
Deterministi Parallel Baktrak Searh ?
Kieran T. HerleyDepartment of Computer Siene, University College Cork, Cork, Irelandk.herley�s.u.ie

Andrea Pietraaprina, Geppino Pui,Dipartimento di Elettronia e Informatia, Universit�a di Padova, Padova, Italyfandrea,geppog�artemide.dei.unipd.it
AbstratThe baktrak searh problem involves visiting all the nodes of an arbitrary binarytree given a pointer to its root, subjet to the onstraint that the hildren of a nodeare revealed only after their parent is visited. We present a fast, deterministi bak-trak searh algorithm for a p-proessor COMMON CRCW-PRAM, whih visitsany n-node tree of height h in time O �(n=p+ h)(log log log p)2�. This upper boundompares favourably with a natural
(n=p+ h) lower bound for this problem. Ourapproah embodies novel, eÆient tehniques for dynamially assigning tree-nodesto proessors to ensure that the work is shared equitably among them.
Key words: Baktrak searh. Load balaning. PRAM model. Parallel algorithms.
1 Introdution
Several algorithmi tehniques, suh as those employed for solving many op-timization problems, are based on the systemati exploration of a tree, whoseinternal nodes orrespond to partial solutions (growing progressively more re-�ned with inreasing depth) and whose leaves orrespond to feasible solutions.In this paper, we are onerned with the implementation of tree explorations? This researh was supported, in part, by the EC ESPRIT III Basi ResearhProjet 9072-GEPPCOM; by the CNR of Italy under Grant CNR96.02538.CT07;and by MURST of Italy under Projet MOSAICO. The results in this paper ap-peared in preliminary form in the Proeedings of the 23rd International Colloquiumon Automata, Languages and Programming, Paderborn, Germany, July 1996.
Preprint submitted to Elsevier Preprint 18 January 2001

on shared-memory parallel mahines. Spei�ally, we onsider the baktraksearh problem, whih involves visiting all the nodes of a tree T subjet to theonstraints that (1) initially only the root of T is known to the proessors,and (2) the hildren of a node are made known only after the node itself isvisited. Moreover, the struture of T , its size n and its height h are unknownto the proessors.We assume that a node an be visited (and its hildren revealed) in onstanttime. Sine
(n) work is needed to visit n nodes and sine any tree of heighth ontains a path of h nodes whose visit times must form a stritly inreas-ing sequene, it follows that any algorithm for the baktrak searh problemrequires
(n=p+ h) time on a p-proessor mahine.A number of works on parallel baktrak searh have appeared in the litera-ture. Randomized algorithms have been developed for the ompletely-onnetednetwork of proessors [KZ93,LAB93℄ and the buttery network [Ran94℄, whihrun, optimally, in O(n=p+h) steps, with high probability. It should be noted,however, that the buttery algorithm fouses on the number of \node-visiting"steps and does not fully aount for overhead due to manipulations of loaldata strutures. A deterministi algorithm is given in [KP94℄, whih runs inO(pph) time on a pp � pp mesh, provided that n = O(p). It is not learwhether this latter algorithm an be extended to work for larger tree sizes. Therelationship between omputation and ommuniation for the exploration oftrees arising from irregular divide-and-onquer omputations has been studiedin [WK91℄. A number of related problems have also been addressed in the liter-ature, suh as branh-and-bound [Ran90,KZ93,LAB93,KP94,HPP99a,HPP99b℄and dynami tree embeddings [AL91,BGLL91,LNRS92℄.In this paper, we present a deterministi PRAM algorithm for baktrak searhwhose running time is within a triply-logarithmi fator of the natural lowerbound disussed above. Our main result is summarized in the following theo-rem.Theorem 1 There is a deterministi algorithm running on a p-proessorCOMMON CRCW-PRAM that performs baktrak searh on any n-nodebounded-degree tree of height h in O ((n=p+ h)(log log log p)2) time, in theworst ase.Ours is the �rst eÆient, deterministi PRAM algorithm that plaes no re-stritions on the struture, size or height of the (bounded-degree) tree to whihit is applied, and whose running time faithfully aounts for all osts. The al-gorithm performs an optimal number of O(n=p + h) parallel \node-visiting"steps, while the O((log log log p)2) multipliative fator in the running timeaptures the average overhead per step required to ensure that the workloadis equitably distributed among the proessors. As a onsequene, our algorithm
2

