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Abstract

This paper explores the relation between the struc-
tured parallelism exposed by the Decomposable BSP (D-
BSP) model through submachine locality and locality of
reference in multi-level cache hierarchies. Specifically,
an efficient cache-oblivious algorithm is developed to
simulate D-BSP programs on the Ideal Cache Model
(ICM). The effectiveness of the simulation is proved
by showing that optimal cache-oblivious algorithms for
prominent problems can be obtained from D-BSP algo-
rithms. Finally, a tight relation between optimality in
the D-BSP and ICM models is established.

1. Introduction

The memory system of current microprocessors in-
cludes a hierarchical cascade of caches whose capacities
and access times increase as they grow farther from the
CPU and closer to main memory. In order to amortize
the larger cost incurred when referencing data in dis-
tant levels of the hierarchy, the data is automatically
replicated across the faster levels and transferred in
blocks of contiguous locations. The rationale behind
such a hierarchical organization is that the memory
access costs of a computation can be reduced when
the same data are frequently reused within a short
time interval, and data stored at consecutive addresses
are involved in consecutive operations, two properties
known as temporal and spatial locality of reference, re-
spectively.

In the last decade a number of computational mod-
els have been proposed to explicitly account for such
a hierarchical nature of the memory system. The first
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attempts in this direction were the Hierarchical Mem-
ory Model (HMM) defined in [1], a random access ma-
chine where access to memory location x requires time
f(x), for a given nondecreasing function f(x), and the
HMM with Block Transfer model (BT) [2] which aug-
ments the HMM with the capability of moving mem-
ory blocks of arbitrary size at a reduced cost. Observe
that both models reward temporal locality, while only
BT rewards spatial locality. However, the HMM/BT
algorithm designer is in complete charge of orchestrat-
ing data layout, which makes the models unsuitable to
describe current caches, where data are automatically
moved and replicated across the hierarchy.

A two-level memory organization is featured by
the External Memory (EM) model [3, 18], which has
been extensively used in the literature to develop I/O-
efficient algorithms. This model is closer to actual
caches, since it only features a fixed-size block transfer,
however the programmer is still in charge of managing
data placement and eviction in the fast memory level.
Borrowing ideas from the EM model, only recently a
faithful model of a cache-main memory system, the
Ideal Cache Model (ICM), has been defined in [13, 14].
The ICM features automatic block transfer and evic-
tion, and has been at the base of the vast literature
on cache-oblivious algorithms, i.e., algorithms which
run efficiently independently of the cache parameters
(i.e., cache size and cache line size). Most importantly,
cache-oblivious algorithms attaining minimal miss rate
on the ICM can be shown to attain minimal miss rates
at all levels of any multi-level cache hierarchy [13].

A number of works in the literature have explored
the relation between (structured) parallelism and lo-
cality of reference. Earlier results [8, 10, 15] provided
evidence that efficient EM algorithms for two-level hi-
erarchies can be obtained by simulating parallel ones
written for coarse-grained parallel models, such as BSP
[17] or CGM [9], on the EM model. The main intu-
ition behind these works is that the interleaving be-



tween large local computation and bulk communication
phases, which characterizes coarse-grained parallel al-
gorithms, maps nicely on the two-level structure of the
EM model. However, the flat parallelism offered by
the above coarse-grained models seems unable to af-
ford the finer exploitation of locality needed to achieve
cache obliviousness.

A more general study on the relation between par-
allelism and locality of reference can be found in [12],
where it is shown how a more structured form of paral-
lelism, such as the one exhibited by the Decomposable
BSP (D-BSP) (a clustered variant of BSP defined in
[7]) can be simulated to yield efficient sequential algo-
rithms on the HMM and BT models. The simulation
strategy crucially relies on a nontrivial exploitation of
the submachine locality exposed in D-BSP to guaran-
tee that the resulting sequential computation exhibit a
high degree of temporal and spatial locality.

