
Scalable Distributed Approximation of Internal Measures for Clustering
Evaluation∗

Federico Altieri† Andrea Pietracaprina† Geppino Pucci† Fabio Vandin†

Abstract

An important step in cluster analysis is the evaluation of

the quality of a given clustering through structural mea-

sures of goodness. Measures that do not require additional

information for their evaluation (but the clustering itself),

called internal measures, are commonly used because of their

generality. The most widely used internal measure is the

silhouette coefficient, whose näıve computation requires a

quadratic number of distance calculations, unfeasible for

massive datasets. Surprisingly, there are no known general

methods to efficiently approximate the silhouette coefficient

of a clustering with rigorously provable high accuracy. In

this paper, we present the first scalable algorithm to com-

pute such a rigorous approximation for the evaluation of

clusterings based on any metric distances. Our algorithm ap-

proximates the silhouette coefficient within a mere additive

error O (ε) with probability 1− δ using a very small number

of distance calculations, for any fixed ε, δ ∈ (0, 1). We also

provide a distributed implementation of the algorithm using

the MapReduce model, which runs in constant rounds and

requires only sublinear local space at each worker, thus mak-

ing our estimation approach applicable to big data scenarios.

An extensive experimental evaluation provides evidence that

our algorithm returns highly accurate silhouette estimates,

unlike competing heuristics, while running in a fraction of

the time required by the exact computation.
Keywords— Clustering, Silhouette, MapReduce, Ran-

domization, PPS

1 Introduction

Clustering is a fundamental primitive for the unsuper-
vised analysis of datasets, and finds applications in a num-
ber of areas including pattern recognition, bioinformatics,
biomedicine, and data management [2]. In its more general
definition, clustering requires to identify groups of elements
where each group exhibits high similarity among its mem-
bers, while elements in different groups are dissimilar. Start-

∗This work was supported, in part, by MIUR of Italy, under
PRIN Project n. 20174LF3T8 AHeAD, and grant L. 232 (Di-

partimenti di Eccellenza), and by the University of Padova under
projects “STARS 2017: Algorithms for Inferential Data Mining”
and “SID 2020: RATED-X”.

†Dept. of Information Engineering, University of Padova,
Italy. Email: {altieri,capri,geppo,vandinfa}@dei.unipd.it

ing from this common definition, several algorithms have
been proposed to identify clusters in a dataset [18], often
formalizing clustering as an optimization problem (based
on a cost function). The resulting optimization problems
are usually computationally hard to solve, and algorithms
providing rigorous approximations are often sought in such
cases. More recently, the focus has been on developing ef-
ficient methods that scale to the massive size of modern
datasets [4,7,9,10,24,25] while still providing rigorous guar-
antees on the quality of the solution.

A common step after clustering has been performed
is clustering evaluation (sometimes called clustering valida-
tion). Clustering evaluation usually employs an evaluation
measure capturing the goodness of the structure of a clus-
tering . Evaluation measures are classified into unsupervised
or internal measures, which do not rely on external infor-
mation, and supervised or external measures, which assess
how well a clustering matches the structure defined by ex-
ternal information [31]. While external measures are useful
only when additional external knowledge regarding the clus-
ter structure of the data is available, internal measures find
applications in every scenario.

The most commonly used internal measure for cluster-
ing evaluation is the silhouette coefficient [29] (for brevity,
called silhouette in this paper). The silhouette of a cluster-
ing is the average silhouette of all elements in the clusters,
and, in turn, the silhouette s(e) of an element e in some clus-
ter C is defined as the ratio (b(e) − a(e))/max{a(e), b(e)},
where a(e) is the average distance of e from the other el-
ements of C, and b(e) is the minimum average distance of
e from the elements of another cluster C′. In other words,
s(e) provides and indication to what extent e is closer (on
average) to elements in its cluster C than to elements in
the “closest” cluster C′ 6= C. The use of the silhouette
for clustering evaluation is suggested by widely used data
mining books [17, 31], and has found application in several
important areas [19, 27, 30, 34]. The näıve computation of
the silhouette for a clustering of n elements requires Θ

(
n2
)

distance calculations, which is unfeasible for massive dataset
that require distributed clustering solutions [5, 6, 14, 15, 24].
Surprisingly, while several methods have been proposed to
efficiently cluster large datasets with rigorous guarantees on
the quality of the solution, there are no methods to efficiently
approximate the silhouette featuring provably high accuracy.

1.1 Related Work While the silhouette is one of the
most popular internal measures for clustering evaluation

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

[26, 32, 35], the quadratic complexity of the näıve exact
calculation makes its use impractical for clusterings of very
large datasets. For this reason, some attempts have been
made to propose variants that are faster to compute, or to
simplify its calculation in some special cases.

Hruschka et al. [20] present the simplified silhouette
for the evaluation of clusterings obtained on the basis of
objective functions involving squared Euclidean distances
(e.g., k-means clusterings [2]). The simplified silhouette
is a variant of the silhouette, where for each element e in
a cluster, the aforementioned quantities a(e) and b(e) are
redefined, respectively, as the (squared) distance between e
and the centroid of its cluster, and of the closest centroid of
another cluster. In this fashion, the complexity of the whole
computation reduces to O (nk). While Hruschka et al. [20]
and Wang et al. [33] provide empirical evidence that the
simplified silhouette can be an effective evaluation measure
for clusterings returned by Lloyd’s algorithm [23], there is
no evidence of its effectiveness for other types of clusterings
(e.g, clusterings based on other distance functions) and,
moreover, the discrepancy between the original silhouette
and the simplified silhouette can grow very large.

