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1 IntroductionA Priority Queue (PQ) is an abstract data type storing a set of integer-valued items andproviding operations such as insertion of a new item and deletion of the smallest stored item. Inthis note we introduce the Min-path Heap (MH) data structure. We employ this new structureto develop e�cient parallel algorithms for the basic PQ operations of insertion, deletion andconstruction on the EREW-PRAM [5] model of computation.Several parallel implementations of PQ's can be found in the literature. The �rst approachto date is due to Biswas and Browne [2], subsequently improved by Rao and Kumar in [7].In their schemes, p 2 O(log n) processors concurrently access a binary heap of n elements byacquiring locks on the nodes of the heap. Insertions and deletions are executed in a pipelinedfashion, thus increasing the throughput of the structure from one to p simultaneous operations.However, the time requirement for a single insertion or deletion remains O(log n). More recentpapers deal with the problem of speeding up a single heap operation. In this direction, optimalparallel algorithms for heap construction have been devised for the PRAM model in [6] and [8].As to insertion and deletion, we are only aware of the implementation devised by Zhang in [9]which requires O(log n log log n) work and O(log log n) time with p = log n PRAM processors.Note that the scheme fails to attain linear speedup by a factor of O(log log n).In the following sections we provide optimal parallel algorithms for PQ operations basedon the MH data structure. Our results are the following. Let M be an MH of n elementsstored in the shared memory of a p processor EREW-PRAM. We show how to insert a newitem or delete the smallest item from M in parallel time O � log np + log log n�. Moreover, weadapt the above referenced algorithms for parallel heap construction so that M can be builtfrom a set of n elements in time O �np + log n�. Our insertion and deletion algorithms achievethe best possible running time for any number of processors p, with p 2 O( log nlog log n), while theMH construction algorithm employs up to �( nlog n) processors optimally.2 Parallel Algorithms for MH OperationsOur MH data structure is obtained as an extension of the traditional binary heap organization.Recall that a binary heap H is a complete binary tree (stored in vectorial form) where eachnode i contains an item, H[i], whose value is less than the values H[2i] and H[2i + 1] storedat its children 2i and 2i+ 11. For any node i of H, its min-path �i is the set of nodes de�ned1For the sake of simplicity, we shall assume that all the items stored or to be inserted in an MH are distinct.The handling of duplicates requires some trivial modi�cations to the algorithms, whose complexities remain1



by the following recurrence:1. i belongs to �i.2. Let a non leaf node j belong to �i. If j has only one child u, then u belongs to �i.Otherwise, if u and v are the children of j and H[u] < H[v], then u belongs to �i.Informally, �i is the unique path in H from i to a target leaf of address Li, such that eachinternal node on the path stores an item whose value is less than the one stored at its sibling.Note that since H is stored as a vector, we can easily determine the addresses of all the nodeson �i from Li. More precisely, if h � 1 is the height of H and i is at level k, 1 � k � h, thenodes on �i have addresses Li div 2j , with 0 � j � h�k. The importance of min-paths for therealization of fast parallel algorithms for PQ operations will be made clear in subsection 2.2.We have just shown that in order to have fast access to min-path information it su�cesto maintain, for each node i of H, the address of its target leaf Li. Therefore, we de�ne aMin-path Heap M to be a data structure whose representation consists of two vectors:� MH , where the items are stored in a binary heap fashion.� ML, with ML[i] storing Li, that is, the address of the target leaf of node i.In addition to restoring the heap order on MH , insertion and deletion algorithms for an MHM have to update the min-path information stored in ML. We also associate M with aninteger variable, NM , denoting the number of nodes currently stored in M . Note that an MHinduces only a constant factor increase in space over the traditional binary heap organization.Moreover, its representation is simple and compact (compare it with the structure in [9], wheresome nodes have to store a table of O(log logn) entries).In the following sections we will sometimes refer to M , MH and ML using the classicalbinary tree terminology. For instance, we will say that h = blogNMc + 1 is the height of M ,MH or ML and will use terms like leaf or sibling to denote particular locations in the vectors.In order to describe the EREW-PRAM algorithms for the basic operations on an MH, weintroduce the following conventions. Let S be a set of processor indices. The statementfor i 2 S do in parallel statement list endforunaltered.
