CONSTRUCTIVE, DETERMINISTIC IMPLEMENTATION OF
SHARED MEMORY ON MESHES*

ANDREA PIETRACAPRINAT, GEPPINO PUCCI', AND JOP F. SIBEYN#

Abstract. This paper describes a scheme to implement a shared address space of size m on
an n-node mesh, with m polynomial in n, where each mesh node hosts a processor and a memory
module. At the core of the simulation is a Hierarchical Memory Organization Scheme (HMOS),
which governs the distribution of the shared variables, each replicated into multiple copies, among
the memory modules, through a cascade of bipartite graphs. Based on the expansion properties of
such graphs, we devise a protocol that accesses any m-tuple of shared variables in worst-case time
(@) (n1/2+'7), for any constant > 0, using O (1/7]1'59) copies per variable, or in worst-case time
O (nl/2 log n), using O (logl'59 n) copies per variable. In both cases the access time is close to
the natural O (\/ﬁ) lower bound imposed by the network diameter. A key feature of the scheme is
that it can be made fully constructive when m is not too large, thus providing in this case the first
efficient, constructive, deterministic scheme in the literature for bounded-degree processor networks.
For larger memory sizes, the scheme relies solely on a nonconstructive graph of weak expansion.
Finally, the scheme can be efficiently ported to other architectures, as long as they exhibit certain
structural properties. In the paper we discuss the porting to multi-dimensional meshes and to the
pruned butterfly, an area-universal network which is variant of the fat-tree.

Key words. PRAM simulation, parallel computation, shared memory machines, networks of
processors, meshes, expander graphs

AMS subject classification. 68Q10

1. Introduction. A desirable feature of a parallel computer is the provision
of a shared address space that can be accessed concurrently by all the processors
of the machine. Indeed, the manipulation of shared data provides a powerful and
uniform mechanism for interprocessor communication, and constitutes a valuable tool
for the development of simple and portable parallel software. Unfortunately, when
the number of processors exceeds a certain (modest) threshold, any efficient hardware
realization of shared memory is either prohibitively expensive or out of reach of current
technology. Therefore, a shared address space must be provided virtually on hardware
platforms consisting of a set of processor/memory module pairs which are connected
through a network of point-to-point communication links.

This problem has received considerable attention over the past two decades, and
has been the target of a large number of investigations, both theoretical and applied.
In the theoretical community, the problem is best known as the PRAM simulation
problem. An (n,m)-PRAM is an abstraction of a shared-memory machine consisting
of n synchronous RAM processors that have direct access to m shared variables. In
a PRAM step, executed in unit time, any set of n variables can be read or written in
parallel by the processors. A solution to the PRAM simulation problem is a scheme
to perform any computation of an (n, m)-PRAM on a target machine consisting of a

*This research was supported in part, through the Leonardo Fibonacci Institute, by the Istituto
Trentino di Cultura. The results in this paper appeared in preliminary conference form in [PPS94]
and in [PP95].

TDipartimento di Elettronica e Informatica, Universitd di Padova, Via Gradenigo 6/a, 35131
Padova, Italy. Email: {andrea,geppo}@artemide.dei.unipd.it. The research of these authors was
supported in part by CNR and MURST of Italy.

fMax-Planck Institut fiir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany. Email:
jopsi@mpi-sb.mpg.de. The research of this author was supported in part the EC Cooperative Action
IC-1000 (project ALTEC: Algorithms for Future Technologies).

1

2 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN

network of n processor/memory pairs. A typical PRAM simulation scheme distributes
the PRAM shared variables among the n modules local to the machine processors,
and recasts a parallel access to the shared-memory into the routing of messages from
the processors requesting the variables to the processors storing such variables.

Several randomized PRAM simulation schemes have been proposed in the liter-
ature. In all these schemes, the shared variables are distributed among the memory
modules via one (or more) hash functions randomly drawn from a suitable universal
class. Among the most relevant results, we recall that a PRAM step can be simu-
lated, with high probability, in O (logloglognlog® n) time on the complete network
[CMS95], in O (logn) time on the butterfly [Ran91] and in O (y/n) time on the mesh
[LMRR94].

In contrast, the development of efficient deterministic schemes, that is, schemes
that guarantee a fast worst-case simulation time for any PRAM step, appears to be
much harder. A simple argument shows that in order to avoid trivial worst-case
scenarios, where all the variables requested in the PRAM step are stored in a small
region of the network, one has to use several copies for each variable, so that only a
subset of “convenient” copies needs to be reached by each operation. The number of
copies used for each variable is called the redundancy of the scheme.

The idea of replicating each variable into multiple copies dates back to the pio-
neering work of Mehlhorn and Vishkin [MV84]. In their approach, a read operation
need only access one (the most convenient) copy. For m = O (nf!), the authors obtain
a scheme for the complete interconnection which uses R copies per variable and allows
any set of n reads to be satisfied in time O (nl’l/R). However, the execution of n
write operations, where all copies of the variables must be accessed, is penalized and
requires O (Rn) time in the worst case.

Later, Upfal and Wigderson [UW87] proposed a more balanced protocol requiring
that, in order to read or write a variable, only a majority of its copies be accessed.
They also represent the allocation of the copies to the modules by means of a Memory
Organization Scheme (MOS). An MOS is a bipartite graph G = (V,U), where V is
the set of shared variables, U is the set of memory modules of the underlying machine,
and R edges connect each variable to the modules storing its copies. For m polyno-
mial in n and R = O (logn), the authors show that there exist suitable expanding

graphs that guarantee a worst-case O (logn (loglog n)2) time to access any n vari-

ables on the complete interconnection. This bound was later improved to O (logn)
in [AHMPS87]. Several authors pursued the ideas in [UW87] to develop simulation
schemes for bounded-degree networks of various topologies. In particular, schemes
have been devised to simulate an arbitrary step of an (n, m)-PRAM, with m polyno-
mial in n, in time O (log”n/loglogn) on a Mesh-of-Trees (MoT) with n processors
and © (n?) switching elements [LPP90], or in time O (lognlogm/loglogn) on an n-
processor expander-based network [HB94], or in time O (lognloglogn loglog(m/n))
on a suitably augmented MoT [Her96].

All of the aforementioned deterministic schemes (except for the one in [MV84]
which, however, is not general since write accesses are heavily penalized) suffer from
two major limitations.

1. The MOS graphs must exhibit maximum expansion relatively to the m/n
ratio. Although the existence of such graphs can be proved through standard counting
arguments, no efficient constructions are yet available. In addition, it is unlikely that
the (few) constructions known for expanders may be of use when m is much larger
than n.

CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 3

2. The expansion properties of the MOS are exclusively used to curb memory
contention. Network congestion issues are either ignored, as in the case of simulations
on the complete network, or solved by means of separate mechanisms tailored to the
specific network’s topology!.

Recently, constructive deterministic schemes exhibiting nontrivial performance
have been developed for the complete interconnection. In [PP97] three schemes are
presented for m = O (n®/2), m = O (n?) and m = O (n?®) variables, which attain
O (n'/?), O (n'/?) and O (n?/?) access time, respectively, for any n-tuple of variables
using constant redundancy. These schemes rely on MOS graphs that admit efficient
explicit constructions but exhibit weak expansion. In this paper we will exploit the
same constructions in a more complex framework to achieve efficient implementations
of shared data on realistic, low-bandwidth machines. Specifically, we will develop a
novel approach where the inefficiencies caused by the weak expansion of the memory
map are absorbed into the inherent bandwidth limitations of the interconnection, and
where both memory contention and network congestion are controlled through a single
mechanism.

1.1. Overview of Results. This paper presents a deterministic scheme for im-
plementing a shared address space of size m on an n-node square mesh, with m
polynomial in n, where each node consists of a processor with direct access to a local
memory module. The scheme provides a protocol to access an arbitrary set of n shared
variables in nearly-optimal time, for all values of m. The scheme is fully constructive
for m = O (n®/?), whereas for larger values of m it embodies only a nonconstructive
component graph of constant degree whose expansion properties, however, are much
weaker than those required of the graphs used in previous works. Full constructive-
ness can also be attained for memory sizes up to m = O (n9/2), at the expense of a
progressive degradation in performance when m gets closer to the upper bound.

The scheme adopts a novel redundant representation of the shared variables and
is centered around the Hierarchical Memory Organization Scheme (HMOS), which
provides a structured distribution of the copies of the variables among the memory
modules. The HMOS consists of k + 1 levels of logical modules built upon the set
of shared variables. The modules of the first level (level 0) store copies of variables,
whereas modules of level i > 0 store replicas of modules of level i — 1. The HMOS
is represented by a cascade of bipartite graphs, where the first graph governs the
distribution of the copies of the variables to the modules of level 0, and the other
graphs govern the distribution of the replicas of modules at higher levels. Each level
of the HMOS corresponds to a tessellation of the mesh into submeshes of appropriate
size, with each module of that level assigned to a distinct submesh.

