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SUMMARY

We study the connectivity properties of a family of random graphs which closely model
the Bluetooth’s device discovery process, where each device tries to connect to other
devices within its visibility range in order to establish reliable communication channels
yielding a connected topology. Specifically, we provide both analytical and experimental
evidence that when the visibility range of each node (i.e., device) is limited to a vanishing
function of n, the total number of nodes in the system, full connectivity can still be
achieved with high probability by letting each node connect only to a “small” number
of visible neighbors. Our results extend previous studies, where connectivity properties
were analyzed only for the case of a constant visibility range, and provide evidence that
Bluetooth can indeed be used for establishing large ad hoc networks.
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1. Introduction

A critical problem in setting up mobile multi-hop radio networks, also known as ad hoc

networks, is guaranteeing connectivity while minimizing power consumption and, in some
cases, the number of active connections per node. Among others, Bluetooth [1] is a popular
enabling technology for ad hoc networks, which was originally introduced in 1999 by a Special
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Interest Group formed by more than 1800 manufacturers for the deployment of Personal Area
Networks (PANs), typically consisting of cellular phones, laptops, wireless peripherals and
PDAs. Several arguments have been raised to foster the use of Bluetooth for the establishment
of large ad hoc networks, due to its low cost, availability, suitability for small devices, and
low power consumption (see, for example, [2]). However, a number of challenges arise in this
context, particularly for what concerns network formation [3, 4].

Specifically, Bluetooth features a hierarchical organization where the nodes are grouped
into piconets, with each piconet containing one master and multiple slaves. Piconets are
then interconnected through bridge nodes to form a scatternet. Scatternet formation can be
decomposed into three main steps, namely, device discovery, piconet formation, and piconet

interconnection. Each of these steps poses interesting algorithmic challenges for which several
solutions have been proposed [1]. In particular, during the first step each device attempts
at discovering other devices contained within its visibility range and at establishing reliable
communication channels with them, in order to form a connected topology, called the Bluetooth

topology, which underlies the subsequent piconet formation and piconet interconnection steps.
Since requiring each device to discover all of its neighbors is too time consuming [3], a crucial
problem consists of deciding how many neighbors have to be selected in order to guarantee
that the resulting Bluetooth topology is connected. Indeed, obtaining connectivity under degree
limitations has been indicated in [2] as a major challenge for the adoption of the Bluetooth
technology for large ad hoc networks.

In [5] the device discovery step has been effectively modeled as follows. The devices are
regarded as a set of n nodes randomly and uniformly distributed in a square of unit side.
Each node has a visibility range of r(n), i.e., it can “see” all other nodes within Euclidean
distance r(n). Given a function c(n), each node selects as neighbors c(n) visible nodes at
random, picking all visible nodes if their number is less than c(n). Observe that the process is
unidirectional in nature: however, each link established in this way becomes bidirectional. As
a consequence, the final degree of each node may be much higher than c(n), in the case that
the node was selected as a neighbor by many other nodes. We refer to BT(r(n), c(n)) as the
resulting (undirected) graph (observe that BT(r(n), c(n)) is a generalization of the well-studied
random geometric graph [6, 7, 8] which can be obtained by setting c(n) ≥ n − 1).

Previous studies on the connectivity properties of BT(r(n), c(n)) have considered only the
case where each node is able to see a constant fraction of all other nodes, that is, the visibility
range r(n) is a constant. For this particular case, the experimental analysis conducted in [5] has
shown that setting c(n) to a small constant is sufficient to yield connectivity for BT(r(n), c(n))
almost always. The experimental evidence has been later substantiated by the analysis in [9],
which shows that, for constant r(n), c(n) = 2 is sufficient to achieve connectivity with high
probability. Also, in [10] it was proved that constant c(n) (though much larger, in the order
of the millions) is also sufficient to guarantee linear expansion of BT(r(n), c(n)). These results
suggest that device discovery can be performed efficiently whenever the network is sufficiently
small (even though not necessarily a PAN). However, the assumption of constant r(n) becomes
quickly unfeasible as the number of devices to be connected increases, which would be the case
when adopting Bluetooth for building large ad hoc networks.