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denotes jSj parallelizable executions of the statement list, one execution for each index i 2 S.If a statement is not within the scope of a for : : : endfor construct, it is executed in parallelby all the active processors. Within a for : : : endfor construct, the statementPi : BROADCAST(X = x)denotes the computation needed to broadcast the value x from the processor Pi in charge ofthe ith instance of the statement list to all the active processors. These processors will storethe received value in their local variable X. This operation can be realized in time O(log p)on an EREW-PRAM, where p is the number of active processors. Finally, if M is an MH ofheight h and L is the address of one of its leaves, the functionSIBLING(M;L; i) = let K = L div 2h�i in K + (�1)K mod 2returns the address of the sibling of the ith node on the path in M from the root to L.2.1 InsertionThe algorithm for inserting a new item I in an MH M of height h proceeds in two phases:1. The processors determine the position that item I has to occupy in the insertion path�I from the root to the �rst vacant leaf of MH (which has address N 0M = NM + 1) sothat the heap order in MH is not violated. Note that the ith node on the insertion path,starting from the root, has address ni = N 0M div 2h�i for 1 � i � h. Once such positionnk has been determined, all the items stored in MH [nj], k � j � h � 1 are shifted toposition MH [nj+1] and I is stored in MH [nk].2. The processors recompute the new target leaves for the nodes of �I . For nodes nj, k � j �h, it must be ML[nj] = N 0M , as in the updatedMH we have MH [SIBLING(M;N 0M ; j)] >MH [nj], for k + 1 � j � h, because of the heap property and the shift performed on �I .For nodes nj, 1 � j � k � 1, the target leafs may be di�erent only if their min-path �nj ,prior to the insertion, went through nk or SIBLING(M;N 0M ; k) (this can be easily checkedby comparing ML[nj] with ML[nk] and ML[SIBLING(M;N 0M ; k)]). The new target leaffor such nodes will beN 0M if I < MH [SIBLING(M;N 0M ; k)] andML[SIBLING(M;N 0M ; k)]otherwise.Note that the above strategy still yields a valid MH when we insert an item starting fromany empty leaf of address di�erent from N 0M . In particular, the deletion algorithm described3



in the following subsection creates a \hole" in the structure at the target leaf of the root,L =ML[1]. The hole is then re�lled by performing an insertion starting from L.The following procedure INSERT implements the above ideas. Parameter L is the addressof a leaf, while parameter I is the item to be inserted. INSERT uses the auxiliary vectors VHand VL to perform operations on the elements stored along the insertion path �I and theirtarget leaves.procedure INSERT(L; I):h := blogLc+ 1; f height of MHgfor i 2 f1; : : : ; h� 1g do in parallelVH [i] :=MH [L div 2h�i];VL[i] :=ML[L div 2h�i];fcopy the elements and target leaves stored along �Igendfor;for i 2 f1g do in parallelVH [0] := �1VH [h] := +1fthese two dummy elements are needed for the next parallel stepsgendfor;for i 2 f1; : : : ; hg do in parallelif VH [i] > I and VH [i� 1] < Ithen Pi : BROADCAST(Pos = i)fi is the position where I must be insertedg�endfor;for i 2 fPos; : : : ; h� 1g do in parallelTEMP := VH [i]; VH [i+ 1] := TEMP ;f shift the items greater than I : : : gVL[i+ 1] := L;f : : :and set their target leaves to Lgendfor;for i 2 fPosg do in parallelif i > 1 thenif VH [i] �MH [SIBLING(M;L; i)]then Pi : BROADCAST(L1 =ML[SIBLING(M;L; i)])else Pi : BROADCAST(L1 = VL[i])�;f if VL[j] = L1 for j <Pos, then VL[j] must be set: : :gif I < MH [SIBLING(M;L; i)]then Pi : BROADCAST(L2 = L)else Pi : BROADCAST(L2 =ML[SIBLING(M;L; i)])�f : : : to L2g�;VH [i] := I; VL[i] := L;endfor; 4



