
Scattering and Gathering Messages inNetworks of Processors
Sandeep N. BhattBell Communications ResearchMorristown, New JerseyGeppino PucciUniversit�a di PadovaPadova, ItalyAbhiram RanadeUniversity of CaliforniaBerkeley, CaliforniaArnold L. RosenbergUniversity of MassachusettsAmherst, Massachusetts

1

Mailing Address for Galley ProofsArnold L. RosenbergDepartment of Computer ScienceUniversity of MassachusettsAmherst, MA 01003

2

Authors' Mailing AddressesSandeep N. BhattBell Communications Research435 South StreetMorristown, NJ 07960Geppino PucciDipartimento di Elettronica ed InformaticaUniversita' di PadovaVia Gradenigo 6/A35131 Padova, ItalyAbhiram RanadeDivision of Computer ScienceDepartment of EECSUniversity of CaliforniaBerkeley, CA 94720Arnold L. RosenbergDepartment of Computer ScienceUniversity of MassachusettsAmherst, MA 01003Acknowledgment of SupportA portion of this research was done while the authors were visiting the Fi-bonacci Institute in Trento, Italy. The research of S. N. Bhatt was supported inpart by NSF Grant CCR-88-07426, by NSF/DARPA Grant CCR-89-08285, andby Air Force Grant AFOSR-89-0382; during this period, Bhatt was with theDepartment of Computer Science, Yale University. The research of G. Pucciwas supported in part by the CNR project \Sistemi Informatici e Calcolo Par-allelo." The research of A. Ranade was supported in part by AFOSR GrantF49620-87-C-0041. The research of A. L. Rosenberg was supported in part byNSF Grant CCR-90-13184; a portion of his research was done while visiting theTechnion in Haifa, Israel.

3

Authors' Technical BiographiesSandeep N. Bhatt is a Member of the Technical Sta� at Bell CommunicationsResearch, Morristown N.J. He received his S.B., S.M., and Ph.D. (1984), all inComputer Science, at the Massachusetts Institute of Technology. He was anAssociate Professor of Computer Science at Yale University before joining Bell-core in 1992. During 1990 he was a Visiting Associate Professor of ComputerScience at Caltech.Dr. Bhatt's research focuses on algorithmic principles that underlie thedesign and use of parallel architectures. His contributions include graph em-bedding techniques to study problems in VLSI layout, to map computationsonto parallel machines, and to understand the computational power and lim-itations of networks. His current work emphasizes algorthmic techniques tosupport high-level programming abstractions for irregular and adaptive scien-ti�c computations on parallel architectures.Dr. Bhatt is a member of ACM and SIAM.Geppino Pucci received the \Laurea" degree in Computer Science summacum laude and the Ph.D. degree in Computer Science from the University ofPisa, Italy, in 1987 and 1992, respectively. From 1988 to 1990 he was withthe Computing Laboratory of the University of Newcastle-upon-Tyne, UnitedKingdom, where he conducted research in software reliability modeling. In 1991he spent a six-month research period at the International Computer Science In-stitute, Berkeley, California. In 1992 he joined the Dipartimento di Elettronicae Informatica of the University of Padova, Italy, as an Assistant Professor.Dr. Pucci's research interests include probabilistic modeling, analysis ofparallel algorithms and theory of computation.Dr. Pucci is a member of ACM.Abhiram Ranade is currently an assistant professor of Electrical Engineer-ing and Computer Science at the University of California, Berkeley. Earlier,he received his doctorate in Computer Science from Yale University in 1989,and B.Tech in Electrical Engineering from the Indian Institute of Technology,Bombay in 1981.Dr. Ranade's research interests include parallel architectures and algo-rithms, parallel programming techniques and data structures.Dr. Ranade is a member of ACM.Arnold L. Rosenberg is a Distinguished University Professor of ComputerScience at the University of Massachusetts at Amherst. Prior to joining the4

University of Massachusetts, Rosenberg spent �ve years as a Professor of Com-puter Science at Duke University and sixteen years as a Research Sta� Memberat the IBM Watson Research Center. Additionally, he has held visiting or ad-junct positions at New York University, the Polytechnic Institute of New York,the University of Toronto, and Yale University, and he has had short-term vis-iting positions at the Technion (Israel Institute of Technology) and at severalEuropean institutions. Dr. Rosenberg holds the A.B., A.M., and Ph.D. fromHarvard University.Dr. Rosenberg's current research focusses on theoretical aspects of parallelalgorithms and architectures, with emphasis on: the use of algorithmic tech-niques to enhance the power of parallel architectures, the logical and physicalmapping problems for parallel architectures, and the design of fault-tolerantarchitectures. He is the author of more than 100 technical papers on these andother topics in theoretical computer science and discrete mathematics.Dr. Rosenberg is a member of ACM, EATCS, and SIAM, and a seniormember of IEEE.

5

AbstractThe operations of scattering and gathering in a network of processors involveone processor of the network | call it P0 | communicating with all otherprocessors. In scattering, P0 sends (possibly) distinct messages to all otherprocessors; in gathering, the other processors send (possibly) distinct messagesto P0. We consider networks that are trees of processors; we present algo-rithms for scattering messages from and gathering messages to the processorthat resides at the root of the tree. The algorithms are:� quite general, in that the messages transmitted can di�er arbitrarily inlength;� quite strong, in that they send messages along noncolliding paths, hencedo not require any bu�ering or queuing mechanisms in the processors;� quite e�cient: the algorithms for scattering in general trees are optimal,the algorithm for gathering in a path is optimal, and the algorithms forgathering in general trees are nearly optimal.Our algorithms can easily be converted, via the use of spanning trees, to e�cientalgorithms for scattering and gathering in networks of arbitrary topologies.

6

Keywords and PhrasesBu�erless Communication, Communication Primitives, Communication Sched-ules, Distributed Scheduling, Message Routing, Interconnection Networks, One-to-All Personalized Communication

7

1 Introduction1.1 Communication in Parallel ComputationCommunication is an essential component of parallel computation. A variety ofmodes of communication have been studied within the framework of networks ofprocessors | identical processing elements (PEs) that communicate by meansof an interconnection network. The most commonly studied modes are thefollowing.� (Partial) permutation routing [1, 3, 10, 13, 17] is a form of communica-tion in which each PE is both the sender and recipient of (at most) onemessage.� Broadcasting [8, 12] is a form of communication in which one PE sendsone speci�c message to all other PEs.� Gossiping (or, all-to-all broadcasting) [7, 16] is a form of communicationin which each PE sends one speci�c message to all other PEs.Baumslag and Annexstein [1], Johnsson and Ho [8], and Saad and Schultz [14](among others) point out that these popular forms of communication do notexhaust the algorithmically useful possibilities. Speci�cally, they add to themenu of communication modes the operations of scattering and gathering.1� Scattering (or, one-to-all personalized communication) is a form of com-munication in which one PE sends (possibly) distinct messages to all otherPEs.� Gathering is a form of communication in which all PEs send (possibly)distinct messages to one speci�c PE.E�cient algorithms for a general version of the operations of scattering andgathering form the subject matter of the current paper. Speci�cally, we presente�cient algorithms for scattering from and gathering to the root PE of a gen-eral tree-structured network.2 We present an optimal algorithm for scatteringfrom the root of a general tree, an optimal algorithm for gathering to the rootof a unary tree (i.e., the end-PE of a path), and a nearly optimal algorithmfor gathering to the root of a general tree. Via the use of spanning trees, our(nearly) optimal tree-oriented algorithms become e�cient algorithms for scat-tering and gathering in networks of arbitrary topology. The generality of ourstudy manifests itself in three ways.1Other important modes have also been studied, includingmultiscattering [11] and exchange[2], but less frequently.2Henceforth, for brevity: we use the term \tree" for \tree-structured network;" also, we usethe term \network" to denote both a network of processors and its underlying interconnectionnetwork; context should always disambiguate each occurrence of the word.8