We devise an access protocol to satisfy n arbitrary read/write requests issued by
the n processors, which takes advantage of the hierarchical structure of the HMOS.
As customary in any multi-copy approach, an access to a variable is executed on a
selected subset of its copies. A suitable copy selection mechanism is developed to
limit the number of copies to be accessed in each submesh, and, ultimately, in each
individual module. In this sense, the HMOS provides a single mechanism to cope
with both memory contention and network congestion, which represents a novelty
with respect to previous works, where the two issues were dealt with separately.

n fact, in [HB94] an MOS with slightly less than maximum expansion is employed in order
to reduce the redundancy and, consequently, network congestion, at the expense of an increase in
memory contention. However, such an MOS does not embody any specific mechanism to explicitly
control network congestion.

4 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN

TABLE 1
Results in this paper.

m=n" Access Time Constructive Redundancy
T>3/2 O n%"'"?) ,V constant n > 0 no Io) (1/7]1.59)
T>3/2 O (\/ﬁlog n) no O (10g1'59 n)
1<7<3/2 O (n%‘M) ,V constant n > 0 yes 1o (1/771'59)
1<7<3/2 o (\/ﬁlog n) yes 0O (10g1.59 n)
3 13 2741
§<T§F O[n"s yes (_)(1)
TS O(“% yes o (1)
3713
gSTS% O(TL 12) yes @(1)

In order to guarantee low memory contention and network congestion, the HMOS
component graphs must exhibit certain expansion properties. Compared to those em-
ployed in previous schemes, our graphs have much weaker expansion, attainable using
only constant (rather than logarithmic) input degree. This makes the HMOS more
amenable to explicit construction. Indeed, all HMOS graphs but the first one are taken
as subgraphs of a well-known combinatorial structure, the BIBD, for which an explicit
and simple construction is known. As for the first graph, an explicit construction can
be provided when m is not too large, thus making the HMOS fully constructive, while
for large values of m, the graph can be shown to exist through a standard counting
argument. Our results are reported in detail below, and summarized in Table 1.

THEOREM 1. For any constant T > 1, there exists a scheme to distribute m = n"
shared variables among the local memory modules of an n-node mesh with redundancy
R so that any n variables can be read/written in time

T=0 (n%+n)
for any constant n > 0, with R = O (1/n'>°); or in time
T=0 (n% logn)

with B = O (log"*" n).

As mentioned before, for arbitrary values of m the HMOS embodies one non-
constructive graph. Full constructiveness can be achieved when m = O (n9/2), as
reported below.

THEOREM 2. For any constant T, with 1 < 7 < 9/2, there exists a fully construc-
tive scheme to distribute m = n” shared variables among the local memory modules of
an n-node mesh, which, for T < 3/2, achieves the same performances as those stated
in Theorem 1, while for T > 3/2 achieves the following access times

T = O nQTSH) for%<7’§%,
T = O n%) for%grgg,
T = O(nhlzs) fOT%STS9/2,

with redundancy R = © (1).

CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY)

Compared to the natural Q (1/n) lower bound imposed by the network diameter,
our fastest access time is only a logarithmic factor away from optimal.

Prior to the present work, no efficient deterministic schemes for implementing
shared memory explicitly designed for the mesh topology were known in the literature.
However, the schemes designed for the complete interconnection can be implemented
on the mesh through sorting and routing. In particular, O (y/nlogn) access time
can be obtained by implementing the nonconstructive scheme in [AHMP87], and
0 (n1/2+t) access time can be obtained by porting the constructive schemes of [PP97]
to the mesh, with ¢ = 1/6 for m = O (n%?), t = 1/4 for m = O (n?) and t = 1/3 for
m =0 (n?).

Our results improve upon previously published ones in the following ways. First,
we attain O (y/nlogn) access time, as in [AHMP87], with a memory organization
which is fully constructive when m = O (n®/2), while, for all other values of m poly-
nomial in n, it embodies a nonconstructive graph exhibiting much weaker expansion
than that required in [AHMP87]. The recent results of [PP97] suggest that our mem-
ory map is more amenable to explicit construction. Note also that our constructive
results outperform the ones obtainable by the straightforward porting to the mesh of
the schemes in [PP97] discussed above.

Finally, it is important to observe that our scheme is not specifically tailored to
the mesh topology, but can be ported, with minor adjustments, to other topologies.
In particular, the same access times reported in Theorems 1 and 2 can be attained on
an n-leaf pruned butterfly, an area-universal network which is a variant of the fat-tree,
and Theorem 1 can be generalized to hold for d-dimensional meshes, with constant d,
by substituting n'/? for n'/? in the formulas.

The rest of this paper is organized as follows. Section 2 defines the machine
model and introduces the routing and sorting primitives used by the access protocol.
Section 3 describes the HMOS (§3.1) and its implementation on the mesh (§3.2). A
suitable construction for the BIBDs used in the HMOS is given in an appendix to the
paper. Section 4 presents the protocol for accessing an arbitrary n-tuple of shared
variables. This section is subdivided into two subsections that describe the selection of
the copies and the routing protocol, respectively. In §5, suitable values for the design
parameters of the HMOS are selected, and Theorems 1 and 2 are proved. Section 6
shows how the scheme can be generalized to other architectures, such as the pruned
butterfly and multi-dimensional meshes. Section 7 closes with some final remarks.

2. Machine Model. We present our shared memory implementation on a mesh,
consisting of an array of v/n x /i processor-memory pairs, connected through a two-
dimensional grid of communication links. The machine operates in lock-step, where in
each step a processor can perform a constant amount of local computation (including
accesses to its local memory) and can exchange a constant number of words with
one of its direct neighbors. Our objective is to devise a distributed representation of
m > n shared variables on the mesh so that any n-tuple of read/write accesses to
these variables can be served efficiently. The approach will be generalized to other
architectures in §6.

The access protocol will make use of the following primitives, for which optimal
algorithms are known in the literature. We call £-sorting a sorting instance in which
at most £ keys are initially assigned to each processor and are to be redistributed so
that the £ smallest keys will be held by the first processor, the next ¢ smallest ones by
the second processor, and so on, with the processors numbered in row major order.
We have:

6 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN

Fact 3 ([Kun93]). Any £-sorting can be performed on an n-node mesh in O (£y/n)
time.

We call (¢1,¢s)-routing a routing problem in which each mesh processor is the
source of at most ¢; packets and the destination of at most £5 packets. We have:

Fact 4 ([SK94]). Any (€1,(2)-routing can be performed on an n-node mesh in
0] (\/Zlﬁgn) time.

A simple bisection-based argument shows that this result is optimal in the general
case. However, for a special class of (¢1,¢s)-routings, a better performance can be
achieved as follows. Fix a tessellation of the mesh into n/s submeshes of s nodes
each, and consider an ({1, ¢,)-routing where at most ds packets are destined for each
submesh. We first use ¢;-sorting and ({1, d)-routing to spread the packets evenly
among the nodes of their destination submeshes, and then complete the routing by
running n/s independent instances of (6, £2)-routing within each submesh. The overall
routing time becomes

0 (zl\/ﬁ+ Vo + 5225) .

Comparing the O (v/f15n) complexity of the general (¢;,>)-routing algorithm with
the above routing time, we see that the new algorithm is profitable when §, ¢; = o(f2)
and ds = o(¢yn). This fact will be exploited in our access protocol, where packet
routing is used to access selected copies of the variables. In particular, we will employ
several nested tessellations of the mesh and provide strong bounds on the congestion
within the submeshes of each tessellation, so that the above strategy can be applied.
The packets will then be routed gradually to their destinations through a sequence of
smaller and smaller submeshes.

3. The Hierarchical Memory Organization Scheme. This section intro-
duces the Hierarchical Memory Organization Scheme (HMOS), a mechanism through
which m shared variables are distributed among the n memory modules of a proces-
sor network. The section is organized in two subsections: §3.1 presents the logical
structure of HMOS, while §3.2 describes its actual implementation on the mesh.

3.1. Logical structure of the HMOS. The HMOS is structured as k + 1
levels of logical modules built upon the shared variables, where £ = O (loglogn) is
a nonnegative integer function of n, to be specified by the analysis. More specifi-
cally, starting from m = n” shared variables, for a fixed constant 7 > 1, the HMOS
comprises m; modules at level i, called i-modules, for 0 < i < k, where the m;’s are
strictly decreasing values that will be specified later. Modules are nested collections of
variables, obtained as follows. First, each variable is replicated into r = ©(1) copies,
which are assigned to distinct 0-modules. The contents of each 0-module, viewed as
an indivisible unit, are in turn replicated into 3 copies, which are assigned to distinct
1-modules. In general, the contents of each (i — 1)-module, viewed as an indivisi-
ble unit, are replicated into 3 copies, which are assigned to distinct i-modules, for
0 < i < k. It is easy to see that the above process will eventually create 3¢ replicas
of each i-module and 73* copies per variable. In the rest of this paper, we will reserve
the term copy to denote the replica of a variable, and i-block to denote the replica of
an i-module.