Frahling and Sohler [16] proposed an optimization
heuristic for speeding-up the computation of the exact sil-
houette for clusterings based on Euclidean distances. For
each element e of a cluster C, while the term a(e) is com-
puted according to its definition, in an attempt to reduce the
operations needed to compute the term b(e), the heuristic
first determines the average distance d(e, C′) between e and
the elements of the cluster C′ 6= C, whose centroid is closest
to e, and then sets b(e) = d(e, C′) in case the distance be-
tween e and the centroid of any other cluster C′′ 6∈ {C,C′}
is larger than or equal to d(e, C′), since in this case there
is no need to compute any other average distance d(e, C′′).
However, when this is not the case, b(e) must be computed
according to its definition and its worst case complexity re-
mains clearly quadratic.

The Apache Spark programming framework1 provides
optimized methods for computing the silhouette of cluster-
ings under d-dimensional squared Euclidean distances and
under one formulation of cosine distance. Indeed, in these
specific cases, simple algebra suffices to show that precom-
puting, for each of the k clusters, a limited number of values
dependent on the coordinates of the cluster’s points, yields a
fully parallelizable algorithm featuring O(nkd) work. How-
ever, using squared distance measures to compute the silhou-
ette tends to push the measure closer to 1 compared to linear
distances, thus amplifying positive and negative scores.

In our algorithm, we employ a Probability Proportional
to Size (PPS) sampling scheme that samples each element
with probability proportional to a “size” measure. The
use of PPS sampling has been pioneered in the context
of distance query processing and successfully applied to
computing closeness centralities in graphs [11]. In the
context of clustering, PPS has been used to obtain samples
whose clustering cost approximates the clustering cost of

1https://spark.apache.org/

the whole dataset, with guarantees on the quality of the
approximation [12]. To the best of our knowledge, prior to
our work, the use of PPS for efficient clustering evaluation
had not been explored.

1.2 Our Contributions In this work, we target the
problem of the efficient computation of an accurate estimate
of the silhouette of a given clustering under general metric
distances. In this regard, our contributions are:

• We develop the first efficient, sampling-based algorithm
for estimating the silhouette with provable approxima-
tion guarantees. For any fixed ε, δ ∈ (0, 1), our algo-
rithm approximates the silhouette of a k-clustering of n
elements within an additive error 4ε/(1− ε) with prob-
ability at least 1 − δ, using only O

(
nkε−2 log(nk/δ)

)
distance computations, which constitutes a dramatic
improvement over the Θ

(
n2
)

distance computations re-
quired by the näıve exact algorithm.

• We provide a distributed implementation of our algo-
rithm using the Map-Reduce framework [13,28], which
runs in constant rounds, and requires only sublinear
space at each worker.

• We perform an extensive suite of experiments on
real and synthetic datasets to assess the effectiveness
and efficiency of our algorithm, and to compare it
with known approaches for fast silhouette computa-
tion/approximation. The experiments show that, in
practice, our algorithm provides silhouette estimates
featuring very low absolute error (less than 0.01 in most
cases) with small variance (< 10−3) using a very small
fraction of the distance computations required by the
exact calculation. Moreover, the estimates returned by
our algorithm are far superior in quality to those re-
turned by a näıve yet natural heuristics based on uni-
form sampling, or by the simplifed silhouette [20] under
general distances. We also show that the MapReduce
implementation of our algorithm enables the estima-
tion of the silhouette for clusterings of massive datasets
(e.g., 1 billion elements) for which the exact computa-
tion is out of reach.

Our algorithm addresses the problematic issues posed
by existing approaches by providing an efficiently com-
putable and provably accurate approximation of the silhou-
ette, allowing the use of the silhouette coefficient for very
large datasets, for which its exact computation is unfeasi-
ble, and without the need to recur to other efficiently com-
putable surrogates (such as the simplified silhouette coef-
ficient) which in many cases provide estimates so divergent
from the exact silhouette that they may lead to very different
conclusions in the aforementioned scenarios of application.

In addition, while previously known approaches to ef-
ficiently compute or approximate the silhouette have been
developed for specific distance functions, namely squared
Euclidean and cosine distances, our algorithm provides prov-
ably accurate silhouette estimations for clusterings based on
any metric distance. Finally, our algorithm can be gener-
alized to compute rigorous approximations of other internal

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

measures, such as cohesion and separation.

1.3 Organization of the paper The rest of the pa-
per is structured as follows. Section 2 contains the descrip-
tion of our proposed strategy for silhouette estimation, its
accuracy and performance analysis, and the MapReduce im-
plementation. Section 3 reports the results of an extensive
suite of experiments performed to evaluate the effectiveness
and scalability of our silhouette estimation algorithm on syn-
thetic and real datasets. Section 4 concludes the paper with
some final remarks. For space constraints, some technical
details, the extension of our approach to the cohesion and
separation measures, and the description of additional ex-
periments have been omitted in the paper, but they can be
found in the extended version [3].

2 Methods

Consider a metric space U with distance function d(·, ·), and
let V = {e1, . . . en} ⊆ U be a dataset of n elements. Let also
C = {C1, . . . Ck} be a k-clustering of V , that is, a partition
of V into k disjoint non-empty subsets called clusters. A
popular measure to assess clustering quality was introduced
by Rousseeuw in 1987 [29]. Specifically, the silhouette of an
element e ∈ V belonging to some cluster C, is defined as

s(e) =
b(e)− a(e)

max{a(e), b(e)} ,

where

a(e) =

∑
e′∈C d(e, e′)

|C| − 1
, b(e) = min

Cj 6=C

∑
e′∈Cj

d(e, e′)

|Cj |

denote, respectively, the average distance of e from the other
elements in its cluster, and the minimum average distance of
e from the elements in some other cluster. The silhouette of
the clustering C is the average silhouette of all the elements
of V , namely:

(2.1) s(C) =

∑n
i=1 s(ei)

n
.

