Scattering and Gathering Messages in
Networks of Processors

Sandeep N. Bhatt
Bell Communications Research
Morristown, New Jersey

Geppino Pucci
Universita di Padova
Padova, Italy

Abhiram Ranade
University of California
Berkeley, California

Arnold L. Rosenberg
University of Massachusetts
Ambherst, Massachusetts

Mailing Address for Galley Proofs

Arnold L. Rosenberg

Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

Authors’ Mailing Addresses

Sandeep N. Bhatt

Bell Communications Research
435 South Street

Morristown, NJ 07960

Geppino Pucci

Dipartimento di Elettronica ed Informatica
Universita’ di Padova

Via Gradenigo 6/A

35131 Padova, Italy

Abhiram Ranade

Division of Computer Science
Department of EECS
University of California
Berkeley, CA 94720

Arnold L. Rosenberg

Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

Acknowledgment of Support

A portion of this research was done while the authors were visiting the Fi-
bonacci Institute in Trento, Italy. The research of S. N. Bhatt was supported in
part by NSF Grant CCR-88-07426, by NSF/DARPA Grant CCR-89-08285, and
by Air Force Grant AFOSR-89-0382; during this period, Bhatt was with the
Department of Computer Science, Yale University. The research of G. Pucci
was supported in part by the CNR project “Sistemi Informatici e Calcolo Par-
allelo.” The research of A. Ranade was supported in part by AFOSR Grant
F49620-87-C-0041. The research of A. L. Rosenberg was supported in part by
NSF Grant CCR-90-13184; a portion of his research was done while visiting the

Technion in Haifa, Israel.

Authors’ Technical Biographies

Sandeep N. Bhatt is a Member of the Technical Staff at Bell Communications
Research, Morristown N.J. He received his S.B., S.M., and Ph.D. (1984), all in
Computer Science, at the Massachusetts Institute of Technology. He was an
Associate Professor of Computer Science at Yale University before joining Bell-
core in 1992. During 1990 he was a Visiting Associate Professor of Computer
Science at Caltech.

Dr. Bhatt’s research focuses on algorithmic principles that underlie the
design and use of parallel architectures. His contributions include graph em-
bedding techniques to study problems in VLSI layout, to map computations
onto parallel machines, and to understand the computational power and lim-
itations of networks. His current work emphasizes algorthmic techniques to
support high-level programming abstractions for irregular and adaptive scien-
tific computations on parallel architectures.

Dr. Bhatt is a member of ACM and SIAM.

Geppino Pucci received the “Laurea” degree in Computer Science summa
cum laude and the Ph.D. degree in Computer Science from the University of
Pisa, Italy, in 1987 and 1992, respectively. From 1988 to 1990 he was with
the Computing Laboratory of the University of Newcastle-upon-Tyne, United
Kingdom, where he conducted research in software reliability modeling. In 1991
he spent a six-month research period at the International Computer Science In-
stitute, Berkeley, California. In 1992 he joined the Dipartimento di Elettronica
e Informatica of the University of Padova, Italy, as an Assistant Professor.

Dr. Pucci’s research interests include probabilistic modeling, analysis of
parallel algorithms and theory of computation.

Dr. Pucci is a member of ACM.

Abhiram Ranade is currently an assistant professor of Electrical Engineer-
ing and Computer Science at the University of California, Berkeley. Earlier,
he received his doctorate in Computer Science from Yale University in 1989,
and B.Tech in Electrical Engineering from the Indian Institute of Technology,
Bombay in 1981.

Dr. Ranade’s research interests include parallel architectures and algo-
rithms, parallel programming techniques and data structures.

Dr. Ranade is a member of ACM.

Arnold L. Rosenberg is a Distinguished University Professor of Computer
Science at the University of Massachusetts at Amherst. Prior to joining the

University of Massachusetts, Rosenberg spent five years as a Professor of Com-
puter Science at Duke University and sixteen years as a Research Staff Member
at the IBM Watson Research Center. Additionally, he has held visiting or ad-
junct positions at New York University, the Polytechnic Institute of New York,
the University of Toronto, and Yale University, and he has had short-term vis-
iting positions at the Technion (Israel Institute of Technology) and at several
European institutions. Dr. Rosenberg holds the A.B., A.M., and Ph.D. from
Harvard University.

Dr. Rosenberg’s current research focusses on theoretical aspects of parallel
algorithms and architectures, with emphasis on: the use of algorithmic tech-
niques to enhance the power of parallel architectures, the logical and physical
mapping problems for parallel architectures, and the design of fault-tolerant
architectures. He is the author of more than 100 technical papers on these and
other topics in theoretical computer science and discrete mathematics.

Dr. Rosenberg is a member of ACM, EATCS, and SIAM, and a senior
member of IEEE.

Abstract

The operations of scattering and gathering in a network of processors involve
one processor of the network — call it Py — communicating with all other
processors. In scattering, Py sends (possibly) distinct messages to all other
processors; in gathering, the other processors send (possibly) distinct messages
to Py. We consider networks that are trees of processors; we present algo-
rithms for scattering messages from and gathering messages to the processor
that resides at the root of the tree. The algorithms are:

e quite general, in that the messages transmitted can differ arbitrarily in
length;

e quite strong, in that they send messages along noncolliding paths, hence
do not require any buffering or queuing mechanisms in the processors;

e quite efficient: the algorithms for scattering in general trees are optimal,
the algorithm for gathering in a path is optimal, and the algorithms for
gathering in general trees are nearly optimal.

Our algorithms can easily be converted, via the use of spanning trees, to efficient
algorithms for scattering and gathering in networks of arbitrary topologies.

Keywords and Phrases

Bufferless Communication, Communication Primitives, Communication Sched-
ules, Distributed Scheduling, Message Routing, Interconnection Networks, One-
to-All Personalized Communication

1 Introduction

1.1 Communication in Parallel Computation

Communication is an essential component of parallel computation. A variety of
modes of communication have been studied within the framework of networks of
processors — identical processing elements (PEs) that communicate by means
of an interconnection network. The most commonly studied modes are the
following.

e (Partial) permutation routing [1, 3, 10, 13, 17] is a form of communica-
tion in which each PE is both the sender and recipient of (at most) one
message.

e Broadcasting [8, 12] is a form of communication in which one PE sends
one specific message to all other PEs.

e Gossiping (or, all-to-all broadcasting) [7, 16] is a form of communication
in which each PE sends one specific message to all other PEs.

Baumslag and Annexstein [1], Johnsson and Ho [8], and Saad and Schultz [14]
(among others) point out that these popular forms of communication do not
exhaust the algorithmically useful possibilities. Specifically, they add to the
menu of communication modes the operations of scattering and gathering.'

e Scattering (or, one-to-all personalized communication) is a form of com-
munication in which one PE sends (possibly) distinct messages to all other
PEs.

e Gathering is a form of communication in which all PEs send (possibly)
distinct messages to one specific PE.

Efficient algorithms for a general version of the operations of scattering and
gathering form the subject matter of the current paper. Specifically, we present
efficient algorithms for scattering from and gathering to the root PE of a gen-
eral tree-structured network.? We present an optimal algorithm for scattering
from the root of a general tree, an optimal algorithm for gathering to the root
of a unary tree (i.e., the end-PE of a path), and a nearly optimal algorithm
for gathering to the root of a general tree. Via the use of spanning trees, our
(nearly) optimal tree-oriented algorithms become efficient algorithms for scat-
tering and gathering in networks of arbitrary topology. The generality of our
study manifests itself in three ways.