The difference between an i-module and one of its i-blocks is akin to the differ-
ence between a variable and one of its copies. Namely, an i-module represents an
abstract entity, of which several physical replicas, its i-blocks, exist. Since the con-
tents of k-modules are not replicated, the terms k-module and k-block will be used

CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 7

interchangeably. Note that a k-block is made of (k — 1)-blocks, which in turn are
made of (k — 2)-blocks, and so on until 0-blocks are reached. The latter contain copies
of variables.

Let V denote the set of shared variables, and U; the set of i-modules, for 0 < i < k.
The HMOS is represented as a leveled direct acyclic graph (dag) #, which is defined
by a cascade of k + 1 bipartite graphs, namely (V,U) and (U;_1,U;), 0 < i < k,
whose edges are directed left-to-right. In (V,Up), each variable v € V is adjacent
to r 0-modules, denoted by 7o(v,j), 1 < j < r. For 0 < i <k, in (U;_1,U;), each
(i — 1)-module u is adjacent to three i-modules denoted by v;(u,j), 1 < j < 3. For
notational convenience, we will number the levels in the HMOS starting from -1, the
level of the variables. As a consequence, nodes at level i, 0 < i < k, are i-modules.

In the HMOS, each variable v uniquely identifies a single-source subdag #, in-
duced by all nodes reachable from v € V. A straightforward property of H, is that it
contains r3* distinct source-sink paths which are in one-to-one correspondence with
the r3* copies of v. Each source-sink path in H, (hence, each copy of v) is uniquely
identified by the string of nodes traversed by the path. Moreover, for 0 < i < k, the
suffix of any such string starting with a node w at level ¢ of H,, identifies a specific
i-block storing a copy of v. Note that several source-sink paths in #, may correspond
to strings with a common suffix starting from level . In this case, the i-block corre-
sponding to the common suffix will store several distinct copies of v. A small HMOS
for 8 shared variables is shown in Figure 1.

uQ,1 uy 1
V1 U3 V4 v1v3 v4| [v2 v5 V6| [v2 V4 VS
Y6 U7 V6 V7 v7 U8 v7 U8
ug,2
V2 Vs Vg V1 U3 V4| |V1 V2 V4| |V1 V3 V4
V1 e v7 Vg v5 Vg vs 7 V6 U8
ug,3 uy 9
v2 e U2 V4 U5 v U5 Vg| [v2 v4 v5| [v2 U3 Vg
U7 U8 V7 U8 V7 V8 V7 V8
v3 ug,4
V2 V3 Vg V1 V3 V4| (V1 V2 V4| (V1 V2 VU3
V4 V7 Vg Vs Ve Vs U7 Vs U8
ug,5 uy 3
Us e U1 U3 U4 v1 v3 v4| [v2 vs vg| [v2 V3 Vg
U5 Vg V6 U7 V7 U8 U7 U8
Uﬁ [) uQ,6
01 03 0a v1 v3 va| [v1 v2 v3] [v1 v3 va
V7 e V5 V7 Vs Ve Vs U8 Ve U8
ug 7 ug 4
Ug e U1 v2 U3 v1 v3 v4| [v2 v4 V5| [v2 V3 VG
Us Vg V6 U7 V7 V8 V7 V8
1% ug,8
(variables) U1 U3 V4 U1V204) W1 V20U3| V1U3 U4
Vg Vg U5 U7 U5 U8 Ve U8
UOZ{UU,jZISjSS} U1:{u11j:1§j§4}
(0-modules) (1-modules)

Fic. 1. An HMOS H built upon 8 shared variables, withr =5 and k = 1. There are 8 0-modules
and 4 1-modules/1-blocks. Each 1-block contains 6 0-blocks (physical copies of 0-modules), each of
which in turn contains 5 copies of the variables. The edges shown in the figure are those of the
subdag H., . Note that there are 15 edge-disjoint, source-sink paths in Hy,, each path corresponding
to one the 15 copies of v4.

8 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN

The component bipartite graphs of the HMOS must be carefully chosen in order
to guarantee a good distribution of the copies of the variables, once the HMOS is
mapped onto the processors’ memory modules. More specifically, we require that the
graphs exhibit good expansion, according to the following definition.

DEFINITION 5. Let G = (X,Y) be a bipartite graph, where each input node in
X has degree d. For 0 < a <1,0< e < landl < u < d, G is said to have
(o, €, p)-expansion if for any subset S C X, |S| < a|X|, and for any set E of u|S|
edges, j1 outgoing edges for each node in S, the set T¥(S) CY reached by the chosen
edges has size

PE(S) =2 (1s]'7).

We let |Ug| = n?, where 0 < p < 3/2 is a parameter to be fixed by the analysis.
We require that (V,Up) has input degree r, for a fixed odd constant r > 0, output
degree |V|r/|Uo|, and exhibits («,€, u)-expansion, where a = n/m, € is a positive
constant less than 1, and pu = (r + 1)/2. Clearly, a necessary condition for the
existence of such a graph is (a|V])}™¢ = n!=¢ < n”, which implies p+¢—1 > 0.
The analysis will determine suitable values for r, e and p that guarantee the existence
of (V,Up). Moreover, an explicit construction for such graph will be available when
m = 0 (n%/?).

The graphs (U;—1,U;), for 0 < i < k, are derived from instances of varying size
of the same combinatorial structure, the Balanced Incomplete Block Design, defined
below.

DEFINITION 6 ([Hal86]). A Balanced Incomplete Block Design with parameters
w and q, or (w,q)-BIBD, is a bipartite graph (X,Y) such that

o |V =w;

e The degree of each node in X is q;

e For any two nodes y1,y2 € Y there is exactly one node x € X adjacent to
both.

From the definition, it immediately follows that |X| = w(w — 1)/(g(¢ — 1)) and
that the degree of each node in Y is (w — 1)/(¢ — 1). One important property of the
BIBD, which we will heavily exploit, is stated in the following lemma.

LEmMMA 7. Let G = (X,Y) be a (w,q)-BIBD. Consider a node y € Y, and a
subset S C X such that any node in S is adjacent toy. Let E be a set of u|S| edges,
with @ < q, containing p outgoing edges from each x in S, and let TE(S) denote the
set of nodes of U reached by the chosen edges. Then

TE(S)] > (u =S|+ 1.

Proof. The definition of BIBD implies that no two nodes in S share a neighbor
other than y. If y ¢ TE(S), then |[TE(S)| = u|S|. Otherwise, at most |S| of the
selected edges reach y, the other (11 — 1)|S| reach distinct nodes. O

COROLLARY 8. A (w,q)-BIBD has (1,1/2, u)-expansion, for every 2 < u < q.

Proof. Let G = (X,Y) be a (w, q)-BIBD, and let S be an arbitrary subset of input
nodes. We now show that |[TF(S)| > /(i — 1)u[S], for an arbitrary set E containing
p outgoing edges from each node in S. Assume that |[TZ(S)| < /(1 — 1)u|S|. Then,
there must then be an output node in T?(S) that is adjacent to at least \/|S|u/(u — 1)
nodes in S. According to Lemma 7 this implies that [T (S)| > (u—1)+/|S|u/(u — 1)+

1> +/(p — 1)p|S|, which contradicts our assumption. O

CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 9

For convenience, we assume that both n and 3*¥n? are even powers of three.
Consider the sequence of integers dy,d, ..., d; defined as

do = loggn’,
{di 2[%(dgl+1+k—iﬂ—k+i, for 1<i< k.

For 0 < i < k, set the number of i-modules to be m; = 3%. The following two
properties are easily established.

(i) d; + k — i is even, for 0 < i < k.

(i1) 3/mi—1 < m; < 16,/m;_1, which implies that m;_; < m;(m; — 1)/6, for
1<i<k, andmi:9(np/2i),f0r0§i§k.

We choose (U;_1, U;) as a subgraph of a (m;, 3)-BIBD, where m;(m; —1)/6—m;_,
inputs are removed along with their incident edges. The inputs to be removed are
chosen in such a way that the remaining edges are evenly distributed among the
outputs, so that each node of U; becomes adjacent to

3m;_y
n; = ——
m;
nodes of U;_;. An efficient construction of such subgraphs is described in the ap-
pendix.