The objective of this paper is to extend the above
investigation by exploring the relation between struc-
tured parallelism and locality of reference in multi-level
cache hierarchies, where the movement of data across
the levels is outside the programmer’s explicit control.
The core technical result of the paper is an efficient
algorithm that simulates any D-BSP program on the
ICM model. The ICM simulation strategy makes sure
that memory references trigger automatic data move-
ments between cache and main memory analogous to
those explicitly prescribed by the simulation algorithm
developed in [12] for the HMM/BT models. The most
important feature of the simulation is that the sev-
eral degrees of submachine locality exposed by D-BSP
algorithms are exploited to ensure that the resulting
ICM computations adapt to the cache parameters with-
out explicitly knowing them. Thus the simulation al-
gorithm is cache oblivious, hence it can be efficiently
ported onto any (multi-level) cache hierarchy.

We provide evidence that our approach is success-
ful by showing that optimal cache-oblivious algorithms
for prominent problems can be obtained by simulating
D-BSP ones. Furthermore, we also exhibit a tighter re-
lation between the D-BSP and ICM models by arguing
that achieving an optimal ICM algorithm by simulating
a D-BSP algorithm implies, under certain reasonable
conditions, the optimality of the latter.

The rest of the paper is organized as follows. Sec-
tion 2 defines our reference models. The simulation
algorithm is described and analyzed in Section 3. In
Section 4 we apply the simulation to two relevant case
studies, namely matrix multiplication and DFT. Fi-
nally, Section 5 discusses the relation between optimal-
ity in the D-BSP and ICM models.

2. Machine Models

D-BSP. The Decomposable Bulk Synchronous Par-
allel (D-BSP) model was introduced in [6] to capture
submachine locality in a structured way through a hier-
archical decomposition, and was further investigated in
[4, 5, 11]. Let N be a power of two. A D-BSP(N,g) is a
collection of N RAM processors {Pj : 0 ≤ j < N} com-
municating through a router whose bandwidth charac-
teristics are captured by vector g = {g0, . . . , glog N−1}.
(Throughout the paper all logarithms are taken to the
base 2.) Specifically, for 0 ≤ i ≤ log N , the N pro-
cessors are partitioned into 2i fixed, disjoint i-clusters
Ci

0, C
i
1 . . . Ci

2i−1 of N/2i processors each, where the
processors of a cluster are capable of communicating
among themselves independently of the other clusters.
The clusters form a hierarchical, binary decomposi-
tion tree of the D-BSP machine, in the sense that
C log N

j = {Pj}, for 0 ≤ j < N , and Ci
j = Ci+1

2j ∪Ci+1
2j+1,

for 0 ≤ i < log N and 0 ≤ j < 2i.
A D-BSP program consists of a sequence of la-

beled supersteps. In an i-superstep, 0 ≤ i < log N ,
each processor executes internal computation on locally
held data and sends messages exclusively to proces-
sors within its i-cluster (an output and an input queue
for message exchange are part of each processor’s local
memory). The superstep ends with a barrier, which
synchronizes processors independently within each i-
cluster. Messages are of constant size and messages
sent in one superstep are available at the destinations
only at the beginning of the following superstep. It
is also reasonable to assume that any D-BSP pro-
gram ends with a global synchronization, that is, a 0-
superstep. In an i-superstep, if each processor spends
at most w units of time performing local computa-
tion during one superstep, and sends/receives at most
h messages (i.e., the communication pattern is an h-
relation), then the cost of the i-superstep is given by
w + hgi. The running time of a D-BSP program is ob-
tained as the sum of the running times of its constituent
supersteps. Observe that gi is an inverse measure of
an i-cluster’s per-processor bandwidth, hence we can
safely assume that gi ≥ gj for 0 ≤ i < j < log N .

ICM. The Ideal Cache Model (ICM(Z,L)) was in-
troduced in [13] and consists of a sequential processor
equipped with a (data) cache and a main memory of
arbitrary size. The cache contains Z words organized
into lines of L words each, and it is ideal in the sense
that it is fully associative and uses the optimal off-
line strategy for cache-line replacement. The model re-
wards both spatial and temporal locality of reference.
As in [13], when analyzing ICM(Z,L) algorithms, we



will make the tall cache hypothesis Z = Ω(L2). A miss
is said to be a cold miss, if it is caused by a reference
to a previously unreferenced memory block, or a capac-
ity miss if the referenced memory block was previously
evicted from cache.

An ICM(Z,L) algorithm is characterized by its work
complexity (number of operations) W (N,Z,L) and
cache complexity (number of misses) Q(N,Z,L), where
N denotes the input size. An algorithm is called
cache oblivious if its specification is independent of the
two parameters Z and L, and cache aware otherwise.
Cache-oblivious algorithms for matrix multiplication,
discrete Fourier Transform and sorting are presented
in [13].