'Other important modes have also been studied, including multiscattering [11] and ezchange
[2], but less frequently.

2Henceforth, for brevity: we use the term “tree” for “tree-structured network;” also, we use
the term “network” to denote both a network of processors and its underlying interconnection
network; context should always disambiguate each occurrence of the word.

1. We allow messages to differ in length by arbitrary amounts; indeed, some
messages may be null.

This contrasts with the studies in [1, 4, 8, 14], wherein all messages have the
same length.

2. We scatter and gather messages in trees of arbitrary shape and, hence, via
the use of spanning trees, in networks of arbitrary topologies.

This contrasts with the studies in [4, 8, 14, 15], which focus on a small repertoire
of networks, such as rings, meshes, and hypercubes.

3. We transmit messages along noncolliding paths in our networks, hence do
not require any buffering or queuing mechanisms in the PEs.

This contrasts with virtually all other studies of message transmission in net-
works. One might be able to rationalize our demand for unbuffered commu-
nication in terms of resource conservation: buffering requires both additional
memory (each PE must be prepared to store the longest message in the sys-
tem) and time (e.g., for the processing of addresses). However, our overriding
motivation in this study was to understand communication in networks better,
by determining the cost of this strict assumption in terms of the complexity of
the problems of scattering and gathering general messages in general networks.

1.2 The Computing Model

A. Networks of Processors

We study the problems of scattering from and gathering to the root-PE of a
synchronous tree of arbitrary shape. Each network A comprises n + 1 identical
PEs, Py, P1,...,Pn. By convention, we always let Py denote the root of the
tree, i.e., the PE which is the source of messages in a scattering operation and
the target of messages in a gathering operation.

The PEs of the networks we study have neither message buffers nor queues.
Messages within networks must, therefore, be scheduled so as never to “collide”
with one another. For the operation of scattering, the fact that we scatter
within a tree guarantees such avoidance; for the operation of gathering, this
scheduling is a major challenge.

The networks we study use the single-port communication regimen: during
each communication step, a PE can send information to at most one of its
immediate neighbors and, simultaneously, receive information from at most one
of its immediate neighbors; the sending and receiving neighbors may be distinct.
We do, however, allow a PE to perform (say, arithmetic) computations while
communicating, as well as to access its local memory. This regimen is to be
contrasted with the multiport communication regimen, in which a PE can send

and receive information from each of its immediate neighbors in one step. In
Section 4 we indicate briefly how our results extend to a multiport model.

The networks we study communicate in rounds; i.e., while a scattering
(resp., a gathering) operation is in progress, there is no other communication
going on in the network. This means that the only resource contention we must
worry about arises from the many messages that are being scattered (resp.,
gathered) in the current operation. This regimen is to be contrasted with the
one studied in [2], wherein the present study of bufferless communication is
generalized to allow each PE to be both the source of and the destination for
arbitrarily many messages at once. As an aside, the study in [2] compensates
for the generality of its communication setting — bufferless PEs passing mes-
sages in arbitrary ways — by restricting attention to simple network topologies,
specifically, one- and two-dimensional meshes (i.e., rings and toroidal meshes).

Porting to General Networks. Our efficient collision-free algorithms can be
transported easily to networks of arbitrary topology via the use of an “efficient”
spanning tree of (the undirected graph underlying) the network in question,
rooted at the singular PE for the scattering or gathering operation. For the
operation of scattering, and for the operation of gathering under a multiport
regimen, one would sensibly choose a breadth-first spanning tree, in order to en-
sure that every message travels the shortest possible distance to its destination:
the possibility of large node-degrees in breadth-first trees causes no concern,
because in a scattering operation, a PE is receiving or transmitting at most one
message at each step, and in a multiport gathering operation, a PE can service
as many ports as it has at each step. For the operation of gathering under a
single-port regimen, the time required to accommodate large node-degrees in the
tree can dominate the time for single-port gathering: broadcasting is typically
part of the synchronization protocol needed for gathering in multi-successor
networks, and high-degree nodes can slow down single-port broadcasts. (As an
extreme example, compare the times for single-port broadcasting in an n-PE
network A in which every pair of nodes is connected by an edge: (a) using
a complete binary spanning tree of A, versus (b) using a single-level degree-
(n — 1) spanning tree.) Consequently, in this case, one might seek a spanning
tree whose structure approximates that of a minimum broadcast tree [9].

Remark 1. The framework just outlined may represent only the commu-
nication subsystem of a heterogeneous parallel architecture; for instance, the
architecture viewed as a whole may have PEs of differing powers and sizes,
which operate asynchronously except during global communication operations
(such as scattering and gathering).

B. Messages and Message Sequences

Each message M, involved in a scattering or gathering operation is a sequence
of some number L; (perhaps zero) of atomic flits: a flit is the largest unit
of information that the network can transmit between adjacent nodes in one
communication step (i.e., in one so-called transit time).

A message is treated as an indivisible unit during a scattering or gathering

10

operation, in the sense that the L flits of a message are never interrupted by
flits from other messages. Initially, the L flits of the message are all in the
originating PE; after the message has begun to travel through the network, its
flits are always in contiguous PEs; the lack of buffering ensures that each flit
is in a separate PE once it leaves the originating PE. A consequence of the
indivisibility of messages is that addressing information needs appear only in
the first flit of the message, thereby lessening both the setup time for messages
and the aggregate length devoted to addressing information.

Let M = (M1, Ma,..., M,;) be a sequence of messages (to be scattered or
gathered). Let
N(M) = (i1,d9,...,1k)

denote, in increasing order, the subsequence of message indices whose messages
are nonnull, i.e., for which L;; > 0.

C. The Scattering and Gathering Problems

In a scattering operation, the root-PE Py has a message M; of length L; to
send to each PE P;, for i > 0. In a gathering operation, each PE P;, where
i > 0, has a message M; of length L; destined for PE Py. (For both operations,
some messages M; may be null, so that L; = 0.) We perform these operations
in trees of arbitrary shapes, subject to the following constraints.

e Once a message has been dispatched by its originating PE, it encounters
no interruption until it is received by its destination PE. In particular,

— each intermediate PE must relay the message with no queuing or
buffering;
— messages are treated as indivisible units (in the sense descibed ear-

lier).

e For each 7 > 0, message M; will be routed along the unique path p; that
connects PE Py and PE P; in the tree. We let §(7) denote the length of
path p;, i.e., the distance that message M; must travel.

D. Problem Complexity

We measure the complexity of a scattering or gathering operation in terms of
the time for delivering all relevant messages. Focussing on a fixed but arbitrary
message sequence M = (M1, My, ..., M,), this time is formalized as follows.

The Time for Scattering. A schedule for scattering message sequence M
is a permutation o (for “scattering-schedule”) of the index-sequence N(M) =
(i1,%9,...,1k), i.e., a one-to-one function

o:{1,2,...,k} — N(M).

The intended interpretation is that PE Py sends out message M, (), then mes-
sage M, (2), then M, 3, and so on, in that order, in a steady stream, with no

11

intervening gaps. Thus, under schedule o, given index i with L; # 0, PE Py
begins transmitting message M; at dispatch time

To(1) = > Lj. (1)
{lo=1()<o~ @)}

(Note the effect of the single-port regimen.) Message M, arrives at its destina-
tion, PE P;, at arrival time

o (i) = 76 (i) + Li + 6(1). (2)

The time for scattering message sequence M under scattering-schedule o is the
time it takes for every flit of M to reach its final destination; symbolically,

T (0 M) = max (0 (9).)

Equation (3) implies the following simple result, which delimits the difference
between the best and worst scattering-schedules. The proof is left to the reader.

