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Main features of our solver Regions

mFrontal solvers are direct methods since they = Regions can be both elementary and composite.
first transform the system using Gaussian  The former are obtained from the finite element
elimination or LU decomposition, then get the  formulation. The latter are unions of two

final solution using forward and backward  componentregions from an assembly phase.
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ok hand ha i
starting from 7 linear systems A'¢lul? = bl of the elements, PN ‘
. . $ Leaves: The assembly phase gets elements
and an index map v.(-) from element-local to global indexes from the FEM formulation

TI. Elimination phase

I, Assembly phase Ib.Swap phase Ic.Copy phas
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Computation properties Assembly tree  Finite element Symbolic data

topology mesh data
e The rows and columns that become fully-summed at each node of the as-

sembly tree are the same at every iteration of the solver for a given mesh.
Therefore, we can compute the related information only once at the beginning
of the simulation.

These data are computed once at the beginning of
the computation, but used at each iteration to perform
the super-assembly phase.

e As a consequence of the previous point, for each region, the position of each For each assembly tree node ¢: hoif3h < oo -

:‘/:rrlei?/ e|rr1] trr:]ee l;)rl]ocks N, C, R, and S is the same at every iteration of the solver £+ dimension of Al (front size) %[t] (k) = 0i(k) = vheie (h):
' - oo otherwise.

e We do not really need to explicitly assemble AlY, rather, we can keep its sub- Sym bo"c I][I::> ny: number of FS variables in A" h ifdh < o0
matrices N, C, R, and S within separate buffers By, Bc Br and Bg, which i | , [£] _ _ .
are obtained directly from the mesh elements for elementary regions, and from qanVSIS Ui (2): .{17 - v_ft} — 11, L n} o 7 () Uf{ﬁk) . Urs(r) (R);
the Schiir complements Al and A" for composite regions. i — variable at position i in Al oo Otherwise.
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Number of elements
Number of elements
e Symbolic data are used to perform the super-assembly phase PMMS is faster than Unifrontal solver, » The multifrontal assembly scheme
e Sub-matrices N, C, R and S of A!Y are directly computed from AX®! and A l=x(®)] but they have the same solving kernel is more efficient
e Sub-matrices are placed directly into buffers Bn, Br, B¢, and Bg to save space and PMMS is faster than both SuperLU and =) The super-assembly phase and the
reduce memory movement operations MUMPS for all significant problem sizes use of BLAS boosts the computation
. Buf_felr tBN reuses as much memory space as possible from the one previously allocated The larger is the problem size, the faster For larger test cases we expect a
to Al is PMMS with respect to the other solvers = bigger performance improvement
e To avoid comparisons inside loops, whenever one of the two source indexes returned _ o _
by functions 4" or 1! yields oo, then the indexed matrix entry returns zero MUMPS and Unifrontal solver exhibit n) They are better tuned but their

larger flop rates than PMMS does algorithm has higher complexity

e To ensure correctness, the fourth loop must be executed last
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