3. The Simulation Algorithm

In this section we describe the algorithm to simulate
a D-BSP(N,g) program P on an ICM(Z,L). The al-
gorithm is similar to the one developed in [12] for the
simulation of D-BSP on the BT model, with a number
of nontrivial modifications due to the fact that, unlike
the BT model, memory access costs on the ICM do not
depend on the absolute addresses being referenced but,
rather, on the temporal sequence of references. For the
sake of completeness, we describe the entire algorithm
rather than highlighting the differences with the algo-
rithm in [12].

Given a D-BSP program P, we refer to the local
memory used by a processor during the execution of P
as the processor’s context. Let µ be an upper bound
to the size of any context. The ICM main memory is
divided into N blocks, each of size Θ(µ), where the i-th
block stores the context of processor Pi, followed by an
auxiliary free space of size cµ, for a suitable constant
c > 1, which is used for bookkeeping purposes. The
simulation is divided into rounds, where a round sim-
ulates an i-superstep for a certain i-cluster and iden-
tifies the cluster involved in the following round. Let
the supersteps of P be numbered consecutively and let
is denote the label of the s-th superstep, for s ≥ 0.

Consider a generic round that simulates the s-th su-
perstep of P for an is-cluster C. The simulation is
divided into two parts: the execution of local compu-
tations for each processor of C, and the data move-
ments corresponding to the message distribution. The
simulation of local computations is done recursively in
the two (is + 1)-clusters contained in C, until log N -
clusters are reached. As in [12], message distribution is
simulated through sorting as follows. The blocks con-
taining the contexts of the processors in C, which are
consecutive in main memory, are rearranged so to pack
the actual contexts in the first µN/2is words, followed

by the cµN/2is words of free space. Then, the contexts
are partitioned into Θ(µN/2is) constant-sized elements
which are tagged with keys in such a way that, after
sorting, contexts are still ordered by processor number
and all messages are brought to the end of the respec-
tive destination processors’ contexts. Both tagging and
sorting need auxiliary space that is extracted from the
segment of free space created via packing. After sort-
ing, the keys are removed and the initial layout, with
each context followed by free space, is restored.

Finally, the cluster that will be simulated in the next
round is identified by determining its first processor
P . Specifically, if is+1 ≥ is then P remains the first
processor of C, and the next round will simulate the
(s + 1)-st superstep for the first is+1-cluster contained
in C. If instead is+1 < is we have two cases. Let Ĉ be
the is+1-cluster containing C. If the s-th superstep has
been simulated for all is-clusters contained in Ĉ, then
P will be the first processor of Ĉ, otherwise P will be
the first processor of the next is-cluster contained in Ĉ
(hence sibling of C) for which the s-th superstep has
not been simulated yet.

The pseudocode of the simulation algorithm is pro-
vided in the appendix at the end of the paper. We
have:

Theorem 1. The simulation algorithm is correct.

Proof (sketch). The correctness of the algorithm can
be proved by modifying the argument presented in [12],
taking into account that no explicit context movements
are now specified in the algorithm but are automati-
cally induced by the caching mechanism. Full details
are found in [16] and will be provided in the full version
of this extended abstract. �

The simulation strategy outlined above exploits lo-
cality of reference by proceeding unevenly on the dif-
ferent D-BSP clusters. In particular, the same cluster
could be simulated for several consecutive supersteps so
to avoid repeated, expensive reloads of its processors’
contexts in cache. We remark that by using a cache-
oblivious sorting algorithm for implementing Line 5
of Communicate(C) (e.g., the algorithm by [13]), the
simulation algorithm becomes cache-oblivious since it
makes no use of parameters Z and L of the ICM model.

3.1 Complexity analysis

We analyze the work and cache complexities of the
simulation algorithm described in the previous section.
In the analysis, we assume that Z = Ω(µ) so that, for
every superstep, the simulation of the local computa-
tions of the D-BSP processors never incurs capacity
misses. In this way we are able to directly relate the



cache complexity of the ICM simulation to the context
switching overhead induced by the parallelism of the D-
BSP program. In fact, this assumption on Z is often
satisfied by fine-grained D-BSP algorithms exploiting
maximum parallelism with respect to the input size.

