
CONSTRUCTIVE, DETERMINISTIC IMPLEMENTATION OFSHARED MEMORY ON MESHES�ANDREA PIETRACAPRINAy, GEPPINO PUCCIy, AND JOP F. SIBEYNzAbstract. This paper describes a scheme to implement a shared address space of size m onan n-node mesh, with m polynomial in n, where each mesh node hosts a processor and a memorymodule. At the core of the simulation is a Hierarchical Memory Organization Scheme (HMOS),which governs the distribution of the shared variables, each replicated into multiple copies, amongthe memory modules, through a cascade of bipartite graphs. Based on the expansion properties ofsuch graphs, we devise a protocol that accesses any n-tuple of shared variables in worst-case timeO �n1=2+��, for any constant � > 0, using O �1=�1:59� copies per variable, or in worst-case timeO �n1=2 log n�, using O �log1:59 n� copies per variable. In both cases the access time is close tothe natural O �pn� lower bound imposed by the network diameter. A key feature of the scheme isthat it can be made fully constructive when m is not too large, thus providing in this case the �rste�cient, constructive, deterministic scheme in the literature for bounded-degree processor networks.For larger memory sizes, the scheme relies solely on a nonconstructive graph of weak expansion.Finally, the scheme can be e�ciently ported to other architectures, as long as they exhibit certainstructural properties. In the paper we discuss the porting to multi-dimensional meshes and to thepruned buttery, an area-universal network which is variant of the fat-tree.Key words. PRAM simulation, parallel computation, shared memory machines, networks ofprocessors, meshes, expander graphsAMS subject classi�cation. 68Q101. Introduction. A desirable feature of a parallel computer is the provisionof a shared address space that can be accessed concurrently by all the processorsof the machine. Indeed, the manipulation of shared data provides a powerful anduniform mechanism for interprocessor communication, and constitutes a valuable toolfor the development of simple and portable parallel software. Unfortunately, whenthe number of processors exceeds a certain (modest) threshold, any e�cient hardwarerealization of shared memory is either prohibitively expensive or out of reach of currenttechnology. Therefore, a shared address space must be provided virtually on hardwareplatforms consisting of a set of processor/memory module pairs which are connectedthrough a network of point-to-point communication links.This problem has received considerable attention over the past two decades, andhas been the target of a large number of investigations, both theoretical and applied.In the theoretical community, the problem is best known as the PRAM simulationproblem. An (n;m)-PRAM is an abstraction of a shared-memory machine consistingof n synchronous RAM processors that have direct access to m shared variables. Ina PRAM step, executed in unit time, any set of n variables can be read or written inparallel by the processors. A solution to the PRAM simulation problem is a schemeto perform any computation of an (n;m)-PRAM on a target machine consisting of a�This research was supported in part, through the Leonardo Fibonacci Institute, by the IstitutoTrentino di Cultura. The results in this paper appeared in preliminary conference form in [PPS94]and in [PP95].yDipartimento di Elettronica e Informatica, Universit�a di Padova, Via Gradenigo 6/a, 35131Padova, Italy. Email: fandrea,geppog@artemide.dei.unipd.it. The research of these authors wassupported in part by CNR and MURST of Italy.zMax-Planck Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. Email:jopsi@mpi-sb.mpg.de. The research of this author was supported in part the EC Cooperative ActionIC-1000 (project ALTEC: Algorithms for Future Technologies).1



2 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYNnetwork of n processor/memory pairs. A typical PRAM simulation scheme distributesthe PRAM shared variables among the n modules local to the machine processors,and recasts a parallel access to the shared-memory into the routing of messages fromthe processors requesting the variables to the processors storing such variables.Several randomized PRAM simulation schemes have been proposed in the liter-ature. In all these schemes, the shared variables are distributed among the memorymodules via one (or more) hash functions randomly drawn from a suitable universalclass. Among the most relevant results, we recall that a PRAM step can be simu-lated, with high probability, in O (log log logn log� n) time on the complete network[CMS95], in O (logn) time on the buttery [Ran91] and in O (pn) time on the mesh[LMRR94].In contrast, the development of e�cient deterministic schemes, that is, schemesthat guarantee a fast worst-case simulation time for any PRAM step, appears to bemuch harder. A simple argument shows that in order to avoid trivial worst-casescenarios, where all the variables requested in the PRAM step are stored in a smallregion of the network, one has to use several copies for each variable, so that only asubset of \convenient" copies needs to be reached by each operation. The number ofcopies used for each variable is called the redundancy of the scheme.The idea of replicating each variable into multiple copies dates back to the pio-neering work of Mehlhorn and Vishkin [MV84]. In their approach, a read operationneed only access one (the most convenient) copy. For m = O �nR�, the authors obtaina scheme for the complete interconnection which uses R copies per variable and allowsany set of n reads to be satis�ed in time O �n1�1=R�. However, the execution of nwrite operations, where all copies of the variables must be accessed, is penalized andrequires O (Rn) time in the worst case.Later, Upfal and Wigderson [UW87] proposed a more balanced protocol requiringthat, in order to read or write a variable, only a majority of its copies be accessed.They also represent the allocation of the copies to the modules by means of a MemoryOrganization Scheme (MOS). An MOS is a bipartite graph G = (V; U), where V isthe set of shared variables, U is the set of memory modules of the underlying machine,and R edges connect each variable to the modules storing its copies. For m polyno-mial in n and R = �(logn), the authors show that there exist suitable expandinggraphs that guarantee a worst-case O �log n (log logn)2� time to access any n vari-ables on the complete interconnection. This bound was later improved to O (logn)in [AHMP87]. Several authors pursued the ideas in [UW87] to develop simulationschemes for bounded-degree networks of various topologies. In particular, schemeshave been devised to simulate an arbitrary step of an (n;m)-PRAM, with m polyno-mial in n, in time O �log2 n= log logn� on a Mesh-of-Trees (MoT) with n processorsand � �n2� switching elements [LPP90], or in time O (logn logm= log logn) on an n-processor expander-based network [HB94], or in time O (logn log logn log log(m=n))on a suitably augmented MoT [Her96].All of the aforementioned deterministic schemes (except for the one in [MV84]which, however, is not general since write accesses are heavily penalized) su�er fromtwo major limitations.1. The MOS graphs must exhibit maximum expansion relatively to the m=nratio. Although the existence of such graphs can be proved through standard countingarguments, no e�cient constructions are yet available. In addition, it is unlikely thatthe (few) constructions known for expanders may be of use when m is much largerthan n.



CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 32. The expansion properties of the MOS are exclusively used to curb memorycontention. Network congestion issues are either ignored, as in the case of simulationson the complete network, or solved by means of separate mechanisms tailored to thespeci�c network's topology1.Recently, constructive deterministic schemes exhibiting nontrivial performancehave been developed for the complete interconnection. In [PP97] three schemes arepresented for m = O �n3=2�, m = O �n2� and m = O �n3� variables, which attainO �n1=3�, O �n1=2� and O �n2=3� access time, respectively, for any n-tuple of variablesusing constant redundancy. These schemes rely on MOS graphs that admit e�cientexplicit constructions but exhibit weak expansion. In this paper we will exploit thesame constructions in a more complex framework to achieve e�cient implementationsof shared data on realistic, low-bandwidth machines. Speci�cally, we will develop anovel approach where the ine�ciencies caused by the weak expansion of the memorymap are absorbed into the inherent bandwidth limitations of the interconnection, andwhere both memory contention and network congestion are controlled through a singlemechanism.1.1. Overview of Results. This paper presents a deterministic scheme for im-plementing a shared address space of size m on an n-node square mesh, with mpolynomial in n, where each node consists of a processor with direct access to a localmemory module. The scheme provides a protocol to access an arbitrary set of n sharedvariables in nearly-optimal time, for all values of m. The scheme is fully constructivefor m = O �n3=2�, whereas for larger values of m it embodies only a nonconstructivecomponent graph of constant degree whose expansion properties, however, are muchweaker than those required of the graphs used in previous works. Full constructive-ness can also be attained for memory sizes up to m = O �n9=2�, at the expense of aprogressive degradation in performance when m gets closer to the upper bound.The scheme adopts a novel redundant representation of the shared variables andis centered around the Hierarchical Memory Organization Scheme (HMOS), whichprovides a structured distribution of the copies of the variables among the memorymodules. The HMOS consists of k + 1 levels of logical modules built upon the setof shared variables. The modules of the �rst level (level 0) store copies of variables,whereas modules of level i > 0 store replicas of modules of level i � 1. The HMOSis represented by a cascade of bipartite graphs, where the �rst graph governs thedistribution of the copies of the variables to the modules of level 0, and the othergraphs govern the distribution of the replicas of modules at higher levels. Each levelof the HMOS corresponds to a tessellation of the mesh into submeshes of appropriatesize, with each module of that level assigned to a distinct submesh.We devise an access protocol to satisfy n arbitrary read/write requests issued bythe n processors, which takes advantage of the hierarchical structure of the HMOS.As customary in any multi-copy approach, an access to a variable is executed on aselected subset of its copies. A suitable copy selection mechanism is developed tolimit the number of copies to be accessed in each submesh, and, ultimately, in eachindividual module. In this sense, the HMOS provides a single mechanism to copewith both memory contention and network congestion, which represents a noveltywith respect to previous works, where the two issues were dealt with separately.1In fact, in [HB94] an MOS with slightly less than maximum expansion is employed in orderto reduce the redundancy and, consequently, network congestion, at the expense of an increase inmemory contention. However, such an MOS does not embody any speci�c mechanism to explicitlycontrol network congestion.



