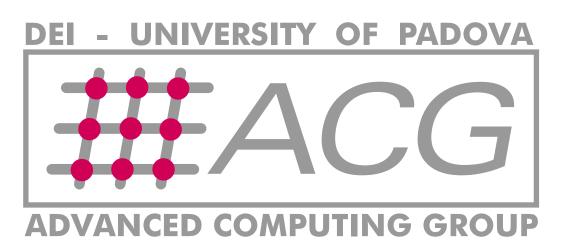


June 6-9, 2004 Krakow, Poland

A Fast Multifrontal Solver for Non-Linear Multi-Physics Problems



[A. Bertoldo, M. Bianco, G. Pucci] {cyberto, bianco1, geppo} @dei.unipd.it

Simulation of porous media under high temperature Physical model Non-linear coupled multi-physics problem

Large non-linear

systems of PDEs

Linearization \checkmark FEM

Mathematical model

7.1595e+05

6.1368e+05 5.1141e+05

4.0913e+05

Main features of our solver

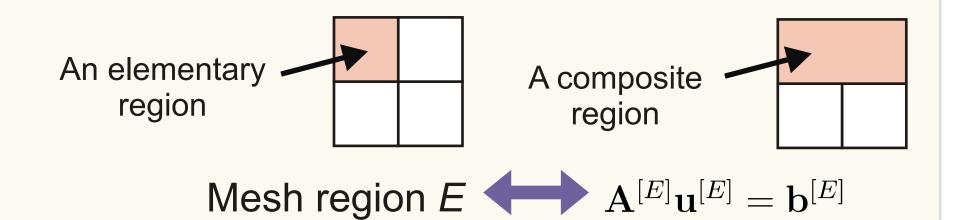
- Frontal solvers are **direct methods** since they first transform the system using Gaussian elimination or LU decomposition, then get the final solution using forward and backward substitution.
- They do not operate on the completely assembled linear system, but rather interleave assembly phases with elimination phases.
- They require low memory space and can exploit efficient dense linear algebra kernels.

Other specific features:

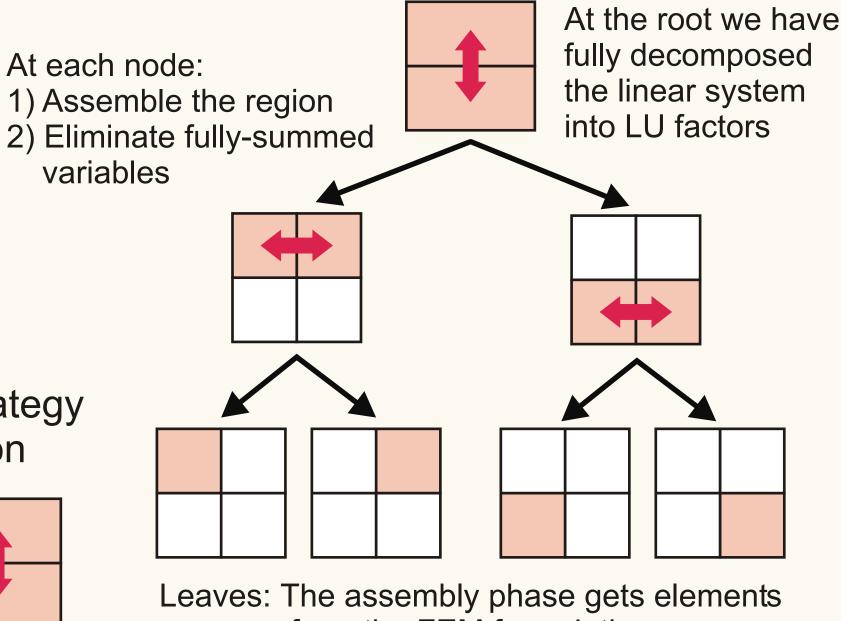
- *** Multifrontal** assembly/elimination strategy
- * **Implicit minimum degree** pivoting
- * Symbolic preprocessing phase