would beome optimal if the ost of a node visit were
((log log log p)2), whihis likely to be the ase in typial appliations of baktrak searh, where everynode represents a omplex subproblem to be solved.The rest of the paper is organized as follows. Setion 2 provides a number ofbasi de�nitions and disusses a simple, diret approah to baktrak searhwhih our algorithm uses in ombination with a more sophistiated strategy toattain eÆieny. The high-level struture of our algorithm is desribed in Se-tion 3, while Setion 4 provides a detailed desription of the key routine thatperforms node visits and load balaning. In Setion 5 we argue the generalityof our approah by disussing how it an be adapted to shedule straight-line omputations represented by bounded-degree DAGs. Setion 6 loses thepaper with some �nal remarks.
2 Preliminaries
Our algorithm is designed for the COMMON CRCW PRAM model of om-putation, whih onsists of p proessors and a shared memory of unboundedsize. In a single step, eah proessor either performs a onstant amount ofloal omputation or aesses an arbitrary ell of the shared memory. In theCOMMON CRCW variant of the PRAM, onurrent reads are permitted asare onurrent writes, provided that all ompeting proessors write the samevalue [J�aJ92℄.Let T be the tree to be visited. For simpliity, we assume that the tree isbinary, although our results an be immediately extended to the more generallass of bounded-degree trees. For onreteness, we suppose that eah node isrepresented in memory by means of a desriptor. Initially, only the desriptorof the root is available in the shared memory of the PRAM at a designatedloation. The desriptor of any other node is generated only by aessingthe desriptor of the node's father. A visit to a node involves aessing itsdesriptor, and generating and storing the desriptors of its hildren (if any).As mentioned before, a node visit is assumed to take onstant time.A straightforward strategy to solve the baktrak searh problem is to visitthe tree in a breadth-�rst, level-by-level fashion. An algorithm based on suha strategy would proeed in phases, where eah phase visits all the nodes at aertain level and evenly redistributes their hildren among the proessors, toguarantee that the overall number of parallel visiting steps is at most n=p+h.(Here the term parallel visiting step refers to a k-tuple (k � p) of simulta-neous visits to distint tree nodes performed by distint PRAM proessors.)A perfetly balaned redistribution of tree nodes among proessors betweensuessive parallel visiting steps an be aomplished deterministially using

3

simple parallel pre�x sums [J�aJ92℄, yielding an O(n=p+h log p) overall runningtime for baktrak searh. Note that this strategy also works for the weakerEREW PRAM variant, where onurrent read/write aesses are not allowed.In fat, an asymptotially optimal number of �(n=p + h) parallel visitingsteps an still be ahieved without perfet balaning, by requiring that thenodes at any level of the tree be only \approximately redistributed" amongthe proessors, that is, the nodes a proessor is given must be at most aonstant fator more than what it would reeive with perfet balaning. Anapproximate redistribution an be attained by using the following result byGoldberg and Zwik.Fat 2 ([GZ95℄) For an arbitrary sequene of p integer values a0; a1; : : : ; ap�1,the approximate pre�x sums b0; b1; : : : ; bp�1 withPij=0 aj � bi � (1+�)Pij=0 aj,where � = o(1), and bi � bi�1+ai an be determined in O(log log p) worst-asetime on a p-proessor COMMON CRCW-PRAM.By employing the approximate pre�x sums to implement node redistributionafter visiting eah level of the tree, we get a deterministi O(n=p+h log log p)-time algorithm for the baktrak searh problem on a p-proessor COMMONCRCW-PRAM, for any values of n, h and p.In the next setions we devise a more sophistiated strategy whih outperformsthe above simple one for trees where n = o(ph log log p=(log log log p)2). Thisasymptoti improvement results in near- optimal performane through areful\load-balaning" tehniques without exessive global ommuniation.
3 A High-Level View of the Algorithm
Our algorithm proeeds in a quasi-breadth-�rst fashion. Let the tree nodesbe partitioned into h levels, where the nodes of one level are all at the samedistane from the root. The exploration proess is split into stages, eah ofwhih visits a stratum of the tree onsisting of ` = �(log log p) onseutivelevels. At the beginning of a stage, all nodes at the top level of the stratum are(approximately) distributed among the proessors. Note that the previouslymentioned straightforward strategy based on approximate pre�x sums visitsany stratum of size m =
(p`2) optimally. Therefore, we fous on tehniquesto ope eÆiently with smaller strata.Consider a stage visiting a stratum with m = O(p`2) nodes. For onveniene,we number the levels of the stratum from 0 to `� 1, from top to bottom. Thestage explores all the nodes in these levels. At any point during the exploration,the set of nodes whose desriptors have been generated but whih are not yet

4

visited is alled the frontier. (The initial frontier ontains all the nodes in thetop level of the stratum.) Let F (j) denote those frontier nodes at level j, for0 � j < ` and let F = [`�1j=0F (j) denote the entire frontier. In order to evaluatethe progress that the algorithm is making, we de�ne a weight funtion on thefrontier F as follows
w(F) = `�1Xj=0 jF (j)j3`�j ;

i.e. nodes at level j have weight 3`�j. Note that the ontribution of a frontiernode to w(F) is exponentially dereasing in its level within the stratum. Also,visiting a frontier node at level j involves replaing that node in the frontier byits hildren (if any), whose ombined weight of at most 2� 3`�j�1 = (2=3)3`�jis a onstant fator less than that of their parent. Hene, eah node visit de-reases the frontier weight. Visiting nodes at lower numbered levels rather thannodes further down the stratum results in a more substantial derease in theweight funtion. In order to avoid frequent, expensive balaning steps, our ex-ploration strategy does not neessarily proeed in a regular, breadth-�rst man-ner. Nonetheless, we make use of ertain heaper, weight-driven load-balaningtehniques to ensure that the frontier weight dereases at a preditable rate.A pitorial representation of the exploration proess is shown in Fig. 1A stage onsists of two parts. In the �rst part, a sequene of (parallel) visitingsteps is performed to explore nodes in the stratum until the frontier weightis less than or equal to p. In order to detet the end of the �rst part, visiting

(a)
stratum

?

