
Deterministi
 Parallel Ba
ktra
k Sear
h ?
Kieran T. HerleyDepartment of Computer S
ien
e, University College Cork, Cork, Irelandk.herley�
s.u

.ie

Andrea Pietra
aprina, Geppino Pu

i,Dipartimento di Elettroni
a e Informati
a, Universit�a di Padova, Padova, Italyfandrea,geppog�artemide.dei.unipd.it
Abstra
tThe ba
ktra
k sear
h problem involves visiting all the nodes of an arbitrary binarytree given a pointer to its root, subje
t to the 
onstraint that the 
hildren of a nodeare revealed only after their parent is visited. We present a fast, deterministi
 ba
k-tra
k sear
h algorithm for a p-pro
essor COMMON CRCW-PRAM, whi
h visitsany n-node tree of height h in time O �(n=p+ h)(log log log p)2�. This upper bound
ompares favourably with a natural 
(n=p+ h) lower bound for this problem. Ourapproa
h embodies novel, eÆ
ient te
hniques for dynami
ally assigning tree-nodesto pro
essors to ensure that the work is shared equitably among them.
Key words: Ba
ktra
k sear
h. Load balan
ing. PRAM model. Parallel algorithms.
1 Introdu
tion
Several algorithmi
 te
hniques, su
h as those employed for solving many op-timization problems, are based on the systemati
 exploration of a tree, whoseinternal nodes 
orrespond to partial solutions (growing progressively more re-�ned with in
reasing depth) and whose leaves 
orrespond to feasible solutions.In this paper, we are 
on
erned with the implementation of tree explorations? This resear
h was supported, in part, by the EC ESPRIT III Basi
 Resear
hProje
t 9072-GEPPCOM; by the CNR of Italy under Grant CNR96.02538.CT07;and by MURST of Italy under Proje
t MOSAICO. The results in this paper ap-peared in preliminary form in the Pro
eedings of the 23rd International Colloquiumon Automata, Languages and Programming, Paderborn, Germany, July 1996.
Preprint submitted to Elsevier Preprint 18 January 2001



on shared-memory parallel ma
hines. Spe
i�
ally, we 
onsider the ba
ktra
ksear
h problem, whi
h involves visiting all the nodes of a tree T subje
t to the
onstraints that (1) initially only the root of T is known to the pro
essors,and (2) the 
hildren of a node are made known only after the node itself isvisited. Moreover, the stru
ture of T , its size n and its height h are unknownto the pro
essors.We assume that a node 
an be visited (and its 
hildren revealed) in 
onstanttime. Sin
e 
(n) work is needed to visit n nodes and sin
e any tree of heighth 
ontains a path of h nodes whose visit times must form a stri
tly in
reas-ing sequen
e, it follows that any algorithm for the ba
ktra
k sear
h problemrequires 
(n=p+ h) time on a p-pro
essor ma
hine.A number of works on parallel ba
ktra
k sear
h have appeared in the litera-ture. Randomized algorithms have been developed for the 
ompletely-
onne
tednetwork of pro
essors [KZ93,LAB93℄ and the butter
y network [Ran94℄, whi
hrun, optimally, in O(n=p+h) steps, with high probability. It should be noted,however, that the butter
y algorithm fo
uses on the number of \node-visiting"steps and does not fully a

ount for overhead due to manipulations of lo
aldata stru
tures. A deterministi
 algorithm is given in [KP94℄, whi
h runs inO(pph) time on a pp � pp mesh, provided that n = O(p). It is not 
learwhether this latter algorithm 
an be extended to work for larger tree sizes. Therelationship between 
omputation and 
ommuni
ation for the exploration oftrees arising from irregular divide-and-
onquer 
omputations has been studiedin [WK91℄. A number of related problems have also been addressed in the liter-ature, su
h as bran
h-and-bound [Ran90,KZ93,LAB93,KP94,HPP99a,HPP99b℄and dynami
 tree embeddings [AL91,BGLL91,LNRS92℄.In this paper, we present a deterministi
 PRAM algorithm for ba
ktra
k sear
hwhose running time is within a triply-logarithmi
 fa
tor of the natural lowerbound dis
ussed above. Our main result is summarized in the following theo-rem.Theorem 1 There is a deterministi
 algorithm running on a p-pro
essorCOMMON CRCW-PRAM that performs ba
ktra
k sear
h on any n-nodebounded-degree tree of height h in O ((n=p+ h)(log log log p)2) time, in theworst 
ase.Ours is the �rst eÆ
ient, deterministi
 PRAM algorithm that pla
es no re-stri
tions on the stru
ture, size or height of the (bounded-degree) tree to whi
hit is applied, and whose running time faithfully a

ounts for all 
osts. The al-gorithm performs an optimal number of O(n=p + h) parallel \node-visiting"steps, while the O((log log log p)2) multipli
ative fa
tor in the running time
aptures the average overhead per step required to ensure that the workloadis equitably distributed among the pro
essors. As a 
onsequen
e, our algorithm
2



would be
ome optimal if the 
ost of a node visit were 
((log log log p)2), whi
his likely to be the 
ase in typi
al appli
ations of ba
ktra
k sear
h, where everynode represents a 
omplex subproblem to be solved.The rest of the paper is organized as follows. Se
tion 2 provides a number ofbasi
 de�nitions and dis
usses a simple, dire
t approa
h to ba
ktra
k sear
hwhi
h our algorithm uses in 
ombination with a more sophisti
ated strategy toattain eÆ
ien
y. The high-level stru
ture of our algorithm is des
ribed in Se
-tion 3, while Se
tion 4 provides a detailed des
ription of the key routine thatperforms node visits and load balan
ing. In Se
tion 5 we argue the generalityof our approa
h by dis
ussing how it 
an be adapted to s
hedule straight-line 
omputations represented by bounded-degree DAGs. Se
tion 6 
loses thepaper with some �nal remarks.
2 Preliminaries
Our algorithm is designed for the COMMON CRCW PRAM model of 
om-putation, whi
h 
onsists of p pro
essors and a shared memory of unboundedsize. In a single step, ea
h pro
essor either performs a 
onstant amount oflo
al 
omputation or a

