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Abstract. The Bulk-Synchronous Parallel (BSP) model [16] providesma- s
ple and portable programming discipline that is partidylauvitable for coarse-
grained parallel systems such as Networks of Workstatid@//s). In this work
we examine the issue of predictability of the BSP cost fuarcfor a NOW con-
sisting of SUN workstations connected through a 10Mbps fatenetwork. In
particular, we compare the original BSP cost function withumber of newly
proposed variants, with the intent of improving predicligpby having the cost
function encompass those parameters of the hardwaresseftsystem which
have the largest impact on performance.

1 Introduction

It is widely recognized [15, 5] that the quest for a desirabtedel of parallel program-
ming is made particularly hard by the objective of achieving following three prop-
erties simultaneously: usability, portability and predhility. Usability refers to the
ease of designing, analyzing, and coding algorithms inrdw@éwork provided by the
model. Portability denotes the ability of compiling and running programs eritac-
cording to the model over a wide class of target platformsieasing good performance
on each platform. FinallyPredictability implies the ability of the model of forecast-
ing performance of a piece of software via an associatedfaastion. In this paper,
we investigate this latter issue for tBailk Synchronous Parall§BSP) programming
model proposed in [16] in the context of low-end paralletegs made of Networks of
Workstations (NOWSs).

The BSP model provides an abstract machine mad® @focessors with local
memory, connected by a router which implements batch conuation via message
passing. Computation is divided into phases, naswgibrstepseach terminated by a
barrier synchronization. During a superstep, the progessay execute local compu-
tation on data held locally at the beginning of the superstag/or exchange messages
with other processors. The messages sent during a suparstegade available by the
router to their destinations only at the beginning of thetisegperstep.

The running time of a BSP program is obtained by summing thaing times of
its constituent supersteps. The execution time of a sug®ecstn be expressed as linear
cost function which has the following form [14]:

Tss(w,h) =w+ gh+1 Q)
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wherew is the local computation time aridis the degree of theelationrealized by the
router, that is, the maximum number of bytes sent or recdiyehy processor. Parame-
tersg andl are meant to capture, respectively, the bandwidth anddgtgmaracteristics
of the underlying architecture.

The simple programming paradigm offered by BSP implies adldewel of usabil-
ity. Also, the inherently machine-independent natureé@mmunication mechanism,
based on batch communication, allows optimized implentemis.on a large spectrum
of parallel architectures, hence fostering efficient gulity. However, it has often been
noted that the BSP cost function offers only a coarse levptedictability [12, 11]. In
fact, such observation has motivated further researchdefming more descriptive
(hence, less usable) models which embody additional asp&atmachine that impact
performance (e.g., message injection overhead [6], oteging [9]). In this paper, we
take a different approach. Rather than changing the BSRaroging model, we seek
to improve its predictability by striving for a tighter cdiqg between its associated
cost function and those features of the hardware/softwgstis under consideration
which have the greatest impact on performance. By intengeon the cost function
only, we aim at enhancing predictability while preservirgability and portability of
the programming model as much as possible.

The programming environment used in this work is based omkesage-passing
primitives provided by th&SPliblibrary developed by thParallel Applications Centre
of Oxford University [10].BSPlibhas been installed on a NOW of 10 SUN SPARC-
stations available at our department, connected by a 10Ethgsnet under the UDP/IP
protocol [8]. UnderBSPIiky interprocessor communication occurs when barrier syn-
chronization is called at the end of each superstep, andaiizee through a kind of
randomized, time-division multiplexing technique [7]. Mospecifically, time is di-
vided intotime-sliceswhich are in turn divided into as maiiyne-slotsas the number
of sending processors. At each time-slice, the sendingegsmrs randomly choose a
time-slot for sending their messages over the Ethernetd®&aization helps the system
pick a transmission schedule that makes a good usage of #ilatdg bandwidth of
the communication medium. The time-slot duration depemdtie maximum Ethernet
frame size supported, and packet fragmentation is done éibttary level accordingly.
As a consequence, when usiB&Plibthere is a limited payoff in orchestrating com-
munication at the program level so to send one (very) longsaggs rather than many
(relatively) short ones, hence we can safely refer only ¢éottital amount of bytes sent
from one processor to another.

1.1 Our Contribution

The main purpose of this work is to estimate the relative emyuand the ease of use of
a set of cost functions alternative to the classical BSPtfonof Equation (1) for the
hardware/software system under consideration. Althoughgoantitative results are
system-specific, the proposed methodology is rather geaedaapplicable to a wide
range of parallel platforms.