3.2. Mapping the HMOS onto the Mesh. The HMOS is physically mapped
onto the mesh by storing each i-block in a distinct submesh of appropriate size. For
some values of the parameter p, the number of 0-blocks exceed the mesh nodes,
hence a single mesh node must store more than one 0-block. There are 3*¥~im; =
e (3’“_inp/21) i-blocks, 0 < i < k, and each i-block contains exactly n; (i — 1)-
blocks, 1 < i < k. We define k nested tessellations of the mesh into submeshes as
follows. The outermost tessellation is a subdivision of the mesh into m; submeshes
(k-submeshes), each storing a distinct k-block. Each k-submesh is in turn tessellated
into ny (k—1)-submeshes storing the component (k—1)-blocks of the k-block assigned
to the k-submesh. In general, for 2 < i < k, each i-submesh, storing a given i-block,
is tessellated into n; (i — 1)-submeshes storing its component (i — 1)-blocks. Thus, for
1 <i <k, we have a total of

MENETE—1 Nyl = 3Fim;, =0 (3’“7’71"/2)
i-submeshes, each of size

__n __n _ i—k, 1—p/2!
ti= k=i, 3dith—i © (3Z n'=*/)

Note that the assumption k¥ = O (loglogn) ensures ¢; > 1, for ¢ > 1 and n sufficiently
large. Moreover, since both logsn and d; + k — ¢ are even, we have that ¢; is an
even power of three, hence /¢; is integral and /f;—; divides v/#;. As a consequence,
the (i — 1)-submeshes storing the n; component (i — 1)-blocks of an i-block are all
contained within the i-submesh storing the i-block. Finally, the organization of the
3*n? 0-blocks depends on the parameter p. When 3*n? < n, we assign each 0-block to
a submesh of tg = n'~? /3" nodes and evenly partition the contents of the block among
these nodes. Otherwise, when 3*n? > n there are more 0-blocks than processors, so
we assign 3¥n”~! O-blocks to each processor. In either case, each processor stores
r3¥m/n copies of variables.

10 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN

4. The Access Protocol. Suppose that m shared variables are distributed
among the n mesh nodes according to the HMOS. In this section, we present the
protocol that realizes a parallel access to any n-tuple of variables, where each proces-
sor issues a read/write request for a distinct variable. (The case of concurrent accesses
can be reduced to the case of exclusive accesses in time O (1/n) by means of standard
sorting-based techniques for leader election and data distribution [Lei92].)

Let S denote the set of variables to be accessed. The access protocol consists of
a copy selection phase followed by a routing phase. In the first phase, a suitable set
of copies for the variables in S is chosen, so that accessing these copies will enforce
data consistency and generate low memory contention and network congestion. In the
subsequent phase, the selected copies are effectively accessed through an appropriate
routing strategy. In case of read operations, the accessed data are returned to the
requesting processors along the reverse routing paths.

4.1. Copy Selection Phase. Copy selection achieves the double objective of
controlling both memory contention and network congestion by means of a single
mechanism. The hierarchical structure of the HMOS provides a geographical distri-
bution of the copies into nested regions of the network. By carefully limiting the
number of copies that have to be accessed in any block at any level, we reduce the
number of packets that will ever be routed to any such region, which allows us to
adopt the efficient routing strategy illustrated in §2.

4.1.1. A New Consistency Rule. Recall from §3.1 that the r3* copies of a
variable v are associated with the source-sink paths of H,, the subdag of H induced
by v and by all of its descendants. Suppose that we want to read/write v. In order
to guarantee consistency, the copies of v to be accessed are selected according to a
new rule, which extends the majority protocol of [UWS87] to fit the structure of the
HMOS. Specifically, we require that the selected copies form a target set, which is
defined as follows. Let C, be a set of copies of v and let A(C,) be the set of nodes of
‘H, belonging to the source-sink paths associated with these copies. Recall that r is
odd, and let y = (r +1)/2.

DEFINITION 9. C, is a target set for v if |Cy| = u2* and the following condition
holds: a majority (n) of the nodes at level 0 of H, belong to N'(C,), and, for each
node at level i belonging to N'(C,), a majority (two) of its successors at level i + 1
belong to N'(Cy,), for 0 <i < k.

Figure 2 depicts the source-sink paths corresponding to a target set C,, for vari-
able v4 in the HMOS of Figure 1.

An easy inductive argument shows that any two target sets for the same variable
have nonempty intersection. Based on such a property we can guarantee consistency,
that is, ensure that a read always returns the most updated value, as follows. As
customary in any multi-copy approach, we equip each copy with a time-stamp, which
is set to the current step whenever the copy is written. A read or write operation on
a variable v is simulated by accessing a target set of its copies. By the intersection
property of target sets, the copies accessed for reading a variable v must include at
least one of the most recently written copies for v, which can be identified by looking
for the most recent time-stamp. It should be noted that a target set contains only p2*
copies out of the 73" total copies of a variable. Therefore, unlike previous protocols,
we maintain consistency by accessing much less than a majority of the copies.

4.1.2. The Selection Procedure. The copy selection phase determines a tar-
get set C, for each v € S. This is accomplished in k + 1 iterations, numbered from 0

CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 11

F1G. 2. The source-sink paths (solid lines) in H,, corresponding to a target set Cy, of 6 copies
for variable v4 in the HMOS H of Figure 1.

to k, during which the nodes of the H,’s are marked in a top-down fashion from the
sources to the sinks. More specifically, for every H,, with v € S, Tteration 0 marks
the source v and p of its successors (0-modules); Iteration i, 0 < i < k, marks two
successors (i-modules) of each marked node at level 4 — 1. In this fashion, at the end
of Tteration 4, 0 < i < k, the marked nodes in each H, form exactly p2’ distinct paths
from the source to nodes at level i (in what follows we refer to such paths as marked
paths). We choose C, as the set of copies of v corresponding to the u2* source-sink
marked paths in H, at the end of the last iteration.

It is important to notice that a node of H, say an i-module u, may belong to several
subdags H, corresponding to variables in S. During the copy selection procedure, we
keep track of u independently in each such subdag, hence, u may result marked in
some of the subdags and unmarked in the others. Suppose that at the end of Iteration
1 u is marked in some subdags, and that a total of h marked paths in these subdags
reach w. This implies that at the end of copy selection there will be h2¥~% marked
paths that pass through u, that is, h2¥~? copies in U,es Cu stored in i-blocks of u.
In Tteration i + 1 the two successors of u to be marked are chosen to be the same
for all subdags in which u is marked; hence, for each chosen successor node, u will
contribute h paths to the total number of marked paths that will pass through that
node at the end of the iteration. The main idea behind the copy selection phase is to
control congestion in (i + 1)-blocks by choosing the nodes to be marked in Iteration
i+ 1 in such a way to keep the number of marked paths passing through each such
node under some reasonable bound.

The following notations will be needed to describe the copy selection procedure:

DEFINITION 10. For 0 < i < k, A; C U; denotes the set of i-modules that are
marked in some H,, with v € S, during Iteration i. The modules in A; are called
active modules.

12 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN

DEFINITION 11. The weight w(u) of an active module u € A; is the sum, over
all variables v € S, of the number of marked paths from v to u in H,.

From the previous discussion we conclude that exactly w(u) copies in (J,cgCy
will reside in each of the selected 2¥~% i-blocks of u, while the other i-blocks of u will
not contain any copy in (J,cg Cy. Using the expansion properties of the HMOS, we
will be able to guarantee suitably low values for the w(u)’s.

The actions performed by the copy selection procedure are reported below. Since
Iteration O is different from the others, it is described separately. In order to un-
derstand the parameters used in Iteration 0, recall that we chose (V,Up) to have
(n/m, e, p)-expansion, where 0 < € < 1 and p = (r + 1)/2. In other words, the graph
guarantees that for any set S of at most |S| < n variables and any choice of p 0-
modules adjacent to each variable, the overall number of chosen 0-modules is at least
B|S|1~¢, for some constant 3 > 0. Finally, recall that each processor is in charge of a
distinct variable.

Iteration 0.

1. For v € S, let p, denote the processor in charge of v. Each p, creates r
copy-packets denoted by the tuples [p,,v,u; = Y0 (v,j),hy,u; = 1], for 1 < j < 7.
Upon creation, all copy-packets are regarded as unmarked.

2. Let CPy denote an initially empty set. The following three substeps are
executed until p copy-packets for each variable are put in CPy.

(i) Sorting: Sort all unmarked copy-packets by their third component.

(ii) Selection: For each u € Uy, let ¢, be the number of copy-packets with third
component u in the sorted sequence. If ¢, < (2r/B)n¢, then all such packets are
marked. Otherwise, none of them is marked. Subsequently, all the packets are sent
back to their originating processors.

(iii) Counting: For each v € S, p, counts the total number of its copy-packets
marked so far. If these are at least u, then exactly p of them are put in CPy while
the remaining r — u copy-packets are discarded. Otherwise, the marked copy-packets
are locally buffered.

3. For each v € S, p, marks the source of H, and p of its successors corre-
sponding to the copy-packets for v included in CPy.

The analysis will show that the set CPy is determined in at most log n+1 iterations
of Step 2.