esses an arbitrary 
ell of the shared memory. In theCOMMON CRCW variant of the PRAM, 
on
urrent reads are permitted asare 
on
urrent writes, provided that all 
ompeting pro
essors write the samevalue [J�aJ92℄.Let T be the tree to be visited. For simpli
ity, we assume that the tree isbinary, although our results 
an be immediately extended to the more general
lass of bounded-degree trees. For 
on
reteness, we suppose that ea
h node isrepresented in memory by means of a des
riptor. Initially, only the des
riptorof the root is available in the shared memory of the PRAM at a designatedlo
ation. The des
riptor of any other node is generated only by a

essingthe des
riptor of the node's father. A visit to a node involves a

essing itsdes
riptor, and generating and storing the des
riptors of its 
hildren (if any).As mentioned before, a node visit is assumed to take 
onstant time.A straightforward strategy to solve the ba
ktra
k sear
h problem is to visitthe tree in a breadth-�rst, level-by-level fashion. An algorithm based on su
ha strategy would pro
eed in phases, where ea
h phase visits all the nodes at a
ertain level and evenly redistributes their 
hildren among the pro
essors, toguarantee that the overall number of parallel visiting steps is at most n=p+h.(Here the term parallel visiting step refers to a k-tuple (k � p) of simulta-neous visits to distin
t tree nodes performed by distin
t PRAM pro
essors.)A perfe
tly balan
ed redistribution of tree nodes among pro
essors betweensu

essive parallel visiting steps 
an be a

omplished deterministi
ally using

3



simple parallel pre�x sums [J�aJ92℄, yielding an O(n=p+h log p) overall runningtime for ba
ktra
k sear
h. Note that this strategy also works for the weakerEREW PRAM variant, where 
on
urrent read/write a

esses are not allowed.In fa
t, an asymptoti
ally optimal number of �(n=p + h) parallel visitingsteps 
an still be a
hieved without perfe
t balan
ing, by requiring that thenodes at any level of the tree be only \approximately redistributed" amongthe pro
essors, that is, the nodes a pro
essor is given must be at most a
onstant fa
tor more than what it would re
eive with perfe
t balan
ing. Anapproximate redistribution 
an be attained by using the following result byGoldberg and Zwi
k.Fa
t 2 ([GZ95℄) For an arbitrary sequen
e of p integer values a0; a1; : : : ; ap�1,the approximate pre�x sums b0; b1; : : : ; bp�1 withPij=0 aj � bi � (1+�)Pij=0 aj,where � = o(1), and bi � bi�1+ai 
an be determined in O(log log p) worst-
asetime on a p-pro
essor COMMON CRCW-PRAM.By employing the approximate pre�x sums to implement node redistributionafter visiting ea
h level of the tree, we get a deterministi
 O(n=p+h log log p)-time algorithm for the ba
ktra
k sear
h problem on a p-pro
essor COMMONCRCW-PRAM, for any values of n, h and p.In the next se
tions we devise a more sophisti
ated strategy whi
h outperformsthe above simple one for trees where n = o(ph log log p=(log log log p)2). Thisasymptoti
 improvement results in near- optimal performan
e through 
areful\load-balan
ing" te
hniques without ex
essive global 
ommuni
ation.
3 A High-Level View of the Algorithm
Our algorithm pro
eeds in a quasi-breadth-�rst fashion. Let the tree nodesbe partitioned into h levels, where the nodes of one level are all at the samedistan
e from the root. The exploration pro
ess is split into stages, ea
h ofwhi
h visits a stratum of the tree 
onsisting of ` = �(log log p) 
onse
utivelevels. At the beginning of a stage, all nodes at the top level of the stratum are(approximately) distributed among the pro
essors. Note that the previouslymentioned straightforward strategy based on approximate pre�x sums visitsany stratum of size m = 
(p`2) optimally. Therefore, we fo
us on te
hniquesto 
ope eÆ
iently with smaller strata.Consider a stage visiting a stratum with m = O(p`2) nodes. For 
onvenien
e,we number the levels of the stratum from 0 to `� 1, from top to bottom. Thestage explores all the nodes in these levels. At any point during the exploration,the set of nodes whose des
riptors have been generated but whi
h are not yet

4



visited is 
alled the frontier. (The initial frontier 
ontains all the nodes in thetop level of the stratum.) Let F (j) denote those frontier nodes at level j, for0 � j < ` and let F = [`�1j=0F (j) denote the entire frontier. In order to evaluatethe progress that the algorithm is making, we de�ne a weight fun
tion on thefrontier F as follows
w(F ) = `�1Xj=0 jF (j)j3`�j ;

i.e. nodes at level j have weight 3`�j. Note that the 
ontribution of a frontiernode to w(F ) is exponentially de
reasing in its level within the stratum. Also,visiting a frontier node at level j involves repla
ing that node in the frontier byits 
hildren (if any), whose 
ombined weight of at most 2� 3`�j�1 = (2=3)3`�jis a 
onstant fa
tor less than that of their parent. Hen
e, ea
h node visit de-
reases the frontier weight. Visiting nodes at lower numbered levels rather thannodes further down the stratum results in a more substantial de
rease in theweight fun
tion. In order to avoid frequent, expensive balan
ing steps, our ex-ploration strategy does not ne
essarily pro
eed in a regular, breadth-�rst man-ner. Nonetheless, we make use of 
ertain 
heaper, weight-driven load-balan
ingte
hniques to ensure that the frontier weight de
reases at a predi
table rate.A pi
torial representation of the exploration pro
ess is shown in Fig. 1A stage 
onsists of two parts. In the �rst part, a sequen
e of (parallel) visitingsteps is performed to explore nodes in the stratum until the frontier weightis less than or equal to p. In order to dete
t the end of the �rst part, visiting

(a)
stratum

?