Proposition 1 Let o be a scattering-schedule for message sequence M. As-
suming that message M; of M, for 1 < i < n, has length L;, the time for o
satifies the following bounds:

(> L Jmax, {5()}) T5*(o; M) < > Lj+ max {6()}

iEN(M) iEN(M) 1EN(M

The Time for Gathering. A schedule for gathering message sequence M is
a sequence of integers

v = Tfy(il)aT'y(i2)a cee ,T'y(ik)a

(for “gathering-schedule”), where N(M) = {i1,42,...,7;}. The intended inter-
pretation is that each 7.,(:) (where i € N(M)) is the dispatch time for message
M;, i.e., the time when PE P; begins transmitting M;. The last flit of message
M; is received by PE Py at arrival time

oy (i) = 7 (3) + Li + 0(i).

The time for gathering message sequence M under gathering-schedule +y is the
time it takes for every flit of M to reach PE Py; symbolically,

T8 (o M) = Jmax, {a, (i)}

The Challenges. Note that neither the time for scattering, 75", nor the time
for gathering, 78" allows for any delay of messages at nodes other than the
originating node. This means that our message-scheduling algorithms cannot
rely on — so the network need not provide — any mechanism for buffering or

12

queuing messages in PEs. This lack of buffering provides an additional chal-
lenge in scheduling the gathering operation, which is lacking in the scattering
operation. Namely, the scheduling algorithm must provide — in a distributed
manner — for the dispatching of messages in the network so that messages
never collide on their paths to PE Py.

Remark 2. Our timing model is somewhat simpler than that of some of the
earlier cited sources. Specifically, we charge L time units to transmit a message
containing L flits; some sources (such as [4]) would charge a message setup
time of # time units, plus a per-flit transmission time of 7 time units for this
message, for a total cost of 8+ L7 time units. This change of model would not
affect our analyses in a material way.

Remark 3. As suggested earlier, our algorithms for scattering and gather-
ing in arbitrary networks employ spanning trees that are fized, independent of
the message sequence M. For many networks, there exists no single spanning
tree that is simultaneously optimal for the single-port regimen and for all mes-
sage sequences, especially because messages can be null. This means that our
algorithms for general networks will often be suboptimal.

1.3 Related Work

Saad and Schultz [14] define the operations of scattering and gathering in full
generality but present algorithms only for a specific repertoire of network topolo-
gies and for the case of equal-length messages. Fraigniaud et al. [4] prove the
optimality of the Saad-Schultz algorithm for scattering on a unidirectional ring
of processors. Stout and Wagar [15] and Johnsson and Ho [8] present optimal
algorithms for scattering equal-length messages on a hypercube, using both
the single-port and multiport communication regimens. Li [11] considers per-
forming several scattering operations at once on a reconfigurable network of
processors. Bhatt et al. [2] study the most general type of communication,
wherein each PE has a distinct message for each other PE, in bufferless rings
and toroidal networks. All of these references, save the last, assess time 8+ L7
for transmitting an L-flit message.

2 Scattering on Networks of Processors

Say that scattering-schedule o is optimal for message sequence M on a given

tree if on that tree,
Tscat(U;M) S Tscat(al;M)

for any other scattering-schedule o’ for M.

It is shown in [4] that the unique optimal scattering-schedule for equal-length
messages on a unidirectional ring is given by the permutation o(i) =n —i+ 1,
i.e., by sending out messages according to a farthest-destination-first (FDF)
regimen — one in which nonnull messages are dispatched in decreasing order of

13

the distances to their destinations. We now prove that the optimality of FDF
schedules persists when the lengths of the scattered messages are general and
when the scattering is done from the root-PE of an arbitrary tree. Specifically,
we show that, within this setting, for every message sequence M, every FDF
scattering-schedule is optimal for M (although there may be optimal non-FDF
schedules also). It is consistent with intuition that FDF scattering-schedules
need no longer be the unique optimal ones when one considers messages of
arbitrary lengths, because a single enormous message could so dominate the
message transmission time as to mask the order of a collection of small messages
sent out right after it. Since the optimality of all FDF schedules ensures the
optimality of a large family of scattering algorithms, we present the following
theorem in lieu of a specific optimal algorithm.

Theorem 1 Fvery FDF scattering-schedule for scattering from the root-PE of
an arbitrary tree is optimal.

Proof. Let the tree 7 with root-PE Py be fixed.

The Theorem makes two claims, which we treat in turn. First, we prove that
every optimal scattering-schedule for a given message sequence can be replaced
by an FDF scattering-schedule for the sequence with no increase in scattering
time (so the FDF schedule is also optimal). Second, we prove that every FDF
schedule for a message sequence is optimal, i.e., that messages destined for
equidistant PEs can be dispatched in any order. The reader should note the
crucial role of our communicating on a tree in what follows.

Claim 1 For every message sequence M and every scattering-schedule o for
M, there is an FDF scattering-schedule o' for M with

Tscat(UI;M) S Tscat(U;M).

Moral. Every message sequence has an optimal FDF scattering-schedule.

Claim 1 asserts that one can never decrease the scattering time of a schedule
by dispatching a nonnull message that is destined for a nearby PE before a
nonnull message that is destined for a more distant PE. This is not surprising,
as one hopes to use pipelining to make progress in sending the nearby message
while the distant message is in transit.

Proof of Claim. Assume, for contradiction, that there is a message sequence
M = (M1, Mq, ..., M) such that no optimal scattering-schedule for M ob-
serves the FDF regimen. Let o; be any optimal scattering-schedule for M.
Because o1 does not observe the FDF regimen, there must exist PE indices ¢
and 7, both in N(M), such that:

o '(i)=07'(G)+ L 6() > 6(j); Ly >0.

14

Let o3 be the scattering-schedule for M obtained from o; by interchanging
o7 1(4) and o1 (5); ie.,

i ifo1(k) =7
O’Q(k‘) = _] 1f01(k) =9

o1(k) otherwise.

We claim that
T (g9; M) < T (013 M). (4)

By equation (3), inequality (4) will follow from the inequality

max{ag, (i), ag, (4)} > max{ag, (i), as, () };

we establish this inequality by analyzing the dispatch and arrival times of mes-
sages under schedules o1 and 3. We begin by noting that equation (1) implies
the following relations among the dispatch times under schedules o; and os.
(A1l indices referred to are associated with nonnull messages.)

Toy (Z) = To (]) + Lj
Toy (7) if k=1
Too (k) = To (1) + Li — Lj ifk=j
To, (k) otherwise.

(Note that 75, (i) > 7,5, (j) because L; > 0.) By equation (2), therefore, we infer
the following relations among the arrival times under schedules o1 and 0.

o, (J) = To,(4) + Lj + ()
o, (i) = 74,(1) + Li + 0(3)
gy (1) = T4y(1) + Ly + 0(3)
Toy (§) + Li + 0(4)

5y (§) = 7oy (j) + Lj +0(4)

= 75,(4) + Li +4(5),

while g, (k) = ag, (k) for all & & {i,j}. (These last equations on «a,, and ay,
hold because we route messages within a tree.) We can now deduce that

g, (1) = max{ag, (1), Ao, (5); o, (1), @y (4) }-
Specifically:

Qg (1) > ag,(j) because 6(i) > 0(j) and 74, (1) = 74, (J) + L;j
g, (1) > a4, (i) because 74, (1) > 74, (§)
g, (1) > ag,(7) because (i) > 6(7).