4 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYNTable 1Results in this paper.m = n� Access Time Constructive Redundancy� > 3=2 O�n 12+�� ;8 constant � > 0 no O �1=�1:59�� > 3=2 O �pn log n� no O �log1:59 n�1 � � � 3=2 O�n 12+�� ;8 constant � > 0 yes O �1=�1:59�1 � � � 3=2 O �pn log n� yes O �log1:59 n�32 < � � 136 O�n 2�+18 � yes � (1)136 � � � 52 O�n 23� yes � (1)52 � � � 92 O�n 2�+312 � yes � (1)In order to guarantee low memory contention and network congestion, the HMOScomponent graphs must exhibit certain expansion properties. Compared to those em-ployed in previous schemes, our graphs have much weaker expansion, attainable usingonly constant (rather than logarithmic) input degree. This makes the HMOS moreamenable to explicit construction. Indeed, all HMOS graphs but the �rst one are takenas subgraphs of a well-known combinatorial structure, the BIBD, for which an explicitand simple construction is known. As for the �rst graph, an explicit construction canbe provided when m is not too large, thus making the HMOS fully constructive, whilefor large values of m, the graph can be shown to exist through a standard countingargument. Our results are reported in detail below, and summarized in Table 1.Theorem 1. For any constant � � 1, there exists a scheme to distribute m = n�shared variables among the local memory modules of an n-node mesh with redundancyR so that any n variables can be read/written in timeT = O �n 12+��for any constant � > 0, with R = O �1=�1:59�; or in timeT = O �n 12 logn�with R = O �log1:59 n�.As mentioned before, for arbitrary values of m the HMOS embodies one non-constructive graph. Full constructiveness can be achieved when m = O �n9=2�, asreported below.Theorem 2. For any constant � , with 1 � � < 9=2, there exists a fully construc-tive scheme to distribute m = n� shared variables among the local memory modules ofan n-node mesh, which, for � � 3=2, achieves the same performances as those statedin Theorem 1, while for � > 3=2 achieves the following access timesT = O �n 2�+18 � for 32 < � � 136 ;T = O �n 23� for 136 � � � 52 ;T = O �n 2�+312 � for 52 � � � 9=2;with redundancy R = �(1).



CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 5Compared to the natural 
 (pn) lower bound imposed by the network diameter,our fastest access time is only a logarithmic factor away from optimal.Prior to the present work, no e�cient deterministic schemes for implementingshared memory explicitly designed for the mesh topology were known in the literature.However, the schemes designed for the complete interconnection can be implementedon the mesh through sorting and routing. In particular, O (pn logn) access timecan be obtained by implementing the nonconstructive scheme in [AHMP87], andO �n1=2+t� access time can be obtained by porting the constructive schemes of [PP97]to the mesh, with t = 1=6 for m = O �n3=2�, t = 1=4 for m = O �n2� and t = 1=3 form = O �n3�.Our results improve upon previously published ones in the following ways. First,we attain O (pn logn) access time, as in [AHMP87], with a memory organizationwhich is fully constructive when m = O �n3=2�, while, for all other values of m poly-nomial in n, it embodies a nonconstructive graph exhibiting much weaker expansionthan that required in [AHMP87]. The recent results of [PP97] suggest that our mem-ory map is more amenable to explicit construction. Note also that our constructiveresults outperform the ones obtainable by the straightforward porting to the mesh ofthe schemes in [PP97] discussed above.Finally, it is important to observe that our scheme is not speci�cally tailored tothe mesh topology, but can be ported, with minor adjustments, to other topologies.In particular, the same access times reported in Theorems 1 and 2 can be attained onan n-leaf pruned buttery, an area-universal network which is a variant of the fat-tree,and Theorem 1 can be generalized to hold for d-dimensional meshes, with constant d,by substituting n1=d for n1=2 in the formulas.The rest of this paper is organized as follows. Section 2 de�nes the machinemodel and introduces the routing and sorting primitives used by the access protocol.Section 3 describes the HMOS (x3.1) and its implementation on the mesh (x3.2). Asuitable construction for the BIBDs used in the HMOS is given in an appendix to thepaper. Section 4 presents the protocol for accessing an arbitrary n-tuple of sharedvariables. This section is subdivided into two subsections that describe the selection ofthe copies and the routing protocol, respectively. In x5, suitable values for the designparameters of the HMOS are selected, and Theorems 1 and 2 are proved. Section 6shows how the scheme can be generalized to other architectures, such as the prunedbuttery and multi-dimensional meshes. Section 7 closes with some �nal remarks.2. Machine Model. We present our shared memory implementation on amesh,consisting of an array of pn�pn processor-memory pairs, connected through a two-dimensional grid of communication links. The machine operates in lock-step, where ineach step a processor can perform a constant amount of local computation (includingaccesses to its local memory) and can exchange a constant number of words withone of its direct neighbors. Our objective is to devise a distributed representation ofm � n shared variables on the mesh so that any n-tuple of read/write accesses tothese variables can be served e�ciently. The approach will be generalized to otherarchitectures in x6.The access protocol will make use of the following primitives, for which optimalalgorithms are known in the literature. We call `-sorting a sorting instance in whichat most ` keys are initially assigned to each processor and are to be redistributed sothat the ` smallest keys will be held by the �rst processor, the next ` smallest ones bythe second processor, and so on, with the processors numbered in row major order.We have:



6 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYNFact 3 ([Kun93]). Any `-sorting can be performed on an n-node mesh in O (`pn)time.We call (`1; `2)-routing a routing problem in which each mesh processor is thesource of at most `1 packets and the destination of at most `2 packets. We have:Fact 4 ([SK94]). Any (`1; `2)-routing can be performed on an n-node mesh inO �p`1`2n� time.A simple bisection-based argument shows that this result is optimal in the generalcase. However, for a special class of (`1; `2)-routings, a better performance can beachieved as follows. Fix a tessellation of the mesh into n=s submeshes of s nodeseach, and consider an (`1; `2)-routing where at most �s packets are destined for eachsubmesh. We �rst use `1-sorting and (`1; �)-routing to spread the packets evenlyamong the nodes of their destination submeshes, and then complete the routing byrunning n=s independent instances of (�; `2)-routing within each submesh. The overallrouting time becomes O �`1pn+p`1�n+p�`2s� :Comparing the O �p`1`2n� complexity of the general (`1; `2)-routing algorithm withthe above routing time, we see that the new algorithm is pro�table when �; `1 = o(`2)and �s = o(`1n). This fact will be exploited in our access protocol, where packetrouting is used to access selected copies of the variables. In particular, we will employseveral nested tessellations of the mesh and provide strong bounds on the congestionwithin the submeshes of each tessellation, so that the above strategy can be applied.The packets will then be routed gradually to their destinations through a sequence ofsmaller and smaller submeshes.3. The Hierarchical Memory Organization Scheme. This section intro-duces the Hierarchical Memory Organization Scheme (HMOS), a mechanism throughwhich m shared variables are distributed among the n memory modules of a proces-sor network. The section is organized in two subsections: x3.1 presents the logicalstructure of HMOS, while x3.2 describes its actual implementation on the mesh.3.1. Logical structure of the HMOS. The HMOS is structured as k + 1levels of logical modules built upon the shared variables, where k = O (log logn) isa nonnegative integer function of n, to be speci�ed by the analysis. More speci�-cally, starting from m = n� shared variables, for a �xed constant � > 1, the HMOScomprises mi modules at level i, called i-modules, for 0 � i � k, where the mi's arestrictly decreasing values that will be speci�ed later. Modules are nested collections ofvariables, obtained as follows. First, each variable is replicated into r = �(1) copies,which are assigned to distinct 0-modules. The contents of each 0-module, viewed asan indivisible unit, are in turn replicated into 3 copies, which are assigned to distinct1-modules. In general, the contents of each (i � 1)-module, viewed as an indivisi-ble unit, are replicated into 3 copies, which are assigned to distinct i-modules, for0 < i � k. It is easy to see that the above process will eventually create 3k�i replicasof each i-module and r3k copies per variable. In the rest of this paper, we will reservethe term copy to denote the replica of a variable, and i-block to denote the replica ofan i-module.The di�erence between an i-module and one of its i-blocks is akin to the di�er-ence between a variable and one of its copies. Namely, an i-module represents anabstract entity, of which several physical replicas, its i-blocks, exist. Since the con-tents of k-modules are not replicated, the terms k-module and k-block will be used



CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 7interchangeably. Note that a k-block is made of (k � 1)-blocks, which in turn aremade of (k�2)-blocks, and so on until 0-blocks are reached. The latter contain copiesof variables.Let V denote the set of shared variables, and Ui the set of i-modules, for 0 � i � k.The HMOS is represented as a leveled direct acyclic graph (dag) H, which is de�nedby a cascade of k + 1 bipartite graphs, namely (V; U0) and (Ui�1; Ui), 0 < i � k,whose edges are directed left-to-right. In (V; U0), each variable v 2 V is adjacentto r 0-modules, denoted by 0(v; j), 1 � j � r. For 0 < i � k, in (Ui�1; Ui), each(i � 1)-module u is adjacent to three i-modules denoted by i(u; j), 1 � j � 3. Fornotational convenience, we will number the levels in the HMOS starting from -1, thelevel of the variables. As a consequence, nodes at level i, 0 � i � k, are i-modules.In the HMOS, each variable v uniquely identi�es a single-source subdag Hv in-duced by all nodes reachable from v 2 V . A straightforward property of Hv is that itcontains r3k distinct source-sink paths which are in one-to-one correspondence withthe r3k copies of v. Each source-sink path in Hv (hence, each copy of v) is uniquelyidenti�ed by the string of nodes traversed by the path. Moreover, for 0 � i � k, thesu�x of any such string starting with a node u at level i of Hv , identi�es a speci�ci-block storing a copy of v. Note that several source-sink paths in Hv may correspondto strings with a common su�x starting from level i. In this case, the i-block corre-sponding to the common su�x will store several distinct copies of v. A small HMOSfor 8 shared variables is shown in Figure 1.

rrrr
rrrrv1v2v3v4v5v6v7v8V(variables) v1 v3 v4v6 v8u0;8v1 v2 v3v5 v8u0;7v1 v2 v4v5 v7u0;6v1 v3 v4v5 v6u0;5v2 v3 v6v7 v8u0;4v2 v4 v5v7 v8u0;3v2 v5 v6v7 v8u0;2v1 v3 v4v6 v7u0;1

U0 = fu0;j : 1 � j � 8g(0-modules)

v1 v3 v4v6 v7 v2 v5 v6v7 v8 v2 v4 v5v7 v8v1 v3 v4v5 v6 v1 v2 v4v5 v7 v1 v3 v4v6 v8u1;1
v2 v5 v6v7 v8 v2 v4 v5v7 v8 v2 v3 v6v7 v8v1 v3 v4v5 v6 v1 v2 v4v5 v7 v1 v2 v3v5 v8u1;2
v1 v3 v4v6 v7 v2 v5 v6v7 v8 v2 v3 v6v7 v8v1 v3 v4v5 v6 v1 v2 v3v5 v8 v1 v3 v4v6 v8u1;3
v1 v3 v4v6 v7 v2 v4 v5v7 v8 v2 v3 v6v7 v8v1 v2 v4v5 v7 v1 v2 v3v5 v8 v1 v3 v4v6 v8u1;4
U1 = fu1;j : 1 � j � 4g(1-modules)Fig. 1. An HMOS H built upon 8 shared variables, with r = 5 and k = 1. There are 8 0-modulesand 4 1-modules/1-blocks. Each 1-block contains 6 0-blocks (physical copies of 0-modules), each ofwhich in turn contains 5 copies of the variables. The edges shown in the �gure are those of thesubdag Hv4 . Note that there are 15 edge-disjoint, source-sink paths in Hv4 , each path correspondingto one the 15 copies of v4.



8 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYNThe component bipartite graphs of the HMOS must be carefully chosen in orderto guarantee a good distribution of the copies of the variables, once the HMOS ismapped onto the processors' memory modules. More speci�cally, we require that thegraphs exhibit good expansion, according to the following de�nition.Definition 5. Let G = (X;Y ) be a bipartite graph, where each input node inX has degree d. For 0 < � � 1, 0 < � < 1 and 1 � � � d, G is said to have(�; �; �)-expansion if for any subset S � X, jSj � �jX j, and for any set E of �jSjedges, � outgoing edges for each node in S, the set �E(S) � Y reached by the chosenedges has size j�E(S)j = 
 �jSj1��� :We let jU0j = n�, where 0 < � < 3=2 is a parameter to be �xed by the analysis.We require that (V; U0) has input degree r, for a �xed odd constant r > 0, outputdegree jV jr=jU0j, and exhibits (�; �; �)-expansion, where � = n=m, � is a positiveconstant less than 1, and � = (r + 1)=2. Clearly, a necessary condition for theexistence of such a graph is (�jV j)1�� = n1�� � n�, which implies � + � � 1 � 0.The analysis will determine suitable values for r, � and � that guarantee the existenceof (V; U0). Moreover, an explicit construction for such graph will be available whenm = O �n9=2�.The graphs (Ui�1; Ui), for 0 < i � k, are derived from instances of varying sizeof the same combinatorial structure, the Balanced Incomplete Block Design, de�nedbelow.Definition 6 ([Hal86]). A Balanced Incomplete Block Design with parametersw and q, or (w; q)-BIBD, is a bipartite graph (X;Y ) such that� jY j = w;� The degree of each node in X is q;� For any two nodes y1; y2 2 Y there is exactly one node x 2 X adjacent toboth.From the de�nition, it immediately follows that jX j = w(w � 1)=(q(q � 1)) andthat the degree of each node in Y is (w � 1)=(q � 1). One important property of theBIBD, which we will heavily exploit, is stated in the following lemma.Lemma 7. Let G = (X;Y ) be a (w; q)-BIBD. Consider a node y 2 Y , and asubset S � X such that any node in S is adjacent to y. Let E be a set of �jSj edges,with � � q, containing � outgoing edges from each x in S, and let �E(S) denote theset of nodes of U reached by the chosen edges. Thenj�E(S)j � (�� 1)jSj+ 1:Proof. The de�nition of BIBD implies that no two nodes in S share a neighborother than y. If y 62 �E(S), then j�E(S)j = �jSj. Otherwise, at most jSj of theselected edges reach y, the other (�� 1)jSj reach distinct nodes.Corollary 8. A (w; q)-BIBD has (1; 1=2; �)-expansion, for every 2 � � � q.Proof. Let G = (X;Y ) be a (w; q)-BIBD, and let S be an arbitrary subset of inputnodes. We now show that j�E(S)j >p(�� 1)�jSj, for an arbitrary set E containing� outgoing edges from each node in S. Assume that j�E(S)j �p(�� 1)�jSj. Then,there must then be an output node in �E(S) that is adjacent to at leastpjSj�=(�� 1)nodes in S. According to Lemma 7 this implies that j�E(S)j � (��1)pjSj�=(�� 1)+1 >p(�� 1)�jSj, which contradicts our assumption.



CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 9For convenience, we assume that both n and 3kn� are even powers of three.Consider the sequence of integers d0; d1; : : : ; dk de�ned as( d0 = log3 n�;di = 2 l12 �di�12 + 1 + k � i�m� k + i; for 1 � i � k:For 0 � i � k, set the number of i-modules to be mi = 3di . The following twoproperties are easily established.(i) di + k � i is even, for 0 � i � k.(ii) 3pmi�1 � mi � 16pmi�1, which implies that mi�1 � mi(mi � 1)=6, for1 � i � k, and mi = ��n�=2i�, for 0 � i � k.We choose (Ui�1; Ui) as a subgraph of a (mi; 3)-BIBD, wheremi(mi�1)=6�mi�1inputs are removed along with their incident edges. The inputs to be removed arechosen in such a way that the remaining edges are evenly distributed among theoutputs, so that each node of Ui becomes adjacent toni = 3mi�1minodes of Ui�1. An e�cient construction of such subgraphs is described in the ap-pendix.3.2. Mapping the HMOS onto the Mesh. The HMOS is physically mappedonto the mesh by storing each i-block in a distinct submesh of appropriate size. Forsome values of the parameter �, the number of 0-blocks exceed the mesh nodes,hence a single mesh node must store more than one 0-block. There are 3k�imi =��3k�in�=2i� i-blocks, 0 � i � k, and each i-block contains exactly ni (i � 1)-blocks, 1 � i � k. We de�ne k nested tessellations of the mesh into submeshes asfollows. The outermost tessellation is a subdivision of the mesh into mk submeshes(k-submeshes), each storing a distinct k-block. Each k-submesh is in turn tessellatedinto nk (k�1)-submeshes storing the component (k�1)-blocks of the k-block assignedto the k-submesh. In general, for 2 � i � k, each i-submesh, storing a given i-block,is tessellated into ni (i�1)-submeshes storing its component (i�1)-blocks. Thus, for1 � i � k, we have a total ofmknknk�1 � � �ni+1 = 3k�imi = ��3k�in�=2i�i-submeshes, each of sizeti = n3k�imi = n3di+k�i = ��3i�kn1��=2i� :Note that the assumption k = O (log logn) ensures ti � 1, for i � 1 and n su�cientlylarge. Moreover, since both log3 n and di + k � i are even, we have that ti is aneven power of three, hence pti is integral and pti�1 divides pti. As a consequence,the (i � 1)-submeshes storing the ni component (i � 1)-blocks of an i-block are allcontained within the i-submesh storing the i-block. Finally, the organization of the3kn� 0-blocks depends on the parameter �. When 3kn� < n, we assign each 0-block toa submesh of t0 = n1��=3k nodes and evenly partition the contents of the block amongthese nodes. Otherwise, when 3kn� > n there are more 0-blocks than processors, sowe assign 3kn��1 0-blocks to each processor. In either case, each processor storesr3km=n copies of variables.