1. We allow messages to di�er in length by arbitrary amounts; indeed, somemessages may be null.This contrasts with the studies in [1, 4, 8, 14], wherein all messages have thesame length.2. We scatter and gather messages in trees of arbitrary shape and, hence, viathe use of spanning trees, in networks of arbitrary topologies.This contrasts with the studies in [4, 8, 14, 15], which focus on a small repertoireof networks, such as rings, meshes, and hypercubes.3. We transmit messages along noncolliding paths in our networks, hence donot require any bu�ering or queuing mechanisms in the PEs.This contrasts with virtually all other studies of message transmission in net-works. One might be able to rationalize our demand for unbu�ered commu-nication in terms of resource conservation: bu�ering requires both additionalmemory (each PE must be prepared to store the longest message in the sys-tem) and time (e.g., for the processing of addresses). However, our overridingmotivation in this study was to understand communication in networks better,by determining the cost of this strict assumption in terms of the complexity ofthe problems of scattering and gathering general messages in general networks.1.2 The Computing ModelA. Networks of ProcessorsWe study the problems of scattering from and gathering to the root-PE of asynchronous tree of arbitrary shape. Each network A comprises n+1 identicalPEs, P0;P1; : : : ;Pn. By convention, we always let P0 denote the root of thetree, i.e., the PE which is the source of messages in a scattering operation andthe target of messages in a gathering operation.The PEs of the networks we study have neither message bu�ers nor queues.Messages within networks must, therefore, be scheduled so as never to \collide"with one another. For the operation of scattering, the fact that we scatterwithin a tree guarantees such avoidance; for the operation of gathering, thisscheduling is a major challenge.The networks we study use the single-port communication regimen: duringeach communication step, a PE can send information to at most one of itsimmediate neighbors and, simultaneously, receive information from at most oneof its immediate neighbors; the sending and receiving neighbors may be distinct.We do, however, allow a PE to perform (say, arithmetic) computations whilecommunicating, as well as to access its local memory. This regimen is to becontrasted with the multiport communication regimen, in which a PE can send9

and receive information from each of its immediate neighbors in one step. InSection 4 we indicate briey how our results extend to a multiport model.The networks we study communicate in rounds; i.e., while a scattering(resp., a gathering) operation is in progress, there is no other communicationgoing on in the network. This means that the only resource contention we mustworry about arises from the many messages that are being scattered (resp.,gathered) in the current operation. This regimen is to be contrasted with theone studied in [2], wherein the present study of bu�erless communication isgeneralized to allow each PE to be both the source of and the destination forarbitrarily many messages at once. As an aside, the study in [2] compensatesfor the generality of its communication setting | bu�erless PEs passing mes-sages in arbitrary ways | by restricting attention to simple network topologies,speci�cally, one- and two-dimensional meshes (i.e., rings and toroidal meshes).Porting to General Networks. Our e�cient collision-free algorithms can betransported easily to networks of arbitrary topology via the use of an \e�cient"spanning tree of (the undirected graph underlying) the network in question,rooted at the singular PE for the scattering or gathering operation. For theoperation of scattering, and for the operation of gathering under a multiportregimen, one would sensibly choose a breadth-�rst spanning tree, in order to en-sure that every message travels the shortest possible distance to its destination:the possibility of large node-degrees in breadth-�rst trees causes no concern,because in a scattering operation, a PE is receiving or transmitting at most onemessage at each step, and in a multiport gathering operation, a PE can serviceas many ports as it has at each step. For the operation of gathering under asingle-port regimen, the time required to accommodate large node-degrees in thetree can dominate the time for single-port gathering: broadcasting is typicallypart of the synchronization protocol needed for gathering in multi-successornetworks, and high-degree nodes can slow down single-port broadcasts. (As anextreme example, compare the times for single-port broadcasting in an n-PEnetwork A in which every pair of nodes is connected by an edge: (a) usinga complete binary spanning tree of A, versus (b) using a single-level degree-(n � 1) spanning tree.) Consequently, in this case, one might seek a spanningtree whose structure approximates that of a minimum broadcast tree [9].Remark 1. The framework just outlined may represent only the commu-nication subsystem of a heterogeneous parallel architecture; for instance, thearchitecture viewed as a whole may have PEs of di�ering powers and sizes,which operate asynchronously except during global communication operations(such as scattering and gathering).B. Messages and Message SequencesEach messageMi involved in a scattering or gathering operation is a sequenceof some number Li (perhaps zero) of atomic its: a it is the largest unitof information that the network can transmit between adjacent nodes in onecommunication step (i.e., in one so-called transit time).A message is treated as an indivisible unit during a scattering or gathering10

operation, in the sense that the L its of a message are never interrupted byits from other messages. Initially, the L its of the message are all in theoriginating PE; after the message has begun to travel through the network, itsits are always in contiguous PEs; the lack of bu�ering ensures that each itis in a separate PE once it leaves the originating PE. A consequence of theindivisibility of messages is that addressing information needs appear only inthe �rst it of the message, thereby lessening both the setup time for messagesand the aggregate length devoted to addressing information.LetM = hM1;M2; : : : ;Mni be a sequence of messages (to be scattered orgathered). Let N(M) = hi1; i2; : : : ; ikidenote, in increasing order, the subsequence of message indices whose messagesare nonnull, i.e., for which Lij > 0.C. The Scattering and Gathering ProblemsIn a scattering operation, the root-PE P0 has a message Mi of length Li tosend to each PE Pi, for i > 0. In a gathering operation, each PE Pi, wherei > 0, has a messageMi of length Li destined for PE P0. (For both operations,some messagesMi may be null, so that Li = 0.) We perform these operationsin trees of arbitrary shapes, subject to the following constraints.� Once a message has been dispatched by its originating PE, it encountersno interruption until it is received by its destination PE. In particular,{ each intermediate PE must relay the message with no queuing orbu�ering;{ messages are treated as indivisible units (in the sense descibed ear-lier).� For each i > 0, messageMi will be routed along the unique path �i thatconnects PE P0 and PE Pi in the tree. We let �(i) denote the length ofpath �i, i.e., the distance that messageMi must travel.D. Problem ComplexityWe measure the complexity of a scattering or gathering operation in terms ofthe time for delivering all relevant messages. Focussing on a �xed but arbitrarymessage sequenceM = hM1;M2; : : : ;Mni, this time is formalized as follows.The Time for Scattering. A schedule for scattering message sequence Mis a permutation � (for \scattering-schedule") of the index-sequence N(M) =hi1; i2; : : : ; iki, i.e., a one-to-one function� : f1; 2; : : : ; kg �! N(M):The intended interpretation is that PE P0 sends out messageM�(1), then mes-sageM�(2), thenM�(3), and so on, in that order, in a steady stream, with no11