Iteration i (1 < i < k). At the beginning of Iteration 7, the mesh processors store
a set CP;_1 of copy-packets. Specifically, each processor p, stores copy-packets of
type [py, v, u, hy o), where u € A;_y and Y~ hyu = p2~1. The value h, , reflects the
multiplicity of u with respect to v, that is, the number of distinct marked paths in
‘H, from v to u. Iteration 7 consists of the following steps.

1. The copy-packets in CP;_; are sorted by their third component;

2. For each group of packets with the same third component u € A;_1, a leader
processor py, is elected. Each p, computes w(u) as the sum of the multiplicities carried
by the packets in its group, and creates the three module-packets [p,,u,v(u, j), w(u)],
for 1 <j <3;

3. The 3|A;_1] module-packets are sorted lexicographically by their third and
fourth components;

4. For each z € U;, a maximal subset P, of module-packets with third compo-
nent z is chosen, such that

Z w(u) < 0142"_1 (711712;"e +n1721i%€1) ;
[P, w2, w(u)| €P

CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 13

5. The chosen packets are sent back to their originating leader processors;

6. Assume that a leader processor p, receives h < 3 module-packets back. If
h < 2, then p,, selects 2 — h extra module-packets from the 3 — h that were not chosen
in the previous step. Otherwise, p, selects two module-packets among those received;

7. Let [pu,u,v(u, j1), w(u)] and [py, u, y(u, j2), w(u)] be the two module-packets
selected by p,. Processor p, sends the names v(u,j1) and y(u, j2) to the processors
storing the copy-packets in its group;

8. Each copy-packet [py,v,u, hy] € CPi_1 is augmented with two extra com-
ponents containing y(u, ji) and y(u, ja2);

9. The augmented copy-packets are routed back to the processors in charge of
their respective variables;

10. For any augmented copy packet [py,v,u, hy y, v(u, j1),v(u, j2)] received at
processor p,, the nodes v(u, j1) and v(u, j2) at level i of H, are marked (note that
the same node may be redundantly marked more than once). Moreover for each
newly marked node u' at level i, a copy packet [py, v, u’, hy] is created, where hy o
is obtained by summing up the multiplicities of the received (augmented) copy-packets
carrying u' in one of the two extra components. These new copy-packets form the set
CP;, while all other packets are discarded.

When Iteration k terminates, for each v € S, p, determines the set C, of copies to
be accessed as those corresponding to the u2F source-sink marked paths in H,. It is
easily seen that for each v € S, the set C, computed by the copy selection procedure
is indeed a target set for v.

4.1.3. Analysis of the Selection Procedure. We now determine the running
time of the selection procedure described above. Let us first consider Iteration 0.
By Fact 3 and since » = O (1), Steps 1 and 3 require altogether O (y/n) time. The
sorting, selection and counting substeps of Step 2 can be implemented in terms of
sorting and prefix operations in O (y/n) time. It will be shown in Lemma 12 that
logn + 1 executions of such substeps are sufficient. Therefore, Iteration 0 requires
O (v/nlogn) time altogether. For 7 > 1, Tteration ¢ can be implemented in terms of
a constant number of sorting and prefix operations on a set of O (,u2i’1n) packets,
yielding a running time of O (\/EQi’l). Therefore, copy selection is completed in time

k
(1) O(\/ﬁlogn+\/522il> =0 (vn (logn +2%)) .

LEMMA 12. After logn + 1 executions of Step 2 in Iteration 0, the set CPq
contains exactly un copy-packets. Moreover, for each active 0-module u € Ag, w(u) <
(2r/B)n*.

Proof. Let S; be the number of variables for which fewer than p copy-packets have
been selected by the end of the j-th execution of Step 2. For the sake of convenience,
set Sp = |S| = n. We now show by induction that

n
for any j > 0, and this will imply that for T"=logn + 1, S7 = 0. The inequality for
Sp is immediate, establishing the basis. Assume that the inequality holds for j — 1,
and suppose, for a contradiction, that S; > n/27. By using the expansion properties
of (V,Up), it is easy to see that in the j-th execution of the selection substep, at least
ﬂS;_e 0-modules are addressed by unmarked copy-packets. All such 0-modules must

14 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN

have been congested in the previous iteration (i.e., addressed by more than (2r/3)n*
copy-packets), which accounts for a total of at least

2r
B

unmarked copy-packets involved in that iteration. However, this is impossible since
S;_1 variables account for at most rS;_1 copy packets.

The bound on w(u) is easily established by observing that for each 0-module w,
all copy-packets with third component u that are added to CPg are marked during
the same iteration of Step 2. Therefore

nBS;7¢ > rSj

w(u) < %nf. 0

It must be remarked that the copy selection phase can be improved in a number of
ways to obtain a faster running time at the expense of a more complex implementation.
However, to avoid further complications to the presentation, we chose to describe a
simpler yet slightly less efficient implementation, since, as shown in §5, its complexity
does not influence the overall running time of the access protocol.

To complete the analysis, it remains to establish the bound on the weight w(u) of
any u € A;, at the end of Iteration i. Recall that the sum of the multiplicities of the
copy-packets in CP; with third component u yields w(u). Therefore, for 0 < i < k,

(2) Z w(u) = p2in.
u€A;
LeMMA 13. There is a suitable constant ¢ > 3 such that, at the end of Iteration

i, for eachu € A;, 0 <i <k,

w(u) < cp2in17%.

Proof. The proof proceeds by induction on i. The basis (i = 0) is established
by Lemma 12. Suppose that the inequality holds for i — 1 and let be an i-module.
The weight of z is determined by Steps 4 and 6 of Iteration i. More precisely, recall
that P, is the set of module-packets of kind [p,,, u, 2, w(u)] selected in Step 4, and let
P be the set of additional module-packets (still with third component z) not in P,,
selected in Step 6. It is easy to see that

w(z) < Z w(u).
[Pu,u,z,w(u)]EPLUP,
Because of the way the module-packets are selected in Step 4, we already know that
Z w(u) < cp2i™! (nlfg;ie +n1721i%€1) .
[Pu,u,z,w(w)]€P:

We must only show that the contribution of P, to w(z) is not too large. In order to

. l1—e
derive a contradiction, we suppose that w(z) > cu22n172_1’. This implies

Z w(u) > cﬂ?i_l (711712;"e — nlf;i%el) .

[P, w2, w(u)| EP)

CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 15

Define S, = {u € A;_1 : [pu,u,z,w(u)] € P.}, so that

Z w(u) = Z w(u).

[Pu,w.z,w(w)]€P;, UE S,

. 1—e
By the inductive hypothesis, the weight of each u € S, is at most cu2”1n1_2ifl,
therefore
wlu 1—e¢
Tuow) |,
cp2i—1p!"z=1

|Sz| =

Note that for each u € S, at least two module-packets, including [p,, u, z, w(u)], have
not been selected in Step 4. Let

r*(S;)={yeU; : Jue S, st. [py,u,y, w(u)] has not been selected in Step 4}.

Note that in the graph (U;_1,U;) each u € S, is adjacent to either two of three nodes
in I'*(S,), one of which is z (see Figure 3).

/

Ui_1

Fic. 3. Critical modules in the proof of Lemma 13.

Since (U;—1,U;) is a BIBD, we can apply Lemma 7 and conclude that [T*(S,)| >

|Se|+1 > n'7 . We now show that the global weight assigned in Step 4 to all the
nodes in T'*(S,) exceeds the total weight carried by all the module packets, thereby
leading to a contradiction. Let y € T'*(S,) and let [py, u', y, w(u')] be a module packet
which has not been selected in Step 4, with «’ € S,. Then, we must have

w(u') + Z w(u) > cp2t ! (n1_12;"6 + nl_zli%el) ,
[Pusu,y,w(u)|€Py
that is,
Z w(u) > cp2t™! (nl*l_;re + nlf?ll%) - cu2"—1n1751’i—€1 = cp?i_lnlfl_z}e.
[P wsy,w(u)]EPy
Adding up the contributions of all nodes in I'*(S,) we get

3 Yoo wl) > [T7(S,) en2 ! (nlflz‘f)

YET*(Sz) [Pu,u,y,w(u) EPy

1—e¢ . l1—e .
>n2 cp2! (n172_") = cp2'n.

16 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN

Since ¢ > 3, the above inequality leads to a contradiction because

Z Z w(u) < Z Z w(u) <3 Z w(u) = 3u2n,

YET*(Sa) [pu,u,y,w(u)]EPy YEU; [pu,u,y,w(u)]EPy u€A;_1
where the last equality follows from Equation 2. O

4.2. Routing Phase. After copy selection is completed, the copies in | J,.g Cy
have to be accessed. Each request is encapsulated in a distinct packet, routed from
the requesting processor (origin) to the processor storing the copy (destination), and
back to the origin. The idea is to route the packets in stages so that they are moved
gradually closer to their destinations through smaller and smaller submeshes, in accor-
dance with the tessellations defined on the mesh. As argued in §2, when the number
of packets destined for any submesh is not too large, such a strategy yields more
profitable results than sending the packets directly to their destinations.

