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a b s t r a c t

An area-universal VLSI circuit can be programmed to emulate every circuit of a given area,
but at the cost of lower area-time performance. In particular, if a circuit with area-time
bounds (A, T ) is emulated by a universal circuit with bounds (Au, Tu), we say that the
universal circuit has blowup Au/A and slowdown Tu/T . A central question in VLSI theory is
to investigate the inherent costs and tradeoffs of universal circuit designs.

Prior to this work, universal designs were known for area-A circuits with O(1) blowup
and O(log A) slowdown. Universal designs for the family of area-A circuits containing
O(

√
A1+ε log A) vertices, with O(Aε) blowup and O(log log A) slowdown had also been

developed. However, the existence of universal circuits with O(1) slowdown and relatively
small blowup was an open question. In this paper, we settle this question by designing an
area-universal circuit U

ε

A with O (1/ε) slowdown and O (Aε) blowup, for any value of the
parameter ε, with 4 log log A/ log A ≤ ε ≤ 1. By varying ε, we obtain universal circuits
which operate at different points in the spectrum of the slowdown-blowup tradeoff. In
particular, when ε is chosen to be a constant, our universal circuit yields O(1) slowdown.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Area-universal circuits are VLSI designs that can be programmed to emulate all the circuits of a given area A with
bounded loss in area-time performance. The study of area universality can give valuable insights into general purpose
multiprocessing, as well as into the exploitation of field programmable gate arrays, and other forms of reconfigurable
architectures for VLSI.

Two parameters characterize the quality of a universal circuit. The blowup,α = Au/A, where Au is the area of the universal
circuit (also called host circuit), and A is the area of the emulated circuit (also called guest circuit) measures the hardware
cost of a universal design. The slowdown σ = Tu/T , where Tu is the time taken by the host circuit to emulate T steps of the
guest circuit, measures the speed penalty incurred. The tradeoffs achievable between α and σ are of great interest.

Area universality has received considerable attention in the literature. The pioneering work of Leiserson [1] introduced
the first efficient universal network, the concentrator fat-tree, establishing its effectiveness for off-line routing, later extended
to randomized on-line routing in [2]. Bay and Bilardi [3] proposed the pruned butterfly fat-tree and the sorting fat-tree for
efficient deterministic on-line routing. Greenberg [4] defined the pyramid fat-tree and established its universality properties
under various delay models for signal propagation. The blowup and slowdown of the above mentioned constructions are
each polylogarithmic. Two constructions achieving constant blowup (α = O (1)) and logarithmic slowdown (σ = O (log A))
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Fig. 1. Recursive definition of the H-layout of U
ε

A . S(A) denotes the sidelength of the layout. Parameter Ni is an upper bound on the number of distinct wires
entering a given fat-node at distance i from the fat-root.

for on-line routing were given by Leighton, Maggs, Ranade, and Rao [5] and by Bay and Bilardi [6], in the word and in the bit
models of VLSI computation, respectively. The papers by Bilardi and Bay [7] and by Bilardi, Chauduri, Dubashi, andMehlhorn
[8] explored the slowdown-blowup tradeoff from the perspective of lower bounds. Fat-tree like networks have been adopted
in some commercial multiprocessors (e.g., see [9–11]).

While the results of [5] and [6] show that constant blowup is achievable with polylogarithmic slowdown, a question
that has remained open is whether constant slowdown is achievable and, if so, at what price in area. Initial progress in this
direction was made by Kaklamanis, Krizanc, and Rao [12], who showed that a butterfly of area A1+ε can simulate any area-A
network, further constrained to have O(

√
A1+ε log A) vertices, with slowdown O(log log A).

In this paper, we exhibit an area-universal circuit U
ε

A with blowup O (Aε), for any chosen positive ε ≥ 4 log log A/ log A,
and with slowdown O (1/ε). When ε is chosen to be a fixed constant, our construction yields constant slowdown.

