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Abstract In VLSI technology, redundancy is a commonly adopted technique to provide
reconfiguration capabilities to regular architectures. This paper proves upper and lower bounds
on the number of minimal fault patterns (minimal set of faulty processors) which affect a link-
redundant linear array in an unrepairable way, for both the cases of bidirectional and unidirectional

links.
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1 Preliminaries

A standard technique to lower the production costs of VLSI circuits is the provision of on-chip
redundancy, and accompanying mechanisms to reconfigure the chip components at the occurrence
of fabrication faults. Without the presence of reconfiguration capabilities, the yield of very large
VLSI chips would be so poor to make their production unacceptable.

In the case of linear arrays of identical Processing Elements (PE’s), redundant ones (called
spares) are often placed on the chip to replace faulty PE’s and therefore preserve the network
connectivity. Besides the regular links between neighboring PE’s, extra links (called bypass links)
are also included to recreate the array topology in the reconfiguration phase [1, 2]. However,
regardless of any amount of redundancy and configuration capabilities, there are always sets of
faults occurring at strategic positions which affect the chip in an unrepairable way [6]. Such sets
of faults, called Catastrophic Fault Patterns (CFP’s), have been extensively studied in [4, 5, 6] for
linear arrays with different varieties of link redundancy.

In this paper we provide upper and lower bounds on the number of CFP’s for a special class
of redundant arrays, where each PE has exactly one bypass link and where the links can either be
unidirectional or bidirectional. As we show in a later section, such bounds can be used in assessing
the effectiveness and the cost of the reconfiguration process.
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Formally, let A = {po,p1,...,pn—1} denote a linear array of PE’s (including both regular and
spare elements), which are connected by regular links (p;, pi+1), 0 <i < N —2, and by bypass links
(Pis Pitg): 0 <4 < N—1—g. This interconnection, referred to as linear array with link redundancy g,
will be the object of our analysis in the following sections. At the two ends of the array, two special
PE’s, called I (for Input) and O (for Output), are responsible for the I/O functions of the system.
We assume that I is connected to pg,p1,...,ps 1, while O is connected to py ¢, PN g41,- .- PN 1.
so that all PE’s in the system have the same degree and reliability bottlenecks at the borders of
the array are avoided. Furthermore, we will conduct our analysis under the assumption that only
PE’s po,p1,...,pn—1 can be faulty, while links and I/O nodes always operate correctly.

In [6], faults in the system are characterized as follows.

Definition 1 For a linear array of size N and any link redundancy, a fault pattern F starting at
Dy, s a set of integers F' = {fo, fi,..., fm—1}, where0 < f; < N—1and fi_1 < fi, 1 <i<m < N.

Definition 2 Given a link-redundant linear array A, a fault pattern F = {fo, f1,..., fm—1} is
catastrophic for A if and only if no path exists between I and O, once the faulty p;, i € F, and
their incident links are removed.

The occurrence of a CFP implies that there is no way of reconfiguring the system with respect to
I/0O operations.

It can be easily shown that, for any array A with link redundancy g, a CFP F for A must
contain at least g faults. From now on, our analysis will concentrate on such minimal case. In this
case, the width Wr of a fault pattern F' = {fo, fi...., fg—1} is defined to be the number of PE’s
between and including the first and the last fault in F, that is, Wr = f, 1 — fo + L.

Theorem 1 ([6]) Let F' = {fo, fi,...,fg—1} be a fault pattern for a linear array A with link
redundancy g. Necessary condition for F to be catastrophic is

N
in the case of bidirectional links and
g<Wp SWi =(g-1)*+1,

in the case of unidirectional links. O

From the above theorem it easily follows that all CFP’s F' = {fo, f1,.... fs—1} starting at p;, that
is, with fy = 4, are such that f,_; <i+WgE —1, where z € {B,U} depends on the link orientation.

Starting from a result in [4], the following section provides very tight upper and lower bounds
on the number of minimal CFP’s for the bidirectional case. In Section 3 we prove an upper bound
on the number of unidirectional CFP’s by establishing a correspondence between the unidirectional
and bidirectional case. The bounds are finally used in in Section 4 to determine a measure relevant
to the cost assessment of the production process of the VLSI chip.



2 The case of bidirectional links

Nayak in [4] develops a technique to count the number of minimal CFP’s in the case of bidirectional
linear arrays with link redundancy g. Namely, he shows that there is a bijection between minimal
CFP’s starting at any fixed p;, with 0 < i < N — W£, and the language L of strings of length
g — 1 over the alphabet ¥ = {(,),*}, corresponding to balanced parenthesizations of x’s (e.g., for
g—1=3, L ={x**%(),(x),()*}). By known combinatorial facts [3], we then have:

Lz :
_ _ g—1 27 1
Ll =FF(g) = E ( 2j ) (])j?

j=0

The remainder of this section is devoted to prove tight lower and upper bounds on the above
quantity. We will make use of the following facts:

Fact 1 For any j > 0,

Fact 2 For any g > 0,

Fact 3 For anyn >0,

Fact 1 can be easily proven by applying Stirling’s approximation to < j]> The formulae in

Facts 3 and 2 can be derived by means of standard techniques for finite summations [3].

