
A Quantitative Measure of Portability with Application
to Bandwidth-Latency Models for Parallel Computing?

(Extended Abstract)

Gianfranco Bilardi, Andrea Pietracaprina, and Geppino Pucci

Dipartimento di Elettronica e Informatica, Università diPadova, Padova, Italy.fbilardi,andrea,geppog@artemide.dei.unipd.it
Abstract. We introduce a novel methodology for the quantitative assessment of
the effectiveness and portability of models of parallel computation. Specifically,
we relate the effectiveness of a modelM , adopted for algorithm design, with
respect to a platformM 0, where algorithms developed forM are ultimately ex-
ecuted, to the product of cross-simulation slowdowns betweenM andM 0. The
portability ofM with respect to a class of platforms can be estimated by its min-
imum effectiveness over the platforms in the class. We applyour methodology
to assess the portability of enhanced variants of the BSP model with respect to
processor networks, with particular emphasis on multidimensional arrays.

1 Introduction

It is widely recognized that the choice of a model for parallel computation ismade
particularly hard by the desire of simultaneously achieving usability, effectiveness, and
portability.Usability refers to the ease of algorithm design and analysis.Effectiveness
means that efficiency of algorithms in the model translates into efficiency ofexecution
on some given platform.Portability denotes the ability of achieving effectiveness with
respect to a wide class of target platforms. These properties appear, to someextent, in-
compatible. For instance, effectiveness requires modeling a number of platform-specific
aspects that affect performance (e.g., data layout, task assignment, scheduling), at the
expense of portability and usability.

The quest for a suitable model of parallel computation has been ongoing for over
two decades, as witnessed by the proliferation of models in the literature(see [MMT95]
for a survey). One elusive aspect of this quest is the lack of a systematic framework to
compare and evaluate candidate models at a quantitative level. Typically, the usability of
a model is illustrated by exhibiting efficient algorithms for key computational problems,
while effectiveness and portability are argued on the basis of qualitativeconsiderations
on the essential features to be expected of present and future machines. Simulations are
sometimes advocated as a tool to compare models. For example, there are many results
of the form: “modelM1 is more powerful than modelM2”, meaning thatM1 can simu-
lateM2 with constant slowdown, but not vice versa. However, such characterizationof
power does not directly relate to effectiveness: in fact, ifM1 derives its greater power
by capabilities that are available on the target platforms, thenM1 is likely to be more
effective thanM2, but whenM1 derives its greater power by assuming lower cost for? This research was supported, in part, by MURST of Italy underProject MOSAICO, and by

CNR of Italy under grant CB97.05085.CT12.

primitives that are hard to implement on the target machines,M2 might well be more
effective thanM1.

In this paper, we propose and begin to explore a methodology for studying effective-
ness and portability in a quantitative way. Namely, in Section 2 we argue that, if a modelM and a platformM 0 can simulate each other with respective slowdownsS(M;M 0)
andS(M 0;M), then the quantity�(M;M 0) = S(M;M 0)S(M 0;M) provides an upper
measure of effectiveness forM with respect toM 0. Namely, effectiveness decreases
with increasing�(M;M 0) and is highest for�(M;M 0) = 1. When maximized over all
platformsM 0 in a given class, this quantity provides an upper measure of the portability
of M with respect to the class. Next, we apply our methodology to compare theeffec-
tiveness and portability of theBulk-Synchronous Parallel (BSP)model [Val90] and one
of its variants, theDecomposable BSP (D-BSP)[DK96], with respect to the class of
processor networks.

A BSP(p; g; `) machine consists of a set ofp processor/memory pairs communi-
cating through a router, whose computation is organized in supersteps.Each superstep
embodies a phase where processors compute on locally available data, a phasewhere
processors exchange messages, and a phase of global synchronization. The superstep is
charged a cost ofw+ gh+ `, wherew (resp.,h) is the maximum number of operations
performed (resp., messages sent/received) by any processor in that superstep,andg and` are parameters capturing bandwidth-latency characteristics of the router. D-BSP is
defined similarly, with an additional provision that allows the computation to proceed
independently within subsets of processors, each subset being characterized byits on
bandwidth and latency parameters. This mechanism aims at capturing the locality of
communication and synchronization. (See Section 3 for a formal definitionof D-BSP.)
Both BSP and D-BSP attempt to strike a balance between usability, effectiveness and
portability by allowing programs to be written in terms of the bandwidth and latency
parameters. Specific values for these parameters are selected at run-time to adapt to
the characteristics of the target platform. Conceivably, parameterization affords higher
portability, while it introduces only a moderate burden on the algorithm developer.