In this paper we extend the above studies by providing both analytical and experimental
evidence that, when the visibility range is a vanishing function of n, the device discovery step
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ON THE CONNECTIVITY OF BLUETOOTH-BASED AD HOC NETWORKS 3

in Bluetooth can still be performed efficiently while guaranteeing connectivity, by letting each
device discover only a“small”, although non constant, number of neighbors. In particular, we
prove that if r(n) = Ω(

√

lnn/n), then BT(r(n), c(n)) is connected with high probability as
long as c(n) = Ω(ln(1/r(n))). We remark that the lower bound on r(n) cannot be improved
since it is known that when r(n) ≤ δ

√

lnn/n, for some constant 0 < δ < 1, the visibility

graph where each node is connected to all nodes in its visibility range is disconnected with
high probability [6, 11]. A challenging open question is whether the lower bound on the value
of c(n) required for connectivity is tight. We give a partial analytical answer to this question
by showing that in fact c(n) = 3 is sufficient to attain connectivity with high probability, as
long as r(n) ≥ n−ǫ, for some constant 0 < ǫ < 1/2, but each node must choose two of the
three neighbors sufficiently close to it.

In the paper we also report on a massive set of experiments conducted in order to
assess the real performance of the two previously described protocols. Quite surprisingly, the
experiments indicate that, even when the visibility range function is close to the aforementioned
lower bound, the number of neighbors needed for connectivity exhibits an extremely weak
dependence on r(n): in fact, for values of n up to the hundreds of thousands c(n) = 3 suffices
almost always, independently of how the neighbors are chosen. Moreover, the experiments show
that the expected maximum total degree featured by the topologies obtained by choosing three
neighbors for each node is much smaller than the one featured by the visibility graph, while
the diameter is only slightly larger.

Even though our results are mainly motivated by the question of whether Bluetooth is
suitable as a large-scale ad hoc network technology, we believe that they may be of interest
for other wireless network scenarios [12].

The rest of the paper is organized as follows. Section 2 analyzes the connectivity of
BT(r(n), c(n)) when c(n) is Θ(log(1/r(n))). Section 3 analyzes the case of c(n) = 3 under
further constraints on neighbor selection. Section 4 reports the results of our experiments, while
in Section 5 we conclude with some final considerations and proposals for further research.

2. Connectivity of BT(r(n), c(n))

Consider a set V of n nodes randomly and uniformly distributed in a unit-side square. Each
node v ∈ V has a visibility range of r(n), i.e., v can “see” all nodes u at Euclidean distance
d(v, u) ≤ r(n) ≤ 1.†

Let the unit square be tessellated into k2 square cells of side 1/k, where k = ⌈
√

5/r(n)⌉.
Consequently, any two nodes residing in the same or in adjacent cells (i.e., cells sharing a side)
are at distance at most r(n): hence, they are visible from one another. Most of our results hold
with high probability (w.h.p. for short) by which we mean that the probability of the stated

†In fact, the maximum significant range in the case of the unit square is
√

2. Placing an upper bound of 1
allows us to simplify some of the proofs, however, all of the results in the paper would still hold up to the
maximum range.
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event is at least 1−1/poly(n), where poly(n) denotes some polynomial function of n. We need
the following technical fact.

Proposition 1. Let α = 9/10 and β = 11/10. There exists a constant γ1 > 0 such that for

every r(n) ≥ γ1

√

lnn/n the following events occur together w.h.p.

1. Every cell contains at least αn/k2 and at most βn/k2 nodes.

2. Every node has at least (α/4)πnr2(n) and at most βπnr2(n) other nodes in its visibility

range.

Proof. It is sufficient to show that any given cell contains at least αn/k2 and at most βn/k2

nodes with probability greater than or equal to 1 − 1/(2n2), and that any given node has at
least (α/4)πnr2(n) and at most βπnr2(n) other nodes in its visibility range, with probability
greater than or equal to 1 − 1/(2n2). Since there are less than n cells and exactly n nodes,
the proposition will follow by a simple application of the union bound. Fix a cell Q. By using
Chernoff’s bound [13] and the fact k ≤ 4/r(n), we obtain that the probability that Q contains
more that βn/k2 nodes is less than

(

eβ−1

ββ

)γ1
2 ln n/16

.

