Deterministic Parallel Backtrack Search*

Kieran T. Herley

Department of Computer Science, University College Cork, Cork, Ireland
k.herley@cs.ucc.ie

Andrea Pietracaprina, Geppino Pucci,

Dipartimento di Elettronica e Informatica, Universita di Padova, Padova, Italy
{andrea,geppo}@artemide.dei.unipd.it

Abstract

The backtrack search problem involves visiting all the nodes of an arbitrary binary
tree given a pointer to its root, subject to the constraint that the children of a node
are revealed only after their parent is visited. We present a fast, deterministic back-
track search algorithm for a p-processor COMMON CRCW-PRAM, which visits
any n-node tree of height h in time O ((n/p + h)(logloglogp)?). This upper bound
compares favourably with a natural (n/p + h) lower bound for this problem. Our
approach embodies novel, efficient techniques for dynamically assigning tree-nodes
to processors to ensure that the work is shared equitably among them.
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1 Introduction

Several algorithmic techniques, such as those employed for solving many op-
timization problems, are based on the systematic exploration of a tree, whose
internal nodes correspond to partial solutions (growing progressively more re-
fined with increasing depth) and whose leaves correspond to feasible solutions.
In this paper, we are concerned with the implementation of tree explorations
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on shared-memory parallel machines. Specifically, we consider the backtrack
search problem, which involves visiting all the nodes of a tree 7 subject to the
constraints that (1) initially only the root of T is known to the processors,
and (2) the children of a node are made known only after the node itself is
visited. Moreover, the structure of T, its size n and its height h are unknown
to the processors.

We assume that a node can be visited (and its children revealed) in constant
time. Since Q(n) work is needed to visit n nodes and since any tree of height
h contains a path of h nodes whose visit times must form a strictly increas-
ing sequence, it follows that any algorithm for the backtrack search problem
requires 2(n/p + h) time on a p-processor machine.

A number of works on parallel backtrack search have appeared in the litera-

ture. Randomized algorithms have been developed for the completely-connected
network of processors [KZ93,LAB93] and the butterfly network [Ran94|, which

run, optimally, in O(n/p+ h) steps, with high probability. It should be noted,

however, that the butterfly algorithm focuses on the number of “node-visiting”

steps and does not fully account for overhead due to manipulations of local

data structures. A deterministic algorithm is given in [KP94], which runs in

O(+/ph) time on a /p x ,/p mesh, provided that n = O(p). It is not clear

whether this latter algorithm can be extended to work for larger tree sizes. The

relationship between computation and communication for the exploration of

trees arising from irregular divide-and-conquer computations has been studied

in [WK91]. A number of related problems have also been addressed in the liter-

ature, such as branch-and-bound [Ran90,KZ93,LAB93,KP94, HPP99a, HPP99b)|
and dynamic tree embeddings [AL91,BGLL91,LNRS92].

In this paper, we present a deterministic PRAM algorithm for backtrack search
whose running time is within a triply-logarithmic factor of the natural lower
bound discussed above. Our main result is summarized in the following theo-
rem.

Theorem 1 There is a deterministic algorithm running on a p-processor
COMMON CRCW-PRAM that performs backtrack search on any n-node
bounded-degree tree of height h in O ((n/p—+ h)(logloglogp)?) time, in the
worst case.

Ours is the first efficient, deterministic PRAM algorithm that places no re-
strictions on the structure, size or height of the (bounded-degree) tree to which
it is applied, and whose running time faithfully accounts for all costs. The al-
gorithm performs an optimal number of O(n/p + h) parallel “node-visiting”
steps, while the O((logloglog p)?) multiplicative factor in the running time
captures the average overhead per step required to ensure that the workload
is equitably distributed among the processors. As a consequence, our algorithm



would become optimal if the cost of a node visit were ((log log log p)?), which
is likely to be the case in typical applications of backtrack search, where every
node represents a complex subproblem to be solved.

The rest of the paper is organized as follows. Section 2 provides a number of
basic definitions and discusses a simple, direct approach to backtrack search
which our algorithm uses in combination with a more sophisticated strategy to
attain efficiency. The high-level structure of our algorithm is described in Sec-
tion 3, while Section 4 provides a detailed description of the key routine that
performs node visits and load balancing. In Section 5 we argue the generality
of our approach by discussing how it can be adapted to schedule straight-
line computations represented by bounded-degree DAGs. Section 6 closes the
paper with some final remarks.