intervening gaps. Thus, under schedule �, given index i with Li 6= 0, PE P0begins transmitting messageMi at dispatch time��(i) = Xfjj��1(j)<��1(i)gLj: (1)(Note the e�ect of the single-port regimen.) MessageMi arrives at its destina-tion, PE Pi, at arrival time��(i) = ��(i) + Li + �(i): (2)The time for scattering message sequenceM under scattering-schedule � is thetime it takes for every it ofM to reach its �nal destination; symbolically,T scat(�;M) = maxi2N(M)f��(i)g: (3)Equation (3) implies the following simple result, which delimits the di�erencebetween the best and worst scattering-schedules. The proof is left to the reader.Proposition 1 Let � be a scattering-schedule for message sequence M. As-suming that message Mi of M, for 1 � i � n, has length Li, the time for �sati�es the following bounds:max0@ Xi2N(M)Li; maxi2N(M)f�(i)g1A � T scat(�;M) � Xi2N(M)Li + maxi2N(M)f�(i)g:The Time for Gathering. A schedule for gathering message sequenceM isa sequence of integers = �(i1); �(i2); : : : ; �(ik);(for \gathering-schedule"), where N(M) = fi1; i2; : : : ; ikg. The intended inter-pretation is that each �(i) (where i 2 N(M)) is the dispatch time for messageMi, i.e., the time when PE Pi begins transmittingMi. The last it of messageMi is received by PE P0 at arrival time�(i) = �(i) + Li + �(i):The time for gathering message sequenceM under gathering-schedule is thetime it takes for every it ofM to reach PE P0; symbolically,T gath(;M) = maxi2N(M)f�(i)g:The Challenges. Note that neither the time for scattering, T scat, nor the timefor gathering, T gath, allows for any delay of messages at nodes other than theoriginating node. This means that our message-scheduling algorithms cannotrely on | so the network need not provide | any mechanism for bu�ering or12

queuing messages in PEs. This lack of bu�ering provides an additional chal-lenge in scheduling the gathering operation, which is lacking in the scatteringoperation. Namely, the scheduling algorithm must provide | in a distributedmanner | for the dispatching of messages in the network so that messagesnever collide on their paths to PE P0.Remark 2. Our timing model is somewhat simpler than that of some of theearlier cited sources. Speci�cally, we charge L time units to transmit a messagecontaining L its; some sources (such as [4]) would charge a message setuptime of � time units, plus a per-it transmission time of � time units for thismessage, for a total cost of �+L� time units. This change of model would nota�ect our analyses in a material way.Remark 3. As suggested earlier, our algorithms for scattering and gather-ing in arbitrary networks employ spanning trees that are �xed, independent ofthe message sequence M. For many networks, there exists no single spanningtree that is simultaneously optimal for the single-port regimen and for all mes-sage sequences, especially because messages can be null. This means that ouralgorithms for general networks will often be suboptimal.1.3 Related WorkSaad and Schultz [14] de�ne the operations of scattering and gathering in fullgenerality but present algorithms only for a speci�c repertoire of network topolo-gies and for the case of equal-length messages. Fraigniaud et al. [4] prove theoptimality of the Saad-Schultz algorithm for scattering on a unidirectional ringof processors. Stout and Wagar [15] and Johnsson and Ho [8] present optimalalgorithms for scattering equal-length messages on a hypercube, using boththe single-port and multiport communication regimens. Li [11] considers per-forming several scattering operations at once on a recon�gurable network ofprocessors. Bhatt et al. [2] study the most general type of communication,wherein each PE has a distinct message for each other PE, in bu�erless ringsand toroidal networks. All of these references, save the last, assess time �+L�for transmitting an L-it message.2 Scattering on Networks of ProcessorsSay that scattering-schedule � is optimal for message sequence M on a giventree if on that tree, T scat(�;M) � T scat(�0;M)for any other scattering-schedule �0 forM.It is shown in [4] that the unique optimal scattering-schedule for equal-lengthmessages on a unidirectional ring is given by the permutation �(i) = n� i+1,i.e., by sending out messages according to a farthest-destination-�rst (FDF)regimen | one in which nonnull messages are dispatched in decreasing order of13

the distances to their destinations. We now prove that the optimality of FDFschedules persists when the lengths of the scattered messages are general andwhen the scattering is done from the root-PE of an arbitrary tree. Speci�cally,we show that, within this setting, for every message sequence M, every FDFscattering-schedule is optimal forM (although there may be optimal non-FDFschedules also). It is consistent with intuition that FDF scattering-schedulesneed no longer be the unique optimal ones when one considers messages ofarbitrary lengths, because a single enormous message could so dominate themessage transmission time as to mask the order of a collection of small messagessent out right after it. Since the optimality of all FDF schedules ensures theoptimality of a large family of scattering algorithms, we present the followingtheorem in lieu of a speci�c optimal algorithm.Theorem 1 Every FDF scattering-schedule for scattering from the root-PE ofan arbitrary tree is optimal.Proof. Let the tree T with root-PE P0 be �xed.The Theorem makes two claims, which we treat in turn. First, we prove thatevery optimal scattering-schedule for a given message sequence can be replacedby an FDF scattering-schedule for the sequence with no increase in scatteringtime (so the FDF schedule is also optimal). Second, we prove that every FDFschedule for a message sequence is optimal, i.e., that messages destined forequidistant PEs can be dispatched in any order. The reader should note thecrucial role of our communicating on a tree in what follows.Claim 1 For every message sequence M and every scattering-schedule � forM, there is an FDF scattering-schedule �0 for M withT scat(�0;M) � T scat(�;M):Moral. Every message sequence has an optimal FDF scattering-schedule.Claim 1 asserts that one can never decrease the scattering time of a scheduleby dispatching a nonnull message that is destined for a nearby PE before anonnull message that is destined for a more distant PE. This is not surprising,as one hopes to use pipelining to make progress in sending the nearby messagewhile the distant message is in transit.Proof of Claim. Assume, for contradiction, that there is a message sequenceM = hM1;M2; : : : ;Mni such that no optimal scattering-schedule for M ob-serves the FDF regimen. Let �1 be any optimal scattering-schedule for M.Because �1 does not observe the FDF regimen, there must exist PE indices iand j, both in N(M), such that:��11 (i) = ��11 (j) + 1; �(i) > �(j); Lj > 0:14

Let �2 be the scattering-schedule for M obtained from �1 by interchanging��11 (i) and ��11 (j); i.e.,�2(k) = 8><>: i if �1(k) = jj if �1(k) = i�1(k) otherwise.We claim that T scat(�2;M) � T scat(�1;M): (4)By equation (3), inequality (4) will follow from the inequalitymaxf��1(i); ��1 (j)g � maxf��2(i); ��2 (j)g;we establish this inequality by analyzing the dispatch and arrival times of mes-sages under schedules �1 and �2. We begin by noting that equation (1) impliesthe following relations among the dispatch times under schedules �1 and �2.(All indices referred to are associated with nonnull messages.)��1(i) = ��1(j) + Lj��2(k) = 8><>: ��1(j) if k = i��1(i) + Li � Lj if k = j��1(k) otherwise.(Note that ��1(i) > ��1(j) because Lj > 0.) By equation (2), therefore, we inferthe following relations among the arrival times under schedules �1 and �2.��1(j) = ��1(j) + Lj + �(j)��1(i) = ��1(i) + Li + �(i)��2(i) = ��2(i) + Li + �(i)= ��1(j) + Li + �(i)��2(j) = ��2(j) + Lj + �(j)= ��1(i) + Li + �(j);while ��2(k) = ��1(k) for all k 62 fi; jg. (These last equations on ��1 and ��2hold because we route messages within a tree.) We can now deduce that��1(i) = maxf��1(i); ��1 (j); ��2 (i); ��2(j)g:Speci�cally:��1(i) > ��1(j) because �(i) > �(j) and ��1(i) = ��1(j) + Lj��1(i) > ��2(i) because ��1(i) > ��1(j)��1(i) > ��2(j) because �(i) > �(j).It follows from this chain of reasoning that T scat(�2;M) � T scat(�1;M),with strict inequality whenever message Mi is the last message to arrive atits destination under schedule �1. Now, if scattering-schedule �2 observes the15