Theorem 2. Consider a D-BSP(N, g) program P us-
ing contexts of size µ, and let τ be the aggregate time
for local computations, summed over all processors and
all supersteps. Let ki be the number of i-supersteps in
P, 0 ≤ i < log N . When Z = Ω(µ), P can be simulated
on an ICM(Z,L) with work and cache complexities:

W (N,Z,L) = Θ

(
τ + µN

log N−1∑
i=0

ki log
µN

2i

)
(1)

Q(N,Z,L) = Θ

(
1 +

µN

L

(
1 +

λ−1∑
i=0

ki

log µN
2i

log Z

))
,

(2)

where λ = max
{

0,
⌈
log µ̃N

Z

⌉}
, with µ̃ = (c + 1)µ for a

suitable constant c ≥ 1.

Proof. Consider a round simulating the s-th superstep
for an is-cluster C, and let BC denote the segment of
N/2is contiguous memory blocks associated with the
processors of C. The work complexity of the round
is obtained by adding the contributions of the call to
Compute(C) and the call to Communicate(C), since
the other operations account only for O(1) work. It is
easy to see that the work complexity of Compute(C)
is proportional to the sum of the local computations
of all processors in C in the superstep being simu-
lated. As for Communicate(C), the required packing
and tagging operations and the respective unpacking
and key deletion can be easily performed in O

(
µN/2is

)
work, through a constant number of scans of BC . By
employing the algorithm proposed in [13], the sort-
ing step requires additional O

(
(µN/2is) log(µN/2is)

)
work. Equation 1 follows by combining the above con-
tributions and summing over all rounds.

For the analysis of the cache complexity, observe
that the value λ defined in the statement of the theorem
represents the index of the largest cluster C? such that
BC? fits in cache. Note that if λ = 0, then C? is
the entire D-BSP machine, hence the simulation incurs
only O (1 + µN/L) cold misses. Instead, if λ > 0, the
cache complexity of a round depends on the size of the
cluster being simulated in the round.

Consider again a round simulating the s-th super-
step for an is-cluster C. If is < λ, BC cannot be con-
tained entirely in cache. In this case, the cache com-
plexity of Compute(C) is given by QComp(is, N, Z, L),

where QComp obeys the following recurrence:

QComp(j,N,Z, L) ={
O( µN

2jL ) if j ≥ λ
2QComp(j + 1, N, Z, L) + O(1) if j < λ.

It is easily seen that QComp(is, N, Z, L) =
O(µN/(2isL)). Also, procedure Communicate(C)
requires O

(
µN/(2isL)

)
misses for packing, unpacking

and tagging, and O
(
µN log(µN/2is)/(2isL log Z)

)
misses for sorting [13]. Therefore, in this
case the cache complexity of the round is
O
(
µN log(µN/2is)/(2isL log Z)

)
.

Suppose now is ≥ λ, and note that BC can be en-
tirely contained in cache, hence the only misses that
may occur are those triggered by the initial accesses
to BC . If s = 0 then the (cold) misses incurred in
the simulation of the 0-th superstep for all of the 2i0

i0-clusters is bounded from above by O(1+µN/L). In-
stead, if s > 0 we show that the misses, if any, can be
neglected without affecting the asymptotic cache com-
plexity of the entire simulation. We distinguish among
the following three cases depending on the label is−1

of the previous superstep.

Case I (is−1 < λ ≤ is) In this case the misses incurred
when accessing BC , as well as those incurred in
all rounds simulating the s-th superstep for the
siblings of C contained in the same is−1-cluster
Ĉ, are amortized by the Ω

(
µN/(2is−1L))

)
misses

incurred in a previous round which simulated the
(s− 1)-th superstep for Ĉ.

Case II (λ ≤ is−1 ≤ is) In this case no misses occur
since BC is contained in BĈ , with Ĉ the is−1-
cluster that contains C, and BĈ is still resident
in cache where it was loaded in a previous round
which simulated the (s− 1)-th superstep for Ĉ.

Case III (λ ≤ is ≤ is−1) In this case, no misses oc-
cur since prior to the round being considered, the
(s−1)-th superstep has been simulated for all is−1-
clusters contained in C, hence the blocks associ-
ated with these clusters (i.e., all blocks in BC) are
in cache when the simulation of the s-th superstep
for C begins.