It is straightforward to show that suitable choices of the BSP or D-BSP parameters
allow these models to be simulated on most networks of interest with only constant
slowdown (with the above notation,S(BSP;M 0); S(D-BSP;M 0) = O(1), with M 0
a processor network). Hence, to study the effectiveness of such models, in Section 4
we concentrate on the simulation of an arbitrary processor networkM 0 on BSP and D-
BSP, determining a lower bound toS(M 0;BSP) and an upper bound onS(M 0;D-BSP).
WhenM 0 is a multidimensional array,S(M 0;D-BSP) turns out to be considerably
smaller than the optimal achievable slowdownS(M 0;BSP). Based on these results, we
conclude that, under the� metric, D-BSP is more effective than BSP for such networks.

Finally, in Section 5, we show that although no specific provisions aremade in
D-BSP to deal with unbalanced communication patterns, the model, unlike BSP, can
efficiently cope with such patterns, which is an indication that further complications to
the model, as introduced in other BSP variants (e.g., Y-BSP and E-BSP [DK96,JW96]),
may not be needed to achieve higher effectiveness.

2 A Quantitative Approach to Effectiveness and Portability

Let us consider a modelM where designers develop and analyze programs, which we
call M -programs, and a platformM 0 onto whichM -programs are translated and exe-

cuted. We callM 0-programsthe programs that are ultimately executed onM 0. During
the design process, choices between different programs (possibly coding alternative al-
gorithms for the same problem) will be clearly guided by modelM , by comparing their
running times as predicted by the model’s cost function. Intuitively,we considerM
to be effective with respect toM 0 if the choices based onM turn out to be the right
ones in relation to program performance onM 0. In other words, we hope that the rel-
ative performance of any twoM -programs reflects the relative performance of their
“counterparts” onM 0. The difficulty with this approach is that of clearly defining the
association betweenM -programs andM 0-programs, which we do as follows.

We postulate the existence of an equivalence relation� among bothM -programs
andM 0-programs and restrict our attention to�-optimalprograms, where a�-optimalM -program (resp.,M 0-program) is the fastest among allM -programs (resp.,M 0-pro-
grams)�-equivalent to it. Let us define� and� 0 to be the sets of�-optimal M -
programs andM 0-programs, respectively. We also define atranslation function� that
associates a program� 2 � with its �-equivalent counterpart�(�) 2 � 0. In other
words, for everyM -program,� identifies a translation into anM 0-program which is
consistent with the choice of�. Several choices for� are possible. For instance�-
equivalent programs could be those that have the same input-output map (which, how-
ever, makes� rather difficult to obtain in practice), or those that implement the same
high-level algorithm (which makes� more realistic). For simplicity, we will not for-
mally specify� but, when applying our methodology, we will only give an informal
description of its properties.

For� 2 � and�0 2 � 0 we letT (�) andT 0(�0) denote their running times onM
andM 0, respectively. We propose the followinginversemeasure of effectiveness�(M;M 0) = max�1;�22� T (�1)T (�2) � T 0(�(�2))T 0(�(�1)) : (1)

Note that�(M;M 0) � 1, where a value close to 1 implies a high effectiveness ofM with respect toM 0, while a large value indicates that the relative performance of
programs onM may not be preserved onM 0. If, rather than a single platformM 0, we
consider a classC of target platforms, then the quantity�C(M) = maxM 02C �(M;M 0)
provides aninversemeasure of portability of modelM .