We describe the message routing instance associated to alp®Pstep by means
of a communication patterrwhich can be envisioned asfax P array containing,
for each processor, the number of bytes that the processds $e any other processor
(including itself). The BSP cost function yields the samediction for all communica-
tion patterns which realize anrelation. Howeverh might be too drastic a summary
for the characteristics of a communication pattern, hentmuitable to differentiate
among those that have the same valué dut feature very different execution times.



To achieve a more effective (yet simple) categorizationfellew a classic approach
in routing theory [13, 12] and summarize a communicationtigpatas ar(h;, h,, M)-
relation, whereh; (resp.,h,) is the maximum number of bytes received (resp., sent) by
any processor andf is the total number of bytes exchanged by the processors.

The candidate cost functions that we consider are the follglinear combinations
of the parameters;, h,, M andh = max{h;, h, }:

 Fa(R)=g-h+1
-fzo(hlah) 9i - hi+go'ho+l

Fiomt (hishoy, M)=g; - hi + go - ho + grr - M + 1
Fnm(h,M)=g-h+gm-M+1
fM(M):gM-M+l

-7:0M haaM):ga'ho+gM'M+l

Fir (hiy M)=g; - hi + gn - M +1

- Foho)= go - o + 1

- Fi(hi)=gi - hi +1

In order to obtain the coefficients for the above cost fumdjave execute an extensive
set of carefully designed communication patterns, whogectite is to exercise a large
number of feasible combinations of the three parameétgrad, and M. The running
times collected for such patterns are then used to inferakefanctions through least-
square fitting. Finally, the predictive quality of the fulnets is validated on a suite of
additional, synthetic access patterns and on a small settirig applications.

CENOURWNE

2 Fitting the cost functions

Consider aP-processor BSP machine, where thil processor is denoted [, with
0<i<P—1. LetalsoH; = {h:h = 10000+ 30000 -4,i = 0,...,3}, Ho = {h:
h = 150000 + 75000 - i,i = 0,...,11} andH = H1 U Ho. Finally, letz be an integer
parameter.

For each value oh ¢ H and1 < z < P, we define the followingsynthetic
communication patterns, that will be used for fitting anddeting the cost functions:

— (h, ) scatter (h, = h,h; = h-z/P,M = h-z).For0 < i<z —1and

0 <j < P—1, P; sendsh/P bytes toP;.

(h a:) gather (h; = h,ho = h-2/P,M = h-z). For0 < i < P—1and

0 <j<uz-—1,P sendsh/P bytes toP;.

(h x)-squ are(h = h, h, = h, M—h ). For0<z<m—1andP—x<
< P —1, P, sendsh/z bytes toP;, withj = P —z,...,P — 1.

- random (h,z)-scatter. A random communication pattern uniformly gener-
ated among “all those with, = h, h; = h-z/PandM = h - z.

— random(h, z)- gat her . A random communication pattern uniformly generated
among all those witth; = h, h, = h-x/PandM = h - z.

— random(h, z)- squar e. A random communication pattern uniformly generated
among all those witlh; = h, h, = handM = h - z.

.

In order to filter out noise, each pattern is executed 20 tiamesthe running time is
considered to be the median of the 20 executions. Togetieefjrst three families of
patterns (obtained by varyinge H and1 < z < P) make upSuite 1 which contains
deterministic patternswhile the last three make Upuite 2which is made ofandom

patternssharing the same summary parameters of their determingticterparts. Note



Fn| FiolFiom| Fum| Fu| Forr| Fi Fol Fi
g-10° | 3042 2207
g; - 108 587.2552.6 1433 2850
go - 10° 2932 2898 3066 3386
g - 108 22.94334.1891.5119.8530.8
l 41.5725.2126.5941.471396.167.79242.676.30280.3
(@pP=4
Fn| Fio|Fiom| Fune| Fu| Forr| Fi Fol Fi
g-10° 6520 4742
g; - 108 644.3427.1 2336 5699
go - 106 7070 685 6972 7531
g - 108 77.61395.0994.9116.4700.5
l 104.974.5184.06104.9995.1122.6§702.1142.8824.5
b)) P =8

Fig. 1. Cost function coefficients (imsecs).

that the Suites exercise a vast spectrum of feasible valutee @-tuple(h;, h,, M),
which is crucial to achieve reliable fits. In particular, bgrying z, we obtain patterns
characterized by a varying amount and distribution of tiedgl communication traffic,
but featuring the same valieof maximum outbound/inbound traffic from/to the same
processor. Note that scatter-like (resp., gather-likéepas are likely to incur in higher
overhead during message injection (resp., receipt) sineeh, > h; (resp.,h = h; >
ho).