6
h

?6̀frontier6
(b)

3`�j
VISIT

(2=3)3`�j
Fig. 1. The weight-driven exploration proess on a tree of height h. (a) The portionwithin thin solid lines enloses visited nodes belonging to previous strata. Thiksolid lines enlose visited/generated nodes within the urrent stratum of ` levels.Frontier nodes lie along the thik spline. Dashed lines enlose the nodes that arestill to be generated. (b) The frontier weight redution indued by a visit of a nodeat level j of the stratum, with 0 � j < `.

5

steps are exeuted in bathes of ` and a weight estimate is omputed after theexeution of eah bath, using the approximate pre�x sums algorithm, whoseO(log log p) omplexity is dominated by that of the ` visiting steps. The seondpart of the stage ompletes the exploration of the stratum as follows. First,for every 0 � j < `, a luster of 2`�j distint proessors is assigned to eahnode of F (j) by means of approximate pre�x sums in O(log log p) time. (SinePj̀=0 jF (j)j2`�j � Pj̀=0 jF (j)j3`�j � p, suh an assignment is feasible.) Next,all of the desendants of eah node in F are visited by the orrespondingluster of proessors in O(`) time. More spei�ally, onsider a frontier nodex at level j and let fp0; : : : ; p2`�j�1g be the luster of proessors assigned to it.The exploration proeeds in `�1�j rounds, where in round k, 0 � k < `�1�j,all desendants of x at distane k from it are visited. In round zero p0 visitsx and gives its hildren (if any) to p0 and p1. Thereafter for eah round, pitakes the node (if any) given to it in the previous round, visits it, and givesits hildren to proessors p2i and p2i+1, and so on.At the end of the stage, the hildren of the nodes on the last level of thestratum, whih make the initial frontier for the next stage, will be evenlydistributed among the proessors by employing again the approximate pre�xsums algorithm.A very high-level, proedural desription of our new strategy for visiting smallstrata with O(p`2) nodes is given in Fig. 2. In summary, eah stratum isvisited in a stage (proedure STAGE VISIT) by �rst alternating ` paral-lel visiting steps (proedure VISITING STEP) with an approximate ountof the frontier weight (proedure APPROXIMATE COUNT), until the lat-ter goes below p. Then, the visit of the stratum is ompleted by �rst allo-ating proessor lusters to the residual unexplored nodes (proedure AL-LOCATE CLUSTERS), then visiting their subtrees within the stratum us-ing the simple tehnique illustrated above (proedure COMPLETE VISIT),and �nally redistributing the initial frontier for the next stage to the p pro-essors (proedure REDISTRIBUTE NODES). Note that the three proe-proedure STAGE VISIT()APPROXIMATE COUNT(w(F))while w(F) > pdo repeat ` timesVISITING STEP()end repeatAPPROXIMATE COUNT(w(F))end whileALLOCATE CLUSTERS()COMPLETE VISIT()REDISTRIBUTE NODES()end STAGE VISITFig. 2. Overall struture of the algorithm for visiting small strata
6

dures APPROXIMATE COUNT ALLOCATE PROCESSORS and REDIS-TRIBUTE NODES an all be implemented by means of simple variations ofthe approximate pre�x sums algorithm of [GZ95℄.In order to determine the total running time of a stage, we need to give abound on the number of visiting steps performed. Let Ft be the frontier at thebeginning of the tth visiting step. The step is alled full, if it visits
(p) nodesin Ft, and it is alled reduing if it visits at least half of the nodes in Sij=0 F (j),for eah i in the range 0 � i < `. Setion 4 will show how to perform a visitingstep in time O((log log log p)2) while ensuring that it is always either full orreduing (see Theorem 10). Clearly, for a stratum of m nodes, there are atmost O(m=p) full visiting steps in the stage, whereas the number of reduingsteps is bounded by the following lemma.Lemma 3 If m = O(p`2), then O(`) reduing visiting steps are suÆient toredue the frontier weight to at most p.
PROOF. The proof is based on the following property.Claim. Let x0; x1; � � � ; xn�1 and y0; y1; � � � ; yn�1 be two sequenes of nonnega-tive integers suh that Pij=0 xj � Pij=0 yj , for all 0 � i < n. Then,n�1Xi=0 xi=3i � n�1Xi=0 yi=3i :
Proof of Claim. The proof is by indution on n. The ase n = 1 is trivial.Suppose that the property holds for some n � 1 and onsider sequenes ofn + 1 elements. Assume that xn > yn, sine otherwise the indutive step isimmediate. It is easy to see thatnXi=0 xi3i � n�2Xi=0 xi3i + �xn�1 + xn � yn3n�1 �+ yn3n :
Note that Pn�2i=0 xi + (xn�1 + xn � yn) � Pn�1i=0 yi, therefore, by applying theindution hypothesis, we have thatn�2Xi=0 xi3i + �xn�1 + xn � yn3n�1 � � n�1Xi=0 yi3i ;
whih, ombined with the previous inequality, proves the laim.