Next, we show that an upper estimate of�(M;M 0) can be obtained based on the
ability of M andM 0 to simulate each other. Consider an algorithm that takes anyM -
program� and simulates it onM 0 as anM 0-program�0 �-equivalent to�. (Note that
in neither� nor �0 needs be�-optimal.) We define theslowdownS(M;M 0) of the
simulation as the ratioT 0(�0)=T (�) maximized over all possibleM -programs�. In
practice,S(M;M 0) represents the (worst-case) cost for supporting modelM onM 0.
We defineS(M 0;M) in a similar fashion, by interchanging the roles ofM andM 0.
Then, we define thedistancebetweenM andM 0 to be the quantity�(M;M 0) = S(M;M 0)S(M 0;M) ; (2)

and show that the following key inequality is satisfied:�(M;M 0) � �(M;M 0) : (3)

Indeed, since the simulation algorithms considered in the definition of S(M;M 0)
and S(M 0;M) preserve�-equivalence, it is easy to see that for any�1; �2 2 � ,

T 0(�(�2)) � S(M;M 0)T (�2) andT (�1) � S(M 0;M)T 0(�(�1)). Thus, we have that(T (�1)=T (�2)) � (T 0(�(�2))=T 0(�(�1))) � �(M;M 0), which implies that�(M;M 0)
is an upper bound to�(M;M 0).
3 D-BSP: Capturing Network Proximity in BSP

The Decomposable Bulk Synchronous Parallelmodel (D-BSP) was originally intro-
duced in [DK96] as an extension of BSP. In this paper we refer to a weaker vari-
ant1 of the model which can be defined as follows. Letg = (g0; g1; : : : ; glog p) and` = (`0; `1; : : : ; `log p). A D-BSP(p; g; `) is a collection ofp processor-memory pairs
communicating through a router. For0 � i � log p, thep processors are partitioned
into 2i fixed, disjointi-clustersC(i)0 ; C(i)1 ; � � � ; C(i)2i�1 of p=2i processors each, where
the processors of a cluster are able to communicate and synchronize among them-
selves independently of the other clusters. The clusters form a binary decomposition
tree for the D-BSP: specifically,C(log p)j contains only Processorj, for 0 � j < p, andC(i)j = C(i+1)2j [C(i+1)2j+1 , for every0 � i < log p and0 � j < 2i. Parametersgi and`i
are related to the bandwidth and latency guaranteed by the router when communication
occurs withini-clusters, for0 � i � log p.

Analogously to BSP, ap-processor D-BSP computation consists of a sequence of
labeled supersteps, where labels range in the setf0; 1; : : : log pg. In a superstep of la-
bel i, communication and synchronization occurs exclusively withini-clusters. If, in
an i-superstep, each processor performs at mostw local operations, and the messages
exchanged form anh-relation, then the cost of the superstep isw + hgi + `i.

Note that the standard BSP(p; g; `) can be regarded as a D-BSP(p; g; `) with gi = g
and`i = ` for everyi, 0 � i � log p, hence a valid D-BSP algorithm is also a valid
BSP algorithm. Vice versa, any valid BSP(p; g; `) algorithm is also valid for any D-
BSP (p; g; `) with g0 = g and `0 = `. This ensures full compatibility between the
two models, which differ only with respect to their cost functions. In particular, D-BSP
introduces the notion of proximity in BSP through clustering, andgroupsh-relations
into specialized classes associated with different costs.

For suitable choices of the parameters, both BSP and D-BSP can be supported(i.e.,
simulated) with no loss of efficiency on processor networks. For example, by settingg = ` = p1=d for BSP andgi = `i = (p=2i)1=d, 0 � i � log p, for D-BSP, both models
can be simulated with constant slowdown on ad-dimensional array. (See [DK96] for
other examples.)

4 Effectiveness of Bulk Synchronous Models for Processor
Networks

In this section, we consider the issue of simulating processor networks on BSP and D-
BSP. In the light of our previous discussion, our goal is to provide quantitative evidence
of how the richer structure exposed in D-BSP improves its effectivenesswith respect to
the “flat” BSP.

1 Our variant is weaker in the sense that the algorithms for thevariant immediately translate into
algorithms for the original model of [DK96] with no loss in performance.

BSP Let G be a connectedN -processor network, where in onestepeach processor
executes a constant number of local operations and may send/receive one point-to-point
message to/from each neighboring processor (multi-port regimen). Wecan prove the
following general lower bound for the simulation ofG by BSP.