10 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN4. The Access Protocol. Suppose that m shared variables are distributedamong the n mesh nodes according to the HMOS. In this section, we present theprotocol that realizes a parallel access to any n-tuple of variables, where each proces-sor issues a read/write request for a distinct variable. (The case of concurrent accessescan be reduced to the case of exclusive accesses in time O (pn) by means of standardsorting-based techniques for leader election and data distribution [Lei92].)Let S denote the set of variables to be accessed. The access protocol consists ofa copy selection phase followed by a routing phase. In the �rst phase, a suitable setof copies for the variables in S is chosen, so that accessing these copies will enforcedata consistency and generate low memory contention and network congestion. In thesubsequent phase, the selected copies are e�ectively accessed through an appropriaterouting strategy. In case of read operations, the accessed data are returned to therequesting processors along the reverse routing paths.4.1. Copy Selection Phase. Copy selection achieves the double objective ofcontrolling both memory contention and network congestion by means of a singlemechanism. The hierarchical structure of the HMOS provides a geographical distri-bution of the copies into nested regions of the network. By carefully limiting thenumber of copies that have to be accessed in any block at any level, we reduce thenumber of packets that will ever be routed to any such region, which allows us toadopt the e�cient routing strategy illustrated in x2.4.1.1. A New Consistency Rule. Recall from x3.1 that the r3k copies of avariable v are associated with the source-sink paths of Hv , the subdag of H inducedby v and by all of its descendants. Suppose that we want to read/write v. In orderto guarantee consistency, the copies of v to be accessed are selected according to anew rule, which extends the majority protocol of [UW87] to �t the structure of theHMOS. Speci�cally, we require that the selected copies form a target set, which isde�ned as follows. Let Cv be a set of copies of v and let N (Cv) be the set of nodes ofHv belonging to the source-sink paths associated with these copies. Recall that r isodd, and let � = (r + 1)=2.Definition 9. Cv is a target set for v if jCvj = �2k and the following conditionholds: a majority (�) of the nodes at level 0 of Hv belong to N (Cv), and, for eachnode at level i belonging to N (Cv), a majority (two) of its successors at level i + 1belong to N (Cv), for 0 � i < k.Figure 2 depicts the source-sink paths corresponding to a target set Cv4 for vari-able v4 in the HMOS of Figure 1.An easy inductive argument shows that any two target sets for the same variablehave nonempty intersection. Based on such a property we can guarantee consistency,that is, ensure that a read always returns the most updated value, as follows. Ascustomary in any multi-copy approach, we equip each copy with a time-stamp, whichis set to the current step whenever the copy is written. A read or write operation ona variable v is simulated by accessing a target set of its copies. By the intersectionproperty of target sets, the copies accessed for reading a variable v must include atleast one of the most recently written copies for v, which can be identi�ed by lookingfor the most recent time-stamp. It should be noted that a target set contains only �2kcopies out of the r3k total copies of a variable. Therefore, unlike previous protocols,we maintain consistency by accessing much less than a majority of the copies.4.1.2. The Selection Procedure. The copy selection phase determines a tar-get set Cv for each v 2 S. This is accomplished in k + 1 iterations, numbered from 0



CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 11
rrv4
rrr
rrr
rr

u0;8u0;7u0;6u0;5u0;4u0;3u0;2u0;1
������BBBBBBBBB rr

rr

u1;4
u1;3
u1;2
u1;1������������XXXXXX

�������
�

������Fig. 2. The source-sink paths (solid lines) in Hv4 corresponding to a target set Cv4 of 6 copiesfor variable v4 in the HMOS H of Figure 1.to k, during which the nodes of the Hv 's are marked in a top-down fashion from thesources to the sinks. More speci�cally, for every Hv , with v 2 S, Iteration 0 marksthe source v and � of its successors (0-modules); Iteration i, 0 < i � k, marks twosuccessors (i-modules) of each marked node at level i� 1. In this fashion, at the endof Iteration i, 0 � i � k, the marked nodes in each Hv form exactly �2i distinct pathsfrom the source to nodes at level i (in what follows we refer to such paths as markedpaths). We choose Cv as the set of copies of v corresponding to the �2k source-sinkmarked paths in Hv at the end of the last iteration.It is important to notice that a node ofH, say an i-module u, may belong to severalsubdags Hv corresponding to variables in S. During the copy selection procedure, wekeep track of u independently in each such subdag, hence, u may result marked insome of the subdags and unmarked in the others. Suppose that at the end of Iterationi u is marked in some subdags, and that a total of h marked paths in these subdagsreach u. This implies that at the end of copy selection there will be h2k�i markedpaths that pass through u, that is, h2k�i copies in Sv2S Cv stored in i-blocks of u.In Iteration i + 1 the two successors of u to be marked are chosen to be the samefor all subdags in which u is marked; hence, for each chosen successor node, u willcontribute h paths to the total number of marked paths that will pass through thatnode at the end of the iteration. The main idea behind the copy selection phase is tocontrol congestion in (i + 1)-blocks by choosing the nodes to be marked in Iterationi + 1 in such a way to keep the number of marked paths passing through each suchnode under some reasonable bound.The following notations will be needed to describe the copy selection procedure:Definition 10. For 0 � i � k, Ai � Ui denotes the set of i-modules that aremarked in some Hv, with v 2 S, during Iteration i. The modules in Ai are calledactive modules.



12 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYNDefinition 11. The weight w(u) of an active module u 2 Ai is the sum, overall variables v 2 S, of the number of marked paths from v to u in Hv.From the previous discussion we conclude that exactly w(u) copies in Sv2S Cvwill reside in each of the selected 2k�i i-blocks of u, while the other i-blocks of u willnot contain any copy in Sv2S Cv . Using the expansion properties of the HMOS, wewill be able to guarantee suitably low values for the w(u)'s.The actions performed by the copy selection procedure are reported below. SinceIteration 0 is di�erent from the others, it is described separately. In order to un-derstand the parameters used in Iteration 0, recall that we chose (V; U0) to have(n=m; �; �)-expansion, where 0 < � < 1 and � = (r + 1)=2. In other words, the graphguarantees that for any set S of at most jSj � n variables and any choice of � 0-modules adjacent to each variable, the overall number of chosen 0-modules is at least�jSj1��, for some constant � > 0. Finally, recall that each processor is in charge of adistinct variable.Iteration 0.1. For v 2 S, let pv denote the processor in charge of v. Each pv creates rcopy-packets denoted by the tuples [pv; v; uj = 0(v; j); hv;uj = 1], for 1 � j � r.Upon creation, all copy-packets are regarded as unmarked.2. Let CP0 denote an initially empty set. The following three substeps areexecuted until � copy-packets for each variable are put in CP0.(i) Sorting : Sort all unmarked copy-packets by their third component.(ii) Selection: For each u 2 U0, let cu be the number of copy-packets with thirdcomponent u in the sorted sequence. If cu � (2r=�)n�, then all such packets aremarked. Otherwise, none of them is marked. Subsequently, all the packets are sentback to their originating processors.(iii) Counting : For each v 2 S, pv counts the total number of its copy-packetsmarked so far. If these are at least �, then exactly � of them are put in CP0 whilethe remaining r�� copy-packets are discarded. Otherwise, the marked copy-packetsare locally bu�ered.3. For each v 2 S, pv marks the source of Hv and � of its successors corre-sponding to the copy-packets for v included in CP0.The analysis will show that the set CP0 is determined in at most logn+1 iterationsof Step 2.Iteration i (1 � i � k). At the beginning of Iteration i, the mesh processors storea set CPi�1 of copy-packets. Speci�cally, each processor pv stores copy-packets oftype [pv ; v; u; hv;u], where u 2 Ai�1 andPu hv;u = �2i�1. The value hv;u reects themultiplicity of u with respect to v, that is, the number of distinct marked paths inHv from v to u. Iteration i consists of the following steps.1. The copy-packets in CPi�1 are sorted by their third component;2. For each group of packets with the same third component u 2 Ai�1, a leaderprocessor pu is elected. Each pu computes w(u) as the sum of the multiplicities carriedby the packets in its group, and creates the three module-packets [pu; u; (u; j); w(u)],for 1 � j � 3;3. The 3jAi�1j module-packets are sorted lexicographically by their third andfourth components;4. For each x 2 Ui, a maximal subset Px of module-packets with third compo-nent x is chosen, such thatX[pu;u;x;w(u)]2Pxw(u) � c�2i�1 �n1� 1��2i + n1� 1��2i�1 � ;



CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 135. The chosen packets are sent back to their originating leader processors;6. Assume that a leader processor pu receives h � 3 module-packets back. Ifh < 2, then pu selects 2�h extra module-packets from the 3�h that were not chosenin the previous step. Otherwise, pu selects two module-packets among those received;7. Let [pu; u; (u; j1); w(u)] and [pu; u; (u; j2); w(u)] be the two module-packetsselected by pu. Processor pu sends the names (u; j1) and (u; j2) to the processorsstoring the copy-packets in its group;8. Each copy-packet [pv; v; u; hv;u] 2 CPi�1 is augmented with two extra com-ponents containing (u; j1) and (u; j2);9. The augmented copy-packets are routed back to the processors in charge oftheir respective variables;10. For any augmented copy packet [pv ; v; u; hv;u; (u; j1); (u; j2)] received atprocessor pv, the nodes (u; j1) and (u; j2) at level i of Hv are marked (note thatthe same node may be redundantly marked more than once). Moreover for eachnewly marked node u0 at level i, a copy packet [pv; v; u0; hv;u0 ] is created, where hv;u0is obtained by summing up the multiplicities of the received (augmented) copy-packetscarrying u0 in one of the two extra components. These new copy-packets form the setCPi, while all other packets are discarded.When Iteration k terminates, for each v 2 S, pv determines the set Cv of copies tobe accessed as those corresponding to the �2k source-sink marked paths in Hv . It iseasily seen that for each v 2 S, the set Cv computed by the copy selection procedureis indeed a target set for v.4.1.3. Analysis of the Selection Procedure. We now determine the runningtime of the selection procedure described above. Let us �rst consider Iteration 0.By Fact 3 and since r = O (1), Steps 1 and 3 require altogether O (pn) time. Thesorting, selection and counting substeps of Step 2 can be implemented in terms ofsorting and pre�x operations in O (pn) time. It will be shown in Lemma 12 thatlogn + 1 executions of such substeps are su�cient. Therefore, Iteration 0 requiresO (pn logn) time altogether. For i � 1, Iteration i can be implemented in terms ofa constant number of sorting and pre�x operations on a set of O ��2i�1n� packets,yielding a running time of O �pn2i�1�. Therefore, copy selection is completed in timeO pn logn+pn kXi=1 2i�1! = O �pn �logn+ 2k�� :(1) Lemma 12. After logn + 1 executions of Step 2 in Iteration 0, the set CP0contains exactly �n copy-packets. Moreover, for each active 0-module u 2 A0, w(u) �(2r=�)n�.Proof. Let Sj be the number of variables for which fewer than � copy-packets havebeen selected by the end of the j-th execution of Step 2. For the sake of convenience,set S0 = jSj = n. We now show by induction thatSj � n2j ;for any j � 0, and this will imply that for T = logn+ 1, ST = 0. The inequality forS0 is immediate, establishing the basis. Assume that the inequality holds for j � 1,and suppose, for a contradiction, that Sj > n=2j . By using the expansion propertiesof (V; U0), it is easy to see that in the j-th execution of the selection substep, at least�S1��j 0-modules are addressed by unmarked copy-packets. All such 0-modules must



14 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYNhave been congested in the previous iteration (i.e., addressed by more than (2r=�)n�copy-packets), which accounts for a total of at least2r� n��S1��j > rSj�1unmarked copy-packets involved in that iteration. However, this is impossible sinceSj�1 variables account for at most rSj�1 copy packets.The bound on w(u) is easily established by observing that for each 0-module u,all copy-packets with third component u that are added to CP0 are marked duringthe same iteration of Step 2. Thereforew(u) � 2r� n�:It must be remarked that the copy selection phase can be improved in a number ofways to obtain a faster running time at the expense of a more complex implementation.However, to avoid further complications to the presentation, we chose to describe asimpler yet slightly less e�cient implementation, since, as shown in x5, its complexitydoes not inuence the overall running time of the access protocol.To complete the analysis, it remains to establish the bound on the weight w(u) ofany u 2 Ai, at the end of Iteration i. Recall that the sum of the multiplicities of thecopy-packets in CPi with third component u yields w(u). Therefore, for 0 � i � k,Xu2Ai w(u) = �2in:(2) Lemma 13. There is a suitable constant c � 3 such that, at the end of Iterationi, for each u 2 Ai, 0 � i � k, w(u) � c�2in1� 1��2i :Proof. The proof proceeds by induction on i. The basis (i = 0) is establishedby Lemma 12. Suppose that the inequality holds for i� 1 and let x be an i-module.The weight of x is determined by Steps 4 and 6 of Iteration i. More precisely, recallthat Px is the set of module-packets of kind [pu; u; x; w(u)] selected in Step 4, and letP 0x be the set of additional module-packets (still with third component x) not in Px,selected in Step 6. It is easy to see thatw(x) � X[pu;u;x;w(u)]2Px[P0x w(u):Because of the way the module-packets are selected in Step 4, we already know thatX[pu;u;x;w(u)]2Pxw(u) � c�2i�1 �n1� 1��2i + n1� 1��2i�1 � :We must only show that the contribution of P 0x to w(x) is not too large. In order toderive a contradiction, we suppose that w(x) > c�2in1� 1��2i . This impliesX[pu;u;x;w(u)]2P0xw(u) > c�2i�1 �n1� 1��2i � n1� 1��2i�1 � :



CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 15De�ne Sx = fu 2 Ai�1 : [pu; u; x; w(u)] 2 P 0xg, so thatX[pu;u;x;w(u)]2P0xw(u) = Xu2Sxw(u):By the inductive hypothesis, the weight of each u 2 Sx is at most c�2i�1n1� 1��2i�1 ,therefore jSxj � Pu2Sx w(u)c�2i�1n1� 1��2i�1 > n 1��2i � 1:Note that for each u 2 Sx, at least two module-packets, including [pu; u; x; w(u)], havenot been selected in Step 4. Let��(Sx) = fy 2 Ui : 9 u 2 Sx s.t. [pu; u; y; w(u)] has not been selected in Step 4g:Note that in the graph (Ui�1; Ui) each u 2 Sx is adjacent to either two of three nodesin ��(Sx), one of which is x (see Figure 3).

Ui�1

�

�

�

�
�


�
	

Sxru Ui
�
�
�
�

�


�
	

��(Sx)ryrx���������XXXXXXXXX
Fig. 3. Critical modules in the proof of Lemma 13.Since (Ui�1; Ui) is a BIBD, we can apply Lemma 7 and conclude that j��(Sx)j �jSxj + 1 > n 1��2i . We now show that the global weight assigned in Step 4 to all thenodes in ��(Sx) exceeds the total weight carried by all the module packets, therebyleading to a contradiction. Let y 2 ��(Sx) and let [pu0 ; u0; y; w(u0)] be a module packetwhich has not been selected in Step 4, with u0 2 Sx. Then, we must havew(u0) + X[pu;u;y;w(u)]2Py w(u) > c�2i�1 �n1� 1��2i + n1� 1��2i�1 � ;that is,X[pu;u;y;w(u)]2Py w(u) > c�2i�1 �n1� 1��2i + n1� 1��2i�1 �� c�2i�1n1� 1��2i�1 = c�2i�1n1� 1��2i :Adding up the contributions of all nodes in ��(Sx) we getXy2��(Sx) X[pu;u;y;w(u)]2Py w(u) > j��(Sx)jc�2i�1 �n1� 1��2i �> n 1��2i c�2i�1 �n1� 1��2i � = c�2i�1n:



16 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYNSince c � 3, the above inequality leads to a contradiction becauseXy2��(Sx) X[pu;u;y;w(u)]2Py w(u) � Xy2Ui X[pu;u;y;w(u)]2Py w(u) � 3 Xu2Ai�1 w(u) = 3�2i�1n;where the last equality follows from Equation 2.4.2. Routing Phase. After copy selection is completed, the copies in Sv2S Cvhave to be accessed. Each request is encapsulated in a distinct packet, routed fromthe requesting processor (origin) to the processor storing the copy (destination), andback to the origin. The idea is to route the packets in stages so that they are movedgradually closer to their destinations through smaller and smaller submeshes, in accor-dance with the tessellations de�ned on the mesh. As argued in x2, when the numberof packets destined for any submesh is not too large, such a strategy yields morepro�table results than sending the packets directly to their destinations.The origin-destination part of a packet's journey consists of k+2 routing stages,numbered from k + 1 down to 0. Stage i, with k + 1 � i � 1, is executed in paralleland independently in every i-submesh (here, the whole mesh is viewed as a (k + 1)-submesh). In this stage the packets are routed to arbitrary positions in the (i � 1)-submeshes hosting their destination (i� 1)-blocks, in such a way that the processorsof each submesh receive approximately the same number of packets. This can beachieved by �rst sorting the packets according to their destination submeshes, andthen ranking the packets destined to the same submesh. Observe that when 3kn� < n,a 0-block is assigned to a 0-submesh of t0 = n1��=3k nodes. By the end of Stage 1,each packet reaches a processor within its destination 0-submesh, and in Stage 0 issent to its �nal destination. Instead, when 3kn� � n, there are n��13k 0-blocks storedwithin a single processor, hence each packet is at its �nal destination by the end ofStage 1, and Stage 0 is not needed. In either case, once the packet reaches its �naldestination, the request it carries is satis�ed.In order to estimate the time complexity of the above protocol, we need to de-termine the maximum number of packets sent and received by any processor in eachstage. More formally, let �i, for k + 1 � i � 0, denote the maximum number of pack-ets held by any processor at the beginning of Stage i. Let also ��1 be the maximumnumber of packets received by a processor at the end of Stage 0, when such stage isneeded (i.e., when 3kn� < n). We have:Lemma 14. Let k � 0. Then�k+1 = �2k;�i = O ��2i3k�in �+��12i � ; for k � i � 0:When 3kn� < n, we also have ��1 = O (�n�).Proof. The statement is immediately evident for �k+1, since every target setcontains �2k copies. By Lemma 13, an i-block is addressed by at most c�2in1�(1��)=2ipackets, for k � i � 1. Since there are ti = ��3i�kn1��=2i� processors storing ani-block, we have �i � c�2in1� 1��2iti = O ��2i3k�in �+��12i � :



CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 17In order to establish the bound for �0, we distinguish between two cases. If 3kn� < n,each 0-block is assigned to a submesh of t0 = n1��=3k nodes and, by Lemma 13,is addressed by at most c�n� packets, whence �0 = c�n�=t0 = O ��3kn�+��1�. Inthis case, Stage 0 is needed to bring the packets to their �nal destinations. At theend of this stage, each processor receives at most ��1 � c�n� packets. Otherwise,if 3kn� � n, there are 3kn��1 0-blocks stored within a single processor, whence�0 = c�n�3kn��1 = O ��3kn�+��1� as before, but the routing terminates with Stage 1.Set tk+1 = n, the size of the entire mesh, and let Ti be the time complexity ofStage i, for k + 1 � i � 0.Lemma 15. We have:Tk+1 = O �2kn 12+ �+��12k+1 � ;Ti = O �2i3 k�i2 n 12+ 2�+3��32i+1 � ; for k � i � 1:When 3kn� < n, we also have T0 = O (n�).Proof. Recall that for k + 1 � i � 1, Stage i is executed in parallel and inde-pendently in each i-submesh. The initial sorting and ranking are accomplished inO ��ipti� time. By Fact 4, the subsequent (�i; �i�1)-routing requires O �p�i�i�1ti�time. Since �i � �i�1, we get Ti = O �p�i�i�1ti�. When 3kn� < n, Stage 0 consistsof a (�0; ��1)-routing in each submesh of size t0, requiring O �p�0��1t0� time. Thelemma follows by plugging in the values for the �i's and the ti's, and by recalling that� is a constant.After reaching their destinations, the packets relative to read operations mustreturn to their origins carrying the accessed data. This second part of the routingcan be accomplished by running the above protocol backwards, thus maintaining thesame time complexity.Theorem 16. The access protocol requires overall timeO n� + n 12  logn+ 2kn �+��12k+1 + kXi=1 2i3 k�i2 n 2�+3��32i+1 !! :Proof. The running time of the access protocol is obtained by adding the contri-butions of the copy selection and routing phases together. The complexity of copy se-lection is given by Equation (1), while the routing time is obtained by summing of theTi's given in Lemma 15. Note that �+��1 � 0, therefore the term n1=22kn(�+��1)=2k+1dominates the term n1=22k coming from copy selection. Note also that the term n�,which accounts for the complexity of Stage 0, does not dominate when 3kn� � n.5. Tuning of the Parameters. The complexity of the access protocol estab-lished by Theorem 16 is a function of the following design parameters:(i) k: there are k + 1 levels in the HMOS;(ii) �: there are n� 0-modules in U0;(iii) �: the �rst graph of the HMOS (V; U0) has (n=m; �; �)-expansion;(iv) r: the (odd) input degree of (V; U0).Furthermore, recall that m = jV j = n� , for some constant � > 1 and that � =(r + 1)=2.



18 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYNThe goal of this section is to determine suitable values of the above parametersthat guarantee the existence of graph (V; U0) and yield a good performance of theaccess protocol. Such performance is closely related to the redundancy of the HMOS,that is, the number of copies (r3k) used per variable. On the one hand, using manycopies per variable yields better access times, while, on the other, lower redundancyyields simpler and space-e�cient schemes. We will consider two scenarios: in the �rstscenario, we optimize the parameters under the assumption that the number of copiesfor each variable r3k can grow arbitrarily large. In the second scenario, we optimizeunder the restriction that the scheme uses no more than a constant number of copiesfor each variable.We need the following technical result, which is a straightforward adaptation ofLemma 4 in [PP97a]:Lemma 17. Let m = n� , with constant � > 1. There is a suitable constant c > 0such that for any odd constant r � c� log � , a random bipartite graph G = (V; U0) withjV j = m, jU0j = n, input degree r and output degree mr=n has (n=m; �; �)-expansionwith � = (r + 1)=2 and � = (� � 1)=�, with high probability.We are now ready to prove one of the main results of this paper, which was statedin x1.1.Proof of Theorem 1. We �x � = 1 and choose r to be the smallest odd integergreater than maxfc� log �; 6(��1)g. For such values, Lemma 17 ensures the existenceof (V; U0) with (n=m; �; (r + 1)=2)-expansion, where � � 1=3. Since 2� + 3� � 3 � 0,the complexity of the access protocol given in Theorem 16 becomesT = O �2kn 12+ �2k+1 � :(3)By �xing k = maxf0; blog2(�=�)cg), we have 2k+1 � �=�, whence T = O �n1=2+�� andR = r3k = O �1=�log3 2� = O �1=�1:59�. By instead �xing k = log2 log2 n + O (1), sothat 2k+1 � � log2 n, we have T = O �n 12 logn� and R = O �log1:59 n�.As already noted before, the HMOS underlying the above result is fully construc-tive, except for the �rst graph (V; U0), for which Lemma 17 only guarantees existence.In practice, one can resort to a random graph for (V; U0), which, as the lemma shows,will exhibit the required expansion property with high probability. Although no ex-plicit construction for (V; U0) is known in the general case, this graph needs only weakexpansion, which makes it more amenable to explicit constructions than the graphsemployed in previous schemes (e.g., [UW87, AHMP87]).In fact, an explicit construction for (V; U0) can be obtained when the sharedmemory size m is within certain ranges. For example, [PP97] shows how to constructa bipartite graph with m = � �n3=2� inputs, n outputs and input degree r = 3, whichhas (n=m; 1=3; 2)-expansion. This graph can be e�ciently represented using constantstorage per node. Thus, using this graph as (V; U0) when m = � �n3=2�, the result ofTheorem 1 still holds and the HMOS becomes fully constructive.A larger range of values form for which the HMOS can be made fully constructive,still yielding nontrivial performance, can be obtained by employing other graphs for(V; U0). This is shown below, thus proving Theorem 2, which was stated in theintroduction.Proof of Theorem 2. Let us consider �rst the case � � 3=2. We assume m =x(x � 1)=6, where x is an even power of three. The argument for di�erent values ofm requires only trivial modi�cations. Fix n� = x = � �n�=2� and choose (V; U0) asan (n�; 3)-BIBD. By Corollary 8, such graph has (1; �; 2)-expansion, with � = 1=2.



CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 19Since 2� + 3� � 3 = O (1= logn), the complexity of the access protocol is still givenby Equation (3), and the same argument used to prove Theorem 1 carries through.Consider now the range 3=2 < � � 13=6 and choose n� and (V; U0) as before. Byplugging � = 1=2 and n� = � �n�=2� in the complexity formula given in Theorem 16and choosing k = O (1) large enough and even, the complexity of the access protocolbecomes T = O �n 12+ 2��38 � = O �n 2�+18 � :For � � 13=6, it is convenient to choose (V; U0) as a 3� (n�; 5; 3) design, a graph withthe following properties: jU0j = n�, each node of V has degree 5, and for every threedistinct nodes u1; u2; u3 of U0 there are exactly 3 nodes of V adjacent to all three ofthem. This implies that m = jV j = � �n3��. (See [Hal86] for for a formal de�nitionof the graph). In [PP97], an explicit construction for the graph is provided and itis shown that it has (1; 2=3; 3)-expansion. With this choice for (V; U0) we can plug� = 2=3 and n� = � �n�=3� in the formula of Theorem 16, and by choosing k = O (1)large enough, we get access timeT = O �n 23 + n 12+ 2�=3�14 � = O �n 23 + n 2�+312 � :This yields T = O �n2=3�, for 13=6 � � � 5=2, and T = O �n(2�+3)=12�, for 5=2 � � �9=2, which completes the proof.Note that the access time of the constructive scheme tends to O (n) as m ap-proaches n9=2, a performance that can be obtained through a straightforward scheme.6. Extension to Other Architectures. A closer look at the access protocoldeveloped in the previous sections for the mesh reveals that it solely relies upon arecursive decomposition of the network into subnetworks of the same type, and upon`-sorting and (`1; `2)-routing primitives. As a consequence, our scheme can be portedto any network topology that exhibits a suitable decomposition into subnetworks,and for which an e�cient implementation of the above primitives is available. In thissection we briey discuss the porting of the scheme to the pruned buttery and tomulti-dimensional meshes.An n-leaf pruned buttery, introduced in [BB95], is a variant of Leiserson's fat-tree[Lei85]. Its coarse structure may be interpreted as a n-leaf complete binary tree wherethe leaves represent the processor-memory nodes of the machine, the internal nodesrepresent clusters of routing switches, and where the edges represent channels whosebandwidth doubles every other level from the leaves to the root. More precisely, eachsubtree of n0 leaves is connected to its parent through a channel of capacity ��pn0�.The pruned buttery is an important interconnection since it is area-universal in thesense that it can route any set of messages almost as e�ciently as any circuit of similararea.It follows from the de�nition that an n-leaf pruned buttery can be decomposedinto 4i (n=4i)-leaf pruned butteries connected through channels of capacity pn=4i,a decomposition similar to the one of the mesh employed in our scheme. Moreover,it is shown in [HPP95] that `-sorting and (`1; `2)-routing can be performed on thepruned buttery in the same running time as on the mesh. This immediately impliesthat both Theorem 1 and 2 also hold for the pruned butteryWe now consider the extension of the scheme to d-dimensional meshes, with dconstant. For d � 3, a decomposition of an n-node d-dimensional mesh into submeshes



20 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYNis obtained as an immediate generalization of the two-dimensional case. As for theprimitives, `-sorting and (`1; `2)-routing, with `1 < `2, require time � �`n1=d� and��`1�1=d2 (n`1)1=d�, respectively [SK94]. Then, the same argument presented in x4.2shows that the access protocol can be executed on a d-dimensional mesh in timeT = O n� + n 1d  logn+ 2kn (d�1)(�+��1)d2k + kXi=1 2i3 (d�1)(k�i)d n 2(d�1)(�+��1)+��1d2i !! :Let us �x � = 1 and � < 1=(2d � 1), which, based on Lemma 17, requires r =
(d�) in order to guarantee the existence of the �rst graph (V; U0) of the HMOS.Straightforward calculations show that the above formula becomes:T = O �2kn 1d+ (d�1)�d2k � :Arguing as in the proof of Theorem 1 we can prove the following result:Theorem 18. For any constant � � 1, there exists a scheme to distribute m = n�shared variables among the local memory modules of an n-node d-dimensional mesh(d constant) with redundancy R so that any n variables can be read/written in timeT = O �n 1d+��for any constant � > 0, with R = O �1=�1:59�; or in timeT = O �n 1d logn�with R = O �log1:59 n�.It has to be remarked that the bandwidth of a d-dimensional mesh increases withd, hence, in order to achieve access time close to the natural 
 �n1=d� lower bound, theexpansion required of (V; U0) must also increase with d. For this reason, the graphs forwhich an explicit construction is currently available do not exhibit su�cient expansionto grant a generalization of Theorem 2; however they can still be used to yield fullyconstructive schemes with nontrivial O �n1=d+�d� access time, for suitable constants�d < (d� 1)=d. The details follow from tedious yet trivial arithmetic manipulations,which are omitted for the sake of brevity.7. Conclusions. In this paper, we devised a scheme for implementing a sharedaddress space on a mesh of processor/memory pairs. The scheme enables the pro-cessors to read/write any n-tuple of shared variables concurrently and yields a quasi-optimal access time in the worst case. One of the most relevant novelties of our imple-mentation is represented by the hierarchical memory organization scheme, the HMOS,which provides a structured distribution of copies of the shared variables among thememory modules. In particular, the HMOS succeeds in the following objectives, whichwere not attained by the memory organizations known in the literature: (i) it providesa single mechanism to cope with both memory contention and network congestion. Inthis fashion, copy selection can be employed to reduce both; (ii) it yields fast accesstime by using a cascade of bipartite graphs with weak expansion, rather than usingone graph of maximum expansion, which greatly simpli�es the implementation. In-deed, the HMOS is fully constructive and yields quasi-optimal performance for anymemory size m = O �n3=2�, which is su�cient, for example, to run any NC algorithm.



CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 21For large memory sizes, the HMOS embodies only one nonconstructive graph of weakexpansion.The design of the HMOS is not speci�cally cast for the mesh topology. Weshowed that it can be implemented on the pruned buttery and on d-dimensionalmeshes yielding good performance. More generally, our scheme is e�ciently portableto any low-bandwidth interconnection where routing takes advantage of partitions ofthe processors into subnetworks, in the sense that it achieves higher performance bymoving messages gradually closer to their destinations through smaller and smallersubnetworks, rather than by sending them directly to their destinations.A challenging and long-standing open problem remains the construction of bi-partite graphs that exhibit good expansion. The availability of explicit constructionsand concise representations for such graphs is crucial for attaining simple and ef-�cient deterministic shared memory implementations for all memory sizes. Recentdevelopments in this area [PP97] seem to indicate that the construction of graphswith a linear number of edges and moderate expansion, such as those required in ourscheme, be easier than the construction of the highly expanding graphs used in previ-ous schemes. If this is true, our scheme could become a general and constructive toolfor the implementation of shared memory on distributed memory machines based onlow-bandwidth interconnections.Finally, we wish to point out that in a recent paper [HPP95], which appearedafter the results in the present paper were �rst presented [PPS94, PP95], a sharedmemory implementation scheme for the mesh is devised that, through a novel andcomplex protocol, achieves O �pn logn� access time. However, this scheme relieson a nonconstructive graph of maximum expansion, hence it su�ers from the samelimitations a�ecting other schemes in the literature, as discussed in the introduction.The paper also proves an 
�pn log(m=n2)= log log(m=n2)� lower bound on the accesstime of any deterministic scheme for implementing m = 
 �n2� shared variables. Thelower bound assumes that variables are accessed through a point-to-point protocol,which requires that a processor dispatch a separate message for each copy it wantsto update. The assumption is satis�ed by the scheme presented in this paper, whichimplies that our access time is only a sublogarithmic factor away from optimal.Appendix. In this appendix, we show how to construct a bipartite graph G =(X;Y ) which is a subgraph of a (qd; q)-BIBD with the same number of output nodes,i.e., jY j = qd, fewer input nodes, say jX j = m, 1 � m < qd�1(qd � 1)=(q � 1), andsuch that each input x 2 X has degree q, as in the original BIBD, and each outputy 2 Y has degree �, with �qmqd � � � � �qmqd � :As explained in x3.1, these subgraphs (with q = 3 and m a power of three) govern theassignment of replicas of (i � 1) modules to i-modules in the HMOS, for 1 � i � k.The construction is obtained by modifying the one for a (qd; q)-BIBD given in [PP93].Let q be a prime power and let IFq be the �nite �eld with q elements, with itselements represented by the integers 0; 1; : : : ; q�1. The qd output nodes of the BIBDare associated with the set of d-dimensional vectors over IFq , and the inputs with theqd�1(qd � 1)=(q � 1) pairs of vectors of kind(ad�2; : : : ; ah; 0; ah�1; : : : ; a1; a0)(0; : : : ; 0; 1; bh�1; : : : ; b1; b0);