6
h

?6̀frontier6
(b)

3`�j
VISIT

(2=3)3`�j
Fig. 1. The weight-driven exploration pro
ess on a tree of height h. (a) The portionwithin thin solid lines en
loses visited nodes belonging to previous strata. Thi
ksolid lines en
lose visited/generated nodes within the 
urrent stratum of ` levels.Frontier nodes lie along the thi
k spline. Dashed lines en
lose the nodes that arestill to be generated. (b) The frontier weight redu
tion indu
ed by a visit of a nodeat level j of the stratum, with 0 � j < `.

5



steps are exe
uted in bat
hes of ` and a weight estimate is 
omputed after theexe
ution of ea
h bat
h, using the approximate pre�x sums algorithm, whoseO(log log p) 
omplexity is dominated by that of the ` visiting steps. The se
ondpart of the stage 
ompletes the exploration of the stratum as follows. First,for every 0 � j < `, a 
luster of 2`�j distin
t pro
essors is assigned to ea
hnode of F (j) by means of approximate pre�x sums in O(log log p) time. (Sin
ePj̀=0 jF (j)j2`�j � Pj̀=0 jF (j)j3`�j � p, su
h an assignment is feasible.) Next,all of the des
endants of ea
h node in F are visited by the 
orresponding
luster of pro
essors in O(`) time. More spe
i�
ally, 
onsider a frontier nodex at level j and let fp0; : : : ; p2`�j�1g be the 
luster of pro
essors assigned to it.The exploration pro
eeds in `�1�j rounds, where in round k, 0 � k < `�1�j,all des
endants of x at distan
e k from it are visited. In round zero p0 visitsx and gives its 
hildren (if any) to p0 and p1. Thereafter for ea
h round, pitakes the node (if any) given to it in the previous round, visits it, and givesits 
hildren to pro
essors p2i and p2i+1, and so on.At the end of the stage, the 
hildren of the nodes on the last level of thestratum, whi
h make the initial frontier for the next stage, will be evenlydistributed among the pro
essors by employing again the approximate pre�xsums algorithm.A very high-level, pro
edural des
ription of our new strategy for visiting smallstrata with O(p`2) nodes is given in Fig. 2. In summary, ea
h stratum isvisited in a stage (pro
edure STAGE VISIT) by �rst alternating ` paral-lel visiting steps (pro
edure VISITING STEP) with an approximate 
ountof the frontier weight (pro
edure APPROXIMATE COUNT), until the lat-ter goes below p. Then, the visit of the stratum is 
ompleted by �rst allo-
ating pro
essor 
lusters to the residual unexplored nodes (pro
edure AL-LOCATE CLUSTERS), then visiting their subtrees within the stratum us-ing the simple te
hnique illustrated above (pro
edure COMPLETE VISIT),and �nally redistributing the initial frontier for the next stage to the p pro-
essors (pro
edure REDISTRIBUTE NODES). Note that the three pro
e-pro
edure STAGE VISIT()APPROXIMATE COUNT(w(F ))while w(F ) > pdo repeat ` timesVISITING STEP()end repeatAPPROXIMATE COUNT(w(F ))end whileALLOCATE CLUSTERS()COMPLETE VISIT()REDISTRIBUTE NODES()end STAGE VISITFig. 2. Overall stru
ture of the algorithm for visiting small strata
6



dures APPROXIMATE COUNT ALLOCATE PROCESSORS and REDIS-TRIBUTE NODES 
an all be implemented by means of simple variations ofthe approximate pre�x sums algorithm of [GZ95℄.In order to determine the total running time of a stage, we need to give abound on the number of visiting steps performed. Let Ft be the frontier at thebeginning of the tth visiting step. The step is 
alled full, if it visits 
(p) nodesin Ft, and it is 
alled redu
ing if it visits at least half of the nodes in Sij=0 F (j),for ea
h i in the range 0 � i < `. Se
tion 4 will show how to perform a visitingstep in time O((log log log p)2) while ensuring that it is always either full orredu
ing (see Theorem 10). Clearly, for a stratum of m nodes, there are atmost O(m=p) full visiting steps in the stage, whereas the number of redu
ingsteps is bounded by the following lemma.Lemma 3 If m = O(p`2), then O(`) redu
ing visiting steps are suÆ
ient toredu
e the frontier weight to at most p.
PROOF. The proof is based on the following property.Claim. Let x0; x1; � � � ; xn�1 and y0; y1; � � � ; yn�1 be two sequen
es of nonnega-tive integers su
h that Pij=0 xj � Pij=0 yj , for all 0 � i < n. Then,n�1Xi=0 xi=3i � n�1Xi=0 yi=3i :
Proof of Claim. The proof is by indu
tion on n. The 
ase n = 1 is trivial.Suppose that the property holds for some n � 1 and 
onsider sequen
es ofn + 1 elements. Assume that xn > yn, sin
e otherwise the indu
tive step isimmediate. It is easy to see thatnXi=0 xi3i � n�2Xi=0 xi3i + �xn�1 + xn � yn3n�1 �+ yn3n :
Note that Pn�2i=0 xi + (xn�1 + xn � yn) � Pn�1i=0 yi, therefore, by applying theindu
tion hypothesis, we have thatn�2Xi=0 xi3i + �xn�1 + xn � yn3n�1 � � n�1Xi=0 yi3i ;
whi
h, 
ombined with the previous inequality, proves the 
laim.