7

Consider a reduing visiting step. Let F be the frontier prior to the exeutionof the step and let nj be the number of nodes in F (j) visited in the step,0 � j < `. Sine the visiting step is reduing, we haveiXj=0nj � 12 iXj=0 jF (j)j ;
for any i, 0 � i < `, and the laim shows that

3` `�1Xj=0 nj3j � 32̀ `�1Xj=0 jF (j)j3j = w(F)2 :
Thus, the visited nodes aount for at least half the total frontier weight. Sinethe ombined weight of the hildren of any node is at most two thirds of theweight of their parent, it follows that the weight redution must be at leastone third of the total weight of the visited nodes, i.e., at least one sixth of thefrontier weight w(F) prior to the exeution of the visiting step. Thus, the newfrontier weight following the ompletion of the step is at most (5=6)w(F).Sine the frontier at the beginning of the stage ontains O(p`2) nodes at level0, the initial frontier weight is O(p`23`), whih implies that the frontier weightwill be less than or equal to p after O(`) reduing steps. This proves the lemma.
>From the above disussion we onlude that our new strategy an be em-ployed to visit any stratum of size m = O(p`2) in O(m=p + `) visiting stepsand O((m=p+ `)(log log log p)2) time. Sine strata of size m =
(p`2) an bevisited in O(m=p) time using the straightforward breadth-�rst strategy out-lined in Setion 2, we an suitably interleave the two strategies and obtain analgorithm that visits any stratum in time O((m=p+ `)(log log log p)2) for anyvalue of m. This immediately yields a baktrak searh algorithm with therunning time stipulated in Theorem 1. Note that the number of visiting stepsrequired is O(n=p+ h) in all.
4 Implementation of a Visiting Step
In this setion, we desribe the implementation of a visiting step whih enforesthe property that the step is always either full or reduing.The key idea is a \heap-like" data struture D that holds the frontier nodesfrom whih nodes are extrated prior to the beginning of the visiting step andto whih their hildren are inserted at the end of that step. Coneptually, D

8

is omposed of an ` � p=` array of tree rings. We also regard the p PRAMproessors as being oneptually arranged into ` rows and q = p=` olumns.At the beginning of the visiting step, the tree rings of the ith row ontain allurrent frontier nodes at level i, 0 � i < `. A tree ring is strutured as a forestof omplete binary trees of di�erent sizes 1 . The leaf verties in a tree ring arenodes of the tree being visited and eah internal vertex ontains pointers toits hildren. The roots of the trees in the same tree ring are organized in adoubly-linked list, ordered by tree size. (This data struture is broadly similarto one used in [CV88℄.) As in the previous setion, we assume that the stratumbeing visited is of size O(p`2). We use K to denote an upper bound on thesize (i.e., the number of node desriptors stored) of any tree ring during theexeution of a stage. Later, we will show that K = O(`3), hene the height ofany tree in a tree ring will always be O(log `). It should be noted that whileeah tree ring is notionally assoiated with a partiular proessor, sine it isstored in the shared PRAM memory it is aessible to all.A visiting step onsists of two sub-steps, VISIT and BALANCE, whih aredesribed in the following paragraphs.
VISIT This sub-step is exeuted in parallel by eah olumn of proessors.Let s be the total number of nodes held by the tree rings of the olumn and let > 1 be a onstant to be spei�ed later. The ` proessors in the olumn seletthe minfs; 4`g topmost nodes from the union of their tree rings, and distributethese nodes evenly among themselves. Then, eah proessor visits the nodes itreeives. Finally the hildren of these just-visited nodes are inserted into theappropriate tree rings within the olumn.
BALANCE This sub-step is exeuted in parallel by eah row of proessorsand aims at partially balaning the nodes stored in the tree rings of the row.We de�ne the degree of a proessor as the number of tree nodes ontained inits tree ring. Let fi be the sum of the degrees of all proessors in row i, for0 � i < `. (Note that fi = jF (i)j, i.e., the number of frontier nodes at level i ofthe stratum.) BALANCE redistributes the nodes among the tree rings in suha way that upon ompletion at most minffi; qg=(2K) proessors have degreelarger than dfi=qe in row i, for any 0 � i < `. Moreover, BALANCE neverinreases the maximum proessor degree in any row. The atual implementa-tion of the BALANCE sub-step is rather involved and is disussed separatelyin Subsetion 4.1.1 To avoid onfusion disussing the elements of the tree being visited and the treesemployed in the tree rings, we will use the term node exlusively in onnetion withthe former and reserve the term vertex for the latter.