FDF regimen, then this inequality already contradicts the assumption that noFDF scattering-schedule is optimal for M. If scattering-schedule �2 does notobserve the FDF regimen, then it is \one transposition closer" to observingthe regimen than is schedule �1. In particular, we can iterate the operation oftransposing transmission times that violate the FDF regimen a �nite numberof times (in fact, no more than n(n � 1)=2 times) to arrive at a scattering-schedule � that does observe the FDF regimen and that has scattering timeno greater than that of schedule �1, thus contradicting the assumption that noFDF scattering-schedule is optimal forM. 2-Claim 1Claim 2 All FDF scattering-schedules take the same time.Moral. Every scattering-schedule that observes the FDF regimen is optimal.Proof of Claim. Say that the scattering-schedule � observes the FDF regimen.The only way to alter � without violating the regimen is to rearrange thetransmission order of messages destined for equidistant PEs. We claim thatsuch rearrangement does not alter the time for the schedule and, hence, mustpreserve optimality. To wit, equations (1) and (2) imply the following. Ifmessages Mj1 ;Mj2 ; : : : ;Mj` are all destined for PEs at distance � from PEP0, and if the earliest dispatch time of any of these messages is � , then thelatest arrival time of any of these messages is� + X̀h=1Ljh +�;independent of the speci�c order of dispatching the messages. 2-Claim 2Note that Claim 2 veri�es that optimal scattering-schedules for a messagesequenceM do not depend on the lengths of the messages inM.The Theorem follows. 2Let us focus momentarily on the simplest possible tree, namely, a pathhaving PE P0 as its root. For notational convenience, say that in this tree:Pi+1 is the child of Pi, for 0 � i < n; Pi�1 is the parent of Pi, for 0 < i � n;and Pn is the (sole) leaf. When one is scattering messages from P0 in such atree, the proof of Theorem 1 can be visualized easily. As one can see in Figure1, for instance, in this case, each message dispatched by PE P0 sweeps out aparallelogram in the space-time domain. (The parallelogram associated withthe length-Li messageMi destined for PE Pi has length-Li sides parallel to thetime axis, corresponding to the path traversed by the Li its of message Mi,and length-i sides at a 45-degree angle to the time axis, corresponding to theprogress of the its along the line of PEs.) Constructing examples of scatteringoperations on paths, visualized via space-time parallelograms, will convincethe reader that often a portion of the upper slanted side of the space-timeparallelogram of one message can be \hidden in the shadow" of the space-timeparallelogram of an earlier dispatched message; this corresponds to pipeliningthe use of the intermediate PEs to decrease the overall time of the scatter16

operation. Constructing analogs of the competing dispatch orders of Figures1(a) and 1(b) will illustrate what Theorem 1 veri�es, namely, that more hidingoccurs when the parallelogram of a message destined for a more distant PE\provides shadow for" the parallelogram of a message destined for a nearby PEthan when the dispatch times of the two messages are reversed. In Figure 1,we make messageM4 longer than messageM5 to emphasize the independenceof the \hiding" phenomenon from the lengths of messages.3 Gathering on Networks of ProcessorsSay that gathering-schedule is optimal for message sequence M on a giventree if, on that tree, T gath(;M) � T gath(0;M)for any other gathering-schedule 0 forM.In an ideal world, we would implement the gathering operation by runningan FDF scattering algorithm \backwards;" by reasoning analogous to that inthe proof of Theorem 1, an algorithm that accomplished this would be optimal.Of course, one can not literally run an FDF scattering algorithm \backwards,"because in the scattering operation, PEs other than P0 are passive, while in thegathering operation, they are active | they must initiate their message trans-missions. To compensate for this fact, any algorithm for a bu�erless gatheringoperation must precede the transmission of messages by a distributed protocolthat schedules the dispatch times of the messages so that no two collide in tran-sit. A straightforward synchronization-like protocol su�ces to accomplish thisscheduling. We begin this section with a simple version of this protocol, calledshoulder tapping (Section 3.1), that implements the operation of gathering mes-sages to one end of a path by interlacing the synchronization and schedulingactivities. Although shoulder tapping yields an optimal algorithm for gatheringon a path, it is too simple to work on general tree structures. Since alteringshoulder tapping to operate on general trees leads to a cumbersome algorithm,we opt instead for a version of the protocol which decouples the synchronizationand scheduling activities. The resulting protocol, called transmission certi�ca-tion (Section 3.2), is readily adapted to general tree structures, but only at thecost of added time for separate synchronization and scheduling activities.It is worth stressing here that gathering must in general be more time con-suming than scattering, because of the need for a scheduling protocol thatprecedes message transmission. In particular, in a gathering operation, a PEcannot safely begin transmitting its message until \told to," for fear of inter-fering with the transit of another PE's message.3.1 Shoulder Tapping: a Solution for Paths of ProcessorsThe shoulder-tapping protocol we present now exploits the single-child struc-ture of a path in an essential way; it is this feature that precludes its graceful17

extension to trees of more complicated structure. The algorithm that imple-ments shoulder tapping seeks, for a message sequenceM = hM1;M2; : : : ;Mni,a gathering-schedule = �(i1); �(i2); : : : ; �(ik);where ij 2 N(M), which minimizes each dispatch time �(ij) subject to therequirement that messages never collide, and subject to the inequalities�(i) � (i+ 2 if i < ni+ 1 if i = n: (5)Inequalities (5) must hold for any distributed gathering algorithm on a path;they reect the following facts, which hold for all PE indices, not just those inN(M).� Each PE Pi (save, of course, P0) must receive a wakeup call telling itwhen to begin transmitting its message Mi (assuming that the messageis nonnull).� The sequence of wakeup calls must be initiated by P0 (since, in general,it is the best arbiter of when it is ready to receive the message sequence),hence must take at least i steps to reach Pi.� The single-port communication regimen does not allow Pi to overlap dis-patching its message (toward P0) and transmitting a wakeup call to Pi+1.The algorithm operates as follows. Each PE Pi, where i > 0, remains dormantuntil its shoulder is tapped by PE Pi�1 with a wakeup call: the call is a (one-it)message consisting of the ordertransmit after � si stepswhere si is a positive integer. Assume that Pi receives its wakeup call at time ti.It responds by serially entering the following operational phases, which embodyAlgorithm Shoulder-Tap.Algorithm Shoulder-Tap:Phase 0: P0 transmits to P1 the wakeup calltransmit after � (s1 = 1) stepsPhase 1: If i = n, then this phase is ignored; else,if i < n, then: At time ti+1 (one step after receiving its wakeup call), Pitransmits to Pi+1 a wakeup call of the formtransmit after � si+1 steps18