A symmetrical argument shows that the probability that Q contains less than αn/k2 nodes is
less than

(

e1−α

(2 − α)2−α

)γ1
2 lnn/16

.

By choosing a suitable constant γ1, both upper bounds can be made smaller than 1/(4n2).
Therefore, the probability that the number of nodes in Q is between αn/k2 and βn/k2 is at
least 1 − 1/(2n2).

The probability bound regarding the number of nodes in the visibility range of any fixed
node can be proved in a similar fashion by making the further observation that for r(n) ≤ 1,
the visibility range of any node covers an area of the unit square which is at least (π/4)r2(n)
and at most πr2(n). 2

The rest of the section is devoted to the proof of the following theorem.

Theorem 1. There exist two positive real constants γ1, γ2 such that, if r(n) ≥ γ1

√

lnn/n and

c(n) = γ2 ln(1/r(n)) then BT(r(n), c(n)) is connected w.h.p.

Let ǫ = 1/8. In the proof of the theorem we distinguish between the case r(n) ≤ n−ǫ and
the case r(n) > n−ǫ, which are dealt with separately in the following subsections. Moreover,
in both cases we condition on the events expressed by Proposition 1, which occur with high
probability.
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2.1. Case γ1

√

lnn/n ≤ r(n) ≤ n−ǫ

We fix the lower bound for r(n) to be the same under which Proposition 1 holds. In the range
of r(n) considered in this case, we have that c(n) = γ2 ln(1/r(n)) = Θ(lnn). Let Q be an
arbitrary cell and let GQ denote the subgraph of BT(r(n), c(n)) formed by nodes and edges
internal to Q. We first show that every GQ is connected and then prove that for every pair of
adjacent cells there exists an edge in BT(r(n), c(n)) whose endpoints are in the two cells.

Lemma 1. With high probability, every GQ is connected.

Proof. Fix an arbitrary cell Q and let AQ be the event that, for every partition of the nodes
in Q into two nonempty subsets, there is at least an edge with endpoints in distinct subsets.
Observe that the subgraph GQ ⊆ BT(r(n), c(n)) is connected if and only if AQ occurs. Then:

1 − Pr(AQ) ≤
βn/(2k2)
∑

s=1

(

βn/k2

s

)(

1 − αn/k2 − s

βπnr2(n)

)sc(n)(

1 − s

βπnr2(n)

)(αn/k2−s)c(n)

≤
βn/(2k2)
∑

s=1

exp

(

s ln
eβn

sk2
− 2sc(n)

βπnr2(n)

(αn

k2
− s
)

)

.

Note that for the values of s in the summation range, we have that ln(eβn/(sk2)) = O (lnn)
and ((αn/k2)−s)/(βπnr2(n)) = Θ (1), therefore by choosing the constant γ2 in the expression
for c(n) large enough, the summation is dominated by its first term and can be made as small
as 1/n2. The lemma follows by applying the union bound over all k2 cells. 2

Lemma 2. With high probability, for every pair of adjacent cells Q1 and Q2 there is an edge

(u, v) ∈ BT(r(n), c(n)) such that u resides in Q1 and v resides in Q2.

Proof. Consider an arbitrary pair of adjacent cells Q1 and Q2 and let BQ1,Q2
denote the event

that there is at least one edge in BT(r(n), c(n)) between the two cells. Since we are conditioning
on the events described in Proposition 1, we have that

1 − Pr(BQ1,Q2
) ≤

(

1 − αn/k2

βπnr2(n)

)2c(n)αn/k2

≤ exp

(

− αn/k2

βπnr2(n)
(2c(n)αn/k2)

)

≤ exp(−ζ ln2 n),

where ζ is a positive constant. The lemma follows by applying the union bound over all O(n)
pairs of adjacent cells. 2

For the case γ1

√

lnn/n ≤ r(n) ≤ δn−ǫ, Theorem 1 follows by combining the results of the
above two lemmas.
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2.2. Case n−ǫ < r(n) ≤ 1

We generalize and simplify the argument which was used in [9] for the case r(n) = Θ(1).
Specifically, we first show that BT(r(n), c(n)) contains a large connected component C, and
then we show that for every node v there is a path from v to C. Again, we condition on the
events stated in Proposition 1, which occur with high probability.