for i 2 f1; : : : ;Pos � 1g do in parallelif VL[i] = L1then VL[i] := L2�endfor;for i 2 f1; : : : ; hg do in parallelMH [L div 2h�i] := VH [i];ML[L div 2h�i] := VL[i];f copy the updated path backgendforend INSERT.To insert a new item I, we �rst increment NM and then call INSERT(NM ,I). The timecomplexity of INSERT on an MH of n elements and with p � log n processors is determined bythe BROADCAST operations (time O(log log n)) and by the parallel execution of constant-timeoperations on at most O(log n) nodes (time O � log np �) for a total timeCI 2 O� log np + log logn�It should be noted that the above procedure INSERT can be employed to provide animplementation of the useful decrease-key operation [4]. In MH terms, decrease-key is given apointer to a node k of MH and a value v smaller than MH [k]. The algorithm sets MH [k] tov and then re-establishes the heap property on MH . Such readjustment can be obtained bysimply considering k as a leaf node and running a slight variant of INSERT with parameters kand v. The details of the algorithm are omitted for the sake of brevity.2.2 DeletionThe algorithm for deleting the root of an MH M proceeds in three phases:1. Let �1 = fn1 = 1; : : : ; nh = L = ML[1]g be the min-path of the root of M . The rootitem MH [1] is returned and the target leaf of the root L =ML[1] is broadcast to all theprocessors.2. Nodes n2; : : : ; nh are shifted one position above, that is, MH [ni] := MH [ni+1] (for tech-nical reasons, we set M [nh] = +1). Note that this operation restores the heap order inMH , but disrupts the target leaf information in ML for the nodes in �1.3. The target leaves for the nodes on �1 are recomputed and the \hole" in position L is�lled by invoking INSERT(L,MH [NM ]). Finally, NM is decremented.5



It remains to explain how to recompute ML[ni], 1 � i � h, once �1 is shifted upwards.Consider the new min-paths for nodes ni in the updated structure. Starting from the rootand proceeding along the nodes of �1, the min-path will follow the same route as before if thenew values stored at nodes ni are still smaller than the ones stored at their siblings. However,whenever we reach a node nk whose sibling SIBLING(M;L; k) contains now a smaller value,the min-path \deviates" and reaches the target leaf ML[SIBLING(M;L; k)]. This observationsuggests the following strategy to rebuild ML e�ciently in parallel. In the following, RANK1,RANK2, RANK3 and RANK4 are auxiliary vectors of h positions.1. Each value MH [ni], 2 � i � h is compared with its sibling value MH [SIBLING(M;L; i)].If MH [ni] is smaller, then RANK1[i] is set to 0, otherwise RANK1[i] is set to 1 (thevalues 1 indicate a \deviation" of the min-path). Note that at least RANK1[h] will beinitialized to 1, as we set MH [L] to +1.2. Pre�x sums are computed on input RANK1. The results are stored in RANK2.3. (compaction) For each position i, if RANK1[i] = 1 (i.e., the min-path deviates at ni) andRANK2[i] = j then RANK3[j] is set to i (RANK3[j] is the address of the jth deviation).4. (target leaf assignment) For 1 � i � h � 1 let ji =RANK2[i] + 1 and ki =RANK3[ji].ML[ni] is set to ML[SIBLING(M;L; ki)], which is the target leaf of the sibling of the �rstnode nki , following ni, where the the min-path deviates.Note that in step 4 the same cell of vector RANK3 could be accessed concurrently by twoprocessors associated to nodes ni and nj with RANK2[i] = RANK2[j]. This