A Quantitative Measure of Portability with Application
to Bandwidth-L atency Models for Parallel Computing*
(Extended Abstract)

Gianfranco Bilardi, Andrea Pietracaprina, and Geppino Pucci

Dipartimento di Elettronica e Informatica, UniversitaRidova, Padova, Italy.
{bi I ardi , andr ea, geppo}@rtem de. dei.unipd.it

Abstract. We introduce a novel methodology for the quantitative assest of
the effectiveness and portability of models of parallel patation. Specifically,
we relate the effectiveness of a modél, adopted for algorithm design, with
respect to a platformi/’, where algorithms developed farf are ultimately ex-
ecuted, to the product of cross-simulation slowdowns betwd andA’. The
portability of M with respect to a class of platforms can be estimated by ibs mi
imum effectiveness over the platforms in the class. We apptymethodology
to assess the portability of enhanced variants of the BSRehwaith respect to
processor networks, with particular emphasis on multidisi@nal arrays.

1 Introduction

It is widely recognized that the choice of a model for parallel computationade
particularly hard by the desire of simultaneously achieving usajdffgctiveness, and
portability. Usability refers to the ease of algorithm design and anal¥fectiveness
means that efficiency of algorithms in the model translates into efficieneyeafution
on some given platfornPRortability denotes the ability of achieving effectiveness with
respect to a wide class of target platforms. These properties appear, t@siemig in-
compatible. For instance, effectiveness requires modeling a number of plegfeecific
aspects that affect performance (e.g., data layout, task assignment, sajedtifihe
expense of portability and usability.

The quest for a suitable model of parallel computation has been ongaingdo
two decades, as witnessed by the proliferation of models in the litef@eedMMT95]
for a survey). One elusive aspect of this quest is the lack of a systefreatiework to
compare and evaluate candidate models at a quantitative level. Typicallgability of
a modelis illustrated by exhibiting efficient algorithms for key cargtional problems,
while effectiveness and portability are argued on the basis of qualitadiveiderations
on the essential features to be expected of present and future machinestiimswdre
sometimes advocated as a tool to compare models. For example, there are misy res
of the form: “model}; is more powerful than mod@l/,”, meaning that\/; can simu-
late M5 with constant slowdown, but not vice versa. However, such characterizdtion
power does not directly relate to effectiveness: in facl/if derives its greater power
by capabilities that are available on the target platforms, fifenis likely to be more
effective thani/,, but wheni/, derives its greater power by assuming lower cost for

* This research was supported, in part, by MURST of Italy uritleject MOSAICO, and by
CNR of Italy under grant CB97.05085.CT12.

primitives that are hard to implement on the target machifgsmight well be more
effective thani/; .

In this paper, we propose and begin to explore a methodologydyistg effective-
ness and portability in a quantitative way. Namely, in Section 2 we al@igita model
M and a platformd/’ can simulate each other with respective slowdowa/, M')
andS(M', M), then the quantitg (M, M') = S(M, M')S(M’', M) provides an upper
measure of effectiveness far with respect toM’. Namely, effectiveness decreases
with increasingy(M, M') and is highest fo§ (M, M') = 1. When maximized over all
platformsM' in a given class, this quantity provides an upper measure of the pdstabil
of M with respect to the class. Next, we apply our methodology to compasffée
tiveness and portability of thBulk-Synchronous Parallel (BSRjodel [Val90] and one
of its variants, theDecomposable BSP (D-BSHE)K96], with respect to the class of
processor networks

A BSP(p, g, £) machine consists of a set pfprocessor/memory pairs communi-
cating through a router, whose computation is organized in superiags.superstep
embodies a phase where processors compute on locally available data, avpbese
processors exchange messages, and a phase of global synchronizatiapersep is
charged a cost af + gh + £, wherew (resp.,h) is the maximum number of operations
performed (resp., messages sent/received) by any processor in that supedijemd
{ are parameters capturing bandwidth-latency characteristics of the rouBSPOs
defined similarly, with an additional provision that allows the corafioh to proceed
independently within subsets of processors, each subset being characterizedrby
bandwidth and latency parameters. This mechanism aims at capturing theylotalit
communication and synchronization. (See Section 3 for a formal defifiDABSP.)
Both BSP and D-BSP attempt to strike a balance between usability, effextivamd
portability by allowing programs to be written in terms of the baidiivand latency
parameters. Specific values for these parameters are selected at run-time to adapt to
the characteristics of the target platform. Conceivably, parameterizatiodsfigher
portability, while it introduces only a moderate burden on the dllgor developer.