2 Preliminaries

Our algorithm is designed for the COMMON CRCW PRAM model of com-
putation, which consists of p processors and a shared memory of unbounded
size. In a single step, each processor either performs a constant amount of
local computation or accesses an arbitrary cell of the shared memory. In the
COMMON CRCW variant of the PRAM, concurrent reads are permitted as
are concurrent writes, provided that all competing processors write the same
value [JaJ92].

Let T be the tree to be visited. For simplicity, we assume that the tree is
binary, although our results can be immediately extended to the more general
class of bounded-degree trees. For concreteness, we suppose that each node is
represented in memory by means of a descriptor. Initially, only the descriptor
of the root is available in the shared memory of the PRAM at a designated
location. The descriptor of any other node is generated only by accessing
the descriptor of the node’s father. A wisit to a node involves accessing its
descriptor, and generating and storing the descriptors of its children (if any).
As mentioned before, a node visit is assumed to take constant time.

A straightforward strategy to solve the backtrack search problem is to visit
the tree in a breadth-first, level-by-level fashion. An algorithm based on such
a strategy would proceed in phases, where each phase visits all the nodes at a
certain level and evenly redistributes their children among the processors, to
guarantee that the overall number of parallel visiting steps is at most n/p+ h.
(Here the term parallel visiting step refers to a k-tuple (k < p) of simulta-
neous visits to distinct tree nodes performed by distinct PRAM processors.)
A perfectly balanced redistribution of tree nodes among processors between
successive parallel visiting steps can be accomplished deterministically using



simple parallel prefix sums [J4J92|, yielding an O(n/p+hlogp) overall running
time for backtrack search. Note that this strategy also works for the weaker
EREW PRAM variant, where concurrent read/write accesses are not allowed.

In fact, an asymptotically optimal number of ©(n/p + h) parallel visiting
steps can still be achieved without perfect balancing, by requiring that the
nodes at any level of the tree be only “approximately redistributed” among
the processors, that is, the nodes a processor is given must be at most a
constant factor more than what it would receive with perfect balancing. An
approximate redistribution can be attained by using the following result by
Goldberg and Zwick.

Fact 2 ([GZ95]) For an arbitrary sequence of p integer values ag, a1, . . ., ap_1,
the approximate prefix sums bg, b1, . .., b,_1 with Z;ZO a; < b; < (l+e) Zé':o aj,
where e = o(1), and b; > b; 1+ a; can be determined in O(loglog p) worst-case
time on a p-processor COMMON CRCW-PRAM.

By employing the approximate prefix sums to implement node redistribution
after visiting each level of the tree, we get a deterministic O(n/p+ hloglog p)-
time algorithm for the backtrack search problem on a p-processor COMMON
CRCW-PRAM, for any values of n, h and p.

In the next sections we devise a more sophisticated strategy which outperforms
the above simple one for trees where n = o(phloglogp/(logloglogp)?). This
asymptotic improvement results in near- optimal performance through careful
“load-balancing” techniques without excessive global communication.

3 A High-Level View of the Algorithm

Our algorithm proceeds in a quasi-breadth-first fashion. Let the tree nodes
be partitioned into h levels, where the nodes of one level are all at the same
distance from the root. The exploration process is split into stages, each of
which visits a stratum of the tree consisting of ¢ = O(loglogp) consecutive
levels. At the beginning of a stage, all nodes at the top level of the stratum are
(approximately) distributed among the processors. Note that the previously
mentioned straightforward strategy based on approximate prefix sums visits
any stratum of size m = Q(pf?) optimally. Therefore, we focus on techniques
to cope efficiently with smaller strata.

Consider a stage visiting a stratum with m = O(pf?) nodes. For convenience,
we number the levels of the stratum from 0 to £ — 1, from top to bottom. The
stage explores all the nodes in these levels. At any point during the exploration,
the set of nodes whose descriptors have been generated but which are not yet



visited is called the frontier. (The initial frontier contains all the nodes in the
top level of the stratum.) Let F(j) denote those frontier nodes at level j, for
0<j</landlet F = Uﬁ;éF(j) denote the entire frontier. In order to evaluate
the progress that the algorithm is making, we define a weight function on the
frontier F' as follows

w(F) = S [F(G)8 7

i.e. nodes at level j have weight 3‘~7. Note that the contribution of a frontier
node to w(F') is exponentially decreasing in its level within the stratum. Also,
visiting a frontier node at level j involves replacing that node in the frontier by
its children (if any), whose combined weight of at most 2 x 3791 = (2/3)3¢ 7
is a constant factor less than that of their parent. Hence, each node visit de-
creases the frontier weight. Visiting nodes at lower numbered levels rather than
nodes further down the stratum results in a more substantial decrease in the
weight function. In order to avoid frequent, expensive balancing steps, our ex-
ploration strategy does not necessarily proceed in a regular, breadth-first man-
ner. Nonetheless, we make use of certain cheaper, weight-driven load-balancing
techniques to ensure that the frontier weight decreases at a predictable rate.
A pictorial representation of the exploration process is shown in Fig. 1