1.1. An overview of U
ε

A

The high level structure of our circuit U
ε

A is that of a binary fat-tree of A leaves, whose nodes, henceforth called fat-nodes,
have size decreasingwith their distance from the root. In contrast tomost previously proposed fat-trees,where the leaves are
in charge of computation and the internal nodes support communication, each fat-node of U

ε

A performs both computation
and communication functions. Figs. 1 and 2 illustrate the structure and a coarse level layout of the overall fat-tree, and of
one fat-node, respectively.

Specifically, a fat-node at level i in the fat-tree is equipped with a number `i = O
(√

A/2i
)
of so called emulation trees

of height h/4, where h = (ε/2) log A. For emulation purposes, each vertex1 u of the guest circuit G is handled by a suitably
chosen emulation tree Tu, using the technique proposed by Meyer auf der Heide in [13], which can be briefly described as
follows. Each node of Tu emulates a single vertex of G, specifically, the root emulates u and if an internal node emulates some
vertex v, its children emulate the neighbors of v in G (observe that the same vertex may be emulated by many nodes of the
tree). The tree Tu has the following capability: if each of its nodes is initialized with the state of the corresponding guest
node at (guest) step t , then Tu can produce at its root the correct state of vertex u at (guest) time t + h/4 in O (h) steps. In
this process, for j = 1, . . . , h/4, during the simulation of the j-th guest step only the nodes in the top h/4 − j + 1 levels
of Tu can update their simulated state. After simulating h/4 steps, a phase of global communication is needed to send the
current state information from the roots of the emulation trees where it has been computed, to the nodes of the emulation
trees where it is needed.

The network that accomplishes this state redistribution contains two components. First, in a fat-node ν at level i, the `i
roots of the emulation trees are connected to the roots of a number of broadcast trees, which touch all fat-nodes within a
neighborhood of ν of radius h and serve the purpose of transporting the state updates for the guest nodes emulated in ν, to
those fat-nodes where such updates may be necessary to reinitialize the state of their emulation trees. Second, ν contains a
network which connects the broadcast-tree nodes touching ν to the nodes of the emulation trees in ν. This latter network
is a distributor , that is, a network of switches obtained by a simple adaptation of the Beneš permutation network [14]. The
distributor can be programmed to connect each output (here, a node of an emulation tree) to atmost one arbitrarily selected
input (here, a node of a broadcast tree). As a consequence, a given input can be connected to zero or more outputs.

1 To avoid confusion, we will henceforth refer to the nodes of the guest circuit G as vertices and reserve the term nodes to those of the simulating circuit.
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Fig. 2. A fat-node at level i. The upper portion is devoted to the broadcast trees that come from and go to the fat-node itself and its three neighbors
(parent, left child, right child). The lower portion contains the `i emulation trees and the (Ni,Ni)-distributor, which establishes paths from broadcast trees
to emulation trees. The roots of the emulation trees are also origins of broadcast trees. The trapezoidal areas (compactors) are wire routing regions that
regroup wires continuing toward a given neighbor into consecutive tracks.

In summary, each fat-node contains (i) a number of emulation trees, (ii) one distributor, and (iii) a set of broadcast-tree
nodes. Each fat-node is connected to its parent and its two children by channels, consisting of a collection of broadcast-tree
edges (see Fig. 2).

For the emulation scheme to be feasible, guest vertices must be mapped to fat-nodes, observing two constraints: (a)
since each guest node is handled by a single emulation tree, there must be at least as many emulation trees in a fat-node
as the number of guest vertices mapped to the fat-node; (b) since each broadcast trees spans a neighborhood of radius h,
in order to guarantee that the state updates reach all the emulation trees where they are required, vertices whose distance
is at most h/4 in the guest circuit must be mapped onto fat-nodes, whose distance is at most h in the fat-tree. In order
to establish such a mapping, we make use of a key result of layout theory, first established by Bhatt and Leighton in the
bifurcator framework [15].

