My[L] to +o0.
2. Prefix sums are computed on input RANK1. The results are stored in RANK2.

3. (compaction) For each position ¢, if RANK1[i] = 1 (i.e., the min-path deviates at n;) and
RANK2[i] = j then RANK3[j] is set to i (RANK3[j] is the address of the j'" deviation).

4. (target leaf assignment) For 1 < i < h —1 let j; =RANKZ2[i] + 1 and k; =RANK3[j;].
Mi,[n;] is set to M[SIBLING(M, L, k;)], which is the target leaf of the sibling of the first

node ny,, following n;, where the the min-path deviates.

Note that in step 4 the same cell of vector RANK3 could be accessed concurrently by two
processors associated to nodes n; and n; with RANK2[i] = RANK2[j]. This problem is easily
overcome by computing the vector RANK4[i] =RANK3[RANK2[i] + 1] by means of a simple

prefix operation, whose description is omitted for the sake of brevity.

The following procedure DELETEMIN implements the above strategy. In the procedure,

we use the statements
PREFIX-SUMS(RANK1,RANK2) and COMPUTE(RANK2,RANK3,RANK4)

respectively to denote the prefix-sums computation with input RANK1 and output RANK?2
and the creation of vector RANK4[i] =RANK3[RANK2[i]+1]. These operations can be realized
on an EREW-PRAM in O ("% + loglogn) time [5],

procedure DELETEMIN:
for i € {1} do in parallel



return My[l];
P, : BROADCAST(L = M, [1])
endfor;
{ return the min value and distribute the address of the target leaf of the root}
h:= |log L| + 1; { length of u}
foriec {1,...,h—1} do in parallel
Vili] == My[L div 2" 1;
{copy and shift the elements stored along p1}
endfor;
for i € {h} do in parallel
Vi[h] := +00; RANKI1[1]:= 0;
endfor;
for i € {2,...,h} do in parallel
if Vi[i] < My[SIBLING (M, L, )]
then RANKI[i] := 0
else RANK1[i] :=1
fi;
PREFIX-SUMS(RANK1,RANK2);
if RANK1[i] = 1
then RANK3[RANK2[i]] := i
fi;
{compact the indices of the nodes where the min-path deviates}
endfor;
forie {l....,h —1} do in parallel
COMPUTE(RANK2,RANK3,RANK4);
{RANKA4[i] =RANK3[RANK2[i] + 1]}
Vp[i] := M [SIBLING (M, L,RANKA4[i))]
{these are the new addresses of the target leaves of nodes in 1}
Mpy[L div 2" .= Vy[i];
M [L div 2" = Vi [i];
{ copy the updated path back}
endfor;
for i € {1} do in parallel
I := Mpy[Nyl;
MH[NM] = ML[NM] = 400
endfor;
INSERT(L, I);
{fill the hole in My|[L]}
Ny =Ny —1
end DELETEMIN.

The time complexity of DELETEMIN on an MH of n elements is determined by the broad-
cast and prefix steps, and by the parallel execution of constant-time operations on O(logn)

nodes, for a total time complexity

1
CpeO <ﬂ + log logn)
p



2.3 Construction

We are finally left with implementing MH construction. Let S[1,...,n] be the set of n elements
to be stored in an MH M. We first build the vector My by applying one of the optimal parallel
algorithms for heap construction proposed in the literature (see [6] and [8]). The vector M, is
subsequently created by first initializing M [i] = i for each leaf i and then computing M [j]
for any internal node j. More precisely, if M7, [2j] and M [2j + 1] have been computed, M 7]
is set to My [k], where k € {27,25 4 1} is such that My[k] = min{My[2j], My |25 + 1]}.

Construction is performed by the following procedure CONSTRUCT_-MH(S, M). In the

procedure, the statement
BUILD(S, My)

denotes the invocation of an optimal parallel heap construction scheme which builds Mg out

of S.

procedure CONSTRUCT_MH(S, M):
Nu:=|S]; h:= [log Ny] + 15

{Mpy construction:}
BUILD(S, My);

{Mp, construction:}
count:=2;
while count> 0 do
{determine the target leaves of the nodes in the last two levels}

ifh>0
then for i € {2"71,...,2" — 1} do in parallel
if 20 < Ny
then if 2: +1 < Ny
then ML[Z] = ML[2i]
else My [i] := M [2i + 1]
fi
else My[i] :== 2i
fi
else My[i] ==
fi
endfor
fi;
h:=h —1; count:=count—1
endwhile;

while h > 0 do
for i € {21, ...,2" — 1} do in parallel



if Mp[2i] < Mp|[2i + 1]
then ML[Z] = ML[2i]
else My[i] := Mp[2i + 1]
fi
endfor;
h:=h-1
endwhile
end CONSTRUCT_MH.

Let us analyze the running time of the above procedure. By using the previously referenced
schemes in [6] and [8], the My construction can be executed in O (% + log n) time. As to
the M|, construction, the algorithm is essentially a min-computation performed along a com-
plete binary tree of n nodes, thus requiring O (% + log n) time. Therefore, the overall time

complexity of the procedure is

Coc0 <% +10gn>

3 Conclusions

The Min-path Heap (MH) data structure introduced in the previous sections provides an op-
timal implementation of priority queues on a p-processor EREW-PRAM. We have devised in-
sertion and deletion algorithms for an MH M of n elements which require O (b—‘;—n + log log n)
time and have adapted known parallel heap-construction schemes to build M in O (% + log n)
time. All the algorithms are extremely simple and the orders of magnitude do not hide “big”
constants. Moreover, the space requirement of M is only 2n memory cells, arranged in two

vectors of n locations each.

It has to be noted that the number of processors that can be profitably exploited by our
algorithms is (necessarily) small (p € O(logn)). However, the current (or even foreseeable)
technology for the construction of parallel machines with shared memory is applicable only
to systems with “few” processors [5]. Our simple and efficient algorithms are suitable for an

optimal exploitation of such “coarse grain” parallelism.

For the above systems, MH structures can be employed to optimally speed up those sequen-
tial applications which make use of binary heaps and whose time complexity is determined by
the cost of the heap operations. Consider, for instance, Heap-Sort or the implementation of
the LPT heuristic for scheduling [3]. The use of MH’s yields optimal O (%g—”) time parallel
algorithms for the above problems, for any number p € O (Flgolgoqgl—n) of processors. As a final

example, consider the straightforward parallelization of Djikstra’s algorithm for computing a

rooted Shortest Path Tree (SPT) of a weighted directed graph. The complexity of the algo-



rithm is dominated by the time needed for n deletions and O(m) decrease-key operations on a
priority queue of O(n) elements [4]. The use of an MH yields a parallel SPT algorithm with
running time O(%‘;—n) with p € O(Flgolgog—n). For this range of processors and m € O(h)ng—llgoggin)
this simple algorithm achieves a better processor-time product than the other parallel SPT

algorithms in the literature [1, 4].
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