problem is easilyovercome by computing the vector RANK4[i] =RANK3[RANK2[i] + 1] by means of a simplepre�x operation, whose description is omitted for the sake of brevity.The following procedure DELETEMIN implements the above strategy. In the procedure,we use the statementsPREFIX-SUMS(RANK1,RANK2) and COMPUTE(RANK2,RANK3,RANK4)respectively to denote the pre�x-sums computation with input RANK1 and output RANK2and the creation of vector RANK4[i] =RANK3[RANK2[i]+1]. These operations can be realizedon an EREW-PRAM in O � lognp + log logn� time [5].procedure DELETEMIN:for i 2 f1g do in parallel 6



return MH [1];Pi : BROADCAST(L =ML[1])endfor;f return the min value and distribute the address of the target leaf of the rootgh := blogLc+ 1; f length of �1gfor i 2 f1; : : : ; h� 1g do in parallelVH [i] :=MH [L div 2h�i�1];fcopy and shift the elements stored along �1gendfor;for i 2 fhg do in parallelVH [h] := +1; RANK1[1]:= 0;endfor;for i 2 f2; : : : ; hg do in parallelif VH [i] < MH [SIBLING(M;L; i)]then RANK1[i] := 0else RANK1[i] := 1�;PREFIX-SUMS(RANK1,RANK2);if RANK1[i] = 1then RANK3[RANK2[i]] := i�;fcompact the indices of the nodes where the min-path deviatesgendfor;for i 2 f1 : : : ; h� 1g do in parallelCOMPUTE(RANK2,RANK3,RANK4);fRANK4[i] =RANK3[RANK2[i] + 1]gVL[i] :=ML[SIBLING(M;L;RANK4[i])]fthese are the new addresses of the target leaves of nodes in �1gMH [L div 2h�i] := VH [i];ML[L div 2h�i] := VL[i];f copy the updated path backgendfor;for i 2 f1g do in parallelI :=MH [NM ];MH [NM ] :=ML[NM ] := +1endfor;INSERT(L; I);f�ll the hole in MH [L]gNM := NM � 1end DELETEMIN.The time complexity of DELETEMIN on an MH of n elements is determined by the broad-cast and pre�x steps, and by the parallel execution of constant-time operations on O(log n)nodes, for a total time complexityCD 2 O� log np + log logn�
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2.3 ConstructionWe are �nally left with implementing MH construction. Let S[1; : : : ; n] be the set of n elementsto be stored in an MHM . We �rst build the vector MH by applying one of the optimal parallelalgorithms for heap construction proposed in the literature (see [6] and [8]). The vector ML issubsequently created by �rst initializing ML[i] = i for each leaf i and then computing ML[j]for any internal node j. More precisely, if ML[2j] and ML[2j + 1] have been computed, ML[j]is set to ML[k], where k 2 f2j; 2j + 1g is such that MH [k] = minfMH [2j];MH [2j + 1]g.Construction is performed by the following procedure CONSTRUCT MH(S;M). In theprocedure, the statement BUILD(S;MH )denotes the invocation of an optimal parallel heap construction scheme which builds MH outof S.procedure CONSTRUCT MH(S;M):NM := jSj; h := blogNMc+ 1;fMH construction:gBUILD(S;MH );fML construction:gcount:=2;while count> 0 dofdetermine the target leaves of the nodes in the last two levelsgif h > 0then for i 2 f2h�1; : : : ; 2h � 1g do in parallelif 2i � NMthen if 2i+ 1 � NMthen if MH [2i] < MH [2i + 1]then ML[i] :=ML[2i]else ML[i] :=ML[2i + 1]�else ML[i] := 2i�else ML[i] := i�endfor�;h := h� 1; count:=count�1endwhile;while h > 0 dofor i 2 f2h�1; : : : ; 2h � 1g do in parallel8