It follows from this chain of reasoning that 75 (g9; M) < T (gq; M),
with strict inequality whenever message M; is the last message to arrive at

its destination under schedule o;. Now, if scattering-schedule oy observes the

15

FDF regimen, then this inequality already contradicts the assumption that no
FDF scattering-schedule is optimal for M. If scattering-schedule oy does not
observe the FDF regimen, then it is “one transposition closer” to observing
the regimen than is schedule o;. In particular, we can iterate the operation of
transposing transmission times that violate the FDF regimen a finite number
of times (in fact, no more than n(n — 1)/2 times) to arrive at a scattering-
schedule o that does observe the FDF regimen and that has scattering time
no greater than that of schedule o1, thus contradicting the assumption that no
FDF scattering-schedule is optimal for M. O-Claim 1

Claim 2 All FDF scattering-schedules take the same time.

Moral. Every scattering-schedule that observes the FDF regimen is optimal.

Proof of Claim. Say that the scattering-schedule o observes the FDF regimen.
The only way to alter ¢ without violating the regimen is to rearrange the
transmission order of messages destined for equidistant PEs. We claim that
such rearrangement does not alter the time for the schedule and, hence, must
preserve optimality. To wit, equations (1) and (2) imply the following. If
messages M, , M;,,..., M, are all destined for PEs at distance A from PE
Py, and if the earliest dispatch time of any of these messages is 7, then the
latest arrival time of any of these messages is

l
T+ > Lj, +A,
h=1

independent of the specific order of dispatching the messages. O-Claim 2

Note that Claim 2 verifies that optimal scattering-schedules for a message
sequence M do not depend on the lengths of the messages in M.

The Theorem follows. O

Let us focus momentarily on the simplest possible tree, namely, a path
having PE Py as its root. For notational convenience, say that in this tree:
Pit1 is the child of P;, for 0 < 7 < n; P;_1 is the parent of P;, for 0 < i < n;
and P, is the (sole) leaf. When one is scattering messages from Py in such a
tree, the proof of Theorem 1 can be visualized easily. As one can see in Figure
1, for instance, in this case, each message dispatched by PE Py sweeps out a
parallelogram in the space-time domain. (The parallelogram associated with
the length-L; message M, destined for PE P; has length-L; sides parallel to the
time axis, corresponding to the path traversed by the L; flits of message M;,
and length-+ sides at a 45-degree angle to the time axis, corresponding to the
progress of the flits along the line of PEs.) Constructing examples of scattering
operations on paths, visualized via space-time parallelograms, will convince
the reader that often a portion of the upper slanted side of the space-time
parallelogram of one message can be “hidden in the shadow” of the space-time
parallelogram of an earlier dispatched message; this corresponds to pipelining
the use of the intermediate PEs to decrease the overall time of the scatter

16

operation. Constructing analogs of the competing dispatch orders of Figures
1(a) and 1(b) will illustrate what Theorem 1 verifies, namely, that more hiding
occurs when the parallelogram of a message destined for a more distant PE
“provides shadow for” the parallelogram of a message destined for a nearby PE
than when the dispatch times of the two messages are reversed. In Figure 1,
we make message My longer than message M; to emphasize the independence
of the “hiding” phenomenon from the lengths of messages.

3 Gathering on Networks of Processors

Say that gathering-schedule « is optimal for message sequence M on a given
tree if, on that tree,
Tgath(,y;M) < Tgath(,y/;M)

for any other gathering-schedule v’ for M.

In an ideal world, we would implement the gathering operation by running
an FDF scattering algorithm “backwards;” by reasoning analogous to that in
the proof of Theorem 1, an algorithm that accomplished this would be optimal.
Of course, one can not literally run an FDF scattering algorithm “backwards,”
because in the scattering operation, PEs other than Py are passive, while in the
gathering operation, they are active — they must initiate their message trans-
missions. To compensate for this fact, any algorithm for a bufferless gathering
operation must precede the transmission of messages by a distributed protocol
that schedules the dispatch times of the messages so that no two collide in tran-
sit. A straightforward synchronization-like protocol suffices to accomplish this
scheduling. We begin this section with a simple version of this protocol, called
shoulder tapping (Section 3.1), that implements the operation of gathering mes-
sages to one end of a path by interlacing the synchronization and scheduling
activities. Although shoulder tapping yields an optimal algorithm for gathering
on a path, it is too simple to work on general tree structures. Since altering
shoulder tapping to operate on general trees leads to a cumbersome algorithm,
we opt instead for a version of the protocol which decouples the synchronization
and scheduling activities. The resulting protocol, called transmission certifica-
tion (Section 3.2), is readily adapted to general tree structures, but only at the
cost of added time for separate synchronization and scheduling activities.

It is worth stressing here that gathering must in general be more time con-
suming than scattering, because of the need for a scheduling protocol that
precedes message transmission. In particular, in a gathering operation, a PE
cannot safely begin transmitting its message until “told to,” for fear of inter-
fering with the transit of another PE’s message.

3.1 Shoulder Tapping: a Solution for Paths of Processors

The shoulder-tapping protocol we present now exploits the single-child struc-
ture of a path in an essential way; it is this feature that precludes its graceful

17

extension to trees of more complicated structure. The algorithm that imple-
ments shoulder tapping seeks, for a message sequence M = (M1, Mg, ..., M,),
a gathering-schedule

v = Tfy(il)aT'y(i2)a ce ,T'y(ik)a

where i; € N(M), which minimizes each dispatch time 7,(i;) subject to the
requirement that messages never collide, and subject to the inequalities

. i+2 ifi<n
TV(Z)Z{ i+1 ifi=n. (5)

Inequalities (5) must hold for any distributed gathering algorithm on a path;
they reflect the following facts, which hold for all PE indices, not just those in
N(M).

e Each PE P; (save, of course, Py) must receive a wakeup call telling it
when to begin transmitting its message M; (assuming that the message
is nonnull).

e The sequence of wakeup calls must be initiated by Py (since, in general,
it is the best arbiter of when it is ready to receive the message sequence),
hence must take at least ¢ steps to reach P;.

e The single-port communication regimen does not allow P; to overlap dis-
patching its message (toward Py) and transmitting a wakeup call to P;11.

The algorithm operates as follows. Each PE P;, where ¢ > 0, remains dormant
until its shoulder is tapped by PE P;_; with a wakeup call: the call is a (one-flit)
message consisting of the order

TRANSMIT AFTER > s; STEPS

where s; is a positive integer. Assume that P; receives its wakeup call at time ¢;.
It responds by serially entering the following operational phases, which embody
Algorithm Shoulder-Tap.

Algorithm Shoulder-Tap:

Phase 0: Pg transmits to P; the wakeup call
TRANSMIT AFTER > (s; = 1) STEPS
Phase 1: If 1 = n, then this phase is ignored; else,
if i < n, then: At time ¢; + 1 (one step after receiving its wakeup call), P;

transmits to P;4; a wakeup call of the form

TRANSMIT AFTER > s;41 STEPS

18

where the positive integer s;41 is computed using the following time-line.
(Note the effect of the single-port communication regimen.)

time t;: P; receives its wakeup call (from P;_1).
time t; + 1t P;4q receives its wakeup call from P;.

time ¢; + max(2, s;): P;_1 receives the first flit of M; from P; (when
L; >0).

time ¢; + L; + max(1, s; — 1): P;_1 receives the last (i.e., the L;th) flit of
M, from P;; hence, at this time, P; is ready to relay (passively) any
messages it receives from PEs P; for j > i.

Since P;41 receives its wakeup call at time ¢; + 1, and since s;41 must be
positive, P; sets the value of s;11 as follows:

si+1 < max (1, L; + max(0,s; — 2)).