The origin-destination part of a packet’s journey consists of k + 2 routing stages,
numbered from k 4+ 1 down to 0. Stage ¢, with £+ 1 >4 > 1, is executed in parallel
and independently in every i-submesh (here, the whole mesh is viewed as a (k + 1)-
submesh). In this stage the packets are routed to arbitrary positions in the (i — 1)-
submeshes hosting their destination (i — 1)-blocks, in such a way that the processors
of each submesh receive approximately the same number of packets. This can be
achieved by first sorting the packets according to their destination submeshes, and
then ranking the packets destined to the same submesh. Observe that when 3*n? < n,
a 0-block is assigned to a 0-submesh of ¢y = n'~?/3* nodes. By the end of Stage 1,
each packet reaches a processor within its destination 0-submesh, and in Stage 0 is
sent to its final destination. Instead, when 3¥n? > n, there are n?~'3* 0-blocks stored
within a single processor, hence each packet is at its final destination by the end of
Stage 1, and Stage 0 is not needed. In either case, once the packet reaches its final
destination, the request it carries is satisfied.

In order to estimate the time complexity of the above protocol, we need to de-
termine the maximum number of packets sent and received by any processor in each
stage. More formally, let §;, for K+ 1 > i > 0, denote the maximum number of pack-
ets held by any processor at the beginning of Stage i. Let also 6_; be the maximum
number of packets received by a processor at the end of Stage 0, when such stage is
needed (i.e., when 3*n” < n). We have:

LEMMA 14. Let k > 0. Then

5k+1 = H’Qk:
0; =0 (u2i3k7in

Pt

261'71), for k>1i>0.

When 3*n? < n, we also have 6_1 = O (un*).

Proof. The statement is immediately evident for 041, since every target set
contains u2* copies. By Lemma 13, an i-block is addressed by at most cpu2in!=(1=¢/2"
packets, for & > ¢ > 1. Since there are t; = © (3i_kn1_p/2i) processors storing an
i-block, we have

cu2in1_%
< -

d; <
t;

=0 (H2i3’“*"np+;"_l) .

CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 17

In order to establish the bound for &y, we distinguish between two cases. If 3*n? < n,
each 0-block is assigned to a submesh of g = n'=?/3% nodes and, by Lemma 13,
is addressed by at most cun® packets, whence §g = cun®/ty = O (u3kn"+"’1). In
this case, Stage 0 is needed to bring the packets to their final destinations. At the
end of this stage, each processor receives at most d_; < cun® packets. Otherwise,
if 3¥n? > n, there are 3¥n?~! 0-blocks stored within a single processor, whence
o = cun3kn?=! = O (u3*nP+<=1) as before, but the routing terminates with Stage 1.
d

Set tr+1 = n, the size of the entire mesh, and let T; be the time complexity of
Stage i, for k+1>i > 0.

LemMA 15. We have:

1, pte—1
Tip1 =0 (2kﬂ2+ 2R FT) ;

i 2p+43¢—3

iok=i Ly 20t .
TZ-:O(232n2 27 FT), fork>i>1.

When 3*n? < n, we also have Ty = O (nf).

Proof. Recall that for £k +1 > i > 1, Stage i is executed in parallel and inde-
pendently in each ¢-submesh. The initial sorting and ranking are accomplished in
O (8;/%;) time. By Fact 4, the subsequent (;,d;—1)-routing requires O (/8;8;—11;)
time. Since &§; < §;_1, we get T; = O (y/d;0;—1t;). When 3¥n? < n, Stage 0 consists
of a (dg,d_1)-routing in each submesh of size tq, requiring O (505,1t0) time. The
lemma follows by plugging in the values for the §;’s and the ¢;’s, and by recalling that
1 is a constant. d

After reaching their destinations, the packets relative to read operations must
return to their origins carrying the accessed data. This second part of the routing
can be accomplished by running the above protocol backwards, thus maintaining the
same time complexity.

THEOREM 16. The access protocol requires overall time

k
’ (n oo (logn F o Y 2371%)) |

i=1

Proof. The running time of the access protocol is obtained by adding the contri-
butions of the copy selection and routing phases together. The complexity of copy se-
lection is given by Equation (1), while the routing time is obtained by summing of the
T;’s given in Lemma 15. Note that p+e—1 > 0, therefore the term n!/22kp (p+e=1)/2"*!
dominates the term n'/22* coming from copy selection. Note also that the term n¢,

which accounts for the complexity of Stage 0, does not dominate when 3*n? > n.
O

5. Tuning of the Parameters. The complexity of the access protocol estab-
lished by Theorem 16 is a function of the following design parameters:
(i) k: there are k + 1 levels in the HMOS;
(ii) p: there are n? 0-modules in Up;
(iii) e: the first graph of the HMOS (V, Up) has (n/m;, €, u)-expansion;
(iv) r: the (odd) input degree of (V,Up).
Furthermore, recall that m = |V| = n", for some constant 7 > 1 and that p =
(r+1)/2.

18 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN

The goal of this section is to determine suitable values of the above parameters
that guarantee the existence of graph (V,Up) and yield a good performance of the
access protocol. Such performance is closely related to the redundancy of the HMOS,
that is, the number of copies (r3*¥) used per variable. On the one hand, using many
copies per variable yields better access times, while, on the other, lower redundancy
yields simpler and space-efficient schemes. We will consider two scenarios: in the first
scenario, we optimize the parameters under the assumption that the number of copies
for each variable 73* can grow arbitrarily large. In the second scenario, we optimize
under the restriction that the scheme uses no more than a constant number of copies
for each variable.

We need the following technical result, which is a straightforward adaptation of
Lemma 4 in [PP97a]:

LeEMMA 17. Let m = n", with constant 7 > 1. There is a suitable constant ¢ > 0
such that for any odd constant r > crlogT, a random bipartite graph G = (V,Uy) with
V| =m, |Ug| = n, input degree v and output degree mr/n has (n/m, e, p)-expansion
with p = (r +1)/2 and € = (1 — 1)/, with high probability.

We are now ready to prove one of the main results of this paper, which was stated
in §1.1.

Proof of Theorem 1. We fix p = 1 and choose r to be the smallest odd integer
greater than max{crlog7,6(7—1)}. For such values, Lemma 17 ensures the existence
of (V,Up) with (n/m,e, (r + 1)/2)-expansion, where ¢ < 1/3. Since 2p +3¢ —3 <0,
the complexity of the access protocol given in Theorem 16 becomes

(3) T=0 (20 7).

By fixing k = max{0, |log,(¢/n)]}), we have 25+1 > ¢/n, whence T = O (n'/?*") and
R=r3" =0 (1/n'°¢2) = O (1/n"*). By instead fixing k = log, log, n + O (1), so
that 2¥+1 > elog, n, we have T = O (n% log n) and R =0 (logl'59 n) a

As already noted before, the HMOS underlying the above result is fully construc-
tive, except for the first graph (V, Uy), for which Lemma 17 only guarantees existence.
In practice, one can resort to a random graph for (V, Up), which, as the lemma shows,
will exhibit the required expansion property with high probability. Although no ex-
plicit construction for (V, Uy) is known in the general case, this graph needs only weak
expansion, which makes it more amenable to explicit constructions than the graphs
employed in previous schemes (e.g., [UW87, AHMPS8T7]).

In fact, an explicit construction for (V,Up) can be obtained when the shared
memory size m is within certain ranges. For example, [PP97] shows how to construct
a bipartite graph with m = © (n3/2) inputs, n outputs and input degree r = 3, which
has (n/m,1/3,2)-expansion. This graph can be efficiently represented using constant
storage per node. Thus, using this graph as (V,Up) when m = © (n®/2), the result of
Theorem 1 still holds and the HMOS becomes fully constructive.

A larger range of values for m for which the HMOS can be made fully constructive,
still yielding nontrivial performance, can be obtained by employing other graphs for
(V,Up). This is shown below, thus proving Theorem 2, which was stated in the
introduction.

Proof of Theorem 2. Let us consider first the case 7 < 3/2. We assume m =
xz(z — 1)/6, where z is an even power of three. The argument for different values of
m requires only trivial modifications. Fix n? =z = © (n7/2) and choose (V,U) as
an (n?,3)-BIBD. By Corollary 8, such graph has (1,¢,2)-expansion, with ¢ = 1/2.

CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 19

Since 2p + 3¢ — 3 = O (1/logn), the complexity of the access protocol is still given
by Equation (3), and the same argument used to prove Theorem 1 carries through.
Consider now the range 3/2 < 7 < 13/6 and choose n? and (V,U,) as before. By
plugging e = 1/2 and n* = © (n7/2) in the complexity formula given in Theorem 16
and choosing k = O (1) large enough and even, the complexity of the access protocol
becomes

T=0 (n%"'%ff_g) =0 (n%) .

