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Formally, let A = fp0; p1; : : : ; pN�1g denote a linear array of PE's (including both regular andspare elements), which are connected by regular links (pi; pi+1), 0 � i � N � 2, and by bypass links(pi; pi+g), 0 � i � N�1�g. This interconnection, referred to as linear array with link redundancy g,will be the object of our analysis in the following sections. At the two ends of the array, two specialPE's, called I (for Input) and O (for Output), are responsible for the I/O functions of the system.We assume that I is connected to p0; p1; : : : ; pg�1, while O is connected to pN�g; pN�g+1; : : : ; pN�1,so that all PE's in the system have the same degree and reliability bottlenecks at the borders ofthe array are avoided. Furthermore, we will conduct our analysis under the assumption that onlyPE's p0; p1; : : : ; pN�1 can be faulty, while links and I/O nodes always operate correctly.In [6], faults in the system are characterized as follows.De�nition 1 For a linear array of size N and any link redundancy, a fault pattern F starting atpf0 is a set of integers F = ff0; f1; : : : ; fm�1g, where 0 � fi � N�1 and fi�1 < fi, 1 � i � m � N .De�nition 2 Given a link-redundant linear array A, a fault pattern F = ff0; f1; : : : ; fm�1g iscatastrophic for A if and only if no path exists between I and O, once the faulty pi, i 2 F , andtheir incident links are removed.The occurrence of a CFP implies that there is no way of recon�guring the system with respect toI/O operations.It can be easily shown that, for any array A with link redundancy g, a CFP F for A mustcontain at least g faults. From now on, our analysis will concentrate on such minimal case. In thiscase, the width WF of a fault pattern F = ff0; f1; : : : ; fg�1g is de�ned to be the number of PE'sbetween and including the �rst and the last fault in F , that is, WF = fg�1 � f0 + 1.Theorem 1 ([6]) Let F = ff0; f1; : : : ; fg�1g be a fault pattern for a linear array A with linkredundancy g. Necessary condition for F to be catastrophic isg �WF �WBF = ��g2�� 1� g + �g2�+ 1;in the case of bidirectional links andg �WF �WUF = (g � 1)2 + 1;in the case of unidirectional links. 2From the above theorem it easily follows that all CFP's F = ff0; f1; : : : ; fg�1g starting at pi, thatis, with f0 = i, are such that fg�1 � i+W xF �1, where x 2 fB;Ug depends on the link orientation.Starting from a result in [4], the following section provides very tight upper and lower boundson the number of minimal CFP's for the bidirectional case. In Section 3 we prove an upper boundon the number of unidirectional CFP's by establishing a correspondence between the unidirectionaland bidirectional case. The bounds are �nally used in in Section 4 to determine a measure relevantto the cost assessment of the production process of the VLSI chip.2



2 The case of bidirectional linksNayak in [4] develops a technique to count the number of minimal CFP's in the case of bidirectionallinear arrays with link redundancy g. Namely, he shows that there is a bijection between minimalCFP's starting at any �xed pi, with 0 � i � N �WBF , and the language L of strings of lengthg � 1 over the alphabet � = f(; ); ?g, corresponding to balanced parenthesizations of ?'s (e.g., forg � 1 = 3, L = f? ? ?; ?(); (?); ()�g). By known combinatorial facts [3], we then have:jLj = FB(g) = b g�12 cXj=0  g � 12j ! 2jj ! 