A stage consists of two parts. In the first part, a sequence of (parallel) visiting
steps is performed to explore nodes in the stratum until the frontier weight
is less than or equal to p. In order to detect the end of the first part, visiting

"""""""""""""""" @ (b)

Fig. 1. The weight-driven exploration process on a tree of height h. (a) The portion
within thin solid lines encloses visited nodes belonging to previous strata. Thick
solid lines enclose visited/generated nodes within the current stratum of ¢ levels.
Frontier nodes lie along the thick spline. Dashed lines enclose the nodes that are
still to be generated. (b) The frontier weight reduction induced by a visit of a node
at level j of the stratum, with 0 < j < /.



steps are executed in batches of £ and a weight estimate is computed after the
execution of each batch, using the approximate prefix sums algorithm, whose
O(loglog p) complexity is dominated by that of the ¢ visiting steps. The second
part of the stage completes the exploration of the stratum as follows. First,
for every 0 < j < ¢, a cluster of 277 distinct processors is assigned to each
node of F(j) by means of approximate prefix sums in O(loglogp) time. (Since
Zﬁ:o |F(5)]2¢7 < Zﬁ:o |F(5)]3%7 < p, such an assignment is feasible.) Next,
all of the descendants of each node in F' are visited by the corresponding
cluster of processors in O(¢) time. More specifically, consider a frontier node
z at level j and let {po, ..., pye—i_1} be the cluster of processors assigned to it.
The exploration proceeds in /—1—7j rounds, where in round k£, 0 < k < {—1—7,
all descendants of x at distance k from it are visited. In round zero pq visits
z and gives its children (if any) to po and p;. Thereafter for each round, p;
takes the node (if any) given to it in the previous round, visits it, and gives
its children to processors py; and ps; 1, and so on.

At the end of the stage, the children of the nodes on the last level of the
stratum, which make the initial frontier for the next stage, will be evenly
distributed among the processors by employing again the approximate prefix
sums algorithm.

A very high-level, procedural description of our new strategy for visiting small
strata with O(pf?) nodes is given in Fig. 2. In summary, each stratum is
visited in a stage (procedure STAGE_VISIT) by first alternating ¢ paral-
lel visiting steps (procedure VISITING_STEP) with an approximate count
of the frontier weight (procedure APPROXIMATE_COUNT), until the lat-
ter goes below p. Then, the visit of the stratum is completed by first allo-
cating processor clusters to the residual unexplored nodes (procedure AL-
LOCATE _CLUSTERS), then visiting their subtrees within the stratum us-
ing the simple technique illustrated above (procedure COMPLETE _VISIT),
and finally redistributing the initial frontier for the next stage to the p pro-

cessors (procedure REDISTRIBUTE_NODES). Note that the three proce-

procedure STAGE_VISIT()
APPROXIMATE_COUNT(w(F))
while w(F) > p
do repeat / times
VISITING_STEP()
end repeat
APPROXIMATE_COUNT(w(F))
end while
ALLOCATE_CLUSTERS()
COMPLETE_VISIT()
REDISTRIBUTE _NODES()
end STAGE_VISIT

Fig. 2. Overall structure of the algorithm for visiting small strata



dures APPROXIMATE_COUNT ALLOCATE PROCESSORS and REDIS-
TRIBUTE_NODES can all be implemented by means of simple variations of
the approximate prefix sums algorithm of [GZ95].

In order to determine the total running time of a stage, we need to give a
bound on the number of visiting steps performed. Let F; be the frontier at the
beginning of the tth visiting step. The step is called full, if it visits Q(p) nodes
in F}, and it is called reducing if it visits at least half of the nodes in U;':o F(7),
for each 7 in the range 0 < 7 < £. Section 4 will show how to perform a visiting
step in time O((logloglogp)?) while ensuring that it is always either full or
reducing (see Theorem 10). Clearly, for a stratum of m nodes, there are at
most O(m/p) full visiting steps in the stage, whereas the number of reducing
steps is bounded by the following lemma.