The rest of the paper is structured as follows. In Section 2, we review elements of bifurcator theory and emulation
techniques that play a role in our construction. For added clarity, we describe the design of U

ε

A in two stages. First, following
the ideas outlined above, in Section 3we discuss the details of a simplified and slightly less efficient variant of U

ε

A , where we
assume that there is a distinct broadcast tree for each emulator tree root, and analyze its area requirement in Section 4. Then,
in Section 5, we show how to reduce the number of broadcast trees by means of pipelining so to obtain the stated area-time
bounds for U

ε

A . Finally, Section 6 discusses futher ways of improving our design, while Section 7 offers a few concluding
remarks.

2. Background

We will be dealing with graphs which can be laid out in Thompson’s grid model for VLSI [16], hence in what follows
we will restrict our attention to graphs in which no vertex has degree greater than four. The construction of our universal
circuits relies on twomain ingredients: ‘‘good’’ embeddings of such graphs into binary trees and emulation techniques based
on redundant computation. The following two subsections explore each of these aspects in detail.

2.1. Bifurcators and graph embeddings

Recall that an (F0, F1, . . . , Fr−1)-decomposition tree for a graph G is a binary tree T of height r whose nodes are subgraphs
of G satisfying the following constraints:

(1) The root of T is G.
(2) Each leaf of T is either the empty subgraph or an isolated node.

Please cite this article in press as: S.N. Bhatt, et al., Area-time tradeoffs for universal VLSI circuits, Theoretical Computer Science (2008),
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(3) For 0 ≤ i < r , let Gi be a tree node at level i and let G0
i and G1

i be the children of Gi. Then Gi can be partitioned into G0
i

and G1
i by removing no more than Fi edges.

In [15], Bhatt and Leighton introduced the notion of bifurcator of a graph. Specifically, a graph G has an (F , α)-bifurcator if
it has an (F0, F1, . . . , Fr−1)-decomposition tree with r = logα F + 1 and Fi = F/αi, for 0 ≤ i < r . Of particular interest for
layout theory are (·,

√
2)-bifurcators, as demonstrated by the following fact.

Fact 1 ([15]). A graph G graph representing a circuit of layout area A has a (
√
A,

√
2)-bifurcator.

Recall that an embedding of a graph G = (VG, EG) into a graph H = (VH , EH) is a (many-to-one) mapping ϕ : VG → VH
of the vertices of G to the nodes of H and a mapping of the edges of G to the paths in H , such that any edge (u, v) ∈ EG is
mapped to a simple path in H whose endpoints are ϕ(u) and ϕ(v). When H is a tree, the path corresponding to edge (u, v)
is completely determined by ϕ as the unique simple path in H with endpoints ϕ(u) and ϕ(v).

For a given embedding, the load of a node vH ∈ VH is the number of vertices of G mapped to vH ; the congestion of an
edge (uH , vH) ∈ EH is the number of paths realizing edges of G that pass through (uH , vH); and, finally, the dilation of an
edge (uG, vG) ∈ EG is the length of the path in H corresponding to (uG, vG). The maximum value of each of these quantities
is called load, congestion and dilation of the embedding, respectively. The following theorem is an immediate consequence
of Theorem 7 of [15] and highlights an important relation between graph bifurcators and tree embeddings:

Theorem 2. If a graph G has an (F ,
√
2)-bifurcator, then there is an embedding of G into a complete binary tree of height d2 log Fe

with the following properties:

(1) Each tree node at level i has load at most c`F/
√
2i, for a suitable fixed constant c` > 0.

(2) Each tree edge connecting a node at level i with one of its children has congestion atmost ccF/
√
2i, for a suitable fixed constant

cc > 0.
(3) Each graph edge has dilation no greater than 4.

The following is an immediate corollary of Fact 1 and Theorem 2.

Corollary 3. Any graph G with a layout of area A can be embedded into a complete binary tree of A leaves with dilation at most
4, load `i ≤ c`

√
A/2i at tree nodes at level i, and congestion ci ≤ cc

√
A/2i at tree edges connecting a node at level i with one of

its children, for suitable fixed constants c`, cc > 0.