7



Consider a redu
ing visiting step. Let F be the frontier prior to the exe
utionof the step and let nj be the number of nodes in F (j) visited in the step,0 � j < `. Sin
e the visiting step is redu
ing, we haveiXj=0nj � 12 iXj=0 jF (j)j ;
for any i, 0 � i < `, and the 
laim shows that

3` `�1Xj=0 nj3j � 32̀ `�1Xj=0 jF (j)j3j = w(F )2 :
Thus, the visited nodes a

ount for at least half the total frontier weight. Sin
ethe 
ombined weight of the 
hildren of any node is at most two thirds of theweight of their parent, it follows that the weight redu
tion must be at leastone third of the total weight of the visited nodes, i.e., at least one sixth of thefrontier weight w(F ) prior to the exe
ution of the visiting step. Thus, the newfrontier weight following the 
ompletion of the step is at most (5=6)w(F ).Sin
e the frontier at the beginning of the stage 
ontains O(p`2) nodes at level0, the initial frontier weight is O(p`23`), whi
h implies that the frontier weightwill be less than or equal to p after O(`) redu
ing steps. This proves the lemma.
>From the above dis
ussion we 
on
lude that our new strategy 
an be em-ployed to visit any stratum of size m = O(p`2) in O(m=p + `) visiting stepsand O((m=p+ `)(log log log p)2) time. Sin
e strata of size m = 
(p`2) 
an bevisited in O(m=p) time using the straightforward breadth-�rst strategy out-lined in Se
tion 2, we 
an suitably interleave the two strategies and obtain analgorithm that visits any stratum in time O((m=p+ `)(log log log p)2) for anyvalue of m. This immediately yields a ba
ktra
k sear
h algorithm with therunning time stipulated in Theorem 1. Note that the number of visiting stepsrequired is O(n=p+ h) in all.
4 Implementation of a Visiting Step
In this se
tion, we des
ribe the implementation of a visiting step whi
h enfor
esthe property that the step is always either full or redu
ing.The key idea is a \heap-like" data stru
ture D that holds the frontier nodesfrom whi
h nodes are extra
ted prior to the beginning of the visiting step andto whi
h their 
hildren are inserted at the end of that step. Con
eptually, D

8



is 
omposed of an ` � p=` array of tree rings. We also regard the p PRAMpro
essors as being 
on
eptually arranged into ` rows and q = p=` 
olumns.At the beginning of the visiting step, the tree rings of the ith row 
ontain all
urrent frontier nodes at level i, 0 � i < `. A tree ring is stru
tured as a forestof 
omplete binary trees of di�erent sizes 1 . The leaf verti
es in a tree ring arenodes of the tree being visited and ea
h internal vertex 
ontains pointers toits 
hildren. The roots of the trees in the same tree ring are organized in adoubly-linked list, ordered by tree size. (This data stru
ture is broadly similarto one used in [CV88℄.) As in the previous se
tion, we assume that the stratumbeing visited is of size O(p`2). We use K to denote an upper bound on thesize (i.e., the number of node des
riptors stored) of any tree ring during theexe
ution of a stage. Later, we will show that K = O(`3), hen
e the height ofany tree in a tree ring will always be O(log `). It should be noted that whileea
h tree ring is notionally asso
iated with a parti
ular pro
essor, sin
e it isstored in the shared PRAM memory it is a

essible to all.A visiting step 
onsists of two sub-steps, VISIT and BALANCE, whi
h aredes
ribed in the following paragraphs.
VISIT This sub-step is exe
uted in parallel by ea
h 
olumn of pro
essors.Let s be the total number of nodes held by the tree rings of the 
olumn and let
 > 1 be a 
onstant to be spe
i�ed later. The ` pro
essors in the 
olumn sele
tthe minfs; 4
`g topmost nodes from the union of their tree rings, and distributethese nodes evenly among themselves. Then, ea
h pro
essor visits the nodes itre
eives. Finally the 
hildren of these just-visited nodes are inserted into theappropriate tree rings within the 
olumn.
BALANCE This sub-step is exe
uted in parallel by ea
h row of pro
essorsand aims at partially balan
ing the nodes stored in the tree rings of the row.We de�ne the degree of a pro
essor as the number of tree nodes 
ontained inits tree ring. Let fi be the sum of the degrees of all pro
essors in row i, for0 � i < `. (Note that fi = jF (i)j, i.e., the number of frontier nodes at level i ofthe stratum.) BALANCE redistributes the nodes among the tree rings in su
ha way that upon 
ompletion at most minffi; qg=(2K) pro
essors have degreelarger than 
dfi=qe in row i, for any 0 � i < `. Moreover, BALANCE neverin
reases the maximum pro
essor degree in any row. The a
tual implementa-tion of the BALANCE sub-step is rather involved and is dis
ussed separatelyin Subse
tion 4.1.1 To avoid 
onfusion dis
ussing the elements of the tree being visited and the treesemployed in the tree rings, we will use the term node ex
lusively in 
onne
tion withthe former and reserve the term vertex for the latter.