Phase 2: If L; = 0, then this phase is ignored; else,
from time ¢; + max(2,s;) to time ¢; + L; + max(1l,s; — 1), P; transmits
message M; to Py, via P;_1, one flit at a time.

Phase 3: From time ¢; + L; + max(1, s; — 1) on, P; begins to relay (passively)
any messages it receives from PEs P; for j > i.

Two small instances of Algorithm Shoulder-Tap appear in Figures 2 and
3. Figure 2 attempts to depict a “typical” message sequence; Figure 3 depicts
a somewhat pathological sequence which illustrates that the dispatch times
of messages under the algorithm may not be monotonic in the indices of the
dispatching PEs.

We show now that Algorithm Shoulder-Tap produces an optimal gathering-
schedule for paths.

Theorem 2 Algorithm Shoulder-Tap is an optimal algorithm for gathering
on a path.

Proof. Let us consider the behavior of Algorithm Shoulder-Tap on an arbi-
trary message sequence M = (M1, My, ..., M,).

Note first that when all of the messages in sequence M are nonnull, Algo-
rithm Shoulder-Tap delivers the messages to Py in a gap-free fashion. When
n = 1, this transmission takes place from time-step 2 to time-step 1+ Li; when
n > 1, this transmission takes place from time-step 3 to time-step 2+ . L;. In
this case, the Algorithm can clearly not be improved, since the small additive
constant in excess of the message-stream length is needed for synchronization,
as in inequality 5.

19

In order to establish the optimality of Algorithm Shoulder-Tap when some
of the messages in sequence M are null, we introduce the following analogue of
FDF scattering-schedules.

We have already remarked that the ideal gathering-schedule would be one
that ran an FDF scattering-schedule “backwards.” From the perspective of
PE Py, as recipient of the messages, such a schedule would have messages
that originate at nearby PEs arrive before messages that originate at more
distant PEs, i.e., would observe a nearest-received-first (NRF) regimen. The
formal verification that there is an optimal NRF gathering-schedule satisfying
inequality (5) for every message sequence follows the lines of the analogous
result for FDF scattering-schedules (Theorem 1), hence is left to the reader. In
common with Theorem 1, this verification can be visualized geometrically when
the underlying tree is a path: messages in gathering operations sweep out the
same type of parallelograms in the space-time domain as they do in scattering
operations; the main difference is that gathering-parallelograms slant from the
northeast to the southwest, whereas scattering-parallelograms slant from the
northwest to the southeast; cf. Figure 2.

With no loss of generality, we henceforth compare Algorithm Shoulder-
Tap only with gathering-schedules that honor the NRF regimen.

Consider, therefore, an arbitrary NRF gathering-schedule for M,
v = 7y(i1), 7y (i2), - 5 7y (ik),
where i; € N(M). For any 2 < j <k, we must have
Ty(i5) > Ty(ij-1) + Li;_, +j-1 — ij, (6)

or else messages ./\/li]. and ./\/li]._1 would either collide or violate the NRF regi-
men. By combining inequalities (5) and (6), we obtain:

i1 + 2 if j=1and i; #n
r (i) > 4 max (i;+2, 75(ij 1) + Liy , +ij1—i;) ifj>1andi;<n
max (n + 1, 7y (ij-1) + L,y +151 — n) ifij =n
(7)
A straightforward induction establishes that the gathering-schedule pro-
duced by Algorithm Shoulder-Tap satisfies inequality (7) as an equality. Tt
follows that the gathering time for Algorithm Shoulder-Tap is minimal among

algorithms for gathering on a path, that schedule message deliveries in a dis-
tributed fashion, hence obey inequality 5. O

Generalizing the interlaced synchronization-plus-message passing strategy
of Algorithm Shoulder-Tap to trees whose PEs have multiple children seems
to require a rather complicated protocol: messages must have end-of-message
delimiters so that each PE P; can coordinate the message streams of its children
and their descendants. We turn now to an alternative strategy which accom-
plishes this coordination in a simpler way, hence extends gracefully to trees of
arbitrary structure.

20

3.2 Transmission Certification: a Solution for General Trees

We now modify the protocol of Algorithm Shoulder-Tap by decoupling the
synchronization and message passing activities. The resulting Algorithm Transmission-
Certification operates in four phases.

Algorithm Transmission-Certification:

{The first two phases represent the decoupled synchronization part of the pro-
tocol.}

Phase 1: PE Py “awakens” all other PEs in the tree by broadcasting a syn-
chronization token. (This wakeup call lets the PEs know that Py is ready
to “gather” their messages.)

Phase 2: Each PE P; responds to the synchronization token by sending a (one-
flit) transmission certificate to its parent PE. The certificate indicates
how soon P; can initiate a gap-free transmission of all the messages in the
subtree whose root it occupies. The PEs at the leaves of the tree are the
first to send certificates; a nonleaf PE’s certificate is computed using the
length of its message, together with the certificates of its children.

{The second two phases are reminiscent of Algorithm Shoulder-Tap.}

Phase 3: When Py receives its children’s certificates, it initiates a wave of
TRANSMIT-MESSAGE orders. Inductively, the orders transmitted by a PE
P; to its children schedule the children’s gap-free transmissions: the sched-
uled dispatch time for each child is calculated from P;’s own dispatch time,
its own message length L;, and the certificates it received (during Phase
2) from its children.

Phase 4: Finally, the PEs follow the schedule of phase 3, transmitting mes-
sages in a gap-free stream toward Py, via their parents.

Since Py eventually receives the entire set of messages in a gap-free stream
(of length >, L;), Algorithm Transmission-Certification is optimal, up to
the time required for the synchronization-and-scheduling protocol. This proto-
col comprises three phases: two of the phases (Phases 1 and 3) are essentially
broadcasts in the tree; the other (Phase 2) is essentially a leaf-to-root reverse
broadcast, with children’s messages being combined into a single message by
each parent. We now describe these phases in detail.

Assume henceforth that each PE P; which is not a leaf in the tree has d;
children, denoted P; 1, P;2,...,P; 4 in some arbitrary but fixed order.

Broadcasting and Receiving Messages. Because the single-port commu-
nication regimen allows a PE to communicate with at most two neighbors in a

21

single step (one by sending a message and one by receiving a message), com-
munications in the various phases of Algorithm Transmission-Certification
must be orchestrated as illustrated in the following scenario. When PE P; re-
ceives a synchronization token “SEND-CERTIFICATE” from its parent, it relays
the token in turn to its children, P; 1, P;2,...,P; ;. After sending the token to
a child, P; waits to receive that child’s transmission certificate before sending
the token to the next child. P; continues in this fashion, until it has collected
transmission certificates from all d; children. The reader should note that the
Algorithm requires P; to “remember” which certificate came from which child.

An Overview of Transmission Certificates. During Phase 2 of the Al-
gorithm, each PE P; (i > 0) sends its parent a transmission certificate; this
message consists of a pair of integers (¢;,n;), where ¢; > 0 is the certified lag
time, and n; > 0 is the certified stream length. The intended interpretation of
P;’s transmission certificate is:

¢; steps after receiving a TRANSMIT-MESSAGE order, PE P; can start
transmitting toward Py a gap-free stream of n; flits, comprising all
the messages originating at PEs in the subtree rooted at P;.