1j + 1 :The remainder of this section is devoted to prove tight lower and upper bounds on the abovequantity. We will make use of the following facts:Fact 1 For any j > 0, e� 16j 22jp�j <  2jj ! < 22jp�j :Fact 2 For any g > 0, b g�12 cXj=o  g � 12j ! 22j = 3g�1 + (�1)g�12 :Fact 3 For any n > 0, nXk=0 nk! 2k+1k + 1 = 3n+1 � 1n+ 1 :Fact 1 can be easily proven by applying Stirling's approximation to  2jj !. The formulae inFacts 3 and 2 can be derived by means of standard techniques for �nite summations [3].Theorem 2 For any g > 1, FB(g) > e� 162p� 3g�1 + 1jg+12 k3=2 :Proof: We have:FB(g) = b g�12 cXj=0  g � 12j ! 2jj ! 1j + 1 > 1 + e�1=6p�jg+12 k3=2 b g�12 cXj=1  g � 12j ! 22j ;
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by applying Fact 1 and since, for x � 1, f(x) = e� 16x increases and g(x) = 1(x+1)3=2 � 1px(x+1)decreases. For odd values of g we can then establish thatFB(g) > e�1=6p�(g+12 )3=2 g�12Xj=0 g � 12j ! 22j :For g even, since 2 e�1=6p�b g+12 c3=2 < 1, we can write:FB(g) > e�1=6p�jg+12 k3=2 0B@1 + b g�12 cXj=0  g � 12j ! 22j1CA :The theorem then follows from Fact 2 and the two above inequalities. 2Corollary 1 FB(g) 2 
� 3gg3=2�.Theorem 3 For any g > 1, FB(g) < 4(3g � 1)p�g(l g�12 m+ 2)1=2 + 1:Proof: We will only consider odd values of g, that is, g = 2i + 1 for i � 1. The proof for g evenfollows the same lines. From Fact 1, we haveFB(g) = FB(2i+ 1) < 1 + iXj=1 2i2j! 22jp�j(j + 1) < 1 +r 2� iXj=0 2i2j! 22j(j + 1)3=2 :Note that the function f(x) = 22x(x+1)3=2 is strictly increasing for x � 1. Therefore, for 0 � j < l i2m,we can bound the term  2i2j! 22j(j+1)3=2 with the term  2i2(i � j)! 22(i�j)(i�j+1)3=2 . Hence,iXj=0 2i2j! 22j(j + 1)3=2 < 2 iXj=d i2e 2i2j! 22j(j + 1)3=2 < 2p2(i+ 2)1=2 iXj=0 2i2j! 22j+12j + 1 :The last summation in the above formula adds only and all the even terms of the summationdescribed in Fact 3. Therefore,FB(2i+ 1) < 4(32i+1 � 1)p�(i+ 2)1=2(2i + 1) + 1:The theorem follows. 2Corollary 2 FB(g) 2 �� 3gg3=2�. 4



3 The case of unidirectional linksIn order to prove bounds on the number of CFP's in the unidirectional case, we need to recall thefollowing matrix representation of any fault pattern F starting a �xed pi, with 0 � i � N �W xF ,introduced in [6] for both the bidirectional and unidirectional case. F is represented as a booleanmatrix W of size �W xF � g, with �W xF = lWxFg m, de�ned as follows:W [h; k] = ( 1 if (i+ hg + k) 2 F ,0 otherwise.Under the above representation, each fj 2 F is mapped into W [hj ; kj ] = 1, where hj = j (fj�i)g kand kj = (fj � i)mod g. For instance, the boolean matrix associated to the fault pattern F =f0; 4; 6; 8; 12g for a linear array with link redundancy 5 is the following:264 1 0 0 0 10 1 0 1 00 0 1 0 0 375 : (1)Note that F is a CFP for both the bidirectional and the unidirectional case. Note also that, in thematrix representation, regular links \correspond" to either consecutive elements on the same rowor to elements (W [h; g � 1];W [h + 1; 0]), while bypass links \correspond" to consecutive elementsin the same column.CFP's can be characterized, with respect to the above matrix representation, as follows:Theorem 4 ([4]) Necessary and su�cient condition for a fault pattern F of cardinality g to becatastrophic for a bidirectional linear array with link redundancy g is W [0; 0] = W [0; g � 1] = 1and, for any 1 � k � g � 2,� if W [h; k � 1] = 1 then exactly one among W [h � 1; k];W [h; k] and W [h + 1; k] (wheneversuch elements are de�ned) is 1.