9



We have:Lemma 4 A visiting step is always either full or redu
ing.
PROOF. Let F be the frontier at the beginning of the visiting step. Then,there are at most minfjF (j)j; qg=(2K) pro
essors in row j of degree larger than
djF (j)j=qe, for ea
h j, 0 � j < `. This is ensured either by the BALANCEsub-step exe
uted at the end of the pre
eding visiting step or, if the visitingstep under 
onsideration is the �rst of the stage, by the (approximately) evendistribution of frontier nodes guaranteed at the start of the stage. We 
all thetree nodes maintained by these overloaded pro
essors bad nodes and all theothers good nodes. Sin
e K is an upper bound to the degree of any pro
essor,we have that the total number of bad nodes in the �rst i levels of the frontieris

K iXj=0 minfjF (j)j; qg2K � 12 ������ i[j=0F (j)
������ ;

for any 0 � i < `. Thus the bad nodes at level i or lower a

ount for at mosthalf the total number of frontier nodes at those levels.Suppose jF j > 3p and let r � q be the number of 
olumns holding fewer than` nodes. Sin
e a 
olumn holds at most P`�1j=0 
dF (j)=qe � 
(jF j=q + `) goodnodes, the number of good nodes is bounded as follows:jF j2 � jfgood nodesgj � r`+ (q � r)
(jF j=q + `);
whi
h, following some tedious but simple arithmeti
 manipulations, impliesthat r � q(1� 1=8
). Sin
e 
 is a 
onstant greater than one, we 
on
lude thatq � r � q=(8
) = �(q) 
olumns hold at least ` nodes. Thus, the visiting stepwill visit �(q`) = �(p) nodes, hen
e the step is full.Consider now the 
ase jF j � 3p. Sin
e the number of good nodes in ea
h
olumn is at most 
(jF j=q+`) � 4
`, it follows that the total number of nodesto be visited in the step is at least equal to the total number of good nodes.From the observation made above, we know that if we visited only the goodnodes, then for any 0 � i < ` we would visit at least half of the frontier nodesat level i or lower, hen
e the step would be redu
ing. Sin
e in ea
h 
olumn wesele
t the topmost nodes available, if some good nodes are not visited it 
anonly be be
ause at least the same number of nodes at higher levels are visitedin their pla
e, whi
h maintains the redu
ing property.

10



In order to implement the visiting step des
ribed above, we need eÆ
ientprimitives to operate on the tree rings. Consider a stage visiting a stratum ofsize m = O(p`2). Note that at the beginning of the stage the degree of ea
hpro
essor is O(`2), and that after ea
h VISIT sub-step the degree in
reasesby at most an O(`) additive term. (Ea
h of the O(`) nodes visited by thepro
essors in a 
olumn 
an generate at most two 
hildren during a singleVISIT step.) Sin
e the BALANCE sub-step does not in
rease the maximumdegree of a pro
essor and O(m=p + `) = O(`2) visiting steps are exe
utedoverall, we 
an 
on
lude that the maximum pro
essor degree will always beO(`3). As a 
onsequen
e, throughout the stage ea
h tree ring 
ontains at mostO(log `) trees of O(`3) size and O(log `) height ea
h.It 
an be shown [CV88℄ that:(1) Given k nodes evenly distributed among �(k) pro
essors, a tree ringwhose trees 
ontain these nodes as leaves, 
an be 
onstru
ted by thepro
essors in O(log k) time.(2) Two tree rings of size O(k) 
an be merged into one tree ring in O(log k)time by a single pro
essor.(3) Any number of k leaves 
an be extra
ted by O(k) pro
essors from a treering in time proportional to the maximum height of a tree in the treering. After extra
tion, the tree ring stru
ture 
an be restored within thesame time bound.It 
an be easily argued that the VISIT sub-step 
an be implemented in astraightforward fashion within ea
h 
olumn using standard te
hniques su
h aspre�x and the aforementioned primitives to manipulate the tree rings. Fromthe above dis
ussion we 
on
lude:Lemma 5 For strata of size O(p`2), VISIT 
an be exe
uted in O(log `) =O(log log log p) time.
4.1 Implementation of BALANCE
As mentioned before, we use K = O(`3) to denote an upper bound to thedegree of any pro
essor when a stratum of size O(p`2) is explored (an exa
tvalue for K 
an be derived from the analysis). We assume that K is known byall pro
essors prior to the beginning of the entire algorithm. Sin
e BALANCEis exe
uted in parallel and independently by all rows, we will 
on
entrate onthe operations performed by an arbitrary row, say row k. Let fk denote thetotal number of tree nodes maintained by the pro
essors of this row at thebeginning of the BALANCE sub-step. The purpose of the sub-step is toredistribute these nodes among the pro
essors in su
h a way that, after theredistribution, the number of pro
essors of degree greater than 
dfk=qe is at