Each PE that is a leaf of the tree can compute its certificate directly from
the length of its message; each nonleaf PE P; computes its certificate from
the length of its message, together with the certificates of its children. (P;
needs both the certified lag times and the certified stream lengths from its
children for scheduling purpose, in order to coalesce the children’s d; mes-
sage streams into a single stream.) When Py receives the certificates from
its children, it can proceed to schedule all the transmissions, using TRANSMIT-
MESSAGE orders that are essentially identical to the shoulder taps that char-
acterize Algorithm Shoulder-Tap. The transmission schedule produced by
Algorithm Transmission-Certification differs from that produced by Algo-
rithm Shoulder-Tap mainly in its avoidance of gaps in message transmission
(such as that observed at Step 8 in Figure 2). We now describe how the trans-
mission certificates are computed.

Computing Transmission Certificates. Say that PE P; has received the
certificates

(Ci,la ni,l), (Ci,2, ni,2), S (Ci,dianz’,di)

from its d; children. It uses these certificates, plus the length L; of its message,
to compute its certificate (¢;,n;), as follows.

Stream Length. The computation of P;’s certified stream length n; is
straightforward, since the message stream that P; will transmit is just the
concatenation of its message, M;, with the message streams of its children;

hence,
d;

n; = L; + Zniaj'
Jj=1

22

Lag Time. A PE P; that resides at a leaf of the tree does not have to wait
for any other PE before starting to transmit its message stream — which is just
its message M;; therefore, it can start transmitting its message stream with no
gaps one step after receiving a TRANSMIT-MESSAGE order, so its certified lag
time is just ¢; = 1. In contrast, a PE P; that is not at a leaf of the tree must
consider how its message interacts with the message streams that will come from
its children PEs. Specifically, PE P; computes its certified lag time ¢; from the
certificates ¢; 1,¢; 2, ..., ¢; g, of its d; children, via the following reasoning, which
is presented most easily by means of a time-line similar to that used to compute
the wakeup calls in Algorithm Shoulder-Tap. Say that (at some time in the
future) P; will receive the order

TRANSMIT IN s; STEPS
at time t. The following actions will ensue.

time ¢+ j (for 1 < j <d;): P; will relay the order to its child P; ;, with an
appropriately modified value s; ; of s;.

time ¢ + sj,...,t + 5; + L; — 1: P; will transmit message M;, as the first stage
of transmitting the message stream from the PEs in the subtree rooted
at P;. Note that the integer s; can be no smaller than d; + 1, because of
the single-port communication regimen.?

time ¢t + s; + L; on: P; will begin to relay, without gaps, the message streams
sent to it by its d; children. Note that the integer s; can be no smaller
than min{c; ; | 1 < j < d;}, because some child of P; must begin its gap-
free transmission one step before P; begins its gap-free relaying. s; may
be larger than this lower bound because of the requirement that message
transmission be gap free.

With this time-line in mind, P; computes its certified lag time in four steps, as
follows.

1. P; adopts the preliminary certified lag time c;’U =g4ef d;j + 1; this acknowl-
edges the fact that P; cannot begin transmitting its message, M;, until it has
dispatched a TRANSMIT-MESSAGE order to each of its children.

2. P; “adjusts” each of its children’s certified lag times, amending the lag time
of P; j, where 1 < j < d;, to c;,j =def d; + ¢;;; this acknowledges the fact that
P; cannot begin relaying its children’s message streams until it has dispatched
a TRANSMIT-MESSAGE order to each of its children.

3. P; sorts the certified lag times {¢;; | 1 < j < d;} of its children, thereby
obtaining a permutation 7 of the set {1,2,...,d;} which orders the children of
P; in increasing order of their certified lag times. (P; will use the permutation 7

3There is an implicit inductive assumption here that s; has been assigned a feasible value
by Pi’s parent.

23

now, in computing its certified lag time, and later, in computing the TRANSMIT-
MESSAGE times for its children.)

4. Finally, P; computes its certified lag time, using a geometrical model. Vi-
sualize the nonnegative x-axis, with the following d; + 1 mowvable line segments
X j, where 0 < j <d,.

e X, is a length-L; segment whose left endpoint can be placed anywhere
at or to the right of point ¢}, = d; + 1.

e For 1 <j <d;, X;; is a length-n; ; segment whose left endpoint can be
placed anywhere at or to the right of point c;’j =d; + ¢ ;.

The intended interpretation is that the x-axis is the time axis, and each line
segment represents the time interval during which the corresponding message
stream is being transmitted by PE P;. Specifically, line segment X; o represents
the length-L; time interval during which P; transmits message M;; each other
line segment X; ;, for 1 < j < d;, represents the length-n; ; time interval during
which P; relays the message stream it receives from its jth child P; ;. The
restrictions on the placements of the line segments are compatible with this
interpretation: any line segment can be moved to the right, representing a
delay in the transmission time of the corresponding message stream; no line
segment can be moved to the left of its indicated limit (the points cgyk), for such
a move would represent P;’s transmitting the corresponding message stream
before the stream is available to it.

P; now computes its certified lag time by shifting the line segments X
along the x-axis — moving segments rightward at will, but never moving any
segment X; ; so that its left endpoint goes to the left of point c;’k — with the
goal of combining all d; segments (by concatenation) into a single line segment of
length n;, whose left endpoint is as small, i.e., as far to the left, as possible; call
this combined line segment X*. The left endpoint of X} is P;’s sought certified
lag time ¢;. Straightforward reasoning allows us to compute ¢; explicitly:

di
¢; = d; + 1 + max(0, Cim(1) — L;) + Z max(0, Cin(j) — Cim(j—1) — ni,w(jfl))-
j=2

Remark 4. (a) Combining the d; + 1 line segments into a single line segment
X7 represents scheduling a gap-free transmission by P; of all messages originat-
ing in its subtree.

(b) Placing the line segment X* as far to the left as possible (subject to the
constraints of the points C;,k) represents an attempt to schedule P;’s transmis-
sion as early as possible.

(c) If we denote by c}; the left endpoint of line segment X;; within line seg-
ment X, then the increasing sequence of values of the endpoints CZ i represents
a schedule for the gap-free transmission of the (combined) message streams of
‘P;’s children.

24

To clarify the connection between moving line segments and scheduling mes-
sages, let us focus on just two segments: for + = 1,2, say that line segment X;
has length n; and left constraint ¢,. Say, moreover, that ¢| < ¢,. Three cases
arise.

1. If ¢, = ny, then both segments X; and X5 can be positioned in their left-
most legal positions (namely, ¢} and ¢}, respectively) and just juxtaposed
to form segment X*. In this situation, the PEs associated with X; and
X3 can both honor their certified lag times.

2. If ¢4 < nq, then segment X; can be positioned in its leftmost possible
position (namely, c}), but segment X5 must be shifted right n; — ¢, posi-
tions before being juxtaposed with segment Xy in order to form segment
X*. This corresponds to having the PE associated with time interval Xo
delay its message transmission for ny — ¢} time units so as not to interfere
with the transmission by the PE associated with interval X;.

3. If ¢4 > nq, then segment X, can be positioned in its leftmost possible
position (namely, ¢), but segment X; must be shifted right ¢;, — ny posi-
tions before being juxtaposed with segment X5 in order to form segment
X*. This corresponds to having the PE associated with time interval X
delay its message transmission for ¢, — n; time units so that the final
transmission of messages will be free of gaps.

Remark 5. Because line segments start out in their leftmost feasible positions,
one can combine them by moving line segments to the right but never to the left,
i.e., by delaying message streams but never advancing one. This ensures that
a single pass over the line segments, in decreasing order of their indices under
the permutation 7, suffices to produce line segment X7, hence to compute c¢;.