where the positive integer si+1 is computed using the following time-line.(Note the e�ect of the single-port communication regimen.)time ti: Pi receives its wakeup call (from Pi�1).time ti + 1: Pi+1 receives its wakeup call from Pi.time ti +max(2; si): Pi�1 receives the �rst it of Mi from Pi (whenLi > 0).time ti + Li +max(1; si � 1): Pi�1 receives the last (i.e., the Lith) it ofMi from Pi; hence, at this time, Pi is ready to relay (passively) anymessages it receives from PEs Pj for j > i.Since Pi+1 receives its wakeup call at time ti + 1, and since si+1 must bepositive, Pi sets the value of si+1 as follows:si+1 max (1; Li +max(0; si � 2)) :Phase 2: If Li = 0, then this phase is ignored; else,from time ti + max(2; si) to time ti + Li + max(1; si � 1), Pi transmitsmessageMi to P0, via Pi�1, one it at a time.Phase 3: From time ti+Li +max(1; si � 1) on, Pi begins to relay (passively)any messages it receives from PEs Pj for j > i.2 Two small instances of Algorithm Shoulder-Tap appear in Figures 2 and3. Figure 2 attempts to depict a \typical" message sequence; Figure 3 depictsa somewhat pathological sequence which illustrates that the dispatch timesof messages under the algorithm may not be monotonic in the indices of thedispatching PEs.We show now that Algorithm Shoulder-Tap produces an optimal gathering-schedule for paths.Theorem 2 Algorithm Shoulder-Tap is an optimal algorithm for gatheringon a path.Proof. Let us consider the behavior of Algorithm Shoulder-Tap on an arbi-trary message sequenceM = hM1;M2; : : : ;Mni.Note �rst that when all of the messages in sequence M are nonnull, Algo-rithm Shoulder-Tap delivers the messages to P0 in a gap-free fashion. Whenn = 1, this transmission takes place from time-step 2 to time-step 1+L1; whenn > 1, this transmission takes place from time-step 3 to time-step 2+Pi Li. Inthis case, the Algorithm can clearly not be improved, since the small additiveconstant in excess of the message-stream length is needed for synchronization,as in inequality 5. 19

In order to establish the optimality of Algorithm Shoulder-Tap when someof the messages in sequenceM are null, we introduce the following analogue ofFDF scattering-schedules.We have already remarked that the ideal gathering-schedule would be onethat ran an FDF scattering-schedule \backwards." From the perspective ofPE P0, as recipient of the messages, such a schedule would have messagesthat originate at nearby PEs arrive before messages that originate at moredistant PEs, i.e., would observe a nearest-received-�rst (NRF) regimen. Theformal veri�cation that there is an optimal NRF gathering-schedule satisfyinginequality (5) for every message sequence follows the lines of the analogousresult for FDF scattering-schedules (Theorem 1), hence is left to the reader. Incommon with Theorem 1, this veri�cation can be visualized geometrically whenthe underlying tree is a path: messages in gathering operations sweep out thesame type of parallelograms in the space-time domain as they do in scatteringoperations; the main di�erence is that gathering-parallelograms slant from thenortheast to the southwest, whereas scattering-parallelograms slant from thenorthwest to the southeast; cf. Figure 2.With no loss of generality, we henceforth compare Algorithm Shoulder-Tap only with gathering-schedules that honor the NRF regimen.Consider, therefore, an arbitrary NRF gathering-schedule forM, = �(i1); �(i2); : : : ; �(ik);where ij 2 N(M). For any 2 � j � k, we must have�(ij) � �(ij�1) + Lij�1 + ij�1 � ij ; (6)or else messages Mij andMij�1 would either collide or violate the NRF regi-men. By combining inequalities (5) and (6), we obtain:�(ij) � 8>><>>: i1 + 2 if j = 1 and ij 6= nmax �ij + 2; �(ij�1) + Lij�1 + ij�1 � ij� if j > 1 and ij < nmax �n+ 1; �(ij�1) + Lij�1 + ij�1 � n� if ij = n (7)A straightforward induction establishes that the gathering-schedule pro-duced by Algorithm Shoulder-Tap satis�es inequality (7) as an equality. Itfollows that the gathering time for Algorithm Shoulder-Tap is minimal amongalgorithms for gathering on a path, that schedule message deliveries in a dis-tributed fashion, hence obey inequality 5. 2Generalizing the interlaced synchronization-plus-message passing strategyof Algorithm Shoulder-Tap to trees whose PEs have multiple children seemsto require a rather complicated protocol: messages must have end-of-messagedelimiters so that each PE Pi can coordinate the message streams of its childrenand their descendants. We turn now to an alternative strategy which accom-plishes this coordination in a simpler way, hence extends gracefully to trees ofarbitrary structure. 20

3.2 Transmission Certi�cation: a Solution for General TreesWe now modify the protocol of Algorithm Shoulder-Tap by decoupling thesynchronization and message passing activities. The resulting AlgorithmTransmission-Certi�cation operates in four phases.Algorithm Transmission-Certi�cation:fThe �rst two phases represent the decoupled synchronization part of the pro-tocol.gPhase 1: PE P0 \awakens" all other PEs in the tree by broadcasting a syn-chronization token. (This wakeup call lets the PEs know that P0 is readyto \gather" their messages.)Phase 2: Each PE Pi responds to the synchronization token by sending a (one-it) transmission certi�cate to its parent PE. The certi�cate indicateshow soon Pi can initiate a gap-free transmission of all the messages in thesubtree whose root it occupies. The PEs at the leaves of the tree are the�rst to send certi�cates; a nonleaf PE's certi�cate is computed using thelength of its message, together with the certi�cates of its children.fThe second two phases are reminiscent of Algorithm Shoulder-Tap.gPhase 3: When P0 receives its children's certi�cates, it initiates a wave oftransmit-message orders. Inductively, the orders transmitted by a PEPi to its children schedule the children's gap-free transmissions: the sched-uled dispatch time for each child is calculated from Pi's own dispatch time,its own message length Li, and the certi�cates it received (during Phase2) from its children.Phase 4: Finally, the PEs follow the schedule of phase 3, transmitting mes-sages in a gap-free stream toward P0, via their parents.2 Since P0 eventually receives the entire set of messages in a gap-free stream(of length Pi Li), Algorithm Transmission-Certi�cation is optimal, up tothe time required for the synchronization-and-scheduling protocol. This proto-col comprises three phases: two of the phases (Phases 1 and 3) are essentiallybroadcasts in the tree; the other (Phase 2) is essentially a leaf-to-root reversebroadcast, with children's messages being combined into a single message byeach parent. We now describe these phases in detail.Assume henceforth that each PE Pi which is not a leaf in the tree has dichildren, denoted Pi;1;Pi;2; : : : ;Pi;di in some arbitrary but �xed order.Broadcasting and Receiving Messages. Because the single-port commu-nication regimen allows a PE to communicate with at most two neighbors in a21