It is straightforward to show that suitable choices of the BSP or [P-B&ameters
allow these models to be simulated on most networks of interest withcomstant
slowdown (with the above notatio,(BSP, '), S(D-BSP, M') = O(1), with M’

a processor network). Hence, to study the effectiveness of such modets;tiars4

we concentrate on the simulation of an arbitrary processor netivérén BSP and D-
BSP, determining a lower bound§§ /', BSP) and an upper bound g M', D-BSP).
When M’ is a multidimensional array5(M', D-BSP) turns out to be considerably
smaller than the optimal achievable slowdo$/’, BSP). Based on these results, we
conclude that, under thiemetric, D-BSP is more effective than BSP for such networks.

Finally, in Section 5, we show that although no specific provisionsnzade in
D-BSP to deal with unbalanced communication patterns, the model, un8ke &n
efficiently cope with such patterns, which is an indication that further dicatons to
the model, as introduced in other BSP variants (e.g., Y-BSP and E-B[IW96]),
may not be needed to achieve higher effectiveness.

2 A Quantitative Approach to Effectiveness and Portability

Let us consider a mod@éll where designers develop and analyze programs, which we
call M-programs and a platform/’ onto whichM -programs are translated and exe-

cuted. We callV/’'-programsthe programs that are ultimately executedidh During
the design process, choices between different programs (possibly cowintatve al-
gorithms for the same problem) will be clearly guided by madelby comparing their
running times as predicted by the model’s cost function. Intuitively,consider)/
to be effective with respect td/’ if the choices based ol turn out to be the right
ones in relation to program performance &H. In other words, we hope that the rel-
ative performance of any twé/-programs reflects the relative performance of their
“counterparts” onM’. The difficulty with this approach is that of clearly defining the
association betweekl/ -programs and/’-programs, which we do as follows.

We postulate the existence of an equivalence relgtiamong both)M -programs
and M'-programs and restrict our attentiongeoptimal programs, where p-optimal
M -program (resp.M’'-program) is the fastest among alf-programs (resp/’-pro-
grams) p-equivalent to it. Let us definél and I’ to be the sets op-optimal M-
programs and\/’-programs, respectively. We also definganslation functiorns that
associates a program € I with its p-equivalent counterpatt(z) € II'. In other
words, for everyM -program,o identifies a translation into af/’-program which is
consistent with the choice gf. Several choices fop are possible. For instange
equivalent programs could be those that have the same input-oudputwhich, how-
ever, makew rather difficult to obtain in practice), or those that implement the same
high-level algorithm (which makes more realistic). For simplicity, we will not for-
mally specifyp but, when applying our methodology, we will only give an informal
description of its properties.

Form € II andrn' € II' we letT (w) andT'(#') denote their running times aiy
andM’, respectively. We propose the followingersemeasure of effectiveness

NV T(m) Te(m)
n(M M) = max Ty Tio(m)

1)

Note thatn(M, M') > 1, where a value close to 1 implies a high effectiveness of
M with respect toM’, while a large value indicates that the relative performance of
programs om\/ may not be preserved aw'. If, rather than a single platford/’, we
consider a clas8 of target platforms, then the quantify (M) = maxy e n(M, M')
provides arinversemeasure of portability of modél .