if MH [2i] < MH [2i + 1]then ML[i] :=ML[2i]else ML[i] :=ML[2i + 1]�endfor;h := h� 1endwhileend CONSTRUCT MH.Let us analyze the running time of the above procedure. By using the previously referencedschemes in [6] and [8], the MH construction can be executed in O �np + logn� time. As tothe ML construction, the algorithm is essentially a min-computation performed along a com-plete binary tree of n nodes, thus requiring O �np + logn� time. Therefore, the overall timecomplexity of the procedure is CC 2 O�np + logn�3 ConclusionsThe Min-path Heap (MH) data structure introduced in the previous sections provides an op-timal implementation of priority queues on a p-processor EREW-PRAM. We have devised in-sertion and deletion algorithms for an MH M of n elements which require O � lognp + log log n�time and have adapted known parallel heap-construction schemes to buildM in O �np + log n�time. All the algorithms are extremely simple and the orders of magnitude do not hide \big"constants. Moreover, the space requirement of M is only 2n memory cells, arranged in twovectors of n locations each.It has to be noted that the number of processors that can be pro�tably exploited by ouralgorithms is (necessarily) small (p 2 O(log n)). However, the current (or even foreseeable)technology for the construction of parallel machines with shared memory is applicable onlyto systems with \few" processors [5]. Our simple and e�cient algorithms are suitable for anoptimal exploitation of such \coarse grain" parallelism.For the above systems, MH structures can be employed to optimally speed up those sequen-tial applications which make use of binary heaps and whose time complexity is determined bythe cost of the heap operations. Consider, for instance, Heap-Sort or the implementation ofthe LPT heuristic for scheduling [3]. The use of MH's yields optimal O �n log np � time parallelalgorithms for the above problems, for any number p 2 O � log nlog log n� of processors. As a �nalexample, consider the straightforward parallelization of Djikstra's algorithm for computing arooted Shortest Path Tree (SPT) of a weighted directed graph. The complexity of the algo-9



rithm is dominated by the time needed for n deletions and O(m) decrease-key operations on apriority queue of O(n) elements [4]. The use of an MH yields a parallel SPT algorithm withrunning time O(m log np ) with p 2 O( log nlog logn). For this range of processors and m 2 O( n log nlog log n)this simple algorithm achieves a better processor-time product than the other parallel SPTalgorithms in the literature [1, 4].References[1] B.Auerbuch and Y.Shiloach, New Connectivity and MSF Algorithms for Ultracomputerand PRAM, in: Proc. of the 1983 Int. Conf. on Parallel Processing (1983) 298-319.[2] J.Biswas and J.C.Browne, Simultaneous Update of Priority Structures, in: Proc. of the1987 Int. Conf. on Parallel Processing (1987) 124-131.[3] T.H.Cormen, C.E.Leiserson and R.L.Rivest, Introduction to Algorithms (MIT Press, Cam-bridge Mass., 1990).[4] J.M.Driscoll, H.V.Gabow, R.Shrairman and R.E.Tarjan, Relaxed Heaps: An Alternative toFibonacci Heaps with Applications to Parallel Computation, Communications of the ACM31(11) (1988) 1343-1354.[5] R.M.Karp and V.Ramachandran, Parallel Algorithms for Shared-Memory Machines, in:J.van Leeuween, ed., Handbook of Theoretical Computer Science, Volume A: Algorithmsand Complexity (Elsevier, Amsterdam, 1990) 870-941.[6] S.Olariu and Z.Wen, An Optimal Parallel Construction Scheme for Heap-like Structures,in: Proc. Twenty-eight Allerton Conf. on Communication, Control, and Computing (1990)936-937.[7] V.N.Rao and V.Kumar, Concurrent Access of Priority Queues, IEEE Trans. on ComputersC-37(12) (1988) 1657-1665.[8] V.N.Rao and W.Zhang, Building Heaps in Parallel, Information Processing Letters 37(1991) 355-358.[9] W.Zhang and R.Korf, Parallel Heap Operations on EREW PRAM, To appear in: SixthInt. Parallel Processing Symp.(IPPS'92) (1992).
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