9

We have:Lemma 4 A visiting step is always either full or reduing.
PROOF. Let F be the frontier at the beginning of the visiting step. Then,there are at most minfjF (j)j; qg=(2K) proessors in row j of degree larger thandjF (j)j=qe, for eah j, 0 � j < `. This is ensured either by the BALANCEsub-step exeuted at the end of the preeding visiting step or, if the visitingstep under onsideration is the �rst of the stage, by the (approximately) evendistribution of frontier nodes guaranteed at the start of the stage. We all thetree nodes maintained by these overloaded proessors bad nodes and all theothers good nodes. Sine K is an upper bound to the degree of any proessor,we have that the total number of bad nodes in the �rst i levels of the frontieris

K iXj=0 minfjF (j)j; qg2K � 12 ������ i[j=0F (j)
������ ;

for any 0 � i < `. Thus the bad nodes at level i or lower aount for at mosthalf the total number of frontier nodes at those levels.Suppose jF j > 3p and let r � q be the number of olumns holding fewer than` nodes. Sine a olumn holds at most P`�1j=0 dF (j)=qe � (jF j=q + `) goodnodes, the number of good nodes is bounded as follows:jF j2 � jfgood nodesgj � r`+ (q � r)(jF j=q + `);
whih, following some tedious but simple arithmeti manipulations, impliesthat r � q(1� 1=8). Sine is a onstant greater than one, we onlude thatq � r � q=(8) = �(q) olumns hold at least ` nodes. Thus, the visiting stepwill visit �(q`) = �(p) nodes, hene the step is full.Consider now the ase jF j � 3p. Sine the number of good nodes in eaholumn is at most (jF j=q+`) � 4`, it follows that the total number of nodesto be visited in the step is at least equal to the total number of good nodes.From the observation made above, we know that if we visited only the goodnodes, then for any 0 � i < ` we would visit at least half of the frontier nodesat level i or lower, hene the step would be reduing. Sine in eah olumn weselet the topmost nodes available, if some good nodes are not visited it anonly be beause at least the same number of nodes at higher levels are visitedin their plae, whih maintains the reduing property.

10

In order to implement the visiting step desribed above, we need eÆientprimitives to operate on the tree rings. Consider a stage visiting a stratum ofsize m = O(p`2). Note that at the beginning of the stage the degree of eahproessor is O(`2), and that after eah VISIT sub-step the degree inreasesby at most an O(`) additive term. (Eah of the O(`) nodes visited by theproessors in a olumn an generate at most two hildren during a singleVISIT step.) Sine the BALANCE sub-step does not inrease the maximumdegree of a proessor and O(m=p + `) = O(`2) visiting steps are exeutedoverall, we an onlude that the maximum proessor degree will always beO(`3). As a onsequene, throughout the stage eah tree ring ontains at mostO(log `) trees of O(`3) size and O(log `) height eah.It an be shown [CV88℄ that:(1) Given k nodes evenly distributed among �(k) proessors, a tree ringwhose trees ontain these nodes as leaves, an be onstruted by theproessors in O(log k) time.(2) Two tree rings of size O(k) an be merged into one tree ring in O(log k)time by a single proessor.(3) Any number of k leaves an be extrated by O(k) proessors from a treering in time proportional to the maximum height of a tree in the treering. After extration, the tree ring struture an be restored within thesame time bound.It an be easily argued that the VISIT sub-step an be implemented in astraightforward fashion within eah olumn using standard tehniques suh aspre�x and the aforementioned primitives to manipulate the tree rings. Fromthe above disussion we onlude:Lemma 5 For strata of size O(p`2), VISIT an be exeuted in O(log `) =O(log log log p) time.
4.1 Implementation of BALANCE
As mentioned before, we use K = O(`3) to denote an upper bound to thedegree of any proessor when a stratum of size O(p`2) is explored (an exatvalue for K an be derived from the analysis). We assume that K is known byall proessors prior to the beginning of the entire algorithm. Sine BALANCEis exeuted in parallel and independently by all rows, we will onentrate onthe operations performed by an arbitrary row, say row k. Let fk denote thetotal number of tree nodes maintained by the proessors of this row at thebeginning of the BALANCE sub-step. The purpose of the sub-step is toredistribute these nodes among the proessors in suh a way that, after theredistribution, the number of proessors of degree greater than dfk=qe is at