Equation 2 is obtained by summing the initial
O(1+µN/L) cold misses and the misses incurred by all
rounds simulating supersteps with label smaller than λ.
�

A number of remarks are in order. First, we observe
that the complexity gain of our simulation strategy
over the trivial approach, where supersteps are sim-
ulated one after the other for all processors, becomes



apparent in Equation 2, where the summation is trun-
cated at index λ, which is a function of the cache size,
rather than going up to log N−1. This is made possible
by the fact that the simulation proceeds unevenly on
different clusters, thus fully exploiting temporal local-
ity when dealing with small clusters. In fact, the per-
formance improvement could be substantial for D-BSP
programs with high submachine locality, that is, con-
fining most of the computation within i-clusters with
i ≥ λ.

Second, we note that the logarithmic terms occur-
ring in the summations in both the work and cache
complexities are introduced by the sorting employed for
simulating communications. In general the cache com-
plexity of the simulation cannot be improved since arbi-
trary communication patterns in D-BSP translate into
permutations on the ICM model for which a matching
superlinear lower bound is known [3]. In the next sec-
tion we show that for D-BSP algorithms that use cer-
tain structured communication patterns, a faster simu-
lation can be obtained, yielding more efficient (in fact,
optimal) ICM algorithms.

Finally, recall that the ICM model assumes an ideal
cache with optimal (yet practically unfeasible) replace-
ment policy. In many cases, however, the cache com-
plexity on the more realistic cache model with the
LRU replacement policy remains unaffected asymptot-
ically as long as the algorithm satisfies a certain condi-
tion. More precisely, an ICM algorithm is called regu-
lar if its (ideal) cache complexity satisfies Q(N,Z,L) =
O(Q(N, 2Z,L)). In [13] it is proved that the cache com-
plexity of a regular algorithm remains asymptotically
unaffected under the LRU replacement policy.

We define a corresponding regularity condition in
the parallel setting. We say that a D-BSP program
P is p-regular if k0 = O(1) and ki = O

(∑i−1
j=0 kj

)
,

0 < i < log N , where ki is the number of i-supersteps
in P. We have:

Theorem 3. Let P be a p-regular program for a D-
BSP(N, g) with contexts of size µ. Then, its simula-
tion satisfies the regularity condition on an ICM(Z,L)
with Z = Ω(µ), hence its asymptotic cache complexity
remains unchanged under the LRU replacement policy.

Proof. If the cache size doubles, the value of λ defined
in Theorem 2 decreases by at most one unit. By the

p-regularity of P, we have:

N
λ−1∑
i=0

ki

µ log µN
2i

L log Z
=

O

(
N

λ−2∑
i=0

ki

µ log µN
2i

L log Z
+ Nkλ−1

µ log µN
2λ−1

L log Z

)
=

O

(
N

λ−2∑
i=0

ki

µ log µN
2i

L log Z
+ N

λ−2∑
i=0

ki

µ log µN
2λ−1

L log Z

)
=

O

(
N

λ−2∑
i=0

ki

µ log µN
2i

L log Z

)
, (3)

and the theorem follows. �

4. Application to case-study problems

We apply the simulation presented in the previous
section to two D-BSP algorithms for the prominent
problems of Matrix Multiplication (MM) (limited to
semiring operations) and Discrete Fourier Transform
(DFT). The D-BSP algorithms, which are briefly out-
lined below, are those used in [12] to obtain efficient
HMM and BT counterparts. (For simplicity, in the
algorithms we assume that all relevant quantities are
integral. Easy modifications are sufficient to handle
the general case without affecting the asymptotic com-
plexities.)

MM We consider the natural recursive algorithm for
multiplying two

√
N×

√
N matrices on a D-BSP(N,g).