11



most minffk; qg=(2K). (It should be noted that the value fk is not known tothe pro
essors.) The sub-step also ensures that the maximum pro
essor degreeis not in
reased. A 
ru
ial feature of the implementation ofBALANCE is thatnodes are not physi
ally ex
hanged between the pro
essors, whi
h would betoo 
ostly for our purposes, but instead they are \moved" by manipulatingthe 
orresponding tree rings, with a 
ost logarithmi
 in the number of nodesbeing moved.BALANCE is based on a balan
ing strategy introdu
ed by Broder et al. in[BFSU92℄, whi
h makes use of a spe
ial kind of expander de�ned below.De�nition 6 ([BFSU92℄) An undire
ted graph G = (V;E) is an (a; b)-extrovert graph, for some a; b with 0 < a; b < 1, if for any set S � V , withjSj � ajV j, at least bjSj of its verti
es have stri
tly more neighbours in V � Sthan in S.The existen
e of regular extrovert graphs of 
onstant degree is proved throughthe probabilisti
 method in [BFSU92℄.For ea
h row, we identify its q pro
essors with the verti
es of a regular (a; b)-extrovert graph G = (V;E) of odd degree d, where a; b and d are 
onstants. Let
 = (4d+ 3)=(4d+ 4) and � = blog1=
 K=2(d+ 1)
. BALANCE 
onsists of �phases, numbered from 0 to � � 1. In ea
h phase, some tree nodes maintainedby the row pro
essors are marked as dormant, and will not parti
ipate insubsequent phases. The remaining nodes are said to be a
tive. At the beginningof Phase 0 all frontier nodes are a
tive. For 0 � i < � , Phase i performs thefollowing a
tions.(1) Ea
h pro
essor with more thanK
i=2 a
tive nodes in its tree ring de
laresitself 
ongested.(2) Let � = 1+a and � = dlog1=(1�b)(��2K)e. A DAG D is built as a dire
tedversion of a subgraph of G. The 
onstru
tion pro
eeds by performing �steps of the following type [BFSU92℄. Initially, D is empty. In ea
h step,every 
ongested pro
essor not yet in D 
he
ks whether at least (d+1)=2of its neighbours are either non-
ongested or already in D and, if so,enters D by a
quiring edges to (d+ 1)=2 of these neighbours, whi
h alsoenter D.Comment: The 
onstru
tion and the fa
t that d is odd guarantee that Dis a DAG, and that ea
h 
ongested pro
essor in D has out-degree greaterthan its in-degree, while ea
h non 
ongested pro
essor in the DAG hasout-degree 0. Moreover, D has depth at most �.(3) A sub-DAG D0 � D is identi�ed 
omprising all 
ongested pro
essors withmore than K
i+1 a
tive nodes, and all of their des
endants.(4) Ea
h 
ongested pro
essor not in D that has more than K
i+1 a
tivenodes, marks all but K
i+1 of its a
tive nodes as dormant.
12



(5) Let j be su
h that 2j � K
i=(2d+2) < 2j+1. Note that K
i=(2d+2) � 1for j � � . Ea
h pro
essor in D0 extra
ts, for ea
h of its dire
t su

essorsin D0, a tree 
ontaining 2j distin
t a
tive nodes from its tree ring, andsends a pointer to this tree to the su

essor in question.(6) Ea
h pro
essor merges the trees it re
eives into its tree ring.A pi
torial representation of the 
onstru
tion of DAGs D and D0 performedin a phase of BALANCE is given in Fig. 3.

	R R? ?-
(
)

R R?-
(b)

(a)
	R ? -

(d)

Fig. 3. The DAG 
onstru
tion pro
ess performed by BALANCE. (a) The extrovertgraph G 
onne
ting the pro
essors of a row. White nodes represent un
ongestedpro
essors. Bla
k and shaded nodes represent, respe
tively, \heavily" 
ongested pro-
essors (more than K
i+1 a
tive nodes) and \lightly" 
ongested pro
essors (morethan K
i=2 and at most K
i+1 a
tive nodes). (b)-(
) Two-step 
onstru
tion ofDAG D. (d) The �nal subdag D0 � D 
ontaining all heavily 
ongested nodes andtheir des
endants in D.In what follows, we show that at the end of the � phases the number ofpro
essors of degree more than 
dfk=qe is at most minffk; qg=(2K), and thatthe maximum pro
essor degree is not in
reased.Lemma 7 For 0 � i < � , at the beginning of Phase i ea
h pro
essor holds atmost K
i a
tive nodes and at most K(1 � 
i) dormant nodes. Moreover, nophase in
reases the maximum pro
essor degree.
PROOF. We pro
eed by indu
tion on i. The 
ase i = 0 is 
learly true.Suppose that the property holds up to index i. By indu
tion, ea
h pro
essorstarts Phase i with at most K
i a
tive nodes and at most K nodes overall. A
ongested pro
essor that does not make it into the DAG D is not involved inany movement of nodes in the phase. Ea
h su
h pro
essor begins with at mostK nodes (K
i a
tive and K(1 � 
i) dormant) and at the end of the phase

13



at most K
i+1 of its nodes remain a
tive while the rest be
ome (or remain)dormant. Moreover, the pro
essor's degree does not 
hange. If sub-DAG D0is empty then all 
ongested pro
essors in D have at most K
i+1 a
tive nodesand at most K �K
i+1 = K(1 � 
i+1) dormant nodes. Sin
e in this 
ase noex
hange of pointers takes pla
e, the property for index i+1 follows. Supposeinstead that D0 is not empty, that is, there is at least one 
ongested pro
essorin D with more than K
i+1 a
tive nodes. (Note that in this 
ase the maximumpro
essor degree is greater thanK
i+1). A 
ongested pro
essor inD0 transmits2j a
tive nodes to ea
h of its su

essors. Sin
e the out-degree of a 
ongestedpro
essor in D0 is greater than its in-degree this represents a net loss of atleast 2j � K
i=(4d + 4) nodes. Therefore, in any su
h pro
essor the numberof a
tive nodes at the end of the phase is at most
K
i � K
i4d+ 4 = K
i+1;