Lemma 3 If m = O(pl?), then O({) reducing visiting steps are sufficient to
reduce the frontier weight to at most p.

PROOQOF. The proof is based on the following property.

Claim. Let xg, z1,- -+, 2,1 and yo, Y1, -, Yn_1 be two sequences of nonnega-
tive integers such that 3% _z; <37t _(y;, for all 0 < ¢ < n. Then,

n—1 n—1

/3" < /3.

Proof of Claim. The proof is by induction on n. The case n = 1 is trivial.
Suppose that the property holds for some n > 1 and consider sequences of
n + 1 elements. Assume that z,, > vy,, since otherwise the inductive step is
immediate. It is easy to see that

i—0 3t — i—0 3¢ 3n71 3n

Note that X722 + (T 1 + Tn — Yn) < S ¥, therefore, by applying the
induction hypothesis, we have that

" (Taa T —ya "
— 31 Y
=0

i—0 31 3n71

which, combined with the previous inequality, proves the claim.



Consider a reducing visiting step. Let F' be the frontier prior to the execution
of the step and let n; be the number of nodes in F(j) visited in the step,

0 < j < /. Since the visiting step is reducing, we have

i i

n; Z
5=0

FGI

1
2.,

for any 7, 0 <17 < /¢, and the claim shows that

Sy 3 PG _ w(F)

IEE Y

3f
BY 2

=0

Thus, the visited nodes account for at least half the total frontier weight. Since
the combined weight of the children of any node is at most two thirds of the
weight of their parent, it follows that the weight reduction must be at least
one third of the total weight of the visited nodes, i.e., at least one sixth of the
frontier weight w(F) prior to the execution of the visiting step. Thus, the new
frontier weight following the completion of the step is at most (5/6)w(F).

Since the frontier at the beginning of the stage contains O(pf?) nodes at level
0, the initial frontier weight is O(pf?3), which implies that the frontier weight
will be less than or equal to p after O(¥) reducing steps. This proves the lemma.

i,From the above discussion we conclude that our new strategy can be em-
ployed to visit any stratum of size m = O(pf?) in O(m/p + £) visiting steps
and O((m/p + £)(logloglog p)?) time. Since strata of size m = Q(pf?) can be
visited in O(m/p) time using the straightforward breadth-first strategy out-
lined in Section 2, we can suitably interleave the two strategies and obtain an
algorithm that visits any stratum in time O((m/p + £)(logloglog p)?) for any
value of m. This immediately yields a backtrack search algorithm with the
running time stipulated in Theorem 1. Note that the number of visiting steps
required is O(n/p + h) in all.

4 Implementation of a Visiting Step

In this section, we describe the implementation of a visiting step which enforces
the property that the step is always either full or reducing.

The key idea is a “heap-like” data structure D that holds the frontier nodes
from which nodes are extracted prior to the beginning of the visiting step and
to which their children are inserted at the end of that step. Conceptually, D



is composed of an ¢ x p/¢ array of tree rings. We also regard the p PRAM
processors as being conceptually arranged into ¢ rows and ¢ = p/¢ columns.
At the beginning of the visiting step, the tree rings of the ¢th row contain all
current frontier nodes at level 7, 0 < ¢ < £. A tree ring is structured as a forest
of complete binary trees of different sizes!. The leaf vertices in a tree ring are
nodes of the tree being visited and each internal vertex contains pointers to
its children. The roots of the trees in the same tree ring are organized in a
doubly-linked list, ordered by tree size. (This data structure is broadly similar
to one used in [CV88].) As in the previous section, we assume that the stratum
being visited is of size O(pf?). We use K to denote an upper bound on the
size (i.e., the number of node descriptors stored) of any tree ring during the
execution of a stage. Later, we will show that K = O(¢?), hence the height of
any tree in a tree ring will always be O(log /). It should be noted that while
each tree ring is notionally associated with a particular processor, since it is
stored in the shared PRAM memory it is accessible to all.

A visiting step consists of two sub-steps, VISIT and BALANCE, which are
described in the following paragraphs.