From the above definitions it immediately follows that
the values s(e), with e ∈ V , and s(C) range in [−1, 1]. A
positive value for s(e) implies that e has been assigned to an
appropriate cluster, while a negative value implies that there
might be a better cluster where e could have been placed.
Therefore, s(e) can be interpreted as a measure of the quality
of the clustering from the perspective of element e. In
turn, s(C) provides a global measure of the quality of the
whole clustering, where a value closer to 1 indicates higher
quality. The exact computation of s(C) requires O

(
n2
)

distance calculations, which is prohibitive when dealing with
large datasets. In the following subsection, we present a
randomized strategy to yield an estimate of s(C), which is
accurate within a provable error bound, with sufficiently
high probability, and amenable to an efficient distributed
computation.

2.1 A Fast Algorithm for Silhouette Estimation
Consider the estimation of the silhouette s(C) for a k-
clustering C = {C1, . . . Ck} of a set V of n elements from
a metric space U . For each e ∈ V and Cj ∈ C, define

WCj (e) =
∑

e′∈Cj

d(e, e′).

Note that for an element e of a cluster C, the quanti-
ties a(e) and b(e) in the definition of the silhouette s(e)
can be rewritten as a(e) = WC(e)/(|C| − 1) and b(e) =
minCj 6=C{WCj (ei)/|Cj |}. Building on this observation, our
approach to approximating s(C) is based on estimating the
WCj (e)’s by exploiting the Probability Proportional to Size
(PPS) sampling strategy used in [11]. In particular, for each
cluster Cj ∈ C, a suitable small sample SCj is computed,
and, for every element e, the value of WCj (e) is approxi-
mated in terms of the distances between e and the elements
of SCj , ensuring a user-defined error bound with high prob-
ability. The elements of SCj are chosen according to a care-
fully designed probability distribution which privileges the
selection of elements that are distant from some suitable
“central” element of the cluster. The details are given in
what follows.

Consider a fixed error tolerance threshold 0 < ε < 1
and a probability 0 < δ < 1. Our algorithm, dubbed
PPS-Silhouette (whose pseudocode can be found in [3]),
consists of two steps. In Step 1, for each cluster Cj ∈ C,
the algorithm computes a sample SCj of expected size t =
d(c/2ε2) ln (4nk/δ)e for a suitably chosen constant c, while in
Step 2 the approximate values of the WCj (e)’s and, in turn,
the approximations of the s(e)’s are computed through the
SCj ’s. More precisely, in Step 1, each cluster Cj is processed
independently. If |Cj | ≤ t, then SCj is set to Cj , otherwise,
Poisson sampling is performed over Cj , that is, each element
e ∈ Cj is included in SCj independently with a suitable
probability pe. Probability pe, for e ∈ Cj , is determined as
follows:

• First, an initial sample S
(0)
Cj

is selected, again by

Poisson sampling, where each e ∈ Cj is included in

S
(0)
Cj

independently with probability (2/|Cj |) ln(2k/δ).

This initial sample will contain, with sufficiently high
probability, the aforementioned “central” element of
Cj , namely, one that is close to a majority of the
elements of Cj , a property which is necessary to enforce
the quality of the final sample SCj ;

• For each ē ∈ S
(0)
Cj

the value WCj (ē) is computed,

and, for each e ∈ Cj , pe is set to min{1, tγe}, where
γe is the maximum between 1/|Cj | (corresponding to
uniform sampling) and the maximum of the values

d(e, ē)/WCj (ē), with ē ∈ S(0)
Cj

(representing the relative

contributions of e to the WCj (ē)’s of the sample points).

In Step 2, for each e ∈ V and each cluster Cj , the sample
SCj is used to compute the value

ŴCj (e) =
∑

e′∈SCj

d(e, e′)

pe′

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

which is an accurate estimator of WCj (e), as will be shown
by the analysis. Once all these values have been computed,
then, for each e ∈ V belonging to a cluster C we com-
pute the estimates â(e) = ŴC(e)/(|C| − 1) and b̂(e) =
minCj 6=C{ŴCj (e)/|Cj |}, which are in turn used to estimate

the silhouette as ŝ(e) = (b̂(e)− â(e))/(max{â(e), b̂(e)}). Fi-
nally, we estimate the silhouette of the whole clustering as

(2.2) ŝ(C) =

∑
e∈V ŝ(e)

n
.

2.2 Analysis In this section we show that, with proba-
bility 1 − δ, the value ŝ(C) computed by PPS-Silhouette
approximates the true silhouette s(C) within a small error
bound, expressed in terms of ε. The key ingredient towards
this goal, stated in the following theorem, is a probabilistic
upper bound on the relative error of the estimate ŴCj (e)
with respect to true value WCj (e).

Theorem 2.1. There is a suitable choice of the constant c
in the definition of the expected sample size t used by PPS-
Silhouette, which ensures that, with probability at least
1− δ, for every element e and every cluster Cj, the estimate
ŴCj (e) is such that∣∣∣∣∣ŴCj (e)−WCj (e)

WCj (e)

∣∣∣∣∣ ≤ ε.
Proof. The proof mimics the argument devised in [11].
Recall that t = d c

2ε2
ln (4nk/δ)e. Consider an arbitrary

cluster Cj with more than t elements (in the case |Cj | ≤ t
the theorem follows trivially). For an element e ∈ Cj ,
let m(e) denote the median of the distances from e to all
other elements of Cj . Element e is called well positioned if
m(e) ≤ 2 mine′∈Cj

m(e′). It is easy to see that at least half
of the elements of Cj are well positioned. Hence, the initial

random sample S
(0)
Cj

will contain a well positioned element

with probability at least (1 − (2/|Cj |) ln(2k/δ))|Cj |/2 ≥
1− δ/(2k). An easy adaptation of the proof of [11, Lemma

12], shows that if S
(0)
Cj

contains a well positioned element

and c is a suitable constant, then the Possion sample SCj

computed with the probabilities derived from S
(0)
Cj

is such

that |(ŴCj (e) −WCj (e))/WCj (e)| ≤ ε, with probability at
least 1 − δ/(2nk). By the union bound, it follows that the
probability that there exists a cluster Cj such that the initial

sample S
(0)
Cj

does not contain a well positioned element is at

most kδ/(2k) = δ/2. Also, by conditioning on the fact that

for all clusters Cj the initial sample S
(0)
Cj

contains a well

positioned node, by using again the union bound we obtain
that the probability that there exists an element e and a
cluster Cj for which |(ŴCj (e) −WCj (e))/WCj (e)| > ε is at
most nkδ/(2nk) = δ/2, which concludes the proof.