2.2. Emulations through redundant computation

In addition to the embedding technique reviewed in the previous subsection, our emulation crucially exploits the use of
redundant computation, following an approach proposed in [13] for the emulation of arbitrary bounded-degree networks.
Informally, we allow that a single vertex of G be emulated by a suitably large subset of nodes of H . During the emulation,
some nodes in the subset may be ‘‘left behind’’, in the sense that their state is outdated with respect to the state of the most
advanced replica in the subset. In order to ‘‘refresh’’ the state of lagging nodes, from time to time during the emulation all the
necessary information is routed from the replicas that are up to date to those that are out of date. Constant slowdown can
be achieved if the refreshing operations can be performed seldom enough that their cumulative cost is at most proportional
to the number of steps of the computation being emulated.

Constant-slowdown emulations through redundant computations were first obtained by Meyer auf der Heide in [13] for
processor networks. More specifically, he designed a family of bounded-degree networks M = {M

ε

c,N} with the following
property: for any value of c, ε > 0 and arbitrary values of N , M

ε

c,N has degree c + 4, O
(
N1+ε logN

)
nodes, and can emulate

any N-vertex network G of degree c with O(c + 1/ε) slowdown. In his construction, each vertex of G to be emulated is
associated with a fixed subset of O (Nε) nodes ofM

ε

c,N .
Since our construction borrows some ideas from the scheme of [13], we recall the main features of such a scheme. The

overall structure ofM
ε

c,N is very simple: its basic constituents are a set ofN c-ary trees of height t , and an (N,N ·ct)-distributor.
The latter network hasN distinguished inputs andN ·ct outputs, coinciding, respectively, with the roots and the leaves of the
N trees. By definition, a distributor can be prepared off-line, to realize any communication pattern where each input sends
the same message to a subset of outputs and each output receives exactly one message from one of the inputs. In [13], it is
shown that a simple variation of the Beneš network [14] with b inputs and outputs and b log b nodes is an (a, b)-distributor
for any a ≤ b, with distribution time O(log b + t) when messages have size O(t).

When emulating a given N-vertex network G = (VG, EG) of degree c , each tree node is statically associated with a node
of VG as follows: each node u of VG is associated with the root of a distinct tree Tu. Within Tu, if a tree node is associated with
a vertex v ∈ VG, then g ≤ c of its children are associated with the g ≤ c neighbor nodes of v in G, while the others are
inactive (note the large degree of replication implied by such an assignment). It is straightforward to see that if each node of
Tu contains the state of its associated graph vertex at time s, then in t steps the root of the tree is able to compute the state
of vertex u at time s+ t . Observe that at the end of the emulation the states of the nodes of Tu at level ` (the level of the root
being ` = 0) are ‘‘left behind’’ to time s + t − `.

Please cite this article in press as: S.N. Bhatt, et al., Area-time tradeoffs for universal VLSI circuits, Theoretical Computer Science (2008),
doi:10.1016/j.tcs.2008.08.005



ARTICLE  IN  PRESS
S.N. Bhatt et al. / Theoretical Computer Science ( ) – 5

The emulation algorithm proceeds in phases, each phase emulating t steps of G. At the beginning of Phase i, i = 0, 1, . . . ,
each tree node contains the state at time i · t of its associated graph vertex. Then the emulation in each tree takes place, so
that, after t steps, the N tree roots produce the sequence of state updates at times i · t + 1, . . . , (i + 1) · t of the vertices
in VG. The distributor is configured in such a way that, for each u ∈ VG, the root of Tu can pipeline the sequence of t state
updates occurred during the phase to all the emulator tree nodes associated with u. In an additional t steps, any tree node is
therefore able to compute the state of its associated graph vertex at time (i+ 1) · t . Each phase requires time O (tc + logN).
By choosing t = ε logc N , we obtain O (c + 1/ε) slowdown and an overall number of O

(
N1+ε logN

)
nodes inM

ε

c,N .
We remark that the need to transmit strings of t state updates arises when emulating processor networks, where the

state of each vertex can be rather large. In our VLSI context, vertex states are essentially boolean values, making it sufficient
to transmit the final value to each node associated to that vertex in any emulation tree.