VISIT This sub-step is executed in parallel by each column of processors.
Let s be the total number of nodes held by the tree rings of the column and let
¢ > 1 be a constant to be specified later. The ¢ processors in the column select
the min{s, 4c/} topmost nodes from the union of their tree rings, and distribute
these nodes evenly among themselves. Then, each processor visits the nodes it
receives. Finally the children of these just-visited nodes are inserted into the
appropriate tree rings within the column.

BALANCE This sub-step is executed in parallel by each row of processors
and aims at partially balancing the nodes stored in the tree rings of the row.
We define the degree of a processor as the number of tree nodes contained in
its tree ring. Let f; be the sum of the degrees of all processors in row i, for
0 <i < (. (Note that f; = |F(i)], i.e., the number of frontier nodes at level i of
the stratum.) BALANCE redistributes the nodes among the tree rings in such
a way that upon completion at most min{f;, ¢} /(2K) processors have degree
larger than c[ f;/q] in row i, for any 0 < i < ¢. Moreover, BALANCE never
increases the maximum processor degree in any row. The actual implementa-
tion of the BALANCE sub-step is rather involved and is discussed separately
in Subsection 4.1.

I To avoid confusion discussing the elements of the tree being visited and the trees
employed in the tree rings, we will use the term node exclusively in connection with
the former and reserve the term wvertex for the latter.



We have:

Lemma 4 A visiting step is always either full or reducing.

PROQOF. Let F be the frontier at the beginning of the visiting step. Then,
there are at most min{|F'(j)|, ¢}/(2K) processors in row j of degree larger than
c[|F(4)|/q], for each j, 0 < j < £. This is ensured either by the BALANCE
sub-step executed at the end of the preceding visiting step or, if the visiting
step under consideration is the first of the stage, by the (approximately) even
distribution of frontier nodes guaranteed at the start of the stage. We call the
tree nodes maintained by these overloaded processors bad nodes and all the
others good nodes. Since K is an upper bound to the degree of any processor,
we have that the total number of bad nodes in the first ¢ levels of the frontier
is

i

U FG) .

§=0

* min{|[F(j).q} _ 1
2K -2

K

j=0

for any 0 <4 < £. Thus the bad nodes at level i or lower account for at most
half the total number of frontier nodes at those levels.

Suppose |F| > 3p and let r < ¢ be the number of columns holding fewer than
¢ nodes. Since a column holds at most 520 c[F(j)/q] < ¢(|F|/q + £) good
nodes, the number of good nodes is bounded as follows:

F
|2| < [{good nodes}| < rl+ (g —r)c(|F|/q+ 0),

which, following some tedious but simple arithmetic manipulations, implies
that » < ¢(1 —1/8c). Since ¢ is a constant greater than one, we conclude that
qg—1>q/(8) = ©(q) columns hold at least ¢ nodes. Thus, the visiting step
will visit ©(¢f) = O(p) nodes, hence the step is full.

Consider now the case |F| < 3p. Since the number of good nodes in each
column is at most ¢(|F'|/q+{) < 4cl, it follows that the total number of nodes
to be visited in the step is at least equal to the total number of good nodes.
From the observation made above, we know that if we visited only the good
nodes, then for any 0 < ¢ < ¢ we would visit at least half of the frontier nodes
at level 7 or lower, hence the step would be reducing. Since in each column we
select the topmost nodes available, if some good nodes are not visited it can
only be because at least the same number of nodes at higher levels are visited
in their place, which maintains the reducing property.

10



In order to implement the visiting step described above, we need efficient
primitives to operate on the tree rings. Consider a stage visiting a stratum of
size m = O(pf?). Note that at the beginning of the stage the degree of each
processor is O(£?), and that after each VISIT sub-step the degree increases
by at most an O(¢) additive term. (Each of the O({) nodes visited by the
processors in a column can generate at most two children during a single
VISIT step.) Since the BALANCE sub-step does not increase the maximum
degree of a processor and O(m/p + £) = O({?) visiting steps are executed
overall, we can conclude that the maximum processor degree will always be
O(£3). As a consequence, throughout the stage each tree ring contains at most
O(log () trees of O(¢3) size and O(log () height each.

It can be shown [CV88] that:

(1) Given k nodes evenly distributed among ©(k) processors, a tree ring
whose trees contain these nodes as leaves, can be constructed by the
processors in O(log k) time.

(2) Two tree rings of size O(k) can be merged into one tree ring in O(log k)
time by a single processor.

(3) Any number of k leaves can be extracted by O(k) processors from a tree
ring in time proportional to the maximum height of a tree in the tree
ring. After extraction, the tree ring structure can be restored within the
same time bound.