single step (one by sending a message and one by receiving a message), com-munications in the various phases of Algorithm Transmission-Certi�cationmust be orchestrated as illustrated in the following scenario. When PE Pi re-ceives a synchronization token \send-certificate" from its parent, it relaysthe token in turn to its children, Pi;1;Pi;2; : : : ;Pi;di . After sending the token toa child, Pi waits to receive that child's transmission certi�cate before sendingthe token to the next child. Pi continues in this fashion, until it has collectedtransmission certi�cates from all di children. The reader should note that theAlgorithm requires Pi to \remember" which certi�cate came from which child.An Overview of Transmission Certi�cates. During Phase 2 of the Al-gorithm, each PE Pi (i > 0) sends its parent a transmission certi�cate; thismessage consists of a pair of integers (ci; ni), where ci > 0 is the certi�ed lagtime, and ni � 0 is the certi�ed stream length. The intended interpretation ofPi's transmission certi�cate is:ci steps after receiving a transmit-message order, PE Pi can starttransmitting toward P0 a gap-free stream of ni its, comprising allthe messages originating at PEs in the subtree rooted at Pi.Each PE that is a leaf of the tree can compute its certi�cate directly fromthe length of its message; each nonleaf PE Pi computes its certi�cate fromthe length of its message, together with the certi�cates of its children. (Pineeds both the certi�ed lag times and the certi�ed stream lengths from itschildren for scheduling purpose, in order to coalesce the children's di mes-sage streams into a single stream.) When P0 receives the certi�cates fromits children, it can proceed to schedule all the transmissions, using transmit-message orders that are essentially identical to the shoulder taps that char-acterize Algorithm Shoulder-Tap. The transmission schedule produced byAlgorithm Transmission-Certi�cation di�ers from that produced by Algo-rithm Shoulder-Tap mainly in its avoidance of gaps in message transmission(such as that observed at Step 8 in Figure 2). We now describe how the trans-mission certi�cates are computed.Computing Transmission Certi�cates. Say that PE Pi has received thecerti�cates (ci;1; ni;1); (ci;2; ni;2); : : : ; (ci;di ; ni;di)from its di children. It uses these certi�cates, plus the length Li of its message,to compute its certi�cate (ci; ni), as follows.Stream Length. The computation of Pi's certi�ed stream length ni isstraightforward, since the message stream that Pi will transmit is just theconcatenation of its message, Mi, with the message streams of its children;hence, ni = Li + diXj=1ni;j:22

Lag Time. A PE Pi that resides at a leaf of the tree does not have to waitfor any other PE before starting to transmit its message stream | which is justits messageMi; therefore, it can start transmitting its message stream with nogaps one step after receiving a transmit-message order, so its certi�ed lagtime is just ci = 1. In contrast, a PE Pi that is not at a leaf of the tree mustconsider how its message interacts with the message streams that will come fromits children PEs. Speci�cally, PE Pi computes its certi�ed lag time ci from thecerti�cates ci;1; ci;2; : : : ; ci;di of its di children, via the following reasoning, whichis presented most easily by means of a time-line similar to that used to computethe wakeup calls in Algorithm Shoulder-Tap. Say that (at some time in thefuture) Pi will receive the ordertransmit in si stepsat time t. The following actions will ensue.time t+ j (for 1 � j � di): Pi will relay the order to its child Pi;j, with anappropriately modi�ed value si;j of si.time t+ si,...,t+ si + Li � 1: Pi will transmit message Mi, as the �rst stageof transmitting the message stream from the PEs in the subtree rootedat Pi. Note that the integer si can be no smaller than di + 1, because ofthe single-port communication regimen.3time t+ si + Li on: Pi will begin to relay, without gaps, the message streamssent to it by its di children. Note that the integer si can be no smallerthan minfci;j j 1 � j � dig, because some child of Pi must begin its gap-free transmission one step before Pi begins its gap-free relaying. si maybe larger than this lower bound because of the requirement that messagetransmission be gap free.With this time-line in mind, Pi computes its certi�ed lag time in four steps, asfollows.1. Pi adopts the preliminary certi�ed lag time c0i;0 =def di + 1; this acknowl-edges the fact that Pi cannot begin transmitting its message, Mi, until it hasdispatched a transmit-message order to each of its children.2. Pi \adjusts" each of its children's certi�ed lag times, amending the lag timeof Pi;j , where 1 � j � di, to c0i;j =def di + ci;j; this acknowledges the fact thatPi cannot begin relaying its children's message streams until it has dispatcheda transmit-message order to each of its children.3. Pi sorts the certi�ed lag times fci;j j 1 � j � dig of its children, therebyobtaining a permutation � of the set f1; 2; : : : ; dig which orders the children ofPi in increasing order of their certi�ed lag times. (Pi will use the permutation �3There is an implicit inductive assumption here that si has been assigned a feasible valueby Pi's parent. 23

now, in computing its certi�ed lag time, and later, in computing the transmit-message times for its children.)4. Finally, Pi computes its certi�ed lag time, using a geometrical model. Vi-sualize the nonnegative x-axis, with the following di + 1 movable line segmentsXi;j, where 0 � j � di.� Xi;0 is a length-Li segment whose left endpoint can be placed anywhereat or to the right of point c0i;0 = di + 1.� For 1 � j � di, Xi;j is a length-ni;j segment whose left endpoint can beplaced anywhere at or to the right of point c0i;j = di + ci;j.The intended interpretation is that the x-axis is the time axis, and each linesegment represents the time interval during which the corresponding messagestream is being transmitted by PE Pi. Speci�cally, line segment Xi;0 representsthe length-Li time interval during which Pi transmits messageMi; each otherline segment Xi;j, for 1 � j � di, represents the length-ni;j time interval duringwhich Pi relays the message stream it receives from its jth child Pi;j. Therestrictions on the placements of the line segments are compatible with thisinterpretation: any line segment can be moved to the right, representing adelay in the transmission time of the corresponding message stream; no linesegment can be moved to the left of its indicated limit (the points c0i;k), for sucha move would represent Pi's transmitting the corresponding message streambefore the stream is available to it.Pi now computes its certi�ed lag time by shifting the line segments Xi;kalong the x-axis | moving segments rightward at will, but never moving anysegment Xi;k so that its left endpoint goes to the left of point c0i;k | with thegoal of combining all di segments (by concatenation) into a single line segment oflength ni, whose left endpoint is as small, i.e., as far to the left, as possible; callthis combined line segment X?i . The left endpoint of X?i is Pi's sought certi�edlag time ci. Straightforward reasoning allows us to compute ci explicitly:ci = di + 1 +max(0; ci;�(1) � Li) + diXj=2max(0; ci;�(j) � ci;�(j�1) � ni;�(j�1)):Remark 4. (a) Combining the di + 1 line segments into a single line segmentX?i represents scheduling a gap-free transmission by Pi of all messages originat-ing in its subtree.(b) Placing the line segment X?i as far to the left as possible (subject to theconstraints of the points c0i;k) represents an attempt to schedule Pi's transmis-sion as early as possible.(c) If we denote by c?i;k the left endpoint of line segment Xi;k within line seg-ment X?i , then the increasing sequence of values of the endpoints c?i;k representsa schedule for the gap-free transmission of the (combined) message streams ofPi's children. 24

To clarify the connection between moving line segments and scheduling mes-sages, let us focus on just two segments: for i = 1; 2, say that line segment Xihas length ni and left constraint c0i. Say, moreover, that c01 � c02. Three casesarise.1. If c02 = n1, then both segments X1 and X2 can be positioned in their left-most legal positions (namely, c01 and c02, respectively) and just juxtaposedto form segment X?. In this situation, the PEs associated with X1 andX2 can both honor their certi�ed lag times.2. If c02 < n1, then segment X1 can be positioned in its leftmost possibleposition (namely, c01), but segment X2 must be shifted right n1� c02 posi-tions before being juxtaposed with segment X1 in order to form segmentX?. This corresponds to having the PE associated with time interval X2delay its message transmission for n1� c02 time units so as not to interferewith the transmission by the PE associated with interval X1.3. If c02 > n1, then segment X2 can be positioned in its leftmost possibleposition (namely, c02), but segment X1 must be shifted right c02 �n1 posi-tions before being juxtaposed with segment X2 in order to form segmentX?. This corresponds to having the PE associated with time interval X1delay its message transmission for c02 � n1 time units so that the �naltransmission of messages will be free of gaps.Remark 5. Because line segments start out in their leftmost feasible positions,one can combine them by moving line segments to the right but never to the left,i.e., by delaying message streams but never advancing one. This ensures thata single pass over the line segments, in decreasing order of their indices underthe permutation �, su�ces to produce line segment X?i , hence to compute ci.The Message Scheduling Protocol. After PE P0 receives a transmissioncerti�cate from its last (i.e., d0th) child, it spends the next d0 steps sendingtransmit-message orders to its children. Each order is a one-it message ofthe form transmit after s stepswhere the transmission time s is a positive integer; the intended interpretation isthat, if a PE P receives the indicated order at time t, then it begins transmittingits (gap-free) message stream at time t+s; if P is a nonleaf PE, then it will beginthis message transmission only after it has relayed to its children versions ofthe order with appropriately modi�ed transmission times.4 The issue we mustfocus on is how a PE (P0 or any other nonleaf PE) computes its children'stransmission times. This computation can be described more uniformly if weimagine that P0 has received the (imaginary) order transmit after 0 steps.Now we can say, uniformly, that nonleaf PE Pi receives the order transmit4When P computed its certi�ed lag time, it included time for relaying orders to its children;hence, we can safely assume that s has been chosen large enough to allow time for this relaying.25