11

most minffk; qg=(2K). (It should be noted that the value fk is not known tothe proessors.) The sub-step also ensures that the maximum proessor degreeis not inreased. A ruial feature of the implementation ofBALANCE is thatnodes are not physially exhanged between the proessors, whih would betoo ostly for our purposes, but instead they are \moved" by manipulatingthe orresponding tree rings, with a ost logarithmi in the number of nodesbeing moved.BALANCE is based on a balaning strategy introdued by Broder et al. in[BFSU92℄, whih makes use of a speial kind of expander de�ned below.De�nition 6 ([BFSU92℄) An undireted graph G = (V;E) is an (a; b)-extrovert graph, for some a; b with 0 < a; b < 1, if for any set S � V , withjSj � ajV j, at least bjSj of its verties have stritly more neighbours in V � Sthan in S.The existene of regular extrovert graphs of onstant degree is proved throughthe probabilisti method in [BFSU92℄.For eah row, we identify its q proessors with the verties of a regular (a; b)-extrovert graph G = (V;E) of odd degree d, where a; b and d are onstants. Let = (4d+ 3)=(4d+ 4) and � = blog1= K=2(d+ 1). BALANCE onsists of �phases, numbered from 0 to � � 1. In eah phase, some tree nodes maintainedby the row proessors are marked as dormant, and will not partiipate insubsequent phases. The remaining nodes are said to be ative. At the beginningof Phase 0 all frontier nodes are ative. For 0 � i < � , Phase i performs thefollowing ations.(1) Eah proessor with more thanKi=2 ative nodes in its tree ring delaresitself ongested.(2) Let � = 1+a and � = dlog1=(1�b)(��2K)e. A DAG D is built as a diretedversion of a subgraph of G. The onstrution proeeds by performing �steps of the following type [BFSU92℄. Initially, D is empty. In eah step,every ongested proessor not yet in D heks whether at least (d+1)=2of its neighbours are either non-ongested or already in D and, if so,enters D by aquiring edges to (d+ 1)=2 of these neighbours, whih alsoenter D.Comment: The onstrution and the fat that d is odd guarantee that Dis a DAG, and that eah ongested proessor in D has out-degree greaterthan its in-degree, while eah non ongested proessor in the DAG hasout-degree 0. Moreover, D has depth at most �.(3) A sub-DAG D0 � D is identi�ed omprising all ongested proessors withmore than Ki+1 ative nodes, and all of their desendants.(4) Eah ongested proessor not in D that has more than Ki+1 ativenodes, marks all but Ki+1 of its ative nodes as dormant.
12

(5) Let j be suh that 2j � Ki=(2d+2) < 2j+1. Note that Ki=(2d+2) � 1for j � � . Eah proessor in D0 extrats, for eah of its diret suessorsin D0, a tree ontaining 2j distint ative nodes from its tree ring, andsends a pointer to this tree to the suessor in question.(6) Eah proessor merges the trees it reeives into its tree ring.A pitorial representation of the onstrution of DAGs D and D0 performedin a phase of BALANCE is given in Fig. 3.

	R R? ?-
()

R R?-
(b)

(a)
	R ? -

(d)

Fig. 3. The DAG onstrution proess performed by BALANCE. (a) The extrovertgraph G onneting the proessors of a row. White nodes represent unongestedproessors. Blak and shaded nodes represent, respetively, \heavily" ongested pro-essors (more than Ki+1 ative nodes) and \lightly" ongested proessors (morethan Ki=2 and at most Ki+1 ative nodes). (b)-() Two-step onstrution ofDAG D. (d) The �nal subdag D0 � D ontaining all heavily ongested nodes andtheir desendants in D.In what follows, we show that at the end of the � phases the number ofproessors of degree more than dfk=qe is at most minffk; qg=(2K), and thatthe maximum proessor degree is not inreased.Lemma 7 For 0 � i < � , at the beginning of Phase i eah proessor holds atmost Ki ative nodes and at most K(1 � i) dormant nodes. Moreover, nophase inreases the maximum proessor degree.
PROOF. We proeed by indution on i. The ase i = 0 is learly true.Suppose that the property holds up to index i. By indution, eah proessorstarts Phase i with at most Ki ative nodes and at most K nodes overall. Aongested proessor that does not make it into the DAG D is not involved inany movement of nodes in the phase. Eah suh proessor begins with at mostK nodes (Ki ative and K(1 � i) dormant) and at the end of the phase

13

at most Ki+1 of its nodes remain ative while the rest beome (or remain)dormant. Moreover, the proessor's degree does not hange. If sub-DAG D0is empty then all ongested proessors in D have at most Ki+1 ative nodesand at most K �Ki+1 = K(1 � i+1) dormant nodes. Sine in this ase noexhange of pointers takes plae, the property for index i+1 follows. Supposeinstead that D0 is not empty, that is, there is at least one ongested proessorin D with more than Ki+1 ative nodes. (Note that in this ase the maximumproessor degree is greater thanKi+1). A ongested proessor inD0 transmits2j ative nodes to eah of its suessors. Sine the out-degree of a ongestedproessor in D0 is greater than its in-degree this represents a net loss of atleast 2j � Ki=(4d + 4) nodes. Therefore, in any suh proessor the numberof ative nodes at the end of the phase is at most
Ki � Ki4d+ 4 = Ki+1;