From now on, we assume that the relative error bound
stated in Theorem 2.1 holds for every element e ∈ V and
every cluster Cj , an event which we will refer to as event E.
Consider an arbitrary element e, and let ŝ(e) be the estimate

of the silhouette s(e) computed by PPS-Silhouette. The
following key technical lemma, whose lengthy proof can be
found in [3], establishes a bound on the absolute error of the
estimate.

Lemma 2.1. If event E holds, then |ŝ(e)−s(e)| ≤ 4ε/(1−ε).

An upper bound to the absolute error incurred when
estimating s(C) through the value ŝ(C) computed by PPS-
Silhouette, is established in the following theorem, whose
proof is an immediate consequence of the definition of the
two quantities (Equations 2.1 and 2.2), and of Theorem 2.1
and Lemma 2.1.

Theorem 2.2. Let V be a dataset of n elements, and let C be
a k-clustering of V . Let ŝ(C) be the estimate of the silhouette
of the clustering s(C) computed by PPS-Silhouette for
given parameters ε and δ, with 0 < ε, δ < 1, and for a
suitable choice of constant c > 0 in the definition of the
sample size. Then,

|ŝ(C)− s(C)| ≤ 4ε

1− ε

with probability at least 1− δ.

We now analyze the running time of PPS-Silhouette,
assuming that the distance between two points can be com-
puted in constant time. In Step 1, the running time is
dominated by the computation of the distances between the
points of each sufficiently large cluster Cj and the points

that form the initial sample S
(0)
Cj

. A simple application of

the Chernoff bound shows that, with high probability, from
each such cluster Cj , O (log(nk/δ)) points are included in
Sj
0. Thus, Step 1 performs O (n log(nk/δ)) distance com-

putations, altogether. For what concerns Step 2, its run-
ning time is dominated by the computation of the distances
between all points of V and the points of the union of all
samples. A simple adaptation of the proof of [11, Corollary
11] and a straightforward application of the Chernoff bound
shows that there are O (kt) sample points overall, with high
probability, where t is the expected sample size for each clus-
ter. Recalling that t = d(c/2ε2) ln (4nk/δ)e, we have that
Step 2 performs O (nkt) = O

(
(nkε−2) log(nk/δ)

)
distance

computations overall. As a consequence, the running time of
the algorithm is O

(
nkε−2 log(nk/δ)

)
which, for reasonable

values of k, ε and δ, is a substantial improvement compared
to the quadratic complexity of the exact computation.

We remark that while the ε−2 factor in the upper bound
on the sample size might result in very large samples to
achieve high accuracy, this quadratic dependence on ε re-
flects a worst-case scenario and is needed to obtain the an-
alytical bound. In fact, Section 3 will provide experimental
evidence that, in practice, rather modest sample sizes are
sufficient to achieve high levels of accuracy.

2.3 Map-Reduce Implementation To enable the
estimation of the silhouette of clusterings of very large
pointsets, we demonstrate that our approximation strategy

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

can be effectively ported to a distributed setting. Specifi-
cally, in this section, we outline an implementation of PPS-
Silhouette in MapReduce [13, 21, 22, 28], which is one of
the reference frameworks for big data computing. (Full de-
tails are provided in [3].) We recall that a MapReduce algo-
rithm executes a sequence of rounds. In a round, a multiset
X of key-value pairs is first transformed into a new multi-
set X ′ of key-value pairs by applying a given map function
independently to each pair, and then into a further multi-
set Y of pairs by applying a given reduce function indepen-
dently to each subset of pairs of X ′ sharing the same key.
On a parallel platform, several instances of the map (resp.,
reduce) function of a round can be distributed among the
available computation nodes. Relevant performance indica-
tors for a MapReduce algorithm are: the number of rounds,
the amount ML of local memory required by any instance of
the map/reduce functions, and the amount MA of aggregate
memory required in each round.

Algorithm PPS-Silhouette can be implemented in 4
MapReduce rounds as follows. In order to exploit paral-
lelism, the points of V are partitioned into w subsets Vi of
size n/w each, for 1 ≤ i ≤ w, that will be processed in paral-
lel, where w ∈ [0, n−1] is a design parameter used to exercise
suitable parallelism-memory tradeoffs. The first two rounds
are needed to select the initial Poisson sample S

(0)
C and to

compute the value WC(ē) for each cluster C and ē ∈ ∪CS
(0)
C .

These values are made available to all partitions so that in
each Vi, in parallel, the sample probabilities p(e) for every
e ∈ Vi can be computed by the end of the second round.
Based on these probabilities, in the third and fourth rounds
the final Poisson sample ∪CSC is selected so that in each Vi,
in parallel, all values ŝ(e) with e ∈ Vi can be computed and
summed together, yielding the final estimate ŝC .

Overall, the above 4-round MapRe-
duce algorithm requires local memory ML =
O
(
n/w + (w + 1/ε2)k log(nk/δ)

)
, with high probabil-

ity, and aggregate memory MA = O (wML). It is easy to
see that for fixed values of ε and δ, and for k = O (n/ logn),

by choosing w = Θ
(√

n/(k logn)
)

, we obtain local memory

ML = O
(√
nk logn

)
and linear aggregate memory, with

high probability. Observe that for reasonable values of k,
the required local memory is substantially sublinear, which
is the “holy grail” of MapReduce algorithms [28].