and its overall degree is de
reased. Moreover, the number of dormant nodes forsu
h a pro
essor stays un
hanged, namely K(1� 
i) � K(1� 
i+1). Finally,a non-
ongested pro
essor begins the phase with at most K
i=2 a
tive nodesand re
eives at most d2j � dK
i=(2d+2) new a
tive nodes, whi
h adds up toK
i2 + dK
i2d+ 2 � K
i+1;
whi
h is less than the maximum pro
essor degree. As in the previous 
ase, thenumber of dormant nodes for su
h a pro
essor stays un
hanged, that is lessthan K(1� 
i+1).
We refer to the pro
essors maintaining dormant nodes as rogues. Let R(j)denote the set of rogues at the beginning of Phase j and C(j) the set ofpro
essors that de
lare themselves 
ongested in the phase. De�ne rj = jR(j)jand 
j = jC(j)j, for 0 � j < � . Let � 0 = jlog1=
 � Ka2dfk=qe�k. We have:Lemma 8 For 0 � j � minf� 0; �g, we haverj � �j(1� b)� minffk; qg :
PROOF. We pro
eed by indu
tion on j. The 
ase j = 0 is 
learly true sin
er0 = 0. Suppose that the property holds up to index j � 1 and 
onsider indexj. Note that the rogues at the beginning of Phase j will be given by the setR(j � 1) plus a set C 0 � C(j � 1) 
ontaining 
ongested pro
essors that didnot make it into the DAG during Phase j � 1. Let us give an upper bound to

14



jC 0j. Note that 
j�1 � aminffk; qg � aq, sin
e otherwise 
ongested pro
essorswould a

ount for more thanK
j�1aminffk; qg2 > K
� 0aminffk; qg2 � fk
a
tive nodes, whi
h is impossible. By the extrovertness of the graph G, afterthe �rst t steps of DAG 
onstru
tion, the number of 
ongested pro
essors notin D are at most 
j�1(1� b)t. This implies that jC 0j � 
j�1(1� b)�, hen
e thenumber of rogues at the beginning of Phase j will be

rj � 
j�1(1� b)� + rj�1� a(1� b)� minffk; qg+ �j�1(1� b)� minffk; qg (by indu
tion)��j(1� b)� minffk; qg :Lemma 9 By the end of the BALANCE pro
edure, the number of pro
essorsof degree more than 
dfk=qe is at most minffk; qg=(2K) for a suitable 
hoi
e ofthe 
onstant 
. Moreover, the pro
edure is exe
uted in time O((log log log p)2)on the COMMON CRCW-PRAM.
PROOF. Let us �rst 
onsider the 
ase � 0 � � . At the beginning of Phase � 0,ea
h pro
essor maintains at most K
� 0 � 
dfk=qe a
tive nodes (by Lemma 7provided 
 � 2=a
), and the number of rogues is

r� 0 � �� 0(1� b)� minffk; qg � minffk; qg2K (1)
(by Lemma 8 and the 
hoi
e of �). Moreover Lemma 7 shows that the maxi-mum degree of pro
essors that are not rogues at the end of Phase � 0 will notin
rease above the 
dfk=qe threshold in the subsequent � � � 0 � 1 phases.Now 
onsider the 
ase where � < � 0. In this 
ase

K
� � 2(d+ 1)
 � 
dfk=qe
for 
 � 2(d + 1)=
. Moreover, sin
e rj is in
reasing in j, the total number ofrogues is no more than that indi
ated in Equation 1.We now evaluate the running time. Consider a phase of BALANCE. Step 1
learly takes O(1) time. Every DAG 
onstru
tion step is a

omplished in 
on-stant time, hen
e the 
onstru
tion of D (Step 2) takes time O(�). Sin
e Dhas depth at most � it is easy to see that Step 3 
an be a

omplished in time

15



O(�), as well. The 
ost of the remaining steps is dominated by the 
ost of theextra
tion and merging operations performed on the tree rings, whi
h takeO(logK) time overall. Noting that the number of phases is � = O(logK) and� = O(� + logK) = O(logK), we 
on
lude that the overall running time isO(� logK) = O(log2K) = O(log2 `) = O((log log log p)2):
The following theorem 
ombines the 
ontributions of this se
tion and estab-lishes the result announ
ed in Se
tion 3 upon whi
h the analysis of our ba
k-tra
k strategy is based.Theorem 10 A visiting step within a stratum of size O(p`2) 
an be imple-mented in O((log log log p)2) time on a p-pro
essor COMMON CRCW-PRAM,while ensuring that the step is either full or redu
ing.
5 Evaluation of Bounded-Degree DAGs
In this se
tion we show how some of the ideas involved in the ba
ktra
k sear
halgorithm may be used to solve the DAG evaluation problem. In a 
omputa-tion DAG , nodes with zero in-degree are regarded as inputs, while other nodesrepresent operators whose operands are the values 
omputed by their prede-
essors (i.e., nodes adja
ent with respe
t to in
oming edges). Nodes with zeroout-degree are regarded as outputs. A node 
an be evaluated only after all ofits operands have been evaluated. The DAG evaluation problem 
onsists ofevaluating all output nodes. We de�ne the layers of the DAG in the obviousway: the inputs are at layer zero and the layer of every other node is one plusthe maximum layer among its prede
essors.In our parallel setting, we assume that a DAG D of 
onstant degree is storedin the shared memory of a p-pro
essor COMMON-CRCW PRAM. Ea
h DAGnode is represented by a des
riptor 
ontaining the following information: a �eldthat spe
i�es the type of operation asso
iated to that node; a �eld to store itsvalue; two �elds for ea
h operand (i.e., ea
h in
oming edge), where pro
essorswill write the value of the operand, and a timestamp to re
ord the time ofwriting; and pointers to the node's su

essors in D. Initially, only pointers tothe des
riptors of the DAG inputs are known and evenly distributed amongthe pro
essors.Noti
e the similarity between the DAG evaluation and the ba
ktra
k sear
hproblems. While the 
omputational DAG is not ne
essarily a tree, neverthe-less we 
an still visit (i.e., evaluate) it by pro
eeding in a quasi breadth-�rststratum-by-stratum fashion as in the ba
ktra
k sear
h algorithm.