after si steps at time ti, and we can ask, uniformly, how Pi computes thetransmission times fsi;j j 1 � j � dig for its children fPi;j j 1 � j � dig.Computing Transmission Times. Say that Pi receives its transmission timesi from its parent at time ti. Earlier, when Pi computed its certi�ed lag time ci,it created a tentative transmission schedule for its children (and itself), whichis embodied in the di + 1 start times fc?i;j j 0 � j � dig. (Recall that thesewere computed while constructing the line segment X?i .) Indeed, ci is just theminimum of these values. The transmission time si can be viewed as just anadjustment to this tentative schedule, i.e., as a mandate to adjust the scheduleby delaying it uniformly by si � ci time units (equivalently, by shifting X?i tothe right si� ci units). Therefore, Pi assigns to each of its children Pi;j, where1 � j � di, the transmission time si;j = c?i;j + si � ci and sends it the ordertransmit after si;j steps .After dispatching all these orders, Pi proceeds to transmit, according to theschedule implicit in the set fsig[fsi;j j 1 � j � dig, a gap-free stream containingall the messages in its subtree.Timing Analysis. The time required by AlgorithmTransmission-Certi�cationis divided into four packets.1. Broadcasting the synchronization token (Phase 1) and distributing thetransmit-message orders (Phase 3) each takes time essentially equal tothe time B for a root-to-leaf broadcast in the tree.2. The time C for collecting transmission certi�cates (Phase 2) is dominatedby the accumulated time for sorting certi�ed lag times at each PE alongthe leaf-to-root paths of the tree. This time is estimated as follows. Assigneach leaf-PE the weight 0 and each nonleaf-PE having d children theweight d log2 d. Assign each root-to-leaf path a weight that is the sumof the weights of its nodes. Then C is a small multiple of the maximumweight of a root-to-leaf path.3. Since message transmission (Phase 4) is gap-free, it requires time M =defPi Li.Easily, any gathering algorithm must take time at least max(B;M); in theworst case, this bound increases to B +M . To wit, synchronization must takeat least B steps, and message transmission must take at least M steps, yieldingthe universal lower bound; if there is only one message in the sequence, and thatmessage resides at a PE at maximum distance from P0, then these activitiesdo not overlap. Summarizing this cost assessment, we arrive at the followingreckoning.Theorem 3 The time for gathering on a tree using Algorithm Transmission-Certi�cation is at most 2B+C+M . The time for gathering on a tree using anyalgorithm is at least max(B;M); in the worst case, this lower bound increasesto time B +M . 26

Figure 4 illustrates the gathering operation of Figure 2 performed usingtransmission certi�cates, rather than shoulder tapping.As Figures 2 and 4 indicate, gathering on an n-node ring via transmissioncerti�cates is materially slower (by roughly 2n steps) than gathering on thepath via shoulder-tapping, the extra time being accounted for by the explicitsynchronization protocol. Although a portion of the synchronization time isrecovered by the elimination of gaps in the transmission of the message stream,one would normally choose to use shoulder-taps rather than transmission cer-ti�cates when gathering on a path.4 Algorithms for a Multiport ModelWe discuss only briey how one can extend the gathering algorithms of Section3.2 to a multiport communication regimen. Roughly speaking, one can proceedat two levels.Parallelizing Synchronization. Most simply, in a network with a multiportcommunication capability, one can parallelize the three tasks in our algorithmthat are dedicated to synchronization.Parallelizing the broadcast of the synchronization token requires no modi�-cation of the algorithm.In contrast, parallelizing the distribution of the transmit-message ordersmay be tricky. Speci�cally, each such order has a transmission time associatedwith it, and each child of a given PE must receive a unique such time in order toinsure collision-free message transmission in the absence of message bu�ers. Itis not clear that one can save much time by parallelizing the transmission of thetransmit-message orders if the computation of the associated transmissiontimes must be sequential.Finally, parallelizing the computation of certi�cates is straightforward and,in fact, simpli�es the algorithm by obviating the protocol whereby a PE orches-trates the receipt of certi�cates from its children.Parallelizing Message Transmission. We discuss this topic in the contextof scattering and gathering in arbitrary networks, via the use of spanning trees.There are two compelling techniques for parallelizing the transmission of mes-sages in a network with a multiport communication capability. Both techniquesinvolve \covering" the network with trees which then cooperate in transmittingthe messages, using versions of the algorithms presented in previous sections.The �rst technique advocates \covering" the network with mutually edge-disjoint trees rooted at PE P0, which collectively, though not necessarily in-dividually, span the host network. Figure 5 depicts two such \coverings:" inFigure 5(a) two trees jointly span the 4� 4 mesh; in Figure 5(b) two trees eachspan the 4� 4 toroidal mesh (i.e., the mesh with \wraparound" edges). Thesedisjoint trees are then used just as described in previous sections. The only27

substantive change in the framework we have been discussing is the role thatPEs play relative to each tree, if they belong to more than one. Most simply,each PE will be preallocated to one tree in which it will participate actively;the PE will act solely as a conduit in all other trees. Details can readily be�lled in. One attractive feature of this technique is the availability of researchin \covering" certain networks with edge-disjoint trees (though the requirementthat P0 be the root of all the trees seems to complicate the problem materially);for instance, one readily shows that the mesh and de Bruijn networks can beso \covered," as can the hypercube [5, 6].The second technique modi�es the �rst by dropping the requirement thatthe \covering" trees be mutually edge-disjoint. Adapting our algorithms tosuch a setting may be quite challenging, as one must schedule the tra�c on theshared edges.References[1] M. Baumslag and F.S. Annexstein (1991): A uni�ed approach to globalpermutation routing on parallel networks. Math. Syst. Th. 24, 233-251.[2] S.N. Bhatt, G. Bilardi, G. Pucci, A. Ranade, A.L. Rosenberg, E.J. Schwabe(1992): General message passing in rings of processors (tentative title). Inpreparation.[3] W.J. Dally and C.L. Seitz (1987): Deadlock-free message routing in mul-tiprocessor interconnection networks. IEEE Trans. Comp., C-36, 547-553.[4] P. Fraigniaud, S. Miguet, Y. Robert (1990): Complexity of scattering ona ring of processors. Parallel Computing 13, 377-383.[5] D.S. Greenberg (1991): Full Utilization of Communication Resources.Ph.D. Thesis, Yale Univ.[6] D.S. Greenberg and S.N. Bhatt (1991): Routing multiple paths in hyper-cubes. Math. Syst. Th. 24, 295-321.[7] J. Hromkovic, C.D. Jeschke, B. Monien (1990): Optimal algorithms for dis-semination of information in some interconnection networks. MathematicalFoundations of Computer Science '90. Lecture Notes in Computer Science452, Springer-Verlag, N.Y.[8] S.L. Johnsson and C.-T. Ho (1989): Optimal broadcasting and personal-ized communication in hypercubes. IEEE Trans. Comp. 38, 1249-1268.[9] G. Kortsarz and D. Peleg (1992): Approximation algorithms for minimumtime broadcast. Theory of Computing and Systems (ISTCS '92). LectureNotes in Computer Science 601, Springer-Verlag, N.Y., pp. 67-78.[10] M. Kunde and T. Tensi (1989): Multi-packet routing on mesh-connectedarrays. 1st ACM Symp. on Parallel Algorithms and Architectures, 336-343.28