Next, we show that an upper estimatengfl/, M') can be obtained based on the
ability of M and M’ to simulate each other. Consider an algorithm that takes\éany
programr and simulates it o/’ as anM'-programn’ p-equivalent tor. (Note that
in neitherm nor 7' needs bep-optimal.) We define theslowdownS (M, M') of the
simulation as the ratid” (=) /T (m) maximized over all possibl@/-programsr. In
practice,S(M, M') represents the (worst-case) cost for supporting madien ',

We defineS(M', M) in a similar fashion, by interchanging the roles/af and M.
Then, we define thdistancebetweenV/ and M’ to be the quantity

(M, M') = S(M,M")S(M', M) (2)
and show that the following key inequality is satisfied:
n(M,M') <d(M,M") . 3)

Indeed, since the simulation algorithms considered in the definitfo§ (84, M)
and S(M', M) preservep-equivalence, it is easy to see that for any s € 11,

T'(o(m2)) < S(M, M') 1
(T(m1)/T (72)) - (T'(o(m2)) /T (0(71)))
is an upper bound tg(M, M").

S(M', M)T"'(o(m)). Thus, we have that
0(M, M"), which implies thav (M, M)

3 D-BSP: Capturing Network Proximity in BSP

The Decomposable Bulk Synchronous Paraliebdel (D-BSP) was originally intro-
duced in [DK96] as an extension of BSP. In this paper we refer to a weaker vari-
ant of the model which can be defined as follows. lget= (g0, g1, - -, glog) and

£ = (lo,lh,...,logp). AD-BSP(p, g, £) is a collection ofp processor-memory pairs
communicating through a router. For< i < logp, thep processors are partitioned

into 2 fixed, disjointi-clustersC”, C\" ..., C{? of p/2' processors each, where
the processors of a cluster are able to communicate and synchronize areang th

selves independently of the other clusters. The clusters form a binaryngesdgion
tree for the D-BSP: specificallﬂ]}l"g”) contains only Processgr for 0 < j < p, and

C\ = ot u oSty foreveryd < i < logpando < j < 2. Parameters; and/;
are related to the bandwidth and latency guaranteed by the router when caratiumi
occurs withini-clusters, fol0 < i < log p.

Analogously to BSP, a-processor D-BSP computation consists of a sequence of
labeled superstepsvhere labels range in the sgi, 1, .. .log p}. In a superstep of la-
bel i, communication and synchronization occurs exclusively withoftusters. If, in
ani-superstep, each processor performs at molsical operations, and the messages
exchanged form ah-relation, then the cost of the superstepis- hg; + ¢;.

Note that the standard B§R g, ¢) can be regarded as a D-B§R g, £) withg; = ¢
and/; = £ for everyi, 0 < i < logp, hence a valid D-BSP algorithm is also a valid
BSP algorithm. Vice versa, any valid B§Pg, ¢) algorithm is also valid for any D-
BSP (p,g,£) with g0 = g and/, = {. This ensures full compatibility between the
two models, which differ only with respect to their cost functions. antjgular, D-BSP
introduces the notion of proximity in BSP through clustering, gnaupsh-relations
into specialized classes associated with different costs.

For suitable choices of the parameters, both BSP and D-BSP can be sugjperted
simulated) with no loss of efficiency on processor networks. For exgnhyl setting
g=1{=p'/4forBSP andy; = ¢; = (p/2)'/?,0 < i < logp, for D-BSP, both models
can be simulated with constant slowdown od-dimensional array. (See [DK96] for
other examples.)

4 Effectiveness of Bulk Synchronous M odels for Processor
Networks

In this section, we consider the issue of simulating processor nivaor BSP and D-

BSP. In the light of our previous discussion, our goal is to eyuantitative evidence
of how the richer structure exposed in D-BSP improves its effectivemiéissespect to

the “flat” BSP.

! Our variant is weaker in the sense that the algorithms fovahiant immediately translate into
algorithms for the original model of [DK96] with no loss ingfermance.

BSP Let G be a connected -processor network, where in oséepeach processor
executes a constant number of local operations and may send/receive orte{pmintt
message to/from each neighboring processor (multi-port regimentawgrove the
following general lower bound for the simulation Gfby BSP.