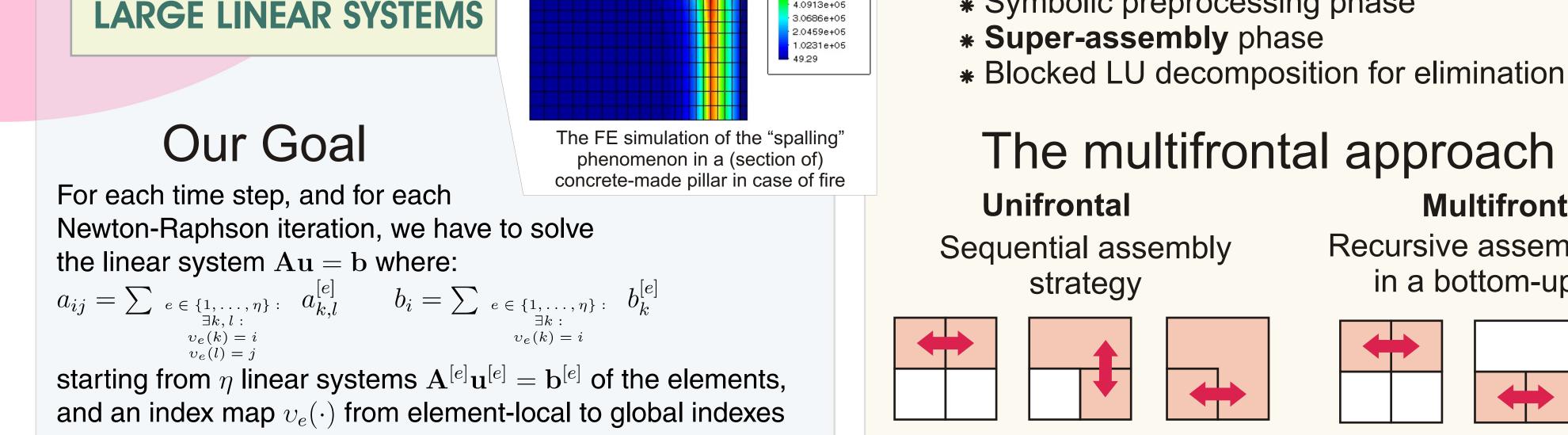
Regions

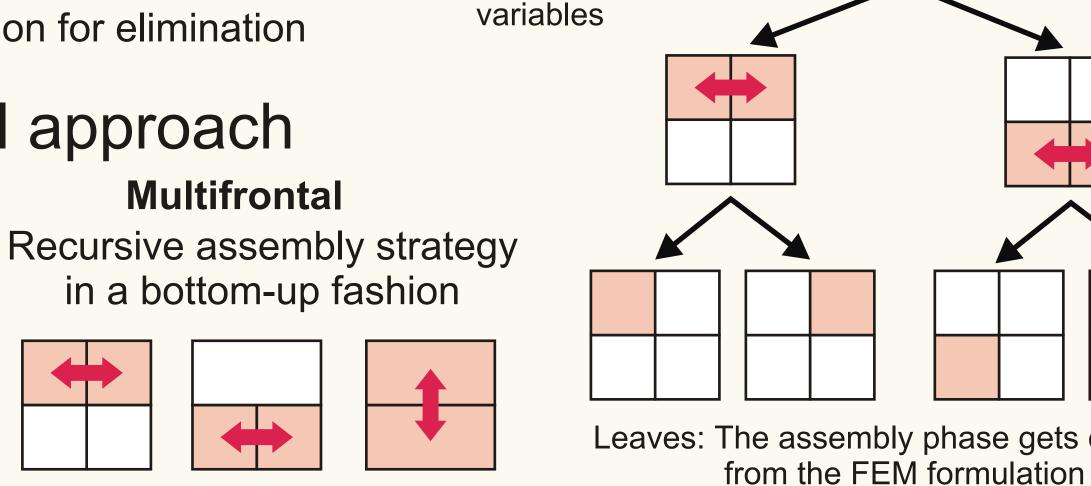
Regions can be both elementary and composite. The former are obtained from the finite element formulation. The latter are unions of two component regions from an assembly phase.



The assembly tree