We remark that a similar implementation can be devised
for the Massively Parallel Computation (MPC) model [8],
which is a popular alternative to MapReduce for big data
processing.

3 Experimental Evaluation

We ran extensive experiments with the twofold objective
of assessing the quality and evaluating the performance of
our PPS-Silhouette algorithm. Concerning quality assess-
ment, we evaluate the accuracy of the estimate provided by
PPS-Silhouette, and compare it against known heuristic
and exact (specialized) baselines. For what concerns per-
formance, we evaluate the scalability of the MapReduce im-
plementation of PPS-Silhouette and compare its perfor-

mance against the one of the aforementioned baselines.

3.1 Baselines We gauge the performance of our PPS-
Silhouette algorithm against five baselines. The first base-
line is the exact computation based on the definition. The
second baseline is a variation of PPS-Silhouette, where
the samples SCj are chosen via a uniform Poisson sampling,
using the same probability p(e) = t/|Cj | for each e ∈ Cj .
The other three baselines implement, respectively, the sim-
plified silhouette of [20, 33], the Frahling-Sohler optimiza-
tion of the exact computation [16], and the optimized exact
method available in the Apache Spark library for squared
Euclidean distances (see Section 1.1) Our quality assess-
ment compares PPS-Silhouette against the approxima-
tion baselines, namely uniform sampling and simplified sil-
houette, while our performance evaluation compares PPS-
Silhouette against all baselines except for simplified sil-
houette, since the latter turned out to have low accuracy.

3.2 Implementation and Environment For qual-
ity assessment, we devised Java-based sequential imple-
mentations of PPS-Silhouette, of the exact computation,
based on the definition, and of the uniform sampling and
simplified silhouette baselines. For performance evaluation,
we devised MapReduce implementations, using the Apache
Spark programming framework with Java2, of all baselines
except simplified silhouette and the Apache Spark optimized
method, whose code is provided in the Spark library. The
MapReduce implementation of the uniform sampling base-
line is patterned after the one of PPS-Silhouette, by only
changing the sampling probabilities. The MapReduce imple-
mentation of the exact silhouette computation aims at min-
imizing the computational load per worker by evenly parti-
tioning the operations among the workers and by providing
each worker with an entire copy of the dataset. Finally,
the MapReduce implementation of the Frahling-Sohler opti-
mization enforces the optimistic scenario where the heuris-
tics for the b(e) term, in the computation of s(e), is always
successful, in order to appreciate the maximum speed-up
that can be achieved over the non-optimized implementa-
tion3.

In our experiments we fixed δ = 0.1, resulting in a 90%
confidence on the approximation guarantee, and we opted
to control accuracy by varying the composite parameter t
directly rather than fixing the independent variables ε and
c separately (see Section 2.2).

The experiments were run on CloudVeneto4, an insti-
tutional cloud, which provided us a cluster of 9 PowerEdge
M620 nodes, each with octa-core Intel Xeon E5-2670v2 2.50
GHz and 16 GB of RAM, running Ubuntu 16.04.3 LTS with
Hadoop 2.7.4 and Apache Spark 2.4.4.

2https://spark.apache.org
3All our implementations are available at https://github.

com/CalebTheGame/AppxSilhouette
4http://cloudveneto.it

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Table 1: Maximum and average absolute error of the silhouette estimates returned by PPS-Silhouette (label
“PPS”) and the uniform sampling algorithm, (label “uniform”) relative to the k-medoid clustering of the synthetic
dataset with n = 2 · 104 points, k = 2, 3 . . . , 10, and t = 64, 256 and 1024, alongside with absolute error of the
simplified silhouette. Values < 10−3 are denoted by 0∗.

k

Absolute Error
PPS Uniform

Simplified t=64 t=256 t=1024 t=64 t=256 t=1024
silhouette max avg max avg max avg max avg max avg max avg

2 .283 .005 .001 .002 0∗ .001 0∗ .207 145 .206 .143 .199 .116

3 .404 .018 .005 .008 .002 .004 .001 .369 .235 .403 .217 .392 .163

4 .026 .012 .003 .005 .001 .002 0∗ .492 .291 .473 .301 .458 .150

5 .561 .015 .005 .008 .002 .004 .001 .174 .404 .487 .322 .438 .159

6 .314 .101 .015 .034 .007 .010 .002 .174 .082 .126 .049 .052 .005

7 .449 .047 .010 .016 .004 .010 .002 .280 .174 .273 .121 .097 .025

8 .321 .084 .017 .028 .006 .008 .002 .168 .075 .149 .349 .013 .002

9 .455 .078 .013 .015 .003 .003 0∗ .295 .187 .254 .188 .068 .002

10 .457 .050 .013 .013 .003 .003 0∗ .284 .180 .246 .108 .071 .002

3.3 Datasets We considered both synthetic and real
datasets. Synthetic datasets have been chosen so to contain
a few outlier points, with the intent of making the accurate
estimation of the silhouette more challenging. Specifically,
for different values of n (ranging from tens of thousands
to one billion), we generated n − 10 points uniformly
at random within the sphere of unit radius, centered at
the origin of the 3-dimensional Euclidean space, and 10
random points on the surface of the concentric sphere of
radius 104. For real datasets, we used reduced versions
of the “Covertype” and “HIGGS” datasets5. The former
contains 100000 55-dimensional points, corresponding to
tree observations from four areas of the Roosevelt National
Forest in Colorado; the latter contains 500000 7-dimensional
points and is used to train learning algorithms for high-
energy Physics experiments (as in previous works [10, 24],
only the 7 summary attributes of the original 28 have
been retained). For all datasets, the clusterings used to
test the algorithms have been obtained by applying the
k-medoids clustering algorithm implemented in the Java
Machine Learning Library6 [1], using the Euclidean distance.