Theorem 1. For any connectedN -node networkG of bounded degree and every inte-
gerT � 1 there exists aT -step computation ofG that requires time
�T �Np +minfg; T;Ng�+ `�
to be simulated by BSP(p; g; `). The lower bound holds even if at the beginning of the
simulation each BSP processor knows the initial state of every nodeof G, and if the
operations performed by a node ofG may be simulated by more than one processor.

Proof (Sketch).SinceG embeds theN -node linear arrayAN with constant dilation, it
suffices to derive a lower bound for BSP simulations ofAN . The termsT (N=p) and` are obtained immediately. Next, observe that an arbitraryT -step computation ofAN
can be modeled as a a dag�T (AN) whose nodes (i.e., operations) are all pairs(v; t),
with v 2 V and0 � t � T , and whose arcs (i.e., state dependencies) connect pairs(v1; t); (v2; t + 1), wheret < T andjv1 � v2j � 1. Simulating aT -step computation
of AN on BSP amounts toexecute�T (AN). During an execution of�T (AN), an
operation associated to a dag node can be executed by a BSP processorq if and only ifq knows the state of all the node’s predecessors.

Consider the caseT � N . Then,�T (AN) contains thedT=2e � dT=2e diamond
dagDT=2 as a subgraph. The result in [ACS90, Th. 5.1] implies that any BSP exe-
cution ofDT=2 either requires an
 (T)-relation or an
 �T 2�-time sequential com-
putation performed by some processor. Hence, any BSP execution ofDT=2 requires
 (T minfg; Tg) time. For the caseT � N , it suffices to observe that�T (AN) con-
tains a vertical stack of� (T=N) dN=2e � dN=2e disjoint copies ofDT=2, whose first
executions do not overlap in time, thus requiring
 (T minfg;Ng) BSP time.

The next theorem, whose proof is omitted for brevity, provides a lower bound on
the reverse simulation.

Theorem 2. LetG be anN -node network of bisection widthB. Then, any simulation
of BSP(p; g; `) onG requires slowdownS (BSP(p; g; `); G) =
�minfN; pggB � :
D-BSP Let us now turn to network simulations on D-BSP. In what follows, we assume
w.l.o.g. thatG has a decomposition treefG(i)0 ; G(i)1 ; � � � ; G(i)2i�1 : 8i; 0 � i � log pg;
where eachG(i)j (i-subnet) hasN=2i nodes and is connected to the rest of the network

by at mostbi boundary links; moreover,G(i)j = G(i+1)2j [G(i+1)2j+1 . In order to simulateG on ap-processor D-BSP, we adopt the following strategy. Partition thenodes ofG
among the D-BSP processors so that the nodes ofG(i)j are assigned to the processors ofi-clusterC(i)j , for everyi andj. LetMouti;j (resp.,M ini;j) denote the messages that are sent

(resp., received) by nodes ofG(i)j to (resp., from) nodes outside the subnet. Since the
number of boundary links of ani-subnet is at mostbi, we have thatjMouti;j j; jM ini;j j � bi.
Let also �Mouti;j �Mouti;j denote those messages that fromG(i)j go to nodes in its siblingG(i)j0 , with j0 = j � 1 depending on whetherj is even or odd. The idea behind the sim-
ulation is to guarantee, for each cluster, that the outgoing messages be balancedamong
the processors of the cluster before they are sent out, and, similarly,that the incoming
messages destined to any pair of sibling clusters be balanced among the processors of
the cluster’s father before they are acquired.

More precisely, after a first superstep where each D-BSP processor simulates the lo-
cal computation and communications internal to the subnet assigned to it, the following
two cycles are executed.

1. Fori = log p� 1 down to 0 do in parallel within eachC(i)j , for 0 � j < 2i:
(a) Send the messages in�Mouti+1;2j (resp., �Mouti+1;2j+1) fromC(i+1)2j (resp.,C(i+1)2j+1)

to C(i+1)2j+1 (resp.,C(i+1)2j), so that each processor receives (roughly) the same
number of messages.

(b) Balance the messages inMouti;j among the processors ofC(i)j . (This step is
vacuous fori = 0.)