It can be easily argued that the VISIT sub-step can be implemented in a
straightforward fashion within each column using standard techniques such as
prefix and the aforementioned primitives to manipulate the tree rings. From
the above discussion we conclude:

Lemma 5 For strata of size O(pl?), VISIT can be executed in O(logl) =
O(logloglogp) time.

4.1 Implementation of BALANCE

As mentioned before, we use K = O(£*) to denote an upper bound to the
degree of any processor when a stratum of size O(pf?) is explored (an exact
value for K can be derived from the analysis). We assume that K is known by
all processors prior to the beginning of the entire algorithm. Since BALANCE
is executed in parallel and independently by all rows, we will concentrate on
the operations performed by an arbitrary row, say row k. Let fi denote the
total number of tree nodes maintained by the processors of this row at the
beginning of the BALANCE sub-step. The purpose of the sub-step is to
redistribute these nodes among the processors in such a way that, after the
redistribution, the number of processors of degree greater than c[ fy/q] is at

11



most min{ fx, ¢}/(2K). (It should be noted that the value fj is not known to
the processors.) The sub-step also ensures that the maximum processor degree
is not increased. A crucial feature of the implementation of BALANCE is that
nodes are not physically exchanged between the processors, which would be
too costly for our purposes, but instead they are “moved” by manipulating
the corresponding tree rings, with a cost logarithmic in the number of nodes
being moved.

BALANCE is based on a balancing strategy introduced by Broder et al. in
[BFSU92|, which makes use of a special kind of expander defined below.

Definition 6 ([BFSU92|) An undirected graph G = (V,E) is an (a,b)-
extrovert graph, for some a,b with 0 < a,b < 1, if for any set S C V, with
S| < alV]|, at least b|S| of its vertices have strictly more neighbours in V — S
than in S.

The existence of regular extrovert graphs of constant degree is proved through
the probabilistic method in [BFSU92].

For each row, we identify its ¢ processors with the vertices of a regular (a, b)-
extrovert graph G = (V, E) of odd degree d, where a, b and d are constants. Let
v = (4d+3)/(4d +4) and 7 = [log, ., K/2(d +1)|. BALANCE consists of 7
phases, numbered from 0 to 7 — 1. In each phase, some tree nodes maintained
by the row processors are marked as dormant, and will not participate in
subsequent phases. The remaining nodes are said to be active. At the beginning
of Phase 0 all frontier nodes are active. For 0 < ¢ < 7, Phase ¢ performs the
following actions.

(1) Each processor with more than Kv*/2 active nodes in its tree ring declares
itself congested.

(2) Let a = 1+aand o = [log;1_y(a"2K)]. A DAG D is built as a directed

version of a subgraph of G. The construction proceeds by performing o
steps of the following type [BFSU92|. Initially, D is empty. In each step,
every congested processor not yet in D checks whether at least (d 4 1)/2
of its neighbours are either non-congested or already in D and, if so,
enters D by acquiring edges to (d + 1)/2 of these neighbours, which also
enter D.
Comment: The construction and the fact that d is odd guarantee that D
is a DAG, and that each congested processor in D has out-degree greater
than its in-degree, while each non congested processor in the DAG has
out-degree (0. Moreover, D has depth at most o.

(3) A sub-DAG D’ C D is identified comprising all congested processors with
more than K~'™! active nodes, and all of their descendants.

(4) Each congested processor not in D that has more than K-y
nodes, marks all but K~**! of its active nodes as dormant.

1 active

12



(5) Let j be such that 2/ < K~'/(2d+2) < 271, Note that K~'/(2d+2) > 1
for 7 < 7. Each processor in D’ extracts, for each of its direct successors
in D', a tree containing 2’ distinct active nodes from its tree ring, and
sends a pointer to this tree to the successor in question.

(6) Each processor merges the trees it receives into its tree ring.

A pictorial representation of the construction of DAGs D and D’ performed
in a phase of BALANCE is given in Fig. 3.

Q‘f

(a) (d)

Fig. 3. The DAG construction process performed by BALANCE. (a) The extrovert
graph G connecting the processors of a row. White nodes represent uncongested
processors. Black and shaded nodes represent, respectively, “heavily” congested pro-
cessors (more than K~'*! active nodes) and “lightly” congested processors (more
than K+'/2 and at most K~'*! active nodes). (b)-(c) Two-step construction of
DAG D. (d) The final subdag D' C D containing all heavily congested nodes and
their descendants in D.