3.4 Quality Assessment In the first experiment, we
compared the accuracy of the silhouette estimations re-
turned by our PPS-Silhouette algorithm and by the uni-
form sampling algorithm, using synthetic data. In order to
make the computation of the exact value feasible, we con-
sidered instances of the synthetic dataset with a relatively
small number of elements (n = 2× 104) and k-clusterings C
with k ∈ {2, . . . , 10}. As explained in Section 3.2, the accu-
racy of PPS-Silhouette, and, clearly, also of the uniform
sampling algorithm, depends on the (expected) sample size
t. Hence, to test different levels of accuracy, for each value

5https://archive.ics.uci.edu/ml/datasets/
6https://github.com/AbeelLab/javaml

of k we conveniently varied the value t directly. We remark
that, in general, controlling the sample size t directly, rather
than indirectly through the several parameters contributing
to its definition, is more effective in practice since it affords a
better tailoring of the estimation to the available resources.
Specifically, we ran both PPS-Silhouette and the uniform
sampling algorithm with t ∈ {64, 128, 256, 512, 1024}. As a
measure of accuracy for the estimated silhouette ŝ(C), we
use the absolute error |ŝ(C) − s(C)|. Table 1 reports maxi-
mum and average of the absolute error over 100 runs of the
two algorithms, for each configuration of parameters k and a
selection of t’s (the results for the other values of t, omitted
for brevity, are similar to the ones reported in the table).

The results show that PPS-Silhouette provides a
very accurate approximation to the silhouette already with
t = 64, for which the average absolute error is at most 0.017
for all values of k and the maximum value is at most 0.084
for all cases but k = 6. The approximation quickly improves
when larger values of t are considered. PPS-Silhouette
also features a very low variance, which is < 10−3 in all cases.
These results show that our PPS-Silhouette algorithm
provides a very accurate approximation of the silhouette
even with a limited number of samples.

On the other hand, for t = 64 the uniform sampling al-
gorithm provides estimates with considerably larger average
and maximum absolute errors for most values of k, with an
average error that is is one order of magnitude larger than
the average error of PPS-Silhouette. The variance of the
uniform sampling algorithm (0.05 on average) is also larger
than the one of our algorithm. These results show that the
use of PPS sampling is crucial to obtain good estimates of
the silhouette while keeping the sample size small.

The second column of Table 1 shows the error that
occurs when the simplified silhouette is used to approximate
the exact value of the silhouette. Such error is always
larger than twice the maximum error provided by PPS-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Table 2: Comparison between exact silhouette, simplified silhouette, and Monte Carlo estimates obtained by
averaging 100 estimates returned by PPS-Silhouette (label “PPS”) and the uniform sampling algorithm (label
“uniform”), for k = 2, 3, . . . 10 and t = 64, 128 and 1024. The highest value identified by each algorithm (one for
each t for PPS and uniform) is highlighted in boldface. Observe that the “correct” value of k corresponds to the
value with highest exact silhouette.

Silhouette
k Exact Simplified PPS uniform

t=64 t=256 t=1024 t=64 t=256 t=1024

2 0.064 0.347 0.064 0.064 0.064 0.192 0.176 0.074
3 -0.072 0.332 -0.070 -0.072 -0.072 0.151 0.081 -0.191
4 0.343 0.369 0.343 0.344 0.343 0.049 0.039 0.183
5 -0.228 0.333 -0.223 -0.228 -0.226 0.158 0.031 -0.244
6 0.034 0.348 0.022 0.032 0.034 0.121 0.071 0.040
7 -0.143 0.306 -0.148 -0.145 -0.143 0.033 -0.030 -0.130
8 0.059 0.380 0.038 0.055 0.058 0.134 0.094 0.057
9 -0.087 0.368 -0.102 -0.091 -0.088 0.102 0.021 -0.087
10 -0.104 0.353 -0.116 -0.017 -0.104 0.073 0.005 -0.103

Silhouette (even for the smallest values of the sample
size t) and is approximately 0.36 on average, which is not
surprising considering the weak relation between simplified
silhouette and the exact value of the silhouette quantified
by [33]. Therefore, the simplified silhouette does not provide
accurate estimates of the exact value of the silhouette.

In the second experiment, we assessed the impact of re-
lying on estimated rather than exact values in the most typi-
cal scenario of use of the silhouette, suggested in the original
paper [29], that is, identifying the best granularity k when
the same clustering algorithm is applied to a dataset with
different values of k. Specifically, we ran k-medoids cluster-
ing on the synthetic dataset described above, for all values
of k in an interval [2, 10], and checked whether the best clus-
tering (according to the exact silhouette) was identified us-
ing the silhouette estimations returned by PPS-Silhouette
and by the uniform sampling algorithm with expected sam-
ple size t, considering values of t ∈ {64, 256, 1024}. Since
uniform sampling displays a large variance affecting its sil-
houette estimates, we adopted a Monte Carlo approach,
where the average of 100 independent estimates is used in
lieu of a single estimate, to reduce the variance of the esti-
mates. We also computed the deterministic value of the sim-
plified silhouette [20,33] to compare its effectiveness against
the two sampling strategies. The results are shown in Ta-
ble 2, where the exact value of the silhouette is also shown.

As expected, PPS-Silhouette always identifies the
correct value already for t = 64, and, for all k and t, it
provides extremely accurate approximations. On the other
hand, the uniform sampling algorithm identifies the correct
value of k only for t = 1024, and, for smaller values of t,
it provides much weaker approximations (indeed, t = 512 is
needed merely to hit the correct sign of the silhouette value
for all k). Also, the table shows that the simplified silhouette
is unable to identify the correct value of k.