2. Fori = 1 to log p� 1 do in parallel within eachC(i)j , for 0 � j < 2i:
(a) Send the messages inM ini;j \M ini+1;2j (resp.,M ini;j \M ini+1;2j+1) to the pro-

cessors ofC(i+1)2j (resp.,C(i+1)2j+1), so that each processor receives (roughly) the
same number of messages.

A formal proof of correctness of the above procedure will be provided inthe full ver-
sion of this abstract. As for its running time, lethi = dbi=(p=2i)e, for 0 � i � log p,
denote the average number of incoming/outgoing messages for ani-cluster. The bal-
ancing operations performed by the algorithm guarantee that iterationi of either cycle
entails amaxfhi; hi+1g-relation withini-clusters. Finally, we can optimize the above
simulation by running it entirely within within a cluster ofp0 � p processors of thep-processor D-BSP, wherep0 is the value that minimizes the overall slowdown. The
following theorem summarizes the above discussion.

Theorem 3. For any N -node networkG with a decomposition tree of parameters(b0; b1; : : : ; blog p), one step ofG can be simulated on a D-BSP(p; g; `) in timeO0@minp0�p8<:Np0 + log p�1Xi=log(p=p0) (gimaxfhi; hi+1g+ `i)9=;1A ;
wherehi = dbi�log(p=p0)=(p=2i)e, for log(p=p0) � i < log p.

Portability of BSP vs D-BSP on multidimensional arrays First, we remark that all
the simulation results described above deal with simulation algorithms which preserve�-equivalence for most realistic definitions of� (e.g., same input-output map, or same
high-level algorithm). Let nowM be a BSP(p; g; `), andG be ap-noded-dimensional
array. Then, from Theorems 1 and 2, it follows that�(M;G) =
 �p1=d�. Consider now
a D-BSP(p; g; `) with gi = `i = (p=2i)1=d, for 0 � i � log p. Such D-BSP(p; g; `)

can be simulated onG with constant slowdown. SinceG has a decomposition tree
with subnetsG(i)j that havebi = O �(p=2i)(d�1)=d�, the D-BSP simulation presented

above yields a slowdown ofO �p1=(d+1)� per step, when entirely run on a cluster ofp0 = pd=(d+1) processors. In conclusion, lettingM 0 be the D-BSP with the above choice
of parameters, we have that�(M 0; G) = O �p1=(d+1)�. Therefore, under the� metric,
D-BSP is asymptotically less distant than BSP from a multidimensional array.

One drawback of the D-BSP simulation is that it requires that the memory size of
each D-BSP processor be a� �p1=(d+1)� factor larger than the memory size of an array
node, which might be unreasonable in practice. In the full version of this paper, we
will exhibit a subtler simulation strategy of multidimensional arrays on D-BSP which
reduces the memory blowup to a mereO (log log p) factor, at the expense of an extraO (log p) factor in the simulation slowdown.

Finally, if we allow the simulation of a step of the network to start before the simula-
tion of previous steps is completed, we can set up a more complex recursive strategy for
simulating arrays with constant-size memory at each node on D-BSP, whoseslowdown
is exponentially smaller than the one obtained by applying the step-by-step simulation
of Theorem 3. We have:

Theorem 4. For T =
 �p1=d�, anyT -step computation of ap-noded-dimensional
array G (d constant) with constant-size memory at each node can be simulated by a

D-BSP(p; g; `) with gi = `i = (p=2i)1=d, for 0 � i � log p, in timeO �T2aplog p�,

with a = 2d+ 6.

(The simulation algorithm and the proof of Theorem 4 are omitted.) Recall that the
lower bound on network simulations by BSP (Theorem 1) does not depend on the size
of the memory modules local to each node ofG and, in particular, it holds even if such
modules have constant size. Therefore, Theorem 4 implies that the� metric for D-BSP
and multidimensional arrays with constant-size memory at each node is exponentially
smaller than the respective metric for BSP.