Note that since a circuit of area A features at most A vertices of degree 4,M
ε

4,A can emulate any such circuit with constant
slowdown. However, M

ε

4,A has a large area of at least Ω
(
A2(1+ε)

)
[17], since it contains a Beneš permutation network [14]

with Θ
(
A1+ε

)
inputs as a subgraph. In the following sections we combine some ideas from [13] with the bifurcator-based

properties of a circuit of area A, to obtain a universal circuit whose area is roughly the square root of the area ofM
ε

4,A.

3. Structure of the circuit and emulation algorithm

Asmentioned in the previous section, the large area ofM
ε

4,A is due to the presence of a full-blowndistributorwithΘ
(
A1+ε

)
outputs. Beside having at most A nodes of degree at most 4, a circuit of area A exhibits additional structure, as captured by
the embedding derived from the bifurcator, in Corollary 3. This structure will let us substitute the large distributor of M

ε

4,A
with several ones of much smaller size, with a considerable reduction of the overall area requirement.

Following the bifurcator-induced embedding, the basic structure of our universal circuit U
ε

A is that of a complete binary
tree of fat-nodes, of height log A. A fat-node at level i, 0 ≤ i ≤ log A, contains `i emulator trees (i.e., 4-ary trees) of height h/4,
where `i is the upper bound on the value of the load at level i in the tree-embedding of an area A circuit, and h is an integer
parameter whose value will be chosen as a function of A and ε to govern the blowup-slowdown tradeoff of U

ε

A , with larger h
(that is, larger ε) yielding a faster but larger universal circuit. The fat-node also contains a distributor of suitable size, which
is used as in [13] to restore the current state in all the nodes of the emulator trees at certain times during the emulation.

Consider now an arbitrary circuit G of area A. The universal circuit is prepared for the emulation of G by assigning one
emulator tree to each vertex of G. The assignment follows the embedding of G into the tree, in the sense that the emulator
tree for vertex u is chosen among those residing in fat-node ϕ(u). Note that an emulator tree Tu of u ∈ VG, may contain
nodes associated with vertices in VG whose emulator trees reside in fat-nodes different from ϕ(u). However, recall that the
embedding provided by Corollary 3 has dilation at most 4. Since the vertices in VG associated with nodes of Tu have distance
at most h/4 from u in G, it follows that their corresponding emulator trees reside in fat-nodes at distance at most h from
ϕ(u), in the fat-tree underlying the universal circuit. We call this set of fat-nodes an h-neighborhood of ϕ(u). Clearly, the
roots of the emulator trees within an h-neighborhood of ϕ(u) are the only ones that need to be connected to the nodes of
the emulator trees in ϕ(u) through the local distributor. The following lemmata quantify the number of distinct emulator
trees in an h-neighborhood of a fat-node as a function of its level in the tree.
Lemma 4. Let Li,j be the number of vertices of G embedded within a subtree of height j rooted at a fat-node at level i, with
0 ≤ i ≤ log A and 0 ≤ j ≤ log A − i. Then

Li,j = O
(√

2j
√
A/2i

)
.

Proof. The load of a fat-node at level i + s in the tree is at most `i+s = c`
√
A/2i+s. Therefore

Li,j ≤

j∑
s=0

2sc`
√
A/2i+s ≤

(
c`

√
2/(

√
2 − 1)

) √

2j
√
A/2i. �

Lemma 5. Let Ni be the total number of vertices of G embedded in fat-nodes of the h-neighborhood of a fat-node at level i, with
0 ≤ i ≤ log A. Then

Ni = O
(
h
√

2h
√
A/2i

)
.