We use the two Suites of patterns to fit (over the patterns ite ) and validate
(over the deterministic patterns in Suite 1) the BSP-liketdanctions defined in the
previous sections for two submachines of 4 and 8 processmgectively. The coeffi-
cients of the cost functions obtained Br= 4 andP = 8 are shown in Fig. 1.

3 Validation results

The results of the validations of the cost functions on Sliee shown in Fig. 2, where
for each submachine and each cost function we report, regggcthe maximum and
the average relative errors incurred by approximatingaih@ing time of a pattern with
the value returned by the function. Note that 8r= 4, the two-parameter function
F;o behaves better, on average, than the three-parameteiofutiGt ,,. This counter-
intuitive phenomenon can be explained if we consider thatlélast-square function
obtained from the fitting minimizes tHe- | 2-error, while we have chosen to check the
quality of our functions against the (more intuitive) metdf relative error between
predicted and measured running time. However, wRes 8, F;,,; becomes slightly
more predictive thar;,, which provides evidence that the impact of paraméter
becomes more important &sgrows.

Fn| Fio|Fiom|Fum| Fu|For|Fi Fol Fi

p_ Max. Err.(%)|| 168|17.2| 16.4| 124| 810|99.3| 489| 120| 594
Ave. Err.(%) || 24.7| 9.4| 9.6/25.7/95.6/18.0/68.1/19.2|78.1
p_ Max. Err.(%)|| 425|65.4| 62.5| 316| 559|51.0| 379|44.9| 461
Ave. Err.(%) || 34.8/7.31| 6.80| 31.5/86.4|7.54/70.6|7.86|87.7

Fig. 2. Maximum and average validation errors on Suite 1.



Also, note that the classicd;, function is consistently much worse than functions
Fo, Fio andF;,nr, and that all functions including, as a parameter behave decidedly
better than those not including it. In retrospect, this béha can be explained by the
message-scheduling strategy implementedBByPIif7], where the number of time-
slots and time-slices (hence, the duration of the routinginiy depends o, and is
independent of;.

In addition, we note that whe® = 8, function F, is roughly as predictive as
functionsF, s, Fio and F;,ns, the other parameters embodied by the latter functions
having only a second-order effect on improving predictgbillherefore, the simple
F, function (in fact, even simpler than the classical BSPfunction) represents the
best compromise between accuracy and simplicity of priedi¢or a moderately-sized
machine. Since the impact of the overall traffic volume (assoeed by\/) on predic-
tive quality seems to increase with it is reasonable to assume that for larger systems,
function F,»; would be a better choice.

From our analysis it follows that parametermay be disregarded on our system,
since communication time does not seem to depend crucialih® number of mes-
sages received by a processor. On the other hand, commianitiate exhibits a strong
linear dependence on parameter Finally, the synthesis between this two parameters
used by the classical BSP functigf, does not seem to yield good predictions.

In order to fully appreciate the crucial impact/af on performance, in Fig. 3 we plot
the execution times of some patterns (for varying valugs)af Suite 1, together with
all the cost functions under examination, Br= 8. Note that wherne = 8, (h,z)-
scatter, (h,z)- gat her and(h,z)- squar e patterns all becom#tal exchange
patterns, with all processors sending/receivind bytes to/from one another, hence
Fig. 3(b) (h,8)- gat her ) also represents g, 8)- scat t er or an(h, 8)- squar e.

By comparing Figg. 3(a) and 3(b) we note that the running tfrn@n (h, z)- gat her
heavily depends om, while a comparison of Fig. 3(b) with Figg. 3(c) and 3(d) relee
that there is no such dependency fbrz)- scat t er and(h, z)- squar e. Finally, it

is very clear from the plots that all functions includihgas a parameter are much better
predictors than the remaining functions, which give rajhaor predictions especially
for unbalanced patterns (small valuescdf

In summary, our experiments imply that one can obtain ridiplerformance pre-
dictions on the hardware/software system under study bptadpa simple variant of
the classical BSP cost function, where the contributioreoédmeter., is made explicit.
More importantly, we want to point out th8SPlibattains such level of predictability
while making good use of the hardware, since the peak traséoni bandwidth ob-
served during our experiments (8.8Mbps for total excharajeems) comes close to
90% of the maximum available bandwidth of the communicatimdium (10Mbps).