[11] J.-J. Li (1991): Multiscattering on a recon�gurable network of processors.Tech. Rpt. 91-03, L.I.P., Ecole Normale Sup�erieure de Lyon.[12] D. Nassimi and S. Sahni (1981): Data broadcasting in SIMD computers.IEEE Trans. Comp., C-30, 101-107.[13] G.D. Pifarr�e, L. Gravano, S.A. Felperin, J.L.C. Sanz (1991): Fully-adaptiveminimal deadlock-free packet routing in hypercubes, meshes, and othernetworks. 3rd ACM Symp. on Parallel Algorithms and Architectures, 278-290.[14] Y. Saad and M.H. Schultz (1989): Data communication in parallel archi-tectures. Parallel Computing 11, 131-150.[15] Q.F. Stout and B. Wagar (1990): Intensive hypercube communication,I: Prearranged communication in link-bound machines. J. Parallel Distr.Comput. 10, 167-181.[16] D.M. Topkis (1989): All-to-all broadcast by ooding in communicationnetworks. IEEE Trans. Comp. 38, 1330-1333.[17] L.G. Valiant and G.J. Brebner (1981): Universal schemes for parallel com-putation. 13th ACM Symp. on Theory of Computing, 263-277.

29

Figures and CaptionsFigure 1: Illustrating the e�ect of message order on the time for scattering ona path.Figure 2: Gathering via shoulder-tapping on a 6-node path: a \typical" example.Figure 3: Gathering via shoulder-tapping on a 6-node path: a \pathological"example.Figure 4: Gathering via transmission certi�cates on a 6-node path.Figure 5: (a) The 4 � 4 mesh, covered by two jointly spanning edge-disjointtrees. (b) The 4 � 4 toroidal mesh covered by two edge-disjoint spanning trees.The trees' edges are represented, respectively, by $ and by ,.

30

Legend:Processors: P0;P1;P2;P3;P4;P5Message Lengths: L1 = 0, L2 = 0, L3 = 0, L4 = 4, L5 = 3Message Notation: Mi = mi;1mi;2 � � �mi;Li(a) Network tra�c when M5 precedes M4:Step P0 P1 P2 P3 P4 P50 m5;11 m5;2 m5;12 m5;3 m5;2 m5;13 m4;1 m5;3 m5;2 m5;14 m4;2 m4;1 m5;3 m5;2 m5;15 m4;3 m4;2 m4;1 m5;3 m5;2 m5;16 m4;4 m4;3 m4;2 m4;1 m5;3 m5;27 m4;4 m4;3 m4;2 m4;1 m5;38 m4;4 m4;3 m4;29 m4;4 m4;310 m4;4(b) Network tra�c when M4 precedes M5:Step P0 P1 P2 P3 P4 P50 m4;11 m4:2 m4;12 m4;3 m4;2 m4;13 m4;4 m4;3 m4;2 m4;14 m5;1 m4;4 m4;3 m4;2 m4;15 m5;2 m5;1 m4;4 m4;3 m4;26 m5;3 m5;2 m5;1 m4;4 m4;37 m5;3 m5;2 m5;1 m4;48 m5;3 m5;2 m5;19 m5;3 m5;2 m5;110 m5;3 m5;211 m5;3Figure 1: Illustrating the e�ect of message order on the time for scattering ona path.
31

Legend:Processors: P0;P1;P2;P3;P4;P5Message Lengths: L1 = 2, L2 = 3, L3 = 0, L4 = 2, L5 = 1Message Notation: Mi = mi;1mi;2 � � �mi;Litransmit after � si steps order: (si)Network Tra�c:Step P0 P1 P2 P3 P4 P51 (1)2 m1;1 (2)3 m1;1 m1;2 m2;1 (3)4 m1;2 m2;1 m2;2 (1)5 m2;1 m2;2 m2;3 m4;1 (2)6 m2;2 m2;3 m4;1 m4;2 m5;17 m2;3 m4;1 m4;2 m5;18 m4;1 m4;2 m5;19 m4;1 m4;2 m5;110 m4;2 m5;111 m5;1Figure 2: Gathering via shoulder-tapping on a 6-node path: a \typical" example.

32

Legend:Processors: P0;P1;P2;P3;P4;P5Message Lengths: L1 = 9, L2 = 0, L3 = 1, L4 = 0, L5 = 1Message Notation: Mi = mi;1mi;2 � � �mi;Litransmit after � si steps order: (si)Network Tra�c:Step P0 P1 P2 P3 P4 P51 (1)2 m1;1 (9)3 m1;1 m1;2 (7)4 m1;2 m1;3 (6)5 m1;3 m1;4 (4)6 m1;4 m1;57 m1;5 m1;68 m1;6 m1;7 m5;19 m1;7 m1;8 m3;1 m5;110 m1;8 m1;9 m3;1 m5;111 m1;9 m3;1 m5;112 m3;1 m5;113 m5;1Figure 3: Gathering via shoulder-tapping on a 6-node path: a \pathological"example.

33

Legend:Processors: P0;P1;P2;P3;P4;P5Message Lengths: L1 = 2, L2 = 3, L3 = 0, L4 = 2, L5 = 1Message Notation: Mi = mi;1mi;2 � � �mi;LiSynchronization Token: [?]Certi�cate Notation: < ci >transmit after si steps order: (si)Network Tra�c:Step P0 P1 P2 P3 P4 P51 [?]2 [?]3 [?]4 [?]5 [?]6 < 1 >7 < 2 >8 < 4 >9 < 3 >10 < 3 >11 (3)12 (3)13 m1;1 (4)14 m1;1 m1;2 m2;1 (2)15 m1;2 m2;1 m2;2 m4;1 (2)16 m2;1 m2;2 m2;3 m4;1 m4;2 m5;117 m2;2 m2;3 m4;1 m4;2 m5;118 m2;3 m4;1 m4;2 m5;119 m4;1 m4;2 m5;120 m4;2 m5;121 m5;1Figure 4: Gathering via transmission certi�cates on a 6-node path.
34

P0 $ P1 $ P2 $ P3m l l lP4 , P5 , P6 , P7m l l lP8 , P9 , P10 , P11m l l lP12 , P13 , P14 , P15
P0 $ P1 $ P2 $ P3m l l lP4 , P5 , P6 , P7 $m l l lP8 , P9 , P10 , P11 $m l l lP12 , P13 , P14 , P15 $m m m(a) (b)Figure 5: (a) The 4 � 4 mesh, covered by two jointly spanning edge-disjointtrees. (b) The 4 � 4 toroidal mesh covered by two edge-disjoint spanning trees.The trees' edges are represented, respectively, by $ and by ,.

35