Proof. Consider a fat-node ν at level i, with 0 ≤ i ≤ log A. Its h-neighborhood includes the two subtrees of height
min{log A − i, h − 1}, rooted at its children (if any), the first min{i, h} + 1 fat-nodes on the path from ν to the fat-root
and, for the s-th such node, the fat-nodes of a subtree of height h − s − 1 (see Fig. 3). Therefore,

Ni ≤ 2Li+1,min{log A−i−1,h−1} +

min{i,h}∑
s=0

`i−s +

min{i,h−1}∑
s=1

Li−s+1,h−s−1

≤

√
A/2i

(
7c`

√

2min{log A−i,h−1} + 4c`
√

2min{i,h} + 2c` min{i, h − 1}
√

2h
)

= O
(
h
√

2h
√
A/2i

)
. �
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Fig. 3. The h-neighborhood of a fat-node ν at level i, with h ≤ i ≤ log A − h.

In order to restore the correct state in all the nodes of the emulator trees within fat-node ν, all the roots of the emulator
trees in the h-neighborhood of ν must be connected to the inputs of the local distributor, while all the nodes of the emulator
trees in the fat-node must be connected to its outputs. Prior to the emulation, the distributor in each fat-node is prepared
so that the root of each emulator tree Tu residing in the h-neighborhood can broadcast the sequence of state updates in the
current phase to all the nodes associated with vertex u.

Taking a symmetric perspective, every root of an emulator tree in ν must be connected to all the distributors in the
h-neighborhood of ν. For the sake of simplicity, let us assume for now that such connections are realized by having each
root of an emulator tree be also the root of a dedicated broadcast tree that spans the h-neighborhood, and whose nodes are
connected to the distributors. Note that there are `i distinct broadcast trees rooted at each fat-node. In Section 5, we will
discuss how to employ pipelining to reduce the number of broadcast trees rooted at a fat-node, which will improve the
blowup by a polylogarithmic factor in A.

From the above observations it follows that the distributor in a fat-node ν at level i has ai = Ni = O
(
h
√
2h

√
A/2i

)
inputs

and bi ≤ (4/3)4h/4c`
√
A/2i = O

(√
2h

√
A/2i

)
outputs. Since Ni is a factor Θ (h) greater than bi (although no more than bi

inputs will ever be active in any emulation), an (Ni,Ni) distributor is needed to realize the required multicast operation.
Once the universal circuit is prepared for G, the emulation proceeds similarly to the network emulation of [13].

Specifically, each phase emulates h/4 steps of G as follows. First, in each fat-node, the emulator trees compute the initial
state of their roots for the next phase. Then, a root associated with node u ∈ VG broadcasts its state to all the nodes of its
broadcast tree, and from there through the distributors to all the nodes of the emulator trees associated with node u in the
h-neighborhood of ϕ(u). At this point, all the nodes of the emulator trees are ready for the next phase. Altogether, the overall
time to emulate h/4 steps is O (h + log A). When h = (ε/2) log A, we obtain a slowdown of O (1/ε). (The factor 1/2 in the
definition of hmay appear redundant in Section 4 whereas it does play a role in the construction of Section 5.)

4. Area of the universal circuit

Let us first consider the layout of a fat-node ν at level i. The area of the layout is dominated by the area of the Ni-input
Beneš network realizing the local distributor. Also, nomore thanNi broadcast trees are incident on ν. Hence ν admits a square
layout of area O

(
Ni

2), where the three communication channels needed to route the broadcast trees from/to ν to/from its
father and its two children are incident on three distinct sides of the layout. The high-level organization of the resulting
layout is shown in Fig. 2.

Being tree-structured, the circuit admits an H-tree layout [17] where the nodes of the H-tree are the layouts of the
corresponding fat-nodes, and the wire channels between pairs of nodes are wide enough to route all the edges of the
broadcast trees traversing the channel. The recursive structure is shown in Fig. 1.