4  Predicting the communication time of sorting algorithms

To test the quality of the above cost functions in real sdesawe have exercised them
on predicting the communication time &SPlib implementations of three classical
sorting algorithms, namely, BatcheBstonic Sort[2]; a simple parallelization of the
Radix Sortalgorithm for integer sorting; and finallgample Sortwith oversampling
[4]. We measured the communication times of each constisigrerstep by subtracting
the time required for local computation from the overallming time of the superstep.
(More details on the algorithms will be provided in the fuirgion of this extended
abstract.)



Fig. 3. Running times and predictions fdrh,z)- gat her, (h,z)-scatter and
(h,z)- squar e, forz = 1,8. (Fig. 3(b) is also a plot foth, 8)- scat t er and(h, 8)-
square.)

LetAV; = {N : N = 2500 + 7500 -i,i = 0,...,3}, No = {N : N = 37500 +
18750-4,7 = 1,...,11} andN = N7 UN5. The sorting algorithms have been executed
with random inputs of siz& - P, for eachV € A/, with measured communication times
chosen as the median time out of five executions.

The table in Fig. 4 compares the maximum and average predietrors incurred,
for each sorting algorithm, by the BSP functigiy and the functions that turned out
to be better predictors on the synthetic patterns, nathglyFi,n, Fio andF,. Also,
Fig. 5 plots the measured communication times against gigitons of7;, (the worst
function) andF;,ys (the best function) as a function &f. As before, it is clear that
functions including parametér, yield much better predictions thafy,, although the
difference in quality is not so dramatic as the one observethe patterns in Suite 1.
This relatively better behaviour of th&;, function is mainly due to the fact that the
most expensive communication patterns (at least for rauixsample sort) generated

Bitonic Radix Sample
P=4 P=S8||P=4 P=S8||P=4 P=28
Fhn 43.5126.52%| 17.9016.43%) 22.7711.10%
Fi 35.7416.15%)| 13.31 9.93% 17.35 5.01%
Fiom|| 35.4513.92%| 12.26 6.42%| 18.72 4.01%
Fou || 36.9813.62%| 11.78 3.17%) 42.1§ 7.37%
Fo 39.6916.91%)| 15.24 6.72%) 42.9110.25%

Fig. 4. Average prediction errors for bitonic sort, radix sort aathple sort forP = 4, 8
andn € N



. x 10* Measured and predicted times of sorting algorithms
T T T

—— Bitonic d
—-— Bitonic predicted (fh)
¢ Bitonic predicted (floM)
S| = — Radix measured

—— Radix predicted (fh)

_s— Radix predicted (floM )

— - Sample measured
o Sample predicted ( fh )
. Sample predicted (f, )

Time (ms)
w

0.3 0.7 11 15 19 23
Number of keys (integer) per processor x 10°

Fig. 5. Measured versus predicted (functiafis and F;,s) communication times for
Bitonic, Radix and Sample sort.

by the sorting applications tend to be total exchanges aP2-length messages, which
are those on whiclF, incurs into the least prediction errors, since such pattbave
h = h; = hg, hence coalescing the indegree and the outdegree of thneilato the
“summary” parameteh does not imply a large loss of information. Consequently, th
improvement of over 50% on the quality of the predictionsvpted by the more com-
plex F,as andF;, s functions can be explained mainly with the presence of patam
M, which captures the impact of the overall traffic volume gatexl by the pattern.
The data collected for bitonic sorting are definitively thesnpuzzling. Although
the communication patterns generated by the algorithmxreraely regular (namely,
permutations ofV/ P-length messagesil the cost functions tend to severely under-
estimate the associated running time. We conjecture tlgmfptienomenon is due to
a suboptimal management of this important class of comnatinit patterns by the
scheduling algorithm provided by tH&SPliblibrary. Note, however, that even in this
case, functions embodying titg parameter are much better predictors than the BSP
function F,.

5 Future Work

Further investigation is needed to determine to which exttes newly proposed cost
functions can be effectively used in practice as an altematd the classic BSP function
to enhance predictability. We believe that the value of sspay the contributions of
h; andh, and adding a parameter of global congestion of the commtimicenedium
such as\f will prove to be even more substantial for applications ahterized by more
irregular communication patterns than sorting. In ordesuostantiate this intuition, we
are thinking of exercising our cost functions over a bulketyronous version of the
NASbenchmarks [1].

An orthogonal line of investigation concerns devising dastctions for other net-
work architectures, such as 100Mbps or Gigabit Ethernetjrdyor ATM, or compar-
ing the performance/predictability levels achievedBfPlibagainst those attained by



other communication libraries, such as the BSEPB library developed at Paderborn
University [3].
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