For 7 > 13/6, it is convenient to choose (V,Up) as a 3 — (n”,5,3) design, a graph with
the following properties: |Uy| = n?, each node of V has degree 5, and for every three
distinct nodes uy, us, ug of Uy there are exactly 3 nodes of V' adjacent to all three of
them. This implies that m = [V| = © (n?*). (See [Hal86] for for a formal definition
of the graph). In [PP97], an explicit construction for the graph is provided and it
is shown that it has (1,2/3,3)-expansion. With this choice for (V,Up) we can plug
e=2/3 and n” = © (n"/?) in the formula of Theorem 16, and by choosing k = O (1)
large enough, we get access time

2r/3—1 2r

T:O(n%-%n%"'T) ZO(n%-H”L 133).

This yields T = O (n*/?), for 13/6 < 7 < 5/2,and T = O (n*"*3/12) for 5/2 < 7 <
9/2, which completes the proof. ad

Note that the access time of the constructive scheme tends to O (n) as m ap-
proaches n?/2, a performance that can be obtained through a straightforward scheme.

6. Extension to Other Architectures. A closer look at the access protocol
developed in the previous sections for the mesh reveals that it solely relies upon a
recursive decomposition of the network into subnetworks of the same type, and upon
(-sorting and (¢, £2)-routing primitives. As a consequence, our scheme can be ported
to any network topology that exhibits a suitable decomposition into subnetworks,
and for which an efficient implementation of the above primitives is available. In this
section we briefly discuss the porting of the scheme to the pruned butterfly and to
multi-dimensional meshes.

An n-leaf pruned butterfly, introduced in [BB95], is a variant of Leiserson’s fat-tree
[Lei85]. Tts coarse structure may be interpreted as a n-leaf complete binary tree where
the leaves represent the processor-memory nodes of the machine, the internal nodes
represent clusters of routing switches, and where the edges represent channels whose
bandwidth doubles every other level from the leaves to the root. More precisely, each

subtree of n' leaves is connected to its parent through a channel of capacity © (\/ n’).

The pruned butterfly is an important interconnection since it is area-universal in the
sense that it can route any set of messages almost as efficiently as any circuit of similar
area.

It follows from the definition that an n-leaf pruned butterfly can be decomposed
into 4? (n/4%)-leaf pruned butterflies connected through channels of capacity /n /4%,
a decomposition similar to the one of the mesh employed in our scheme. Moreover,
it is shown in [HPP95] that {-sorting and (¢1,¢3)-routing can be performed on the
pruned butterfly in the same running time as on the mesh. This immediately implies
that both Theorem 1 and 2 also hold for the pruned butterfly

We now consider the extension of the scheme to d-dimensional meshes, with d
constant. For d > 3, a decomposition of an n-node d-dimensional mesh into submeshes

20 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN

is obtained as an immediate generalization of the two-dimensional case. As for the
primitives, ¢-sorting and (£, ¢s)-routing, with ¢; < {5, require time © (én'/?) and

C] (Z;fl/d(nél)l/d), respectively [SK94]. Then, the same argument presented in §4.2
shows that the access protocol can be executed on a d-dimensional mesh in time

k
1 (d=1)(pte=1) . (d=1)(k—i) 2(d=1)(pte—1)te—1
T=0 (ne+nd <logn+2kn azk + E 23 d n a2t)) .

i=1

Let us fix p = 1 and € < 1/(2d — 1), which, based on Lemma 17, requires r =

Q (d7) in order to guarantee the existence of the first graph (V,Up) of the HMOS.
Straightforward calculations show that the above formula becomes:

T=0 (an%“dd;i)e) .

Arguing as in the proof of Theorem 1 we can prove the following result:

THEOREM 18. For any constant T > 1, there exists a scheme to distribute m = n”
shared variables among the local memory modules of an n-node d-dimensional mesh
(d constant) with redundancy R so that any n variables can be read/written in time

T=0 (n%"'”)
for any constant n > 0, with R = O (1/771'59); or in time
T=0 (n% log n)

with R =0 (log1'59 n)

It has to be remarked that the bandwidth of a d-dimensional mesh increases with
d, hence, in order to achieve access time close to the natural Q (n'/?) lower bound, the
expansion required of (V,Up) must also increase with d. For this reason, the graphs for
which an explicit construction is currently available do not exhibit sufficient expansion
to grant a generalization of Theorem 2; however they can still be used to yield fully
constructive schemes with nontrivial O (nl/‘”gd) access time, for suitable constants
&1 < (d—1)/d. The details follow from tedious yet trivial arithmetic manipulations,
which are omitted for the sake of brevity.

7. Conclusions. In this paper, we devised a scheme for implementing a shared
address space on a mesh of processor/memory pairs. The scheme enables the pro-
cessors to read/write any n-tuple of shared variables concurrently and yields a quasi-
optimal access time in the worst case. One of the most relevant novelties of our imple-
mentation is represented by the hierarchical memory organization scheme, the HMOS,
which provides a structured distribution of copies of the shared variables among the
memory modules. In particular, the HMOS succeeds in the following objectives, which
were not attained by the memory organizations known in the literature: (i) it provides
a single mechanism to cope with both memory contention and network congestion. In
this fashion, copy selection can be employed to reduce both; (ii) it yields fast access
time by using a cascade of bipartite graphs with weak expansion, rather than using
one graph of maximum expansion, which greatly simplifies the implementation. In-
deed, the HMOS is fully constructive and yields quasi-optimal performance for any
memory size m = O (n3/2), which is sufficient, for example, to run any NC algorithm.

CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 21

For large memory sizes, the HMOS embodies only one nonconstructive graph of weak
expansion.

The design of the HMOS is not specifically cast for the mesh topology. We
showed that it can be implemented on the pruned butterfly and on d-dimensional
meshes yielding good performance. More generally, our scheme is efficiently portable
to any low-bandwidth interconnection where routing takes advantage of partitions of
the processors into subnetworks, in the sense that it achieves higher performance by
moving messages gradually closer to their destinations through smaller and smaller
subnetworks, rather than by sending them directly to their destinations.

A challenging and long-standing open problem remains the construction of bi-
partite graphs that exhibit good expansion. The availability of explicit constructions
and concise representations for such graphs is crucial for attaining simple and ef-
ficient deterministic shared memory implementations for all memory sizes. Recent
developments in this area [PP97] seem to indicate that the construction of graphs
with a linear number of edges and moderate expansion, such as those required in our
scheme, be easier than the construction of the highly expanding graphs used in previ-
ous schemes. If this is true, our scheme could become a general and constructive tool
for the implementation of shared memory on distributed memory machines based on
low-bandwidth interconnections.

Finally, we wish to point out that in a recent paper [HPP95], which appeared
after the results in the present paper were first presented [PPS94, PP95], a shared
memory implementation scheme for the mesh is devised that, through a novel and
complex protocol, achieves O (\/nlog n) access time. However, this scheme relies
on a nonconstructive graph of maximum expansion, hence it suffers from the same
limitations affecting other schemes in the literature, as discussed in the introduction.

The paper also proves an (\/n log(m/n?)/log log(m/n2)) lower bound on the access

time of any deterministic scheme for implementing m = Q (n?) shared variables. The
lower bound assumes that variables are accessed through a point-to-point protocol,
which requires that a processor dispatch a separate message for each copy it wants
to update. The assumption is satisfied by the scheme presented in this paper, which
implies that our access time is only a sublogarithmic factor away from optimal.

Appendix. In this appendix, we show how to construct a bipartite graph G =
(X,Y) which is a subgraph of a (¢¢, ¢)-BIBD with the same number of output nodes,
ie., |[Y] = ¢?, fewer input nodes, say |X| =m, 1 <m < ¢* (¢ —1)/(¢ — 1), and
such that each input z € X has degree ¢, as in the original BIBD, and each output

y € Y has degree p, with
qam am
o<]

As explained in §3.1, these subgraphs (with ¢ = 3 and m a power of three) govern the
assignment of replicas of (i — 1) modules to i-modules in the HMOS, for 1 < i < k.
The construction is obtained by modifying the one for a (¢¢, ¢)-BIBD given in [PP93].