Lemma 3. For n−ǫ < r(n) ≤ 1 and c(n) ≥ 2, BT(r(n), c(n)) contains a connected component

of size n/(8k2), w.h.p.

Proof. The argument is a simple adaptation of the one used in the proof of Proposition
3 in [9], which we highlight in the following for the sake of completeness. Starting from
an arbitrary node u, consider a sequential discovery procedure where each node chooses
two random neighbors out of those nodes in its visibility range. A simple application of
the Chernoff bound [13] shows that each node has at least n/(2k2) other nodes in its

visibility range with probability at least 1 − k2e−n/(8k2). This implies that the probability
of reaching a previously discovered node in the first 2 log2 n − 2 neighbor selections is at
most 8k2 log2

2 n/n = O
(

log2 n/n1−2ǫ
)

= O
(

log2 n/n3/4
)

. Hence, by stopping the sequential
discovery after 2 log2 n − 2 neighbor selections have been executed, we get, with probability
1 − O

(

log2 n/n3/4
)

, a full binary tree rooted at u with log2 n leaves. Now, from these leaves
we run log2 n independent sequential discoveries until a total of n/(8k2) nodes are discovered.
By reasoning as in [9] we argue that this process stochastically dominates a branching process
[14] beginning with log2 n individuals and binomial offspring distribution with parameters 2
and 3/4. We conclude that the probability of failing to reach n/(8k2) nodes is bounded from
above by the probability that the branching process dies out, which is at most (1/9)log2

n.
Putting it all together, the probability that the component grown from u has size at least

n/(8k2) is at least

1 − O

(

log2 n

n3/4
+

1

nlog
2
9

)

,

which proves the lemma. 2

Let C be the connected component of size at least n/(8k2) which, by the above lemma, exists
w.h.p. By the pigeonhole principle there must exist a cell Q containing at least n/(8k4) nodes
of C. Let V (Q, C) the set of nodes residing in Q and belonging to C. We have:

Lemma 4. With high probability, for each node u there exists a path in BT(r(n), c(n)) from

u to some node in V (Q, C).

Proof. Consider a directed version of BT(r(n), c(n)) where an edge (u, v) is directed from u
to v if u selected v during the neighbor selection process. Since we are conditioning on the
event stated in the second point of Proposition 1, our choice of c(n) implies that the outdegree
of each node is exactly c(n) w.h.p. Pick an arbitrary node u and run a sequential breadth-
first exploration from u in such a directed version of BT(r(n), c(n)). With respect to this
exploration, we say that a failure occurs whenever an edge (v1, v2) is considered during the
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ON THE CONNECTIVITY OF BLUETOOTH-BASED AD HOC NETWORKS 7

exploration of v1, but node v2 has been already discovered. Let m be a suitable value, to be
fixed later by the analysis. We stop the exploration as soon as one of the following events
happen: (a) the c(n)-th failure occurs; or (b) m nodes are discovered but not yet explored. We
now prove an upper bound on the probability that the exploration stops due to event (a). In
this case, it is easy to show that any time before the c(n)-th failure occurs, the tree formed
by the nodes discovered so far has at most one internal node of degree one, hence the tree
contains less than m leaves (i.e., the unexplored nodes) and less than m internal nodes, for a
total of less than 2m nodes altogether.

From the second point of Proposition 1 it follows that the probability that event (a) happens
prior to event (b) is at most

(

m · c(n)

c(n)

)(

2m

(α/4)πnr2(n) − c(n)

)c(n)

≤
(

2em2

(α/4)πnr2(n) − c(n)

)c(n)

, (1)

where the binomial coefficient bounds from above the number of ways of fixing c(n) failures in
the node explorations, which are less than m, while the subsequent factor bounds from above
the probability of a fixed configuration of c(n) failures when less than 2m nodes have been
discovered.