In third experiment, we compared the accuracy of

the silhouette estimates computed by PPS-Silhouette,
uniform sampling, and simplified silhouette, on the real
datasets HIGGS and Covertype, considering k = 5, 10 and
t = 64, 256, 1024. Table 3 reports the the maximum and
average absolute errors of the silhouette estimates, over 100
runs, together with the values of the exact silhouette and
of the simplified silhouette. Similarly to the case of the
synthetic dataset, PPS-Silhouette provides very accurate
estimates already for t = 64, with an average error smaller
than 0.03, and for t ≥ 256 it features an average error
below 0.01. The variance is below 10−3 in all cases. On
these datasets, the uniform sampling algorithm also provides
fairly accurate estimates (with variance < 10−3 in all cases).
However, for no combination of k and t the average error
of the uniform sampling algorithm is lower than the one
of PPS-Silhouette, while its maximum error is slightly
better only in three out of twelve configurations. Also,
the simplified silhouette displays poor accuracy, worse than
the one of PPS-Silhouette even with t = 64. Once
again, this experiment confirms the superiority of our PPS-
Silhouette algorithm with respect to the two competitors.

In [3], we report on two additional experiments. One
experiment, run on the synthetic dataset for various com-
binations of t and ranges of k, shows that out of 100 trials
PPS-Silhouette always identifies the best value of k while
the uniform sampling algorithm succeeds only a fraction of
the times (very small in many cases). The other experiment
provides evidence that PPS-Silhouette yields accurate es-
timates also when squared Euclidean distances (which do
not satisfy the triangle inequality) are used.

Overall, the results show that PPS-Silhouette ex-
hibits a high level of accuracy even for relatively small values
of the expected sample size t. Since the total work performed
by PPS-Silhouette is O(nkt), this implies that reliable es-
timates can be obtained in much less than the Θ(n2) work
required by the exact computation.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Table 3: Comparison between exact silhouette, simplified silhouette, and maximum and average absolute error
of the silhouette estimates returned by PPS-Silhouette (label “PPS”) and the uniform sampling algorithm,
(label “uniform”), relative to the k-medoid clustering of the real datasets Covertype and HIGGS, with k = 5, 10
and t = 64, 256 and 1024.

Dataset k
Absolute error

PPS Uniform
Silhouette t = 64 t = 256 t = 1024 t = 64 t = 256 t = 1024

Exact Simpl. max avg max avg max avg max avg max avg max avg

Covertype
5 0.344 0.474 .084 .016 .042 .006 .007 .002 .108 .019 .027 .007 .014 .003
10 0.266 0.394 .120 .023 .025 .006 .014 .002 .160 .031 .040 .009 .014 .002

HIGGS
5 0.244 0.368 .114 .016 .024 .006 .008 .003 .110 .017 .045 .008 .019 .003
10 0.151 0.289 .107 .028 .047 .010 .020 .004 .155 .033 .081 .012 .019 .005

3.5 Performance Evaluation In this section, we re-
port the results of several experiments aimed at comparing
the distributed performance of the MapReduce implemen-
tation of PPS-Silhouette against the one of MapReduce
implementations of the uniform sampling and the Frahling-
Sohler optimization baselines, and of the optimized Spark
routine for squared distances, on very large datasets.

In the first experiment, we assessed the scalability of
the MapReduce version of PPS-Silhouette. For this
experiment, we used four instances of the synthetic dataset
(see Section 3.3) with n = 106, 107, 108, 109 elements and
k = 5 clusters. We ran MapReduce implementation of PPS-
Silhouette with t = 64 using w = 1, 2, 4, 8, 16 workers
(each on a single core). For the dataset with n = 109

elements, we considered only w = 4, 8, 16 since for lower
levels of parallelism the local memory available to each core
was not sufficient to process the n/w elements assigned to
each worker. The results are shown in Figure 1. We observe
that for the two largest datasets PPS-Silhouette exhibits
linear scalability. For n = 107, the algorithm still exhibits
linear scalability for up to 8 workers, while there is a limited
gain in using 16 workers. For n = 106, scalability is still
noticeable, however, due to the relatively small size of the
dataset, the behavior is less regular due to the stronger
incidence of communication overheads and caching effects.
Also, for a fixed number of workers, we observe that the
algorithm scales linearly with the number of elements, in
accordance with our theoretical analysis.

In successive experiments, we compared the run-
ning times of the MapReduce implementations of PPS-
Silhouette (with t = 64) and of the baselines. We com-
pared PPS-Silhouette with uniform sampling algorithm
and times showed that, as expected, uniform sampling is
slightly faster (by 10−20% in all experiments), due to the ab-
sence of the probability calculation phase. This mild advan-
tage of uniform sampling is however counterbalanced by its
much lower level of accuracy, quantified in the previous sec-
tion, for equal sample size. We compared PPS-Silhouette
with the exact computation based on the definition (DEF),
and of the exact computation based on the Frahling and
Sohler optimization (FS), with fixed, maximum degree of

parallelism w = 16, and using the smallest dataset of the
previous experiment, namely the one with n = 106 ele-
ments. While DEF was stopped after 6000 seconds, FS com-
pleted the execution in 1135 seconds, and PPS-Silhouette
in 14 seconds, thus (more than) two orders of magnitude
faster than DEF and FS. Also, we point out that PPS-
Silhouette was able to estimate the silhouette for a three
orders of magnitude larger dataset (n = 109) in 2433 sec-
onds, which is about twice the time required by FS on the
dataset with 106 elements. Considering the accuracy of the
estimation provided by PPS-Silhouette, assessed in the
previous subsection, these comparisons provide evidence of
its practicality.

1 2 4 8 16
number w of workers

101

102

103

104

tim
e

(s
)

106

107
108

109

Figure 1: Running time (median over 5 runs) of our
PPS-Silhouette algorithm as function of the number
w of workers, for datasets of different sizes.

Finally, we compared the performance of PPS-
Silhouette under squared Euclidean distances with the one
of the optimized exact method available in Apache Spark
for such distances, using our synthetic dataset with n = 108

elements and two values of k, namely k = 5, 10. Since our
goal in this experiment was to compare the best performance
achievable by the two implementations, and since our PPS-
Silhouette algorithm provides very accurate estimates al-
ready with a limited number t of samples, we fixed t = 32
and w = 16 workers. For both values of k the estimates
from PPS-Silhouette are very precise (average error 0.007
for k = 5 and 0.087 for k = 10), while the running time

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

of PPS-Silhouette is comparable to, even if higher than
(up to approximately two times), the running time of the
optimized Apache Spark method.