5 Exploiting D-BSP Locality for Unbalanced Communication

An (h;m)-relation is a routing instance where each processor sends/receives at mosth-messages, and a total ofm messages are exchanged [JW96]. On several networks,
the time to route an(h;m) relation decreases withm, for fixedh. This does not happen
in BSP, whereany (h;m)-relation requiresgh + ` steps, regardless ofm. Motivated
by these observation, some authors have proposed the introductionof m as an explicit
parameter of the model (see E-BSP [JW96] and Y-BSP [DK96]).

In this section, we argue that D-BSP can route(h;m) relations in ways that take ad-
vantage of small values ofm. In particular, we show that, when ad-dimensional array
simulates the routing of an(h;m)-relation on D-BSP, the resulting network perfor-
mance is within a constant factor of optimal. Therefore, for such networks, there is no
increase of effectiveness by augmenting D-BSP withm-sensitive capabilities. This is
an indication that the complication of making a model which already captures network
proximity also sensitive to unbalance may not be warranted by the accruingadvantages.

The key insight that leads to the exploitation of cluster locality to deal with unbal-
ance is similar to the one employed in Section 4 to simulate one step of a network, and
is inspired by the efficient routing protocols known for specific architectures (e.g., see

[PPS94]). Specifically, messages are progressively balanced within clustersof increas-
ing size so that the degree of the relation decreases as the cost of communication within
the clusters increases. More specifically, letk be such that2k � hp=m < 2k+1 (note
that0 � k � log p). The(h;m)-relation is routed in two phases. In the first phase (as-
cend), messages are iteratively balanced within larger and larger clusters (startingfromk-clusters). In the second phase (descend) messages are kept balanced and iteratively
dispatched to arbitrary processors within their destinationk-cluster and from there to
their final destinations. We have:

Theorem 5. An (h;m)-relation can be routed on a D-BSP(p; g; `) in timeT (h;m) = O0@blog(hp=m)cXi=0 �Tpr(i) + gi � m(p=2i)�+ `i�1A ;
whereTpr(i) denotes the time of a prefix-sum operation within ani-cluster.

To appreciate the potential of the above strategy, consider again the case ofa p-noded-dimensional array, which is characterized by parametersgi = `i = p1=d, for 0 � i �log p. For such values of the parameters,Tpr(i) = O �(p=2i)1=d� [DK96]. Hence, by
Theorem 5 we get T (h;m) = O �p1=d +m1=dh1�1=d� ;
which is smaller than the BSP time by a factor(ph=m)1=d whenp=hd�1 � m � ph.
More surprisingly, a simple bandwidth argument shows that the above time is optimal
for routing an arbitrary(h;m)-relation directly on ad-dimensional array. Hence, for
such communication patterns, the effectiveness of D-BSP is maximum, in the sense
that there is no loss of efficiency in running the D-BSP algorithm on the network with
respect to running the best network-specific algorithm. A corollary of this result is that
for multidimensional arrays D-BSP is as effective in treating unbalanced communica-
tion as E-BSP [JW96], where the treatment of unbalanced communication is aprimitive
of the model.

References

[ACS90] A. Aggarwal, A.K. Chandra, and M. Snir. Communication complexity of PRAMs.
Theoretical Computer Science, 71:3–28, 1990. See alsoProc. of ICALP ’88, 1–17.

[DK96] P. De la Torre and C.P. Kruskal. Submachine locality in the bulk synchronous setting.
In Proc. of EUROPAR 96, LNCS 1124, pages 352–358, August 1996.

[JW96] B.H.H. Juurlink and H.A.G. Wijshoff. The E-BSP model: Incorporating general lo-
cality and unbalanced communication into the BSP model. InProc. of EUROPAR 96,
LNCS 1124, pages 339–347, August 1996.

[MMT95] B. Maggs, L.R. Matheson, and R.E. Tarjan. Models of parallel computation: A sur-
vey and synthesis. InProc. of the 28th Hawaii International Conference on System
Sciences (HICSS), volume 2, pages 61–70, January 1995.

[PPS94] A. Pietracaprina, G. Pucci, and J. Sibeyn. Constructive deterministic PRAM simulation
on a mesh-connected computer. InProc. 6th ACM Symp. on Parallel Algorithms and
Architectures, pages 248–256, Cape May, NJ, June 1994.

[Val90] L.G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, August 1990.