22 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYNwhere the ai's and bi's are elements of the �eld, and h ranges between 0 and d � 1.For convenience, each such pair will be denoted by �(h;A;B) where A is the integerin [0; qd�1) whose representation in base q is (ad�2 : : : ahah�1 : : : a1a0), and B is theinteger in [0; qh) whose representation in base q is (bh�1 : : : b1b0). The subgraph G isobtained from this BIBD by taking the same output set and selecting a subset of minputs as follows. Let ` < d be the index such thatqd�1 q` � 1q � 1 � m < qd�1 q`+1 � 1q � 1 ;so that m = qd�1�q` � 1q � 1 + w�+ z;(4)for some w, 0 � w < q` and z, 0 � z < qd�1. The m pairs �(h;A;B) that we select torepresent the nodes of X consist of the union of the three sets X1; X2 and X3 de�nedbelow: X1 = ��(h;A;B) : 0 � h < `; 0 � A < qd�1; 0 � B < qh	 ;X2 = ��(h;A;B) : h = `; 0 � A < qd�1; 0 � B < w	 ;X3 = f�(h;A;B) : h = `; 0 � A < z; B = wg :It is easy to verify that jX1j+ jX2j+ jX3j = m.The edges are de�ned as follows: the input node(ad�2; : : : ; ah; 0; ah�1; : : : ; a1; a0)(0; : : : ; 0; 1; bh�1; : : : ; b1; b0)is adjacent to the q outputs(ad�2; : : : ; ah; x; ah�1 + x � bh�1; : : : ; a1 + x � b1; a0 + x � b0);for every x 2 IFq , where + and � denote the �eld operations. We now show that theedges in G are evenly distributed among the outputs.Theorem 19. Any node u 2 Y is connected to � nodes of X, where�qmqd � � � � �qmqd � :Proof. Let u be associated with the vector (ad�1; : : : ; a0). We determine thevalue of � by separately counting the contributions of the nodes in the three subsetsX1; X2 and X3. Consider X1 and �x h < `. Using the properties of �eld operations,one can easily show that for any B, 0 � B < qh, there exists exactly one valueA such that the node �(h;A;B) is connected to u. Therefore, there are exactlyP`�1h=0 qh = (q` � 1)=(q � 1) nodes of X1 connected to u. A similar argument showsthat exactly w nodes of X2 are connected to u. Finally, it can be seen that thez nodes of X3 are connected to qz distinct output nodes, therefore, according towhether u is one of such nodes or not, we know that either � = (q` � 1)=(q � 1) + wor � = (q` � 1)=(q � 1) + w + 1. By (4) we conclude that�qmqd � � � � �qmqd � :



CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 23Note that when m is a power of q, it must be z = 0 and therefore � = qm=qd for everyoutput node.Let X = Ui�1 be the set of (i � 1)-modules, and Y = Ui the set of i-modules.Thus, q = 3, d = di and m = 3di�1 . Each (i�1)-module is adjacent to the 3 i-modulesthat contain its (i � 1)-blocks, and, accordingly, each i-module u is adjacent to the� (i � 1)-modules, each of which has one of its (i � 1)-blocks stored in u. For each(i� 1)-module, we must be able to e�ciently determine the i-modules that store its(i� 1)-blocks and the location of each block within the module.It is easy to establish a bijection between the (i � 1)-modules and the pairs�(h;A;B) in X so that given and index s, 1 � s � m, the pair associated withthe s-th module is determined in O (d) time. Similarly, a bijection between the i-modules and the d-dimensional vectors over IF3 is easily established. Consider the(i� 1)-module associated with the pair�(h;A;B) = (ad�2; : : : ; ah; 0; ah�1; : : : ; a1; a0)(0; : : : ; 0; 1; bh�1; : : : ; b1; b0):We adopt the convention that, for 0 � j < 3, the j-th (i� 1)-block of this module isthe `-th item stored in the i-module u, whereu = (ad�2; : : : ; ah; j; ah�1 + jbh�1; : : : ; a1 + jb1; a0 + jb0):and ` = 3h � 12 +B:In [PP93] it is proved that the above rule is correct, i.e., no two (i � 1)-blocks of(i� 1)-modules are assigned the same location within the same i-module. Moreover,it is not di�cult to show that 0 � ` < �.Observe that the structure of any (Ui�1; Ui) is completely determined by theparameter di. Since each di can be derived from n, we conclude that, in order torepresent (Ui�1; Ui), a processor needs only know n. From this parameter, the pro-cessor can determine the exact location of any copy of any (i� 1)-module performingO (logn) operations (arithmetic or in IF3).Acknowledgments. This paper bene�ted from discussions with Matteo Frigo,Tim Harris and Franco Preparata. The authors wish to thank the anonymous refereesfor their valuable comments that helped improve both the presentation and the qualityof the paper. REFERENCES[AHMP87] H. Alt, T. Hagerup, K. Mehlhorn, and F.P. Preparata, Deterministic simulationof idealized parallel computers on more realistic ones, SIAM J. Comput., 16 (1987),pp. 808{835.[BB95] P. Bay and G. Bilardi, Deterministic on-line routing on area-universal networks, J.Assoc. Comput. Mach., 42(1995), pp. 614{640.[CMS95] A. Czumaj, F. Meyer auf der Heide, and V. Stemann, Shared memory simula-tions with triple-logarithmic delay, in Proc. of the 3rd European Symposium onAlgorithms, Corfu, Greece, 1995, pp. 46{59.[Hal86] M. Hall Jr., Combinatorial Theory, John Wiley & Sons, New York NY, 1986.[Her96] K.T. Herley, Representing shared data on distributed-memory parallel computers,Math. Systems Theory, 29 (1996), pp. 111{156.



24 ANDREA PIETRACAPRINA, GEPPINO PUCCI, AND JOP F. SIBEYN[HB94] K.T. Herley and G. Bilardi, Deterministic simulations of PRAMs on bounded-degree networks, SIAM J. Comput., 23 (1994), pp. 276{292.[HPP95] K.T. Herley, A. Pietracaprina, and G. Pucci, Implementing shared memory onmulti-dimensional meshes and on the fat-tree, in Proc. of the 3rd European Sym-posium on Algorithms, Corfu, Greece, 1995, pp. 60{74.[Kun93] M. Kunde, Block gossiping on grids and tori: deterministic sorting and routing matchthe bisection bound, in Proc. of the 1st European Symposium on Algorithms, BadH�onnef, Germany, 1993, pp. 272{283.[Lei92] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays � Trees� Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.[LMRR94] F.T. Leighton, B. Maggs, A. Ranade, and S. Rao, Randomized routing and sortingon �xed-connection networks, J. Algorithms, 17 (1994), pp. 157{205.[Lei85] C.E. Leiserson, Fat-trees: universal networks for hardware-e�cient supercomputing,IEEE Trans. Comput., c-34 (1985), pp. 892{901.[LPP90] F. Luccio, A. Pietracaprina, and G. Pucci, A new scheme for the deterministicsimulation of PRAMs in VLSI, Algorithmica, 5 (1990), pp. 529{544.[MV84] K. Mehlhorn and U. Vishkin, Randomized and deterministic simulations of PRAMsby parallel machines with restricted granularity of parallel memories, Acta Inform.,21 (1984), pp. 339{374.[PP93] A. Pietracaprina and F.P. Preparata, An O(pn)-worst-case-time solution to thegranularity problem, in Proc. of the 10th Symposium on Theoretical Aspects ofComputer Science, W�urzburg, Germany, 1993, pp. 110{119.[PP97] |||, Practical constructive schemes for deterministic shared-memory access, The-ory Comput. Systems, 30 (1997), pp. 3{37.[PP95] A. Pietracaprina and G. Pucci, Improved deterministic PRAM simulation on themesh, in Proc. of the 22nd International Colloquium on Automata, Languages andProgramming, Szeged, Hungary, 1995, pp. 372{383.[PP97a] |||, The complexity of deterministic PRAM simulation on distributed memorymachines, Theory Comput. Systems, 30 (1997), pp. 231{247.[PPS94] A. Pietracaprina and G. Pucci and J.F. Sibeyn, Constructive deterministic PRAMsimulation on a mesh-connected computer, in Proc. of the 6th Annual Symposiumon Parallel Algorithms and Architectures, Cape May, NJ, 1994, pp. 248{256.[Ran91] A.G. Ranade, How to emulate shared memory, J. Comput. System Sci., 42 (1991),pp. 307{326.[SK94] J.F. Sibeyn and M. Kaufmann,Deterministic 1-k routing on meshes with applicationto hot-potato worm-hole routing, in Proc. of the 11th Symposium on TheoreticalAspects of Computer Science, Caen, France, 1994, pp. 237{248.[UW87] E. Upfal and A. Widgerson, How to share memory in a distributed system, J. Assoc.Comput. Mach., 34 (1987), pp. 116{127.