Let S(A) be the side length of the resulting H-layout. From the above considerations we conclude that

S(A) =

log4 A∑
i=0

2iN2i (1)

=

log4 A∑
i=0

O
(
ε
√

A1+ε/2 log A
)

= O
(
ε
√

A1+ε/2 log2 A
)

,
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hence the overall area requirement of the resulting design is O
(
ε2A1+ε/2 log4A

)
. In the next section, we show how to reduce

the area bound of U
ε

A by reducing the number of incident broadcast trees and the size of the distributor at each fat node.

5. Improving the area bound through pipelining

The careful reader has probably observed that both the broadcast trees and the distributors of the construction presented
in Section 3 are somewhat underutilized. In fact, only one stage of them is active at any given time, which is the natural
scenario for improving performance via pipelining.

The idea behind the use of pipelining is quite simple. Specifically, we partition the `i roots of the emulator trees of a fat-
node at level i into d`i/he groups of (at most) h roots each and let each group use a single broadcast tree to distribute state
updates to their h-neighborhood. Simple calculations suffice to show that the number of distinct broadcast trees incident
on a node at level i is now

N ′

i = O
(√

2h
√
A/2i + 2h

)
(the second term accounts for the number of distinct fat-nodes in an h-neighborhood of a fat node at level i). Also,N ′

i is still an
upper bound on the total number of nodes of the `i emulator trees residing in the fat-node. As a consequence, equipping the
fat nodewith an (N ′

i ,N
′

i )-distributor is still sufficient to perform the requiredmulticast operation inO(h) time, by pipelining
h batches of state updates. As a consequence, the slowdown is still O (h + log A) = O (1/ε).

Let us now consider the area requirement of this improved design. The area of the layout of a fat-node at level i is still
dominated by the area of the (N ′

i ,N
′

i )-distributor. Observe that each switch of the distributor must now accommodate
the extra space required for storing the direction bits needed for routing the h batches of state updates. However, this is
achievable by adding only O

(
h logN ′

i

)
= O

(
N ′

i

)
grid lines to one side of the standard layout of the Beneš networks (h lines

per stage) to place storage elements for the required control bits. As a consequence, this augmentation yields a layout with
both sides of length still linear in N ′

i .
By plugging the new values N ′

i into Eq. (1) we obtain

S(A) =

log4 A∑
i=0

2iN ′

2i = O
(√

A1+ε/2 max{log A, Aε/4
}

)
,

hence the overall area requirement of our final universal circuit U
ε

A is O
(
A1+ε/2 max{log2 A, Aε/2

}
)

= O
(
A1+ε

)
whenever the

parameter ε is such that 4 log log A/ log A ≤ ε ≤ 1.
We have thus proved the main result of this paper, stated in the following theorem.

Theorem 6. For any A and ε such that 4 log log A/ log A ≤ ε ≤ 1, there is an area-universal VLSI circuit U
ε

A of area O
(
A1+ε

)
which can be programmed to emulate any VLSI circuit of area A with slowdown O (1/ε).

The above construction is valid even for nonconstant values of the parameter ε. For instance, setting ε = 4 log log A/ log A
yields a circuit of area O

(
A log2 A

)
, which can emulate all circuits of area A with O (log A/ log log A) slowdown. This area is

the same as that of the concentrator fat-tree of [1] while the slowdown is a Θ (log log A) factor smaller.

6. Further directions of improvement

It is straightforward to check that, in terms of (blowup, slowdown) bounds, most previous universal circuits (e.g.,
[1,2,12,3]) are subsumed by some instantiation of our circuit U

ε

A . However, our flexible design is not able to match the
constant blowup and logarithmic slowdown networks of [5] (wordmodel) and [6] (bit model), since the circuit of Theorem 6
does not admit a realization with constant blowup.