16



More pre
isely, re
all that in the ba
ktra
k sear
h problem a node is revealedby the pro
essor that visits its (unique) parent. In the DAG evaluation prob-lem, \visiting" a node entails 
omputing the node's value and writing thisvalue in the node's des
riptor and, together with a timestamp, in the appro-priate �elds of its su

essors' des
riptors. A node is revealed (hen
e ready tobe evaluated/visited itself) only when the last of its prede
essors has beenevaluated, and the node is regarded as being a \
hild" of that prede
essor(with ties being broken arbitrarily). In this fashion, a spanning forest for theDAG is impli
itly identi�ed and the DAG evaluation 
an be regarded as avisit of this a forest.By noting that our ba
ktra
k sear
h algorithm 
an be employed to visit anyforest of bounded-degree trees in O((n=p + h)(log log log p)2) time, where nis the total number of nodes and h the maximum tree-height in the forest,we 
on
lude that the DAG evaluation problem 
an be solved within the sametime bound.
6 Con
lusions
In this work we devised an eÆ
ient deterministi
 strategy for performing par-allel ba
ktra
k sear
h on a shared memory ma
hine. Spe
i�
ally, our strat-egy attains a running time whi
h is only a triply logarithmi
 fa
tor awayfrom a natural lower bound for the problem. As with all previous studies,our investigation has mainly fo
used on running time. On the other hand,the overall spa
e required by our algorithm 
an grow as large as the treesize n, whereas the spa
e required by the randomized s
hemes proposed in[KZ93,LAB93,Ran94℄ is bounded above by minfn; phg. This latter quantity,however, is 
lose to n for large values of p and/or highly unbalan
ed trees. Itremains a 
hallenging open problem to devise fast and spa
e eÆ
ient ba
k-tra
k sear
h algorithms and, more generally, to study time-spa
e tradeo�s forparallel ba
ktra
k sear
h.
Referen
es
[AL91℄ B. Aiello and T. Leighton. Coding theory, hyper
ube embeddings andfault-toleran
e. In Pro
eedings of 3rd ACM Symposium on ParallelAlgorithms and Ar
hite
tures, pages 125{136, 1991.[BFSU92℄ A.Z. Broder, A.M. Frieze, E. Shamir, and E. Upfal. Near-perfe
t tokendistribution. In Pro
eedings of the 19th International Colloquium onAutomata, Languages and Programming, Le
ture Notes in ComputerS
ien
e, Volume 623, pages 308{317, July 1992, Springer-Verlag.

17



[BGLL91℄ S.N. Bhatt, D. Greenberg, F.T. Leighton, and P. Liu. Tight boundsfor on-line tree embeddings. In Pro
eedings of the 2nd ACM-SIAMSymposium On Dis
rete Algorithms, pages 344{350, January 1991.[CV88℄ R. Cole and U. Vishkin. Approximate parallel s
heduling. Part I: Thebasi
 te
hnique with appli
ations to optimal parallel list ranking inlogarithmi
 time. SIAM Journal on Computing, 17(1):128{142, 1988.[GZ95℄ T. Goldberg and U. Zwi
k. Optimal deterministi
 approximate parallelpre�x sums and their appli
ations. In Pro
eedings of the 4th IsraelSymposium on Theory of Computing and Systems, pages 220{228, 1995.[HPP99a℄ K. Herley and A. Pietra
aprina and G. Pu

i. Fast deterministi
 parallelbran
h and bound. Parallel Pro
essing Letters, 9(3):325{334, 1999.[HPP99b℄ K. Herley and A. Pietra
aprina and G. Pu

i. Deterministi
 bran
hand bound on distributed-memory ma
hines. International Journal onFoundations of Computer S
ien
e, 10(4):391{404, 1999.[J�aJ92℄ J. J�aJ�a. An Introdu
tion to Parallel Algorithms. Addison Wesley, ReadingMA, 1992.[KP94℄ C. Kaklamanis and G. Persiano. Bran
h-and-bound and ba
ktra
k sear
hon mesh-
onne
ted arrays of pro
essors. Mathemati
al Systems Theory,27:471{489, 1994.[KZ93℄ R.M. Karp and Y. Zhang. parallel algorithms for ba
ktra
k sear
h andbran
h and bound 
omputation. Journal of the ACM, 40:765{789, 1993.[LAB93℄ P. Liu, W. Aeillo and S. Bhatt. An atomi
 model for message-passing.In Pro
eedings of 5th ACM Symposium on Parallel Algorithms andAr
hite
tures, pages 154{163, 1993.[LNRS92℄ T. Leighton, M. Newman, A. G. Ranade and E. S
hwabe. Dynami
 treeembeddings in butter
ies and hyper
ubes. SIAM Journal on Computing,21:639{654, 1992.[Ran90℄ A.G. Ranade. A simpler analysis of the Karp-Zhang parallel bran
h-and-bound method. Te
hni
al Report No. 586, Computer S
ien
e Division,University of California at Berkeley, Berkeley, California, 1990.[Ran94℄ A.G. Ranade. Optimal speed-up for ba
ktra
k sear
h on a butter
ynetwork. Mathemati
al Systems Theory, 27:85{101, 1994.[WK91℄ I.C. Wu and H.T. Kung. Communi
ation 
omplexity for parallel divide-and-
onquer. In Pro
. of the 32nd IEEE Symp. on Foundations ofComputer S
ien
e, pages 151{162, 1991.

18