4 Conclusions

In this work, we developed the first efficient, sampling-based
algorithm to estimate the silhouette coefficient for a give
clustering with provable approximation guarantees, whose
running time dramatically improves over the quadratic com-
plexity required, in the general case, by the exact computa-
tion. We provided a distributed implementation of our al-
gorithm in Map-Reduce which runs in constant rounds, and
requires only sublinear space at each worker. The experi-
mental evaluation conducted on real and synthetic datasets,
demonstrates that our algorithm enables an accurate esti-
mation of the silhouette for clusterings of massive datasets
for which the exact computation is out of reach. Future re-
search should target a more extensive experimentation on
real-world datasets. Also, it would be interesting to devise a
more flexible, dynamic version of the algorithm where the de-
sired accuracy can be incrementally refined by reusing (part
of) the previously sampled points.

References

[1] T. Abeel, Y. V. d. Peer, and Y. Saeys. Java-ml: A
machine learning library. JMLR, 2009.

[2] C. C. Aggarwal and C. K. Reddy. Data Clustering:
Algorithms and Applications, 2014.

[3] F. Altieri, A. Pietracaprina, G. Pucci, and F. Vandin.
Scalable distributed approximation of internal mea-
sures for clustering evaluation. ArXiv:2003.01430, 2020.

[4] P. Awasthi and M. Balcan. Center based clustering:
A foundational perspective. In Handbook of cluster
analysis, 2014.

[5] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and
S. Vassilvitskii. Scalable k-means++. PVLDB 2012.

[6] M.-F. F. Balcan, S. Ehrlich, and Y. Liang. Distributed
k-means and k-median clustering on general topologies.
NIPS 2013.

[7] A. Barger and D. Feldman. k -means for streaming and
distributed big sparse data. SDM 2016.

[8] P. Beame, P. Koutris, and D. Suciu. Communication
steps for parallel query processing. PODS 2013.

[9] M. Ceccarello, C. Fantozzi, A. Pietracaprina, G. Pucci,
and F. Vandin. Clustering uncertain graphs. PVLDB
2017.

[10] M. Ceccarello, A. Pietracaprina, and G. Pucci. Solv-
ing k-center clustering (with outliers) in MapReduce
and streaming, almost as accurately as sequentially.
PVLDB 2019.

[11] S. Chechik, E. Cohen, and H. Kaplan. Average
distance queries through weighted samples in graphs
and metric spaces: high scalability with tight statistical
guarantees. APPROX/RANDOM 2015.

[12] E. Cohen, S. Chechik, and H. Kaplan. Clustering
small samples with quality guarantees: adaptivity with
one2all PPS. AAAI 2018.

[13] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Comm. ACM.

[14] A. Ene, S. Im, and B. Moseley. Fast clustering using
MapReduce. KDD 2011.

[15] D. Feldman and M. Langberg. A unified framework for
approximating and clustering data. STOC 2011.

[16] G. Frahling and C. Sohler. A fast k-means implemen-
tation using coresets. Int. J. Comp. Geom. Appl. 2008.

[17] J. Han, J. Pei, and M. Kamber. Data mining: concepts
and techniques, 2011.

[18] C. Hennig, M. Meila, F. Murtagh, and R. Rocci.
Handbook of cluster analysis, 2015.

[19] M. S. Hossain and R. A. Angryk. Gdclust: A graph-
based document clustering technique. ICDMW 2007.

[20] E. R. Hruschka, L. N. de Castro, and R. J. Campello.
Evolutionary algorithms for clustering gene-expression
data. ICDM 2004.

[21] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for mapreduce. SODA 2010.

[22] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining
of Massive Datasets, 2020.

[23] S. P. Lloyd. Least squares quantization in PCM. IEEE
Trans. on Information Theory, 1982.

[24] G. Malkomes, M. Kusner, W. Chen, K. Weinberger,
and B. Moseley. Fast Distributed k-Center Clustering
with Outliers on Massive Data. NIPS 2015.

[25] A. Mazzetto, A. Pietracaprina, and G. Pucci. Accurate
mapreduce algorithms for k-median and k-means in
general metric spaces. ISAAC 2019.

[26] D. Moulavi, P. A. Jaskowiak, R. J. G. B. Campello,
A. Zimek, and J. Sander. Density-based clustering
validation. SDM 2014.

[27] R. Ng and J. Han. Efficient and effective clustering
methods for spatial data mining. VLDB 1994.

[28] A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri,
and E. Upfal. Space-round tradeoffs for mapreduce
computations. ICS 2012.

[29] P. J. Rousseeuw. Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. J. of
Comp. and App. Mathematics, 1987.

[30] T. Sellam, R. Cijvat, R. Koopmanschap, and M. Ker-
sten. Blaeu: mapping and navigating large tables with
cluster analysis. PVLDB 2016.

[31] P. N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining, 2016.

[32] C. Tomasini, L. R. Emmendorfer, E. N. Borges, and
K. S. Machado. A methodology for selecting the most
suitable cluster validation internal indices. SAC 2016.

[33] F. Wang, H.-H. Franco-Penya, J. D. Kelleher, J. Pugh,
and R. Ross. An analysis of the application of simpli-
fied silhouette to the evaluation of k-means clustering
validity. MLDM 2017.

[34] C. Wiwie, J. Baumbach, and R. Röttger. Comparing
the performance of biomedical clustering methods. Na-
ture methods, 2015.

[35] H. Xiong and Z. Li. Clustering validation measures.
Data Clustering: Algorithms and Applications, 2014.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