and its overall degree is dereased. Moreover, the number of dormant nodes forsuh a proessor stays unhanged, namely K(1� i) � K(1� i+1). Finally,a non-ongested proessor begins the phase with at most Ki=2 ative nodesand reeives at most d2j � dKi=(2d+2) new ative nodes, whih adds up toKi2 + dKi2d+ 2 � Ki+1;
whih is less than the maximum proessor degree. As in the previous ase, thenumber of dormant nodes for suh a proessor stays unhanged, that is lessthan K(1� i+1).
We refer to the proessors maintaining dormant nodes as rogues. Let R(j)denote the set of rogues at the beginning of Phase j and C(j) the set ofproessors that delare themselves ongested in the phase. De�ne rj = jR(j)jand j = jC(j)j, for 0 � j < � . Let � 0 = jlog1= � Ka2dfk=qe�k. We have:Lemma 8 For 0 � j � minf� 0; �g, we haverj � �j(1� b)� minffk; qg :
PROOF. We proeed by indution on j. The ase j = 0 is learly true siner0 = 0. Suppose that the property holds up to index j � 1 and onsider indexj. Note that the rogues at the beginning of Phase j will be given by the setR(j � 1) plus a set C 0 � C(j � 1) ontaining ongested proessors that didnot make it into the DAG during Phase j � 1. Let us give an upper bound to

14

jC 0j. Note that j�1 � aminffk; qg � aq, sine otherwise ongested proessorswould aount for more thanKj�1aminffk; qg2 > K� 0aminffk; qg2 � fk
ative nodes, whih is impossible. By the extrovertness of the graph G, afterthe �rst t steps of DAG onstrution, the number of ongested proessors notin D are at most j�1(1� b)t. This implies that jC 0j � j�1(1� b)�, hene thenumber of rogues at the beginning of Phase j will be

rj � j�1(1� b)� + rj�1� a(1� b)� minffk; qg+ �j�1(1� b)� minffk; qg (by indution)��j(1� b)� minffk; qg :Lemma 9 By the end of the BALANCE proedure, the number of proessorsof degree more than dfk=qe is at most minffk; qg=(2K) for a suitable hoie ofthe onstant . Moreover, the proedure is exeuted in time O((log log log p)2)on the COMMON CRCW-PRAM.
PROOF. Let us �rst onsider the ase � 0 � � . At the beginning of Phase � 0,eah proessor maintains at most K� 0 � dfk=qe ative nodes (by Lemma 7provided � 2=a), and the number of rogues is

r� 0 � �� 0(1� b)� minffk; qg � minffk; qg2K (1)
(by Lemma 8 and the hoie of �). Moreover Lemma 7 shows that the maxi-mum degree of proessors that are not rogues at the end of Phase � 0 will notinrease above the dfk=qe threshold in the subsequent � � � 0 � 1 phases.Now onsider the ase where � < � 0. In this ase

K� � 2(d+ 1) � dfk=qe
for � 2(d + 1)=. Moreover, sine rj is inreasing in j, the total number ofrogues is no more than that indiated in Equation 1.We now evaluate the running time. Consider a phase of BALANCE. Step 1learly takes O(1) time. Every DAG onstrution step is aomplished in on-stant time, hene the onstrution of D (Step 2) takes time O(�). Sine Dhas depth at most � it is easy to see that Step 3 an be aomplished in time

15

O(�), as well. The ost of the remaining steps is dominated by the ost of theextration and merging operations performed on the tree rings, whih takeO(logK) time overall. Noting that the number of phases is � = O(logK) and� = O(� + logK) = O(logK), we onlude that the overall running time isO(� logK) = O(log2K) = O(log2 `) = O((log log log p)2):
The following theorem ombines the ontributions of this setion and estab-lishes the result announed in Setion 3 upon whih the analysis of our bak-trak strategy is based.Theorem 10 A visiting step within a stratum of size O(p`2) an be imple-mented in O((log log log p)2) time on a p-proessor COMMON CRCW-PRAM,while ensuring that the step is either full or reduing.
5 Evaluation of Bounded-Degree DAGs
In this setion we show how some of the ideas involved in the baktrak searhalgorithm may be used to solve the DAG evaluation problem. In a omputa-tion DAG , nodes with zero in-degree are regarded as inputs, while other nodesrepresent operators whose operands are the values omputed by their prede-essors (i.e., nodes adjaent with respet to inoming edges). Nodes with zeroout-degree are regarded as outputs. A node an be evaluated only after all ofits operands have been evaluated. The DAG evaluation problem onsists ofevaluating all output nodes. We de�ne the layers of the DAG in the obviousway: the inputs are at layer zero and the layer of every other node is one plusthe maximum layer among its predeessors.In our parallel setting, we assume that a DAG D of onstant degree is storedin the shared memory of a p-proessor COMMON-CRCW PRAM. Eah DAGnode is represented by a desriptor ontaining the following information: a �eldthat spei�es the type of operation assoiated to that node; a �eld to store itsvalue; two �elds for eah operand (i.e., eah inoming edge), where proessorswill write the value of the operand, and a timestamp to reord the time ofwriting; and pointers to the node's suessors in D. Initially, only pointers tothe desriptors of the DAG inputs are known and evenly distributed amongthe proessors.Notie the similarity between the DAG evaluation and the baktrak searhproblems. While the omputational DAG is not neessarily a tree, neverthe-less we an still visit (i.e., evaluate) it by proeeding in a quasi breadth-�rststratum-by-stratum fashion as in the baktrak searh algorithm.