We will choose m so to make the upper bound given in Equation 1 vanishingly small in n.
Therefore, we may condition on the event that m unexplored nodes, say w1, w2, . . . , wm, are
reached via breadth-first exploration from u before c(n) failures occur. We now estimate the
probability that BT(r(n), c(n)) contains a path from wi to a node in V (Q, C). Observe that
from the cell containing wi there is a sequence of at most 2k pairwise adjacent cells ending
at Q. Specifically, we estimate the probability that BT(r(n), c(n)) contains a path from wi to
V (Q, C) following such a sequence of cells, with the constraint that the path contains one node
per cell and these nodes do not belong to the set of at most 2m nodes initially discovered from
u or to the m − 1 paths constructed for any other wj , with j 6= i. This probability is at least
p2kq, where p is the probability of extending the path one cell further, and q is the probability
of ending, in the last step, in a node of V (Q, C). By using the bounds in Proposition 1 we
have that

p ≥
(

1 −
(

1 − αn/k2 − 3m

βπnr2(n)

)c(n)
)

q ≥ n/(8k4)

βπnr2(n)
=

1

8βπk4r2(n)
.

Recall that c(n) = γ2 ln(1/r(n)) = Θ(lnk). If we take m = o(n/k2) and γ2 large enough, we
have that

p2k ≥ τ

for some constant 0 < τ < 1. It follows that the probability that all of the wis fail to reach
V (Q, C) is at most

(1 − τq)m ≤
(

1 − τ

8βπk4r2(n)

)m

=
(

1 − τ

σk2

)m

, (2)
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for some positive constant σ.
By combining Equations 1 and 2, we get that the probability that u is not connected to

V (Q, C) is at most
(

2em2

(α/4)πnr2(n) − c(n)

)c(n)

+
(

1 − τ

σk2

)m

.

Now, since r(n) > n−1/8, we have that k = O(n1/8). If we choose m = Θ(n1/3) we have that
m = o(n/k2), as required above, and m = ω(k2 lnn). This, combined with the choice of c(n),
ensures that the above probability is smaller than 1/n2. The lemma follows by applying the
union bound over all nodes u. 2

For the case r(n) > n−ǫ, Theorem 1 follows by combining the results of the above two lemmas.

3. Achieving c(n) = 3 using a double choice protocol

In the previous section we showed that selecting c(n) = O (ln(1/r(n))) visible neighbors at
random is sufficient to enforce global connectivity for all values of r(n) which guarantee
connectivity of the visibility graph. Whether these many neighbors are necessary remains
a challenging open question. As a step towards this objective, we show that, at least for large
enough (yet nonconstant) radii, c(n) = 3 always suffices under a slightly different neighbor
selection protocol where each node is required to direct the selection of some neighbors within
a certain geographical region. Such a phenomenon provides evidence that the O (ln(1/r(n)))
bound on c(n) is not likely to be tight.

More formally, consider again the tessellation of the unit square into k2 square cells of side
1/k, with k = ⌈

√
5/r(n)⌉. Define BT(r(n), 2, 1) to be the undirected graph resulting by letting

each node select two neighbors at random among the nodes residing in its cell, and another
neighbor at random among all visible nodes. Observe that if applied in a practical scenario,
this double-choice protocol would require each node to infer geographical information about
its location and the location of the nodes in its visibility range. For example, this information
could be provided by a GPS device.‡

Theorem 2. There exists a constant ǫ, 0 < ǫ < 1/2 such that if r(n) = Ω(n−ǫ), then

BT(r(n), 2, 1) is connected w.h.p.

Proof. We employ the same approach used in Subsection 2.1. Specifically, we first argue that,
with high probability, for all cells Q the graph GQ induced by the nodes in Q is connected,
and that for every pair of adjacent cells there is an edge with endpoints in the two cells. Since
by the first point of Proposition 1, each cell Q contains Ω(n1−2ǫ) nodes w.h.p., the main result

‡A full discussion on the feasibility of this approach is outside the scope of this paper, since the analysis of the
double-choice protocol is mostly meant to provide evidence that the selection of very few neighbors may suffice
in order to build a connected topology.
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ON THE CONNECTIVITY OF BLUETOOTH-BASED AD HOC NETWORKS 9