� if W [h0; k + 1] = 1 then exactly one among W [h0 � 1; k];W [h0; k] and W [h0 + 1; k] (wheneversuch elements are de�ned) is 1. 2Theorem 5 ([4]) Necessary and su�cient condition for a fault pattern F of cardinality g to becatastrophic for a unidirectional linear array with link redundancy g is W [0; 0] = W [0; g � 1] = 1and, for any 1 � k � g � 2,� if W [h; k � 1] = 1 then at least one among W [h� 1; k];W [h; k]; : : : ;W [ �WUF � 1; k] (wheneversuch elements are de�ned) is 1.� if W [h0; k + 1] = 1 then at least one among W [0; k];W [1; k]; : : : ;W [h0 + 1; k] (whenever suchelements are de�ned) is 1. 25



Note that the matrix representation of any CFP F with jF j = g must have exactly one elementW [hk; k] = 1 for each column k, 0 � k � g � 1 and that any CFP for the bidirectional case is alsoa CFP for the unidirectional case.Using the above two theorems, we can represent each minimal CFP starting at any �xed pi,with i � N �W xF , as a sequence of g � 1 integer \moves" mj, with 1 � j � g � 1, where each mjindicates the increment of the row index from the (only) element set to 1 in column j � 1 to the(only) one in column j in the associated matrix W . More formally, let W [hi�1; i� 1] and W [hi; i]both be 1. Then mi = hi�1 � hi. As an example, the sequence associated to the matrix in (1) ish�1;�1; 1; 1i.We will refer to sequences representing CFP's as catastrophic sequences. For minimal CFP'sstarting at any �xed position i � N �W xF , catastrophic sequences can be characterized as follows:Proposition 1 Let hm1;m2; : : : ;mg�1i be a sequence of moves such that:� �1 � mi � 1 for 1 � i � g � 1;� Pki=1mi � 0 for any 1 � k � g � 2;� Pg�1i=1 mi = 0.Then any such sequence corresponds to a minimal CFP for the bidirectional case and vice versa.Proposition 2 Let hm1;m2; : : : ;mg�1i be a sequence of moves such that:� mi � 1 for 1 � i � g � 1;� Pki=1mi � 0 for any 1 � k � g � 2;� Pg�1i=1 mi = 0.Then any such sequence corresponds to a minimal CFP for the unidirectional case and vice versa.The above propositions follow by observing the immediate bijection between catastrophic sequencesand matrix representations of minimal CFP'sLet us now come to bounding the number FU (g) of catastrophic fault patterns starting atany pi, 0 � i � N �WUF under the assumption of unidirectional links. Clearly, FU (g) is lower-bounded by FB(g). In order to determine an upper bound to FU (g), we establish a mappingfrom unidirectional catastrophic sequences to bidirectional ones. Let SBg (resp., SUg ) be the set ofcatastrophic sequences (of length g � 1) for bidirectional (resp., unidirectional) linear arrays withlink redundancy g. Moreover, let �SUg � SUg be the subset of unidirectional catastrophic sequenceshm1;m2; : : : ;mg�1i such that mi 6= 0, for 1 � i � g � 1. We have:Lemma 1 ��� �SUg ��� < FB(2g � 1). 6



Proof: Any sequence hm1;m2; : : : ;mg�1i belonging to �SUg can be transformed into one for thebidirectional case by substituting each mi � �2 with a string mi1 ;mi2 ; : : : ;mil with l = jmij + 2,mi1 = mil = 0 and mij = �1 for 2 � j � l � 1. It is straightforward to see that the new sequencesatis�es the properties given in Proposition 1 for a given g0 � g. We are then left with boundingg0. Note that g0 � 1 = g� 1+ ���Pmi��2mi���+n, where n is the number of terms in the summation.Given that 0 = � ������ Xmi��2mi������+ Xmi>�2mi � � ������ Xmi��2mi������+ g � 1� n;we have that n+���Pmi��2mi��� � g�1. Therefore g0 � 2g�1. In order to obtain the desired mapping,we simply \pad" each transformed sequence of length < 2g � 1 with zeroes. It is immediate to seethat the obtained mapping is injective. The lemma follows. 