16

More preisely, reall that in the baktrak searh problem a node is revealedby the proessor that visits its (unique) parent. In the DAG evaluation prob-lem, \visiting" a node entails omputing the node's value and writing thisvalue in the node's desriptor and, together with a timestamp, in the appro-priate �elds of its suessors' desriptors. A node is revealed (hene ready tobe evaluated/visited itself) only when the last of its predeessors has beenevaluated, and the node is regarded as being a \hild" of that predeessor(with ties being broken arbitrarily). In this fashion, a spanning forest for theDAG is impliitly identi�ed and the DAG evaluation an be regarded as avisit of this a forest.By noting that our baktrak searh algorithm an be employed to visit anyforest of bounded-degree trees in O((n=p + h)(log log log p)2) time, where nis the total number of nodes and h the maximum tree-height in the forest,we onlude that the DAG evaluation problem an be solved within the sametime bound.
6 Conlusions
In this work we devised an eÆient deterministi strategy for performing par-allel baktrak searh on a shared memory mahine. Spei�ally, our strat-egy attains a running time whih is only a triply logarithmi fator awayfrom a natural lower bound for the problem. As with all previous studies,our investigation has mainly foused on running time. On the other hand,the overall spae required by our algorithm an grow as large as the treesize n, whereas the spae required by the randomized shemes proposed in[KZ93,LAB93,Ran94℄ is bounded above by minfn; phg. This latter quantity,however, is lose to n for large values of p and/or highly unbalaned trees. Itremains a hallenging open problem to devise fast and spae eÆient bak-trak searh algorithms and, more generally, to study time-spae tradeo�s forparallel baktrak searh.
Referenes
[AL91℄ B. Aiello and T. Leighton. Coding theory, hyperube embeddings andfault-tolerane. In Proeedings of 3rd ACM Symposium on ParallelAlgorithms and Arhitetures, pages 125{136, 1991.[BFSU92℄ A.Z. Broder, A.M. Frieze, E. Shamir, and E. Upfal. Near-perfet tokendistribution. In Proeedings of the 19th International Colloquium onAutomata, Languages and Programming, Leture Notes in ComputerSiene, Volume 623, pages 308{317, July 1992, Springer-Verlag.

17

[BGLL91℄ S.N. Bhatt, D. Greenberg, F.T. Leighton, and P. Liu. Tight boundsfor on-line tree embeddings. In Proeedings of the 2nd ACM-SIAMSymposium On Disrete Algorithms, pages 344{350, January 1991.[CV88℄ R. Cole and U. Vishkin. Approximate parallel sheduling. Part I: Thebasi tehnique with appliations to optimal parallel list ranking inlogarithmi time. SIAM Journal on Computing, 17(1):128{142, 1988.[GZ95℄ T. Goldberg and U. Zwik. Optimal deterministi approximate parallelpre�x sums and their appliations. In Proeedings of the 4th IsraelSymposium on Theory of Computing and Systems, pages 220{228, 1995.[HPP99a℄ K. Herley and A. Pietraaprina and G. Pui. Fast deterministi parallelbranh and bound. Parallel Proessing Letters, 9(3):325{334, 1999.[HPP99b℄ K. Herley and A. Pietraaprina and G. Pui. Deterministi branhand bound on distributed-memory mahines. International Journal onFoundations of Computer Siene, 10(4):391{404, 1999.[J�aJ92℄ J. J�aJ�a. An Introdution to Parallel Algorithms. Addison Wesley, ReadingMA, 1992.[KP94℄ C. Kaklamanis and G. Persiano. Branh-and-bound and baktrak searhon mesh-onneted arrays of proessors. Mathematial Systems Theory,27:471{489, 1994.[KZ93℄ R.M. Karp and Y. Zhang. parallel algorithms for baktrak searh andbranh and bound omputation. Journal of the ACM, 40:765{789, 1993.[LAB93℄ P. Liu, W. Aeillo and S. Bhatt. An atomi model for message-passing.In Proeedings of 5th ACM Symposium on Parallel Algorithms andArhitetures, pages 154{163, 1993.[LNRS92℄ T. Leighton, M. Newman, A. G. Ranade and E. Shwabe. Dynami treeembeddings in butteries and hyperubes. SIAM Journal on Computing,21:639{654, 1992.[Ran90℄ A.G. Ranade. A simpler analysis of the Karp-Zhang parallel branh-and-bound method. Tehnial Report No. 586, Computer Siene Division,University of California at Berkeley, Berkeley, California, 1990.[Ran94℄ A.G. Ranade. Optimal speed-up for baktrak searh on a butterynetwork. Mathematial Systems Theory, 27:85{101, 1994.[WK91℄ I.C. Wu and H.T. Kung. Communiation omplexity for parallel divide-and-onquer. In Pro. of the 32nd IEEE Symp. on Foundations ofComputer Siene, pages 151{162, 1991.

18