Theorem 2 For any g > 1,
1
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Proof: We have:
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by applying Fact 1 and since, for z > 1, f(z) = e~ increases and glx) =
decreases. For odd values of g we can then establish that
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For g even, since 2
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The theorem then follows from Fact 2 and the two above inequalities. O
Corollary 1 FB(g) € Q( 3/2)

Theorem 3 For any g > 1,
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( ) +1
Vag([ 4] + 2112

FP(g) <

Proof: We will only consider odd values of g, that is, g = 2i + 1 for + > 1. The proof for g even
follows the same lines. From Fact 1, we have
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Note that the function f(z) = 23”3/2 is strictly increasing for > 1. Therefore, for 0 < j < [%-I,
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The last summation in the above formula adds only and all the even terms of the summation
described in Fact 3. Therefore,

4(32z‘+1 _ 1)
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The theorem follows. O

FP(2i +1) < +1

Corollary 2 FB(g) € @( 3/2)



3 The case of unidirectional links

In order to prove bounds on the number of CFP’s in the unidirectional case, we need to recall the
following matriz representation of any fault pattern F' starting a fixed p;, with 0 < < N — W},
introduced in [6] for both the bidirectional and unidirectional case. F' is represented as a boolean

matrix W of size W§ x g, with WE = {%-‘, defined as follows:

1 if(i+hg+k)€EF,
0 otherwise.

Wh, k] = {

Under the above representation, each f; € F is mapped into Wh;, k;| = 1, where h; = [Lf%J
and k; = (f; —i)mod g. For instance, the boolean matrix associated to the fault pattern F =
{0,4,6,8,12} for a linear array with link redundancy 5 is the following:

1
0
0

o = O

0
0
1

o = O

1
0. (1)
0

Note that F'is a CFP for both the bidirectional and the unidirectional case. Note also that, in the
matrix representation, regular links “correspond” to either consecutive elements on the same row
or to elements (W [h,g — 1], W[h + 1,0]), while bypass links “correspond” to consecutive elements
in the same column.

CFP’s can be characterized, with respect to the above matrix representation, as follows:

Theorem 4 ([4]) Necessary and sufficient condition for a fault pattern F of cardinality g to be
catastrophic for a bidirectional linear array with link redundancy g is W1[0,0] = W[0,g — 1] =1
and, for any 1 < k < g— 2,

o if Wlh,k — 1] = 1 then exactly one among W[h — 1,k|,W[h,k] and W[h + 1, k] (whenever
such elements are defined) is 1.

o if W[h',k + 1] =1 then exactly one among W[h' — 1,k],W[h', k] and W[h' + 1,k] (whenever

such elements are defined) is 1. O

Theorem 5 ([4]) Necessary and sufficient condition for a fault pattern F of cardinality g to be
catastrophic for a unidirectional linear array with link redundancy g is W|[0,0] = W[0,g — 1] =1
and, for any 1 <k < g — 2,

o if W[h,k —1] =1 then at least one among W[h — 1,k], W[h, k],... , W[WY —1,k] (whenever
such elements are defined) is 1.

o if WIh',k + 1] =1 then at least one among W0, k], W[1,k],...,W[h' + 1,k] (whenever such
elements are defined) is 1. O



Note that the matrix representation of any CFP F with |F'| = g must have exactly one element
W hy, k] = 1 for each column k, 0 < k < g — 1 and that any CFP for the bidirectional case is also
a CFP for the unidirectional case.

Using the above two theorems, we can represent each minimal CFP starting at any fixed p;,
with ¢ < N — WE, as a sequence of g — 1 integer “moves” m;, with 1 < j < g — 1, where each m
indicates the increment of the row index from the (only) element set to 1 in column j — 1 to the
(only) one in column j in the associated matrix W. More formally, let W[h;_1,i — 1] and Wh;, i]
both be 1. Then m; = h;_1 — h;. As an example, the sequence associated to the matrix in (1) is
(—1,—1,1,1).

We will refer to sequences representing CFP’s as catastrophic sequences. For minimal CFP’s

starting at any fixed position ¢ < N — W, catastrophic sequences can be characterized as follows:

Proposition 1 Let (mi,ma,...,mg—1) be a sequence of moves such that:

o —1<m;<1forl1<i<g-—1;
. Zfﬂmiﬁﬂforanylgkgg_g;

-1
¢ 2?21 m; = 0.
Then any such sequence corresponds to a minimal CFP for the bidirectional case and vice versa.