2Theorem 6 FU (g) 2 O � 10gg3=2�.Proof: Any catastrophic sequence in SUg (except for the sequence of g� 1 zeroes) can be univocallyobtained by interleaving a catastrophic sequence in �SUj , 3 � j � g, with g � j zeroes. Vice versa,any interleaving of a given catastrophic sequence in �SUj , 3 � j � g, with g � j zeroes yields acatastrophic sequence in SUg di�erent from the sequence of g� 1 zeroes. Therefore, from Lemma 1:FU (g) = 1 + gXj=3 ��� �SUj ���  g � 1g � j!� 1 + gXj=3FB(2g � 1) g � 1g � j! :By applying theorem 3, after some trivial manipulations we can determine a small constant c > 0such that FU (g) � 1 + c g�1Xj=2 32jj3=2  g � 1j ! 2 O� 10gg3=2� : 24 ApplicationIn the previous sections, we have proved bounds on the number of minimal Catastrophic FaultPatterns (CFP's) for both bidirectional and unidirectional arrays with link redundancy g. Ourbounds are tight for the bidirectional case.The study of minimal CFP's for such architectures has received vast attention in the openliterature. In particular, e�cient testing algorithms have been devised [5] to detect the presenceof such patterns. Restricting attention to minimal CFP's is justi�ed by the fact that, in VLSImanufacturing, expensive on-chip recon�guration is attempted only when the number of faultsdoes not exceed a certain threshold. Otherwise, the defective chip is simply discarded [2].7



The study of minimal CFP's relates to the case when recon�guration is attempted only ifat most g faults are detected. A measure of interest is then the fraction f of chips for whichno recon�guration strategy is successful: bounds on f are useful when assessing the cost of themanufacturing process. Note that f is the probability of the following event:C = \There are exactly g faulty PE's in the array which disconnect node I from node O".We evaluate f under a well established probabilistic framework, where each PE has an inde-pendent probability p of being faulty and (1 � p) of being operating correctly [2]. Let CFP bethe event: \g faulty PE's in the array form a CFP" and G the event: \There are exactly g faultyPE's". Then f = Pr(C) = Pr(CFP \G) = Pr(CFPjG) Ng ! pg(1� p)N�g:We are then left with bounding Pr(CFPjG) for both the bidirectional and unidirectional case.Let Fxj (g), x 2 fB;Ug, be the number of CFP's starting at any pj with 0 � j � N � g. Clearly,Pr(CFPjG) = PN�gj=0 Fxj (g) Ng ! � (N � g)Fx(g) Ng ! ; (2)since any Fxj (g), 0 � j � N � g, can be upper bounded by Fx(g) (note that the above bound isparticularly accurate for N � g). By expanding (2) on the basis of Theorems 3 and 6 we thenhave, for the bidirectional case, Pr(C) 2 O N(3p)g(1� p)N�gg3=2 ! :Finally, for the unidirectional case, we havePr(C) 2 O N(10p)g(1� p)N�gg3=2 ! :References[1] K.P. Brlkhale and P. Banerjee. Recon�guration Strategies in VLSI Processor Arrays. in Proc.Int'l Conf. on Computer Aided Design (1988) pp.418-421.[2] J.W. Greene and A. Gamal. Con�guration of VLSI Arrays in the Presence of Defects. Journalof the ACM 31(4) (1984) pp.694-717.[3] R.L. Graham, D.E. Knuth and O. Patashnik. Concrete Mathematics. Addison Wesley, ReadingMass. (1989).[4] A. Nayak. On Recon�gurability of some Regular Architectures. PhD Thesis, Dept. of Systemsand Computer Engineering, Carleton Univ. Ottawa Canada (1991).8
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