Initially, the N elements of each matrix are evenly dis-
tributed among the N processors. Then, by subdi-
viding each input matrix into four quadrants, the in-
put instance is decomposed into eight MM subprob-
lems of size

√
N/2×

√
N/2 solved in two phases, where

in each phase four subproblems are solved recursively
within the four distinct 2-clusters. To keep space re-
quirements at a minimum, the subproblems are parti-
tioned among the two phases in such a way that each
submatrix is required exactly once in each phase. Be-
fore each phase, elements are suitably redistributed be-
tween the clusters through a 0-superstep. It is easy to
see that the number of i-supersteps is ki = 0, if i is
odd, and ki = Θ(2i/2), if i is even, and that the ag-
gregate time for local computations is τ = Θ(N3/2).
Note that this algorithm is p-regular and needs con-
texts of size O(1). By Theorems 2 and 3, its sim-
ulation yields a regular cache-oblivious algorithm on
the ICM(Z,L), exhibiting W (N,Z,L) = O

(
N3/2

)
and

Q(N,Z,L) = O
(
1 + N/L + N3/2/(L

√
Z)
)

work and



cache complexities, which match the respective opti-
mal complexities of the cache-oblivious matrix multi-
plication algorithm given in [13].

DFT The DFT of an N -element vector can be com-
puted on a D-BSP(N,g) by recursively decomposing
the N -input FFT dag into 2 layers of

√
N independent√

N -input FFT subdags, which are computed recur-
sively in two phases by the

√
N ((log N)/2)-clusters,

one layer per phase. The outputs of the first layer
become the inputs of the second layer where the
correspondence is realized through a matrix-transpose
permutation executed as a 0-superstep. It is easy to
see that the number of i-supersteps executed by the
algorithm is ki = Θ(2j), when i = ((1 − 1/2j) log N)
(for every 0 ≤ j ≤ log log N), and ki = 0 oth-
erwise. Moreover, the aggregate time for local
computations is τ = Θ(N log N) and, as before, the
algorithm is p-regular and needs contexts of size O(1).
By Theorems 2 and 3, its simulation yields a regular
cache-oblivious algorithm on the ICM(Z,L), exhibiting
W (N,Z,L) = O (N log N log log N) and Q(N,Z,L) =
O (1 + N/L + N log N log(log N/ log Z)/(L log Z))
work and cache complexities, respectively. These
complexities are only a doubly logarithmic factor
away from the optimal complexities achieved by the
cache-oblivious algorithm presented in [13].

It can be noted that the nonoptimality of the ICM
algorithm for DFT obtained through the simulation of
the D-BSP algorithm is mainly caused by the slow-
down introduced by the recourse to sorting for sim-
ulating communications. As already observed in the
previous section, although the complexity of sorting
cannot be avoided in the case of arbitrary commu-
nication patterns, more efficient approaches can be
employed when the patterns exhibit some regularity.
This is indeed the case of the D-BSP algorithm for
DFT outlined above. Each i-superstep executed by
the algorithm executes a matrix-transpose permuta-
tion within each i-cluster. By using the regular cache-
oblivious matrix-transposition algorithm proposed in
[13] in place of sorting, the work and cache complexi-
ties of a round simulating an i-superstep for an i-cluster
become O(µN/2i) and O(1 + µN/2iL), respectively,
hence the entire simulation yields a regular cache-
oblivious algorithm for DFT on the ICM(Z,L), ex-
hibiting W (N,Z,L) = O (N log N) and Q(N,Z,L) =
O (1 + N/L + N log N/(L log Z)) work and cache com-
plexities, respectively, which are optimal.

In general, consider a D-BSP program P and sup-
pose that for every i-superstep executed by the pro-
gram there exists an ICM procedure that can simu-
late the communication pattern required by the su-

perstep within each i-cluster with O
(
µN/2i

)
work

and O
(
1 + µN/2iL

)
misses, using O

(
µN/2i

)
auxiliary

space. Then, by replacing sorting with these proce-
dures, the simulation of P on the ICM(Z,L) attains
the following work and cache complexities

Q(N,Z,L) = O

(
1 +

µN

L
+ N

µ

L

λ−1∑
i=0

ki

)

W (N,Z,L) = O

(
τ + µN

log N−1∑
i=0

ki

)
,

where τ is the aggregate time for local computations
and λ = max

{
0,
⌈
log µ̃N

Z

⌉}
, with µ̃ = Θ(µ). We refer

to this type of simulations as ad-hoc simulations.