Proposition 2 Let (mi,ma,...,mg—1) be a sequence of moves such that:

. Zfﬂmiﬁﬂforanylgkgg_g;

g-1, . _
e >  m;=0.
Then any such sequence corresponds to a minimal CFP for the unidirectional case and vice versa.

The above propositions follow by observing the immediate bijection between catastrophic sequences
and matrix representations of minimal CFP’s

Let us now come to bounding the number FUY(g) of catastrophic fault patterns starting at
any p;, 0 < i < N — WY under the assumption of unidirectional links. Clearly, FY(g) is lower-
bounded by F?(g). In order to determine an upper bound to FU(g), we establish a mapping
from unidirectional catastrophic sequences to bidirectional ones. Let Sf (resp., S;]) be the set of
catastrophic sequences (of length g — 1) for bidirectional (resp., unidirectional) linear arrays with
link redundancy g. Moreover, let 5';] C Sg be the subset of unidirectional catastrophic sequences
(m1,ma,...,mg_1) such that m; # 0, for 1 <i < g —1. We have:

Lemma 1 ‘S'QU‘ < FB(2g —1).



Proof: Any sequence (mq,ma,...,mg_1) belonging to S’g can be transformed into one for the
bidirectional case by substituting each m; < —2 with a string m;,, mj,, ..., m;, with | = |m;| + 2,
m;, = m;, = 0 and mi; = —1 for 2 < j <1 —1. It is straightforward to see that the new sequence
satisfies the properties given in Proposition 1 for a given ¢’ > g. We are then left with bounding
g. Note that ¢/ —1=¢g—1+ ‘Zmi<_2 mi‘ + n, where n is the number of terms in the summation.
Given that

0=-— Z m;| + Z m; < — Z m;|+g—1-—mn,

m;<—2 m;>—2 m;<—2

we have that n+ ‘Zmi<_2 m;| < g—1. Therefore ¢’ < 2g—1. In order to obtain the desired mapping,

we simply “pad” each transformed sequence of length < 2¢g — 1 with zeroes. It is immediate to see
that the obtained mapping is injective. The lemma follows. O

Theorem 6 FV(g) € O (;3%).

Proof: Any catastrophic sequence in S;] (except for the sequence of g — 1 zeroes) can be univocally
obtained by interleaving a catastrophic sequence in S’]U, 3 <j < g, with g — 5 zeroes. Vice versa,
any interleaving of a given catastrophic sequence in S]U, 3 < j < g, with g — j zeroes yields a
catastrophic sequence in S;J different from the sequence of g — 1 zeroes. Therefore, from Lemma 1:
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By applying theorem 3, after some trivial manipulations we can determine a small constant ¢ > 0

such that )
g=1 92j
39 [g—1 109
F(g) < 1+¢ .—( . >eo(_).
S5 (1)) ol

4 Application

In the previous sections, we have proved bounds on the number of minimal Catastrophic Fault
Patterns (CFP’s) for both bidirectional and unidirectional arrays with link redundancy g. Our
bounds are tight for the bidirectional case.

The study of minimal CFP’s for such architectures has received vast attention in the open
literature. In particular, efficient testing algorithms have been devised [5] to detect the presence
of such patterns. Restricting attention to minimal CFP’s is justified by the fact that, in VLSI
manufacturing, expensive on-chip reconfiguration is attempted only when the number of faults
does not exceed a certain threshold. Otherwise, the defective chip is simply discarded [2].



The study of minimal CFP’s relates to the case when reconfiguration is attempted only if
at most ¢ faults are detected. A measure of interest is then the fraction f of chips for which
no reconfiguration strategy is successful: bounds on f are useful when assessing the cost of the
manufacturing process. Note that f is the probability of the following event:

C = “There are exactly g faulty PE’s in the array which disconnect node I from node O”.

We evaluate f under a well established probabilistic framework, where each PE has an inde-
pendent probability p of being faulty and (1 — p) of being operating correctly [2]. Let CFP be
the event: “g faulty PE’s in the array form a CFP” and G the event: “There are exactly g faulty
PE’s”. Then

f = Pr(C) = Pr(CFP N G) = Pr(CFP|G) (JZ) pI(1 = )N,

We are then left with bounding Pr(CFP|G) for both the bidirectional and unidirectional case.
Let F{(g), z € {B,U}, be the number of CFP’s starting at any p; with 0 < j < N —g. Clearly,

Y File) _ (N - g)F"(g)

HRECE

since any F7(g), 0 < j < N — g, can be upper bounded by F*(g) (note that the above bound is
particularly accurate for N > g). By expanding (2) on the basis of Theorems 3 and 6 we then
have, for the bidirectional case,

Pr(CFP|G) =

oy o (M=)

Finally, for the unidirectional case, we have

PI"(C) cO (N(]_Op)g(]_ _p)N—g> )

g3/2
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