Figure 1. The 95% confidence intervals of the minimum range of the visibility graph

of [9] implies that two neighbors selected by each node in Q suffice to guarantee connectivity
of GQ with probability at least 1 − 1/nδ(1−2ǫ), for a suitable positive constant δ < 1. Then,
choosing ǫ smaller than δ/(2(1 + δ)) and applying the union bound, all cells will be internally
connected with high probability. In order to prove connectivity between adjacent cells, we
proceed as in the proof of Lemma 2. In particular, consider an arbitrary pair of adjacent cells
Q1 and Q2, and let BQ1,Q2

denote the event that there is at least one edge in BT(r(n), 2, 1)
between the two cells. By conditioning on the events described in Proposition 1, we have that

1 − Pr(BQ1,Q2
) ≤

(

1 − αn/k2

βπnr2(n)

)2αn/k2

≤ exp

(

− αn/k2

βπnr2(n)
(2αn/k2)

)

≤ exp(−ζn1−2ǫ),

where ζ is a positive constant. The theorem follows by applying the union bound over all O(n)
pairs of adjacent cells. 2
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4. Experiments

We have designed an extensive suite of experiments aimed at comparing the connectivity
and other topological properties of the graphs analyzed in the previous sections.§ In a
first set of experiments, for values of n ranging from 10000 to 170000 with step 10000, we
have performed 20 times the following binary search of the minimum range that guarantees
connectivity of the visibility graph associated with the placement (i.e., the graph where each
node connects to all its visible neighbors).

1. Set the search interval to
[

rleft = 0.1
√

ln /n, rright = 0.99
√

ln /n
]

.

Comment: rleft (resp., rright) is a value which guarantees, in practice, that the
corresponding visibility graph is always disconnected (resp., connected).

2. If the length of the search interval is less than 0.005rleft, then return rright.
3. Generate 50 placements of n nodes in the unit square and verify whether for all of them

the range r = (rleft + rright)/2 guarantees connectivity of the visibility graph associated
with the placement. If this the case, then set rright = r otherwise set rleft = r. Go to
step 2.

Figure 1 plots, for each value of n, the lower (rlb) and upper (rub) endpoints of the 95%
confidence intervals yielded by the 20 estimates of the minimum range provided by the above
experiments.

We repeated the above procedure to estimate the minimum ranges rsc and rdc which
guarantee connectivity of BT(rsc, 3) and BT(rdc, 2, 1), respectively, so to appreciate whether
there is a significant discrepancy between these minimum ranges and the one obtained for
the visibility graph. As before, the binary search procedure has been repeated 20 times. At
each execution of Step 3, we check whether connectivity is achieved for all of 50 graphs, each
obtained by a random placement of n nodes and the neighbor selection protocol, and restrict
the search interval accordingly.

Table I reports, for each value of n, the confidence interval [rlb; rub] for the minimum range
of the visibility graph, and the values of rsc and rdc, averaged over the 20 estimates. According
to these experiments, rsc is very close to rlb (always within 4% for all values of n) and it is
almost always within the confidence interval itself (apart from the three starred cases). Also,
rdc features a very similar similar behavior. In fact, interestingly, connectivity of BT(r(n), 2, 1)
does not seem to require that r(n) ∈ Ω(

√

1/nǫ) as implied by the analysis, since it is attained
for values of r(n) close to rlb.

In a second set of experiments we measured the maximum degree of the graphs BT(r(n), 3)
and BT(r(n), 2, 1), and of the visibility graph with visibility range r(n), where r(n) is chosen
to be an approximation of the smallest value which guarantees connectivity in all three cases.
In particular, the average maximum degrees have been computed over 50 random placements

§The implemented code makes use of the Boost Graph Libraries [15] for computing the number of connected
components and for performing a breadth first search of a graph.
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n [rlb; rub] rsc rdc

10000 [0.0247868;0.0258708] 0.0251758 0.0253024
20000 [0.0174184;0.0182865] 0.0178253 0.0177519
30000 [0.0144605;0.0151994] 0.0146205 0.0149556
40000 [0.0126296;0.0131409] 0.0129900 0.0126957
50000 [0.0111809;0.0115222] 0.0115894∗ 0.0112902
60000 [0.0103549;0.0106147] 0.0105789 0.0108026∗