In what follows, we show that at the end of the 7 phases the number of
processors of degree more than c| fi,/q]| is at most min{ f, ¢}/(2K), and that
the maximum processor degree is not increased.

Lemma 7 For 0 <i < 7, at the beginning of Phase i each processor holds at
most K+* active nodes and at most K(1 —~*) dormant nodes. Moreover, no
phase increases the mazximum processor degree.

PROOF. We proceed by induction on ¢. The case ¢ = 0 is clearly true.
Suppose that the property holds up to index ¢. By induction, each processor
starts Phase i with at most K+' active nodes and at most K nodes overall. A
congested processor that does not make it into the DAG D is not involved in
any movement of nodes in the phase. Each such processor begins with at most
K mnodes (Kv' active and K (1 — 7%) dormant) and at the end of the phase

13



at most K~'*! of its nodes remain active while the rest become (or remain)
dormant. Moreover, the processor’s degree does not change. If sub-DAG D’
is empty then all congested processors in D have at most K~'™! active nodes
and at most K — Ky**! = K(1 — 4**1) dormant nodes. Since in this case no
exchange of pointers takes place, the property for index 7 + 1 follows. Suppose
instead that D’ is not empty, that is, there is at least one congested processor
in D with more than K~*"! active nodes. (Note that in this case the maximum
processor degree is greater than K~'™!). A congested processor in D’ transmits
27 active nodes to each of its successors. Since the out-degree of a congested
processor in D’ is greater than its in-degree this represents a net loss of at
least 29 > K~'/(4d + 4) nodes. Therefore, in any such processor the number
of active nodes at the end of the phase is at most

i+1

i - K
T adra Y

and its overall degree is decreased. Moreover, the number of dormant nodes for
such a processor stays unchanged, namely K(1 —~') < K(1 —~**!). Finally,
a non-congested processor begins the phase with at most K+'/2 active nodes
and receives at most d27 < dK~'/(2d +2) new active nodes, which adds up to

Kvi dei

i+1
2 2d+2 ’

which is less than the maximum processor degree. As in the previous case, the

number of dormant nodes for such a processor stays unchanged, that is less
than K (1 —~**1).

We refer to the processors maintaining dormant nodes as rogues. Let R(j)
denote the set of rogues at the beginning of Phase j and C(j) the set of
processors that declare themselves congested in the phase. Define r; = |R(j)|
and ¢; = |C(j)], for 0 < j < 7. Let 7' = {logl/7 (%{(ﬁ” We have:
Lemma 8 For 0 < j < min{7,7}, we have

r; < o (1 —b)” min{ fy,q} .

PROOF. We proceed by induction on j. The case j = 0 is clearly true since
ro = 0. Suppose that the property holds up to index 7 — 1 and consider index
j. Note that the rogues at the beginning of Phase j will be given by the set
R(j — 1) plus a set C" C C(5 — 1) containing congested processors that did
not make it into the DAG during Phase j — 1. Let us give an upper bound to
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|C"|. Note that ¢;_1 < amin{fi, ¢} < ag, since otherwise congested processors
would account for more than

K~ tamin{ f, ¢} - K’yT'amin{fk,q} <
2 2 -

Je

active nodes, which is impossible. By the extrovertness of the graph G, after
the first ¢ steps of DAG construction, the number of congested processors not
in D are at most ¢;_1(1 —b)*. This implies that |C’| < ¢;_1(1 —b)?, hence the
number of rogues at the beginning of Phase j will be

ri<c¢i1(1=0)7 47
<a(1 - b)° min{fr,q} + o’ (1 — b)’ min{fy,q} (by induction)
<ol (1 —b)” min{ fr,q} .

Lemma 9 By the end of the BALANCE procedure, the number of processors
of degree more than c| fy/q] is at most min{ fy, q}/(2K) for a suitable choice of

the constant c. Moreover, the procedure is executed in time O((logloglog p)?)
on the COMMON CRCW-PRAM.

PROOF. Let us first consider the case 7 < 7. At the beginning of Phase 7/,
each processor maintains at most Ky~ < c[ fi/q] active nodes (by Lemma 7
provided ¢ > 2/a), and the number of rogues is

ro < aT’(l — b)? min{ fy, q} < HMQ{fKI.C’Q} (1)

(by Lemma 8 and the choice of o). Moreover Lemma 7 shows that the maxi-
mum degree of processors that are not rogues at the end of Phase 7' will not
increase above the c[ fi/q| threshold in the subsequent 7 — 7/ — 1 phases.