The Message Scheduling Protocol. After PE Py receives a transmission
certificate from its last (i.e., doth) child, it spends the next dy steps sending
TRANSMIT-MESSAGE orders to its children. Each order is a one-flit message of
the form

TRANSMIT AFTER s STEPS

where the transmission time s is a positive integer; the intended interpretation is
that, if a PE P receives the indicated order at time ¢, then it begins transmitting
its (gap-free) message stream at time t+s; if P is a nonleaf PE, then it will begin
this message transmission only after it has relayed to its children versions of
the order with appropriately modified transmission times.* The issue we must
focus on is how a PE (Py or any other nonleaf PE) computes its children’s
transmission times. This computation can be described more uniformly if we
imagine that Py has received the (imaginary) order TRANSMIT AFTER 0 STEPS.
Now we can say, uniformly, that nonleaf PE P; receives the order TRANSMIT

“When P computed its certified lag time, it included time for relaying orders to its children;
hence, we can safely assume that s has been chosen large enough to allow time for this relaying.

25

AFTER s; STEPS at time %;, and we can ask, uniformly, how P; computes the
transmission times {s; ; | 1 < j < d;} for its children {P;; | 1 < j < d;}.

Computing Transmission Times. Say that P; receives its transmission time
s; from its parent at time ;. Earlier, when P; computed its certified lag time ¢;,
it created a tentative transmission schedule for its children (and itself), which
is embodied in the d; + 1 start times {¢j; [0 < j < d;}. (Recall that these
were computed while constructing the line segment X7.) Indeed, ¢; is just the
minimum of these values. The transmission time s; can be viewed as just an
adjustment to this tentative schedule, i.e., as a mandate to adjust the schedule
by delaying it uniformly by s; — ¢; time units (equivalently, by shifting X* to
the right s; — ¢; units). Therefore, P; assigns to each of its children P; j, where
1 <j < d;, the transmission time s; ; = czj + s; — ¢; and sends it the order

TRANSMIT AFTER 8; ; STEPS .

After dispatching all these orders, P; proceeds to transmit, according to the
schedule implicit in the set {s;}U{s; ; | 1 < j < d;}, a gap-free stream containing
all the messages in its subtree.

Timing Analysis. The time required by Algorithm Transmission-Certification
is divided into four packets.

1. Broadcasting the synchronization token (Phase 1) and distributing the
TRANSMIT-MESSAGE orders (Phase 3) each takes time essentially equal to
the time B for a root-to-leaf broadcast in the tree.

2. The time C for collecting transmission certificates (Phase 2) is dominated
by the accumulated time for sorting certified lag times at each PE along
the leaf-to-root paths of the tree. This time is estimated as follows. Assign
each leaf-PE the weight 0 and each nonleaf-PE having d children the
weight dlogy d. Assign each root-to-leaf path a weight that is the sum
of the weights of its nodes. Then C' is a small multiple of the maximum
weight of a root-to-leaf path.

3. Since message transmission (Phase 4) is gap-free, it requires time M =qq¢

i L.

Easily, any gathering algorithm must take time at least max(B, M); in the
worst case, this bound increases to B + M. To wit, synchronization must take
at least B steps, and message transmission must take at least M steps, yielding
the universal lower bound; if there is only one message in the sequence, and that
message resides at a PE at maximum distance from Pg, then these activities
do not overlap. Summarizing this cost assessment, we arrive at the following
reckoning.

Theorem 3 The time for gathering on a tree using Algorithm Transmission-
Certification is at most 2B+C+M. The time for gathering on a tree using any
algorithm is at least max(B, M); in the worst case, this lower bound increases
to time B+ M.

26

Figure 4 illustrates the gathering operation of Figure 2 performed using
transmission certificates, rather than shoulder tapping.

As Figures 2 and 4 indicate, gathering on an n-node ring via transmission
certificates is materially slower (by roughly 2n steps) than gathering on the
path via shoulder-tapping, the extra time being accounted for by the explicit
synchronization protocol. Although a portion of the synchronization time is
recovered by the elimination of gaps in the transmission of the message stream,
one would normally choose to use shoulder-taps rather than transmission cer-
tificates when gathering on a path.

4 Algorithms for a Multiport Model

We discuss only briefly how one can extend the gathering algorithms of Section
3.2 to a multiport communication regimen. Roughly speaking, one can proceed
at two levels.

Parallelizing Synchronization. Most simply, in a network with a multiport
communication capability, one can parallelize the three tasks in our algorithm
that are dedicated to synchronization.

Parallelizing the broadcast of the synchronization token requires no modifi-
cation of the algorithm.

In contrast, parallelizing the distribution of the TRANSMIT-MESSAGE orders
may be tricky. Specifically, each such order has a transmission time associated
with it, and each child of a given PE must receive a unique such time in order to
insure collision-free message transmission in the absence of message buffers. It
is not clear that one can save much time by parallelizing the transmission of the
TRANSMIT-MESSAGE orders if the computation of the associated transmission
times must be sequential.

Finally, parallelizing the computation of certificates is straightforward and,
in fact, simplifies the algorithm by obviating the protocol whereby a PE orches-
trates the receipt of certificates from its children.

Parallelizing Message Transmission. We discuss this topic in the context
of scattering and gathering in arbitrary networks, via the use of spanning trees.
There are two compelling techniques for parallelizing the transmission of mes-
sages in a network with a multiport communication capability. Both techniques
involve “covering” the network with trees which then cooperate in transmitting
the messages, using versions of the algorithms presented in previous sections.

The first technique advocates “covering” the network with mutually edge-
disjoint trees rooted at PE Py, which collectively, though not necessarily in-
dividually, span the host network. Figure 5 depicts two such “coverings:” in
Figure 5(a) two trees jointly span the 4 x 4 mesh; in Figure 5(b) two trees each
span the 4 x 4 toroidal mesh (i.e., the mesh with “wraparound” edges). These
disjoint trees are then used just as described in previous sections. The only

27

substantive change in the framework we have been discussing is the role that
PEs play relative to each tree, if they belong to more than one. Most simply,
each PE will be preallocated to one tree in which it will participate actively;
the PE will act solely as a conduit in all other trees. Details can readily be
filled in. One attractive feature of this technique is the availability of research
in “covering” certain networks with edge-disjoint trees (though the requirement
that Py be the root of all the trees seems to complicate the problem materially);
for instance, one readily shows that the mesh and de Bruijn networks can be
so “covered,” as can the hypercube [5, 6].

The second technique modifies the first by dropping the requirement that
the “covering” trees be mutually edge-disjoint. Adapting our algorithms to
such a setting may be quite challenging, as one must schedule the traffic on the
shared edges.

References

[1] M. Baumslag and F.S. Annexstein (1991): A unified approach to global
permutation routing on parallel networks. Math. Syst. Th. 24, 233-251.

[2] S.N. Bhatt, G. Bilardi, G. Pucci, A. Ranade, A.L. Rosenberg, E.J. Schwabe
(1992): General message passing in rings of processors (tentative title). In
preparation.

[3] W.J. Dally and C.L. Seitz (1987): Deadlock-free message routing in mul-
tiprocessor interconnection networks. IEEE Trans. Comp., C-36, 547-553.

[4] P. Fraigniaud, S. Miguet, Y. Robert (1990): Complexity of scattering on
a ring of processors. Parallel Computing 183, 377-383.

[5] D.S. Greenberg (1991): Full Utilization of Communication Resources.
Ph.D. Thesis, Yale Univ.

[6] D.S. Greenberg and S.N. Bhatt (1991): Routing multiple paths in hyper-
cubes. Math. Syst. Th. 24, 295-321.