Theorem 1. For any connectedv-node networlG of bounded degree and every inte-
gerT > 1 there exists &'-step computation a¥ that requires time

0 (T <% + min{g,T,N}> + z)

to be simulated by BSP, g, ¢). The lower bound holds even if at the beginning of the
simulation each BSP processor knows the initial state of every ab@g and if the
operations performed by a node@fmay be simulated by more than one processor.

Proof (Sketch).SinceG embeds theV-node linear arrayl y with constant dilation, it
suffices to derive a lower bound for BSP simulationsdgf. The termsI'(N/p) and
¢ are obtained immediately. Next, observe that an arbitfastep computation ofl iy
can be modeled as a a dag-(A) whose nodes (i.e., operations) are all péirs),
withv € V and0 < t < T, and whose arcs (i.e., state dependencies) connect pairs
(v1,t), (va,t + 1), wheret < T and|v; — v2| < 1. Simulating al'-step computation
of Ax on BSP amounts texecuteAr(Ay). During an execution oAy (Ay), an
operation associated to a dag node can be executed by a BSP prqdéssaronly if
q knows the state of all the node’s predecessors.

Consider the cas€é€ < N. Then,Ar(Ay) contains theg7T/2] x [T'/2] diamond
dag D/, as a subgraph. The result in [ACS90, Th. 5.1] implies that any BSP exe-
cution of Dy, either requires am2 (T')-relation or an2 (T°%)-time sequential com-
putation performed by some processor. Hence, any BSP executibn of requires
2 (T min{g, T}) time. For the cas& > N, it suffices to observe thatr(Ax) con-
tains a vertical stack @ (T'/N) [N/2] x [N/2] disjoint copies ofDr /5, whose first
executions do not overlap in time, thus requirfdd7 min{g, N'}) BSP time.

The next theorem, whose proof is omitted for brevity, providesveel bound on
the reverse simulation.

Theorem 2. LetG be anN-node network of bisection width. Then, any simulation
of BSRp, g, £) onG requires slowdown

S (BSRp,g,6).G) = 02 (M)

gB

D-BSP Let us now turn to network S|mulat|ons on D-BSP. In what follows,agsume
w.l.0.g. thatG has a decomposition tre{G ,---,Géﬁll Vi, 0 < i < logp},

where eacltz; @ (i-subnet hasN/2° nodes and is connected to the rest of the network

by at most; boundary links; moreoveG G(Z]+1 u G;Jfl In order to simulate

G on ap-processor D-BSP, we adopt the following strategy Partitiomthaes ofG
among the D-BSP processors so that the nodé%’dfare assigned to the processors of

z—clusteer , for everyi andj. LetMOut (resp. ,MZ”}) denote the messages that are sent

(resp., received) by nodes 61“) to (resp., from) nodes outside the subnet. Since the
number of boundary links of ansubnet is at mogy;, we have thath |, |Mm| <b;.

Let aIsoMOut C MOUt denote those messages that fr@é‘\) go to nodes in its sibling

G(f , with j' = j £+ 1 depending on whethgris even or odd. The idea behind the sim-
ulation is to guarantee, for each cluster, that the outgoing messages be balaoced
the processors of the cluster before they are sent out, and, simited\the incoming
messages destined to any pair of sibling clusters be balanced among the gmooéss
the cluster’s father before they are acquired.

More precisely, after a first superstep where each D-BSP processor simidslis t
cal computation and communications internal to the subnet assignedi®fibjlowing
two cycles are executed.

1. Fori =logp — 1 down to 0 do in parallel within eaorﬁ’ () Jfor0 < j < 2%

(a) Send the messagesAfgy' ,: (resp., MM .. 1) fromC [(resp., 05 Y)

to 02“;11 (resp., C (i+1)) so that each processor receives (roughly) the same
number of messages
(b) Balance the messages M;j;.“ among the processors df](i). (This step is
vacuous for = 0.)
2. Fori =1tologp — 1doin parallel within eacig’!?) foro < j < 2t
(a) Send the messages]lmln nM2%, 5, (resp., Mm nM2%, 2j+1) to the pro-

cessors oC(’Jr1 (resp. 023111)) so that each processor receives (roughly) the

same number of messages.