Let ¢ be a prime power and let IF, be the finite field with ¢ elements, with its
elements represented by the integers 0,1,...,¢q— 1. The ¢ output nodes of the BIBD
are associated with the set of d-dimensional vectors over IF;, and the inputs with the
¢~ (q? — 1)/(q — 1) pairs of vectors of kind

(@ag—2, ..., apn, 0, ap_1, ..., ai, ao)
(07 ey 07 1: bhflz tey bl: bO)a

22 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN

where the a;’s and b;’s are elements of the field, and h ranges between 0 and d — 1.
For convenience, each such pair will be denoted by x(h, A, B) where A is the integer
in [0,¢%"1) whose representation in base q is (ag_2...apan_1 ...a1a0), and B is the
integer in [0, ¢") whose representation in base q is (by_1 ...b1bg). The subgraph G is
obtained from this BIBD by taking the same output set and selecting a subset of m
inputs as follows. Let £ < d be the index such that

l {+1
a—19 —1 d-14 -1
i "< < R
q—l_m a4 q—1
so that
¢
-1
4 — d—1 q
(4) m=q (q_1+w +z,

for some w, 0 < w < ¢° and 2,0 < z < ¢?~'. The m pairs x(h, A, B) that we select to
represent the nodes of X consist of the union of the three sets X;, X5 and X3 defined
below:

X ={x(h,A,B):0<h<l 0<A<qg", 0<B<q"};
Xy ={x(h,A,B):h=1{0<A<q¢""", 0<B<w};
Xs={x(h,A,B):h={, 0< A<z B=w}.

It is easy to verify that |X;| + | X2| + |X3]| = m.
The edges are defined as follows: the input node

(ag—2, ..., ap, 0, ap_1, ..., ai, aop)
(0, ceey 0,1, bp—1, ..., b1, bg)

is adjacent to the ¢ outputs
(@g—2,-..,ap, T, ap_1 + 2 - bp_1,...,a1 + - by, a0 + - by),

for every z € IF,, where + and - denote the field operations. We now show that the
edges in G are evenly distributed among the outputs.
THEOREM 19. Any node u € Y is connected to p nodes of X, where

% =es]

Proof. Let u be associated with the vector (ags_1,...,a0). We determine the
value of p by separately counting the contributions of the nodes in the three subsets
X1, X5 and X3. Consider X; and fix h < £. Using the properties of field operations,
one can easily show that for any B, 0 < B < ¢", there exists exactly one value
A such that the node x(h, A, B) is connected to u. Therefore, there are exactly
Zf;:t q" = (¢* —1)/(q — 1) nodes of X, connected to u. A similar argument shows
that exactly w nodes of X5 are connected to u. Finally, it can be seen that the
z nodes of X3 are connected to gz distinct output nodes, therefore, according to
whether u is one of such nodes or not, we know that either p = (¢ —1)/(¢—1) +w
or p=(¢* —1)/(g—1)+w + 1. By (4) we conclude that

% =eslG]

CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 23

Note that when m is a power of ¢, it must be z = 0 and therefore p = gm/q? for every
output node. O

Let X = U;_; be the set of (i — 1)-modules, and Y = U; the set of i-modules.
Thus, ¢ = 3, d = d; and m = 3%-1, Each (i —1)-module is adjacent to the 3 i-modules
that contain its (i — 1)-blocks, and, accordingly, each i-module u is adjacent to the
p (i — 1)-modules, each of which has one of its (i — 1)-blocks stored in u. For each
(i — 1)-module, we must be able to efficiently determine the i-modules that store its
(i — 1)-blocks and the location of each block within the module.

It is easy to establish a bijection between the (i — 1)-modules and the pairs
x(h,A,B) in X so that given and index s, 1 < s < m, the pair associated with
the s-th module is determined in O (d) time. Similarly, a bijection between the i-
modules and the d-dimensional vectors over IF3 is easily established. Consider the
(i — 1)-module associated with the pair

_ (ad—Q; ceey Qp, Oa ap—1, ..., Qi, Cl())
x(h, 4, B) = (0, o, 0, 1, bp_1, ..., b1, bo).

We adopt the convention that, for 0 < j < 3, the j-th (i — 1)-block of this module is
the ¢-th item stored in the i-module u, where

u = (ad—Q;- .. aahajaah—l +jbh—17" -, A1 +jblaa’0 +.]b0)

and

In [PP93] it is proved that the above rule is correct, i.e., no two (i — 1)-blocks of
(i — 1)-modules are assigned the same location within the same i-module. Moreover,
it is not difficult to show that 0 < £ < p.

Observe that the structure of any (U;_1,U;) is completely determined by the
parameter d;. Since each d; can be derived from n, we conclude that, in order to
represent (U;—1,U;), a processor needs only know n. From this parameter, the pro-
cessor can determine the exact location of any copy of any (i — 1)-module performing
O (logn) operations (arithmetic or in IF3).

Acknowledgments. This paper benefited from discussions with Matteo Frigo,
Tim Harris and Franco Preparata. The authors wish to thank the anonymous referees
for their valuable comments that helped improve both the presentation and the quality
of the paper.

REFERENCES

[AHMP87] H. ALT, T. HAGERUP, K. MEHLHORN, AND F.P. PREPARATA, Deterministic simulation
of idealized parallel computers on more realistic ones, SIAM J. Comput., 16 (1987),

pp. 808-835.

[BB95] P. BAYy AND G. BILARDI, Deterministic on-line routing on area-universal networks, J.
Assoc. Comput. Mach., 42(1995), pp. 614-640.

[CMS95] A. CzumAJ, F. MEYER AUF DER HEIDE, AND V. STEMANN, Shared memory simula-

tions with triple-logarithmic delay, in Proc. of the 3rd European Symposium on
Algorithms, Corfu, Greece, 1995, pp. 46-59.
[Hal86] M. HALL JR., Combinatorial Theory, John Wiley & Sons, New York NY, 1986.
[Her96] K.T. HERLEY, Representing shared data on distributed-memory parallel computers,
Math. Systems Theory, 29 (1996), pp. 111-156.

24
[HBY4]
[HPP95]

[Kun93]

[Lei92]
[LMRR94]
[Lei85]
[LPPY0]

[MV84]

[PP93]

[PP97]

[PPY95]

[PP97a)

[PPS94]

[Ran91]

[SK94]

[UWS87]

ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN

K.T. HERLEY AND G. BILARDI, Deterministic simulations of PRAMs on bounded-
degree networks, SIAM J. Comput., 23 (1994), pp. 276-292.

K.T. HERLEY, A. PIETRACAPRINA, AND G. Pucci, Implementing shared memory on
multi-dimensional meshes and on the fat-tree, in Proc. of the 3rd European Sym-
posium on Algorithms, Corfu, Greece, 1995, pp. 60-74.

M. KUNDE, Block gossiping on grids and tori: deterministic sorting and routing match
the bisection bound, in Proc. of the 1st European Symposium on Algorithms, Bad
Honnef, Germany, 1993, pp. 272-283.

F.T. LEIGHTON, Introduction to Parallel Algorithms and Architectures: Arrays e Trees
o Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.

F.T. LEIGHTON, B. MAGGS, A. RANADE, AND S. RAO, Randomized routing and sorting
on fized-connection networks, J. Algorithms, 17 (1994), pp. 157-205.

C.E. LEISERSON, Fat-trees: universal networks for hardware-efficient supercomputing,
IEEE Trans. Comput., c-34 (1985), pp. 892-901.

F. Luccio, A. PIETRACAPRINA, AND G. Puccl, A new scheme for the deterministic
simulation of PRAMs in VLSI, Algorithmica, 5 (1990), pp. 529-544.

K. MEHLHORN AND U. VISHKIN, Randomized and deterministic simulations of PRAMs
by parallel machines with restricted granularity of parallel memories, Acta Inform.,
21 (1984), pp. 339-374.

A. PIETRACAPRINA AND F.P. PREPARATA, An O(\/n)-worst-case-time solution to the
granularity problem, in Proc. of the 10th Symposium on Theoretical Aspects of
Computer Science, Wiirzburg, Germany, 1993, pp. 110-119.

———, Practical constructive schemes for deterministic shared-memory access, The-
ory Comput. Systems, 30 (1997), pp. 3-37.

A. PIETRACAPRINA AND G. Pucci, Improved deterministic PRAM simulation on the
mesh, in Proc. of the 22nd International Colloquium on Automata, Languages and
Programming, Szeged, Hungary, 1995, pp. 372-383.

————, The complexity of deterministic PRAM simulation on distributed memory
machines, Theory Comput. Systems, 30 (1997), pp. 231-247.

A. PIETRACAPRINA AND G. Pucci AND J.F. SIBEYN, Constructive deterministic PRAM
simulation on a mesh-connected computer, in Proc. of the 6th Annual Symposium
on Parallel Algorithms and Architectures, Cape May, NJ, 1994, pp. 248-256.

A.G. RANADE, How to emulate shared memory, J. Comput. System Sci., 42 (1991),
pp. 307-326.

J.F. SIBEYN AND M. KAUFMANN, Deterministic 1-k routing on meshes with application
to hot-potato worm-hole routing, in Proc. of the 11th Symposium on Theoretical
Aspects of Computer Science, Caen, France, 1994, pp. 237-248.

E. UPFAL AND A. WIDGERSON, How to share memory in a distributed system, J. Assoc.
Comput. Mach., 34 (1987), pp. 116-127.