Now consider the case where 7 < 7'. In this case

2(d+1)

Kqy™ < < c[fr/q]

for ¢ > 2(d + 1)/v. Moreover, since r; is increasing in j, the total number of
rogues is no more than that indicated in Equation 1.

We now evaluate the running time. Consider a phase of BALANCE. Step 1
clearly takes O(1) time. Every DAG construction step is accomplished in con-
stant time, hence the construction of D (Step 2) takes time O(o). Since D
has depth at most o it is easy to see that Step 3 can be accomplished in time
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O(0o), as well. The cost of the remaining steps is dominated by the cost of the
extraction and merging operations performed on the tree rings, which take
O(log K) time overall. Noting that the number of phases is 7 = O(log K) and
o =0(1 +log K) = O(log K), we conclude that the overall running time is

O(rlog K) = O(log? K) = O(log® ¢) = O((log log log p)?).

The following theorem combines the contributions of this section and estab-
lishes the result announced in Section 3 upon which the analysis of our back-
track strategy is based.

Theorem 10 A visiting step within a stratum of size O(pf?) can be imple-
mented in O((logloglogp)?) time on a p-processor COMMON CRCW-PRAM,
while ensuring that the step is either full or reducing.

5 Evaluation of Bounded-Degree DAGs

In this section we show how some of the ideas involved in the backtrack search
algorithm may be used to solve the DAG evaluation problem. In a computa-
tion DAG, nodes with zero in-degree are regarded as inputs, while other nodes
represent operators whose operands are the values computed by their prede-
cessors (i.e., nodes adjacent with respect to incoming edges). Nodes with zero
out-degree are regarded as outputs. A node can be evaluated only after all of
its operands have been evaluated. The DAG evaluation problem consists of
evaluating all output nodes. We define the layers of the DAG in the obvious
way: the inputs are at layer zero and the layer of every other node is one plus
the maximum layer among its predecessors.

In our parallel setting, we assume that a DAG D of constant degree is stored
in the shared memory of a p-processor COMMON-CRCW PRAM. Each DAG
node is represented by a descriptor containing the following information: a field
that specifies the type of operation associated to that node; a field to store its
value; two fields for each operand (i.e., each incoming edge), where processors
will write the value of the operand, and a timestamp to record the time of
writing; and pointers to the node’s successors in D. Initially, only pointers to
the descriptors of the DAG inputs are known and evenly distributed among
the processors.

Notice the similarity between the DAG evaluation and the backtrack search
problems. While the computational DAG is not necessarily a tree, neverthe-
less we can still visit (i.e., evaluate) it by proceeding in a quasi breadth-first
stratum-by-stratum fashion as in the backtrack search algorithm.
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More precisely, recall that in the backtrack search problem a node is revealed
by the processor that visits its (unique) parent. In the DAG evaluation prob-
lem, “visiting” a node entails computing the node’s value and writing this
value in the node’s descriptor and, together with a timestamp, in the appro-
priate fields of its successors’ descriptors. A node is revealed (hence ready to
be evaluated/visited itself) only when the last of its predecessors has been
evaluated, and the node is regarded as being a “child” of that predecessor
(with ties being broken arbitrarily). In this fashion, a spanning forest for the
DAG is implicitly identified and the DAG evaluation can be regarded as a
visit of this a forest.

By noting that our backtrack search algorithm can be employed to visit any
forest of bounded-degree trees in O((n/p + h)(logloglogp)?) time, where n
is the total number of nodes and h the maximum tree-height in the forest,
we conclude that the DAG evaluation problem can be solved within the same
time bound.

6 Conclusions

In this work we devised an efficient deterministic strategy for performing par-
allel backtrack search on a shared memory machine. Specifically, our strat-
egy attains a running time which is only a triply logarithmic factor away
from a natural lower bound for the problem. As with all previous studies,
our investigation has mainly focused on running time. On the other hand,
the overall space required by our algorithm can grow as large as the tree
size n, whereas the space required by the randomized schemes proposed in
[KZ93,LAB93,Ran94] is bounded above by min{n,ph}. This latter quantity,
however, is close to n for large values of p and/or highly unbalanced trees. It
remains a challenging open problem to devise fast and space efficient back-
track search algorithms and, more generally, to study time-space tradeoffs for
parallel backtrack search.
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