A formal proof of correctness of the above procedure will be providaderfull ver-
sion of this abstract. As for its running time, let = [b;/(p/2%)], for 0 < i < logp,
denote the average number of incoming/outgoing messages foclaster. The bal-
ancing operations performed by the algorithm guarantee that iteriatibeither cycle
entails amax{h;, h;11 }-relation withini-clusters. Finally, we can optimize the above
simulation by running it entirely within within a cluster of < p processors of the
p-processor D-BSP, wherg is the value that minimizes the overall slowdown. The
following theorem summarizes the above discussion.

Theorem 3. For any N-node networkG with a decomposition tree of parameters

(bo, b1, ..., bgp), ONE step ofi can be simulated on a D-BSP, g, £) in time
N logp—1
O | min -~ + Z (gi maX{hi, hi+1} + éz)
p<p | P)
i=log(p/p’)

whereh; = [b;_iog(p/p)/ (p/2)], forlog(p/p') < i < logp.

Portability of BSP vs D-BSP on multidimensional arrays First, we remark that all
the simulation results described above deal with simulation algosithihich preserve
p-equivalence for most realistic definitions @{e.g., same input-output map, or same
high-level algorithm). Let nowd/ be a BSFp, g, ¢), andG be ap-noded-dimensional
array. Then, from Theorems 1 and 2, it follows thét/, G) = £2 (p'/¢). Consider now

a D-BSP(p, g, £) with g; = ¢; = (p/2")'/?, for 0 < i < logp. Such D-BSR(p, g, £)

can be simulated oG with constant slowdown. Sincé has a decomposition tree
with subnetng.’) that haveb; = O ((p/27)!4~1)/d), the D-BSP simulation presented
above yields a slowdown @ (p'/(¢+1)) per step, when entirely run on a cluster of
p' = p*(@+1) processors. In conclusmn |ettll?l? be the D-BSP with the above choice
of parameters, we have th&t\/', G) /{d+1)) Therefore, under thé metric,
D-BSP is asymptotically less dlstant than BSP from a multidimerdiamay.

One drawback of the D-BSP simulation is that it requires that the mesipe of
each D-BSP processor b@a(p1/<d+1)) factor larger than the memory size of an array
node, which might be unreasonable in practice. In the full version efghper, we
will exhibit a subtler simulation strategy of multidimensionalears on D-BSP which
reduces the memory blowup to a mébdlog log p) factor, at the expense of an extra
O (log p) factor in the simulation slowdown.

Finally, if we allow the simulation of a step of the network to stafdye the simula-
tion of previous steps is completed, we can set up a more complex rexsirsitegy for
simulating arrays with constant-size memory at each node on D-BSP, wioosiown
is exponentially smaller than the one obtained by applying the stesidpysimulation
of Theorem 3. We have:

Theorem 4. For T = (2 (pt/?), anyT-step computation of a-noded-dimensional
array G (d constant) with constant-size memory at each node can be simubatad b

D-BSP(p, g, £) with g; = £; = (p/21)1/4, for 0 < i < logp, in time O (T2“\/1°g”),
with a = 2d + 6.

(The simulation algorithm and the proof of Theorem 4 are omitted.) Réwal the
lower bound on network simulations by BSP (Theorem 1) does not depetit:size
of the memory modules local to each nodesband, in particular, it holds even if such
modules have constant size. Therefore, Theorem 4 implies thatttetric for D-BSP
and multidimensional arrays with constant-size memory at each node inenjdly
smaller than the respective metric for BSP.

5 Exploiting D-BSP L ocality for Unbalanced Communication

An (h,m)-relation is a routing instance where each processor sends/receives at most
h-messages, and a total @f messages are exchanged [JW96]. On several networks,
the time to route ah, m) relation decreases with, for fixed h. This does not happen

in BSP, whereany (h, m)-relation requiregh + ¢ steps, regardless af. Motivated

by these observation, some authors have proposed the introdattios an explicit
parameter of the model (see E-BSP [JW96] and Y-BSP [DK96]).