5. Discussion

The case studies analyzed in the previous sec-
tion provide evidence that efficient parallel algorithmic
strategies can be transformed automatically into effi-
cient cache-oblivious ones. In this section, we show a
tighter coupling between optimality in the parallel and
memory hierarchy scenarios. To this purpose, we need
to exploit the following important feature of cache-
oblivious algorithms. Consider an extension of the ICM
model consisting of a processor and k memory levels.
In [13] it is proved that a regular cache-oblivious algo-
rithm exhibiting optimal work W and cache complexity
Q on the two-level ICM, also exhibits optimal work W
and optimal cache complexity Qi at each cache level
i, with 0 ≤ i < k − 1, under certain reasonable as-
sumptions on the relative values of the parameters of
adjacent cache levels and under the LRU replacement
policy.

We say that a D-BSP(N,g) program which uses con-
texts of size µ is a full program if the communication re-
quired in every superstep is a Θ(µ)-relation. We have:

Theorem 4. Let P be a full p-regular D-BSP(N, g)
program using contexts of size µ, with gi =
Ω(log(µN/2i)), 0 ≤ i < log N . If the simulation of P is
optimal for the two-level ICM, then P exhibits optimal
time complexity among all full p-regular D-BSP(N, g)
programs for the same problem which use contexts of
size Θ(µ).

Proof (sketch). Let T (P, N,g) be the running time of
program P on a D-BSP(N,g). For the sake of contra-
diction, assume that there exists a full p-regular pro-
gram for the same problem P ′ using contexts of size
Θ(µ), such that T (P ′, N,g) = o(T (P, N,g)). Consider
an extended ICM with log N cache levels, where the



level-i cache has size Zi = Θ(2iµ) and cache line size
Li = O(1), for 0 ≤ i < log N . Let W (P), Qi(P) and
W (P ′), Qi(P ′) be the work and cache complexities at-
tained by the simulations of P and P ′ in such a model,
respectively. From the results in [13] it follows that the
Qi’s can be obtained from Theorem 2 by plugging in
the values Zi and Li in Equation 2. It is easy to de-
termine nonnegative coefficients t0, t1, . . . , tlog N−1 such
that

W (P) +
log N−1∑

i=0

tiQi(P) = NT (P, N,g)

W (P ′) +
log N−1∑

i=0

tiQi(P ′) = NT (P ′, N,g).

Since T (P ′, N,g) = o(T (P, N,g)), we must have that
either W (P ′) = o(W (P)) or Qi(P ′) = o(Qi(P)) for
some index i, which is impossible since the simulation
of P is cache oblivious and optimal in the two-level
ICM, hence also optimal on any multi-level ICM [13].
�

An almost identical property can be proved for ad-
hoc cache-oblivious simulations, with the only differ-
ence that in this case D-BSP optimality holds with no
restrictions on the vector g. As a consequence, the D-
BSP MM and DFT algorithms described in Section 4
turn out to be optimal among all D-BSP(N,g) algo-
rithms for the corresponding problem using constant-
size contexts (the reader can convince himself/herself
that an ad-hoc cache-oblivious simulation for the MM
algorithm exists).
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Appendix: Simulation Pseudocode

The pseudocode of the simulation algorithm is given
below.



Algorithm Simulation(P)
P ← 0;1

while true do2

s← index of next superstep to be simulated for P ;3

C ← is-cluster of P ;4

Compute(C);5

Communicate(C);6

if P ended then Exit();7

if is+1 < is then8

Let Ĉ be the is+1-cluster containing C and let9

Ĉ0 . . . Ĉ
2

is−is+1−1
be its component

is-clusters, with C = Ĉj for some index j;
if j = is − is+1 + 1 then10

P ← P + N
2is
− N

2
is+1

{smallest index of a11

processor of Ĉ};
else12

P ← P + N
2is
{smallest index of a13

processor of Ĉj+1};
end14

end15

end16

Procedure Compute(C)

i← label of C;1

if i = log N then2

Simulate the local computation of C’s unique3

component processor;
else4

Let C = Ĉ0Ĉ1, where the Ĉi’s are (i + 1)-clusters;5

Compute(Ĉ0);6

Compute(Ĉ1);7

end8

Procedure Communicate(C)

i← label of C;1

B ← the segment of N/2i blocks associated with the2

processors of C;
Pack the N/2i contexts of C in the first µN/2i words3

of B;
Break the contexts into O(1)-word elements;4

Sort the elements tagged with suitable keys so to5

bring messages to the end of their destination
processors’ contexts;
Remove the keys and unpack the contexts restoring6

B’s initial layout;