70000 [0.0095643;0.0098931] 0.0097572 0.0098735
80000 [0.0090486;0.0092731] 0.0092001 0.0091857
90000 [0.0084843;0.0088834] 0.0087328 0.0087249
100000 [0.0081272;0.0083245] 0.0082948 0.0082109
110000 [0.0077308;0.0080951] 0.0078290 0.0080540
120000 [0.0073631;0.0075985] 0.0076215∗ 0.0075632
130000 [0.0070734;0.0072776] 0.0072350 0.0072433
140000 [0.0068810;0.0071065] 0.0069794 0.0070066
150000 [0.0066020;0.0069010] 0.0068197 0.0067747
160000 [0.0063759;0.0065772] 0.0066330∗ 0.0066525∗

170000 [0.0063293;0.0066083] 0.0063751 0.0063459

Table I. Comparison between the ranges rsc and rdc which guarantee connectivity for BT(rsc, 3) and
BT(rdc, 2, 1), and the 95% confidence intervals for the minimum range that guarantees connectivity

for the visibility graph. Starred values highlight outliers.

for which the values (rlb + rub)/2, rsc, and rdc, respectively, guaranteed connectivity of the
corresponding graphs. The results of these experiments are depicted in Figure 2 for each
value of n. It can be seen that BT(r(n), 2, 1) exhibits a slightly smaller maximum degree
than BT(r(n), 3), and, clearly, both graphs have a much smaller maximum degree than the
visibility graph whose expected maximum degree can be analytically shown to be Θ(lnn) when
r(n) = Θ(

√

(lnn)/n).
One last set of experiments concerned the estimation of the average diameter of BT(r(n), 3)

and BT(r(n), 2, 1), and of the visibility graph with visibility range r(n), where r(n) is chosen as
in the previous experiments. In order to avoid expensive all-pairs shortest paths computations,
we have chosen to approximate the diameter as twice the maximum height of 30 breadth-first
search trees rooted at randomly chosen nodes. The results of these experiments are depicted in
Figure 3, once again reporting, for each n the averages over 50 estimates. It can be seen that
BT(r(n), 3) has a diameter which is smaller than the one of BT(r(n), 2, 1), and not considerably
larger than the one of the visibility graph.

5. Conclusions

The main theoretical contribution of this paper is a proof of connectivity for the Bluetooth
graph when the visibility range r(n) is a vanishing function of the number n of nodes and
each node selects only a logarithmic number of neighbors with respect to 1/r(n). Also, we
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Figure 2. Comparison of the average maximum degree of BT(r(n), 3),
BT(r(n), 2, 1), and of the visibility graph with range r(n)

introduce and analyze a novel neighbor selection protocol based on a double choice mechanism,
which ensures connectivity when a total of only three neighbors are selected by each node. In
the paper we also report the results of extensive experiments which validate the theoretical
findings. In fact, from the simulation results, we can conclude that, within the range of 10000 to
170000 nodes, the three protocols seem to be statistically indistinguishable for what concerns
connectivity; on the other hand, if the degree of a node is the main concern, then the protocols
based on the choice of fewer neighbors offer a substantial advantage, while if the diameter is
the main concern, then the visibility graph is slightly superior (recall however that requiring
each node to discover all of its visible neighbors may be unfeasible in the practical Bluetooth
scenario). From a theoretical point of view, the experimental results substantiate that the best
avenue for future research is to tighten the bound on c(n) that guarantees connectivity of
BT(r(n), c(n)), since it appears that the double choice protocol (which is in fact of limited
practical applicability) does not provide any significant advantage in practice.
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9. Dubhashi D, Johansson C, Häggstrom O, Panconesi A, Sozio M. Irrigating ad hoc networks in constant

time. Proc. of the 17th ACM Symp. on Parallel Algorithms and Architectures, 2005; 106–115.
10. Panconesi A, Radhakrishnan J. Expansion properties of (secure) wireless networks. Proc. of the 16th ACM

Symp. on Parallel Algorithms and Architectures, 2004; 281–285.
11. Ellis R, Jia X, Yan C. On random points in the unit disk. Random Structures and Algorithms 2005;

29(1):14–25.
12. Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks: a survey. Computer

Networks 2002; 38:393–422.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



14 P. CRESCENZI, C. NOCENTINI, A. PIETRACAPRINA, AND G. PUCCI
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