[7] J. Hromkovic, C.D. Jeschke, B. Monien (1990): Optimal algorithms for dis-
semination of information in some interconnection networks. Mathematical

Foundations of Computer Science ’90. Lecture Notes in Computer Science
452, Springer-Verlag, N.Y.

[8] S.L. Johnsson and C.-T. Ho (1989): Optimal broadcasting and personal-
ized communication in hypercubes. IEEE Trans. Comp. 38, 1249-1268.

[9] G. Kortsarz and D. Peleg (1992): Approximation algorithms for minimum
time broadcast. Theory of Computing and Systems (ISTCS ’92). Lecture
Notes in Computer Science 601, Springer-Verlag, N.Y., pp. 67-78.

[10] M. Kunde and T. Tensi (1989): Multi-packet routing on mesh-connected
arrays. 1st ACM Symp. on Parallel Algorithms and Architectures, 336-343.

28

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J.-J. Li (1991): Multiscattering on a reconfigurable network of processors.
Tech. Rpt. 91-03, L.I.P., Ecole Normale Supérieure de Lyon.

D. Nassimi and S. Sahni (1981): Data broadcasting in SIMD computers.
IEEE Trans. Comp., C-30, 101-107.

G.D. Pifarré, L. Gravano, S.A. Felperin, J.L.C. Sanz (1991): Fully-adaptive
minimal deadlock-free packet routing in hypercubes, meshes, and other
networks. 8rd ACM Symp. on Parallel Algorithms and Architectures, 278-
290.

Y. Saad and M.H. Schultz (1989): Data communication in parallel archi-
tectures. Parallel Computing 11, 131-150.

Q.F. Stout and B. Wagar (1990): Intensive hypercube communication,
I: Prearranged communication in link-bound machines. J. Parallel Distr.
Comput. 10, 167-181.

D.M. Topkis (1989): All-to-all broadcast by flooding in communication
networks. IEEE Trans. Comp. 38, 1330-1333.

L.G. Valiant and G.J. Brebner (1981): Universal schemes for parallel com-
putation. 18th ACM Symp. on Theory of Computing, 263-277.

29

Figures and Captions

Figure 1: Illustrating the effect of message order on the time for scattering on
a path.

Figure 2: Gathering via shoulder-tapping on a 6-node path: a “typical” example.

Figure 3: Gathering via shoulder-tapping on a 6-node path: a “pathological”
example.

Figure 4: Gathering via transmission certificates on a 6-node path.

Figure 5: (a) The 4 x 4 mesh, covered by two jointly spanning edge-disjoint
trees. (b) The 4 x 4 toroidal mesh covered by two edge-disjoint spanning trees.
The trees’ edges are represented, respectively, by <+ and by <.

30

Figure 1: Illustrating the effect of message order

a path.

Legend:

Processors: Py, P1, P2, P3, Pa, Ps

Message Lengths: L1 =0, Ls =0, L3 =0, Ly =4, Ls =3
Message Notation: M; = m; 1m;2---m; 1,

(a) Network traffic when M5 precedes My:

Step Po P1 Po Ps Py Ps
0 m571

L || ms2 | ms

2 ||ms3 | ms2 | ms5a

3 || ma1 | ms3 | M52 | M5

4 | mgo | My | ms3 | M52 | M5

5 || mag | mao | ma1 | Ms53 | M52 | M5
6 || mMag | Ma3 | Ma2 | Mgy | Ms3 | M52
7 My | M43 | Mao | My | M53
8 Myg | M43 | M4 2

9 My | M43

10 my,4

(b) Network traffic when M, precedes Ms:

Step Po Py Po Ps Ps Ps
0 ma,1
L || mao | mag
2 || mag | ma2 | M4
3 || maa | M43 | Mao | M4
4 | ms1 | Mag | M3 | Mag | Mg
5 || ms2 | ms1 | Mag | Mg | Myp
6 || ms3|ms2 | ms1 | Mg | Ma3
7 ms3 | M52 | M51 | Ma4
8 ms3 | M52 | M51
9 ms3 | M52 | M51
10 ms5.3 | M52
11 ms3

31

on the time for scattering on

Legend:

Processors: Py, P1, P2, P3, Ps, Ps

Message Lengths: L1 =2, Lo =3, L3 =0, Ly =2, Ly =1
Message Notation: M; = m; 1m;o---m; 1,

TRANSMIT AFTER > §; STEPS order: (s;)

Network Traffic:

Step|| Po | Pr | Po | P3 | Ps | Ps

1 (1)

2 ml,l (2)

3 || mii | mig | mag| (3)

4 ||myig|mo1 | mao (1)

5 || ma1 | M2 | mag3 ma | (2)
6 | mog2 | mag3 my1 | M4 | M5
7 || ma2g3 M4, | Ma2 | M5

8 mg1 | Map | M5

9 || ma | Maz | M5

10 m472 m5’1

11 ms,1

Figure 2: Gathering via shoulder-tapping on a 6-node path: a “typical” example.

32

Legend:

Processors: Pqy, P1,Pa, Ps, Py, Ps

Message Lengths: L1 =9, Ly =0, Ly =1, Ly =0, Ly =1
Message Notation: M; = m; 1m;2---m; 1,

TRANSMIT AFTER > §; STEPS order: (s;)

Network Traffic:

Step|| Po | Pr | Po | Ps | Pa | Ps
1 (1)
2 m1,1 (9)
3 m171 ml’g (7)
4 ||mig|mig (6)
5 m173 m1’4 (4)
6 || mia|migs
7 || mis | mig
8 || mie | mi7 ms. 1
9 || miz|mig m31 | M5
10 || my1g | mi9 | m31 | Mms51
IT || my9 | m3,1 | M5
12 m371 m5’1
13 ms,1

Figure 3: Gathering via shoulder-tapping on a 6-node path: a “pathological”
example.

33

Legend:

Processors: Pqy, P1,Po, Ps, Py, Ps

Message Lengths: L1 =2, Lo =3, L3 =0, Ly =2, Ly =1
Message Notation: M; = m; 1m;o---m; 1,
Synchronization Token: [*]

Certificate Notation: < ¢; >

TRANSMIT AFTER §; STEPS order: (s;)

Network Traffic:

Step Po P1 Po Ps P4 Ps
1 [*]
2 [x]
3 [x]
4 [x]
5 [*]
6 <1l>
7 <2>
8 <4 >
9 <3>
10 | <3 >
11 (3)
12 (3)
13 m171 (4)
14 mi1 | M2 | M2 (2)
15 mi2 | Mo | M2p2 man | (2)
16 mo1 | Moo | Mag | m41 | M4 | M5
17 || mog | ma3 | Ma1 | M2 | M5
18 maog3 | M4l | Ma2 | M52
19 M4 | M42 | M5
20 ma,2 ms,1
21 ms1

Figure 4: Gathering via transmission certificates on a 6-node path.

34

Py & P & Py & Py 71310 <_> 711 (_) 712 <_> 713
) 0 0 0
Py & Py & Py oo P ?14@715@@6@?
) 0 0 0
Pg = Pg = Pm = PH ;?IS < Pf < P£U < P£1
) 0 0 0

P2 & Pz & Pu & P
P2 & Pz & Pu & Pis 12 &3 &4 &5

(a) (b)

Figure 5: (a) The 4 x 4 mesh, covered by two jointly spanning edge-disjoint
trees. (b) The 4 x 4 toroidal mesh covered by two edge-disjoint spanning trees.
The trees’ edges are represented, respectively, by <> and by <.

35