In this section, we argue that D-BSP can roitem) relations in ways that take ad-
vantage of small values @f. In particular, we show that, whendadimensional array
simulates the routing of ath, m)-relation on D-BSP, the resulting network perfor-
mance is within a constant factor of optimal. Therefore, for such netwtirkse is no
increase of effectiveness by augmenting D-BSP witlsensitive capabilities. This is
an indication that the complication of making a model which already capturesriet
proximity also sensitive to unbalance may not be warranted by the ac@dvagtages.

The key insight that leads to the exploitation of cluster localitygaldvith unbal-
ance is similar to the one employed in Section 4 to simulate one stepativank, and
is inspired by the efficient routing protocols known for specific aggttitres (e.g., see

[PPS94]). Specifically, messages are progressively balanced within clokiecseas-

ing size so that the degree of the relation decreases as the cost of comroaniditin

the clusters increases. More specifically,Hdte such thae® < hp/m < 2**+! (note
that0 < k < logp). The(h, m)-relation is routed in two phases. In the first phase (
cend, messages are iteratively balanced within larger and larger clusters (stesting
k-clusters). In the second phaske§ceniimessages are kept balanced and iteratively
dispatched to arbitrary processors within their destinatiauster and from there to
their final destinations. We have:

Theorem 5. An (h, m)-relation can be routed on a D-BSB, g, £) in time

T(h,m) = O Uogifém” <Tpr(z’) + i [(1;71—2)} +£i> :

whereT,, (i) denotes the time of a prefix-sum operation within-atuster.

To appreciate the potential of the above strategy, consider again the cagenofie
d-dimensional array, which is characterized by paramgtets¢; = p'/¢, for0 < i <
log p. For such values of the parameteFs, (i) = O ((p/2)'/¢) [DK96]. Hence, by
Theorem 5 we get

T(h.m) = O (p'/*+m'/Ip1=1/1)

which is smaller than the BSP time by a factph/m)'/? whenp/h*=" < m < ph.
More surprisingly, a simple bandwidth argument shows that theeatime is optimal
for routing an arbitrary(h, m)-relation directly on al-dimensional array. Hence, for
such communication patterns, the effectiveness of D-BSP is maximume igetinse
that there is no loss of efficiency in running the D-BSP algorithmhanrntetwork with
respect to running the best network-specific algorithm. A corollarpisfresult is that
for multidimensional arrays D-BSP is as effective in treating unbalancedntoica-
tion as E-BSP [JW96], where the treatment of unbalanced communicatipnimitive
of the model.

References

[ACS90] A. Aggarwal, A.K. Chandra, and M. Snir. Communicaticomplexity of PRAMs.
Theoretical Computer Sciencgl:3-28, 1990. See alguoc. of ICALP '88 1-17.

[DK96] P. De la Torre and C.P. Kruskal. Submachine localitytie bulk synchronous setting.
In Proc. of EUROPAR 98.NCS 1124, pages 352—-358, August 1996.

[JW96] B.H.H. Juurlink and H.A.G. Wijshoff. The E-BSP mod#icorporating general lo-
cality and unbalanced communication into the BSP modePrtic. of EUROPAR 96
LNCS 1124, pages 339-347, August 1996.

[MMT95] B. Maggs, L.R. Matheson, and R.E. Tarjan. Models afgllel computation: A sur-
vey and synthesis. IRroc. of the 28th Hawaii International Conference on System
Sciences (HICSSYolume 2, pages 61-70, January 1995.

[PPS94] A. Pietracaprina, G. Pucci, and J. Sibeyn. Constaudeterministic PRAM simulation
on a mesh-connected computer.Aroc. 6th ACM Symp. on Parallel Algorithms and
Architectures pages 248-256, Cape May, NJ, June 1994.

[Val90] L.G. Valiant. A bridging model for parallel computan. Communications of the ACM
33(8):103-111, August 1990.