It is natural to wonder whether our construction can be further improved to yield a suitable parametrized universal
circuit, whose (blowup, slowdown) bounds can smoothly range from (α = O(1), σ = O(log A)) to (α = O(Aε), σ =

O(1/ε)). In fact, there is still a number of enhancements that can be applied to our construction, which yield extra area
savings and push down the minimum value of ε, for which significant tradeoffs can be achieved, to O(1/ log A). However,
since the improved design still falls short of subsuming the circuit in [6], here we discuss the necessary modifications only
at a high level, and leave the details to the interested reader.

In the first place, observe that the pipelining feature introduced in Section 5 is underutilized whenever h = o(log A) (i.e.,
nonconstant values of ε), since the cost of distribution at the root of the fat tree is alwaysΩ (log A). Therefore, we can afford
thatΘ (log A) (rather thanΘ (h)) roots of emulator trees use the same broadcast tree. Also, observe that the h-neighborhood
of fat-nodes grows exponentially smaller as we move towards the leaves, hence we can have shallower emulation trees for
vertices embedded closer to the leaves, at the cost ofmore frequent redistributions,whose total costwould still be amortized
by the number of steps being emulated.

Pushing the level of pipelining to Θ (log A) requires a more compact layout for a fat-node at level i. An area
O

(
(Ni/ log A)2 + Ni logNi

)
can be obtained by employing the Cube-Connected-Cycles (CCC) interconnection of [18], featuring

Ni/ log A cycles of log A nodes each and capable of performing the required distribution in O (log A) time. Finally, in order to

Please cite this article in press as: S.N. Bhatt, et al., Area-time tradeoffs for universal VLSI circuits, Theoretical Computer Science (2008),
doi:10.1016/j.tcs.2008.08.005



ARTICLE  IN  PRESS
8 S.N. Bhatt et al. / Theoretical Computer Science ( ) –

avoid wasting area towards the leaves of the H-layout, we must stop the embedding stated in Corollary 3 at a level i′, where
the total number of vertices that would be embedded in a subtree rooted at level i′ is about log2 A, and simply map all these
vertices to the fat-nodes at level i′. A simple mesh layout is then sufficient for these fat-nodes.

To quantify the impact of the above changes, simple calculations show that for ε = 1/log A the resulting universal circuit
features an area of O (A log log A) with slowdown O (log A). The blowup is a mere factor O (log log A) worse than the one
achieved by the circuit of [6] with the same slowdown.

Further improvements might possibly be obtained by blending the techniques of [6] with those of the current paper,
but the required adaptations do not appear to be straightforward. In fact, in [6] the area-A layout is partitioned into
log A×log A cells, whose internal communications are emulated by smallmeshes of the universal circuit andwhose external
communications are emulated by a concentrator fat-tree that has the meshes placed at its leaves. To achieve locality within
the small meshes, it is crucial that all the vertices of the emulated circuit be embedded there, at the leaves of the fat-tree.
This is in contrast with the approach of the current paper, where some vertices of the emulated circuit are also embedded
in the internal fat-nodes, to achieve locality (constant dilation) within the fat-tree.

7. Conclusion

We have developed the first efficient area-universal circuit with constant slowdown. In fact, our construction is more
general, since it embodies a design parameter ε and yields slowdown σ = O(1/ε) and area blowup nearly proportional to
Aε , namely α = O(Aε), within the range 4 log log A/ log A ≤ ε ≤ 1. Therefore, the area blowup is exponential in the inverse
of the slowdown.

More substantial reductions of the area of the universal circuit, possibly leading to polylogarithmic blowup for constant
slowdown, pose a considerably more challenging problem, which appears to require significant progress in our current
understanding of constant slowdown simulations of all bounded degree networks.

The ideas developed here might find, most likely after careful fine tuning, applications to the design of versatile and/or
reconfigurable hardware architectures. In fact, the potential to simulate any architecture of a given area, guarantees that
a reconfigurable architecture with universal properties can execute any task nearly as efficiently as any circuit specialized
for that task. A particularly interesting direction to explore in this context is the possibility of developing automatic tools to
efficiently map any given application on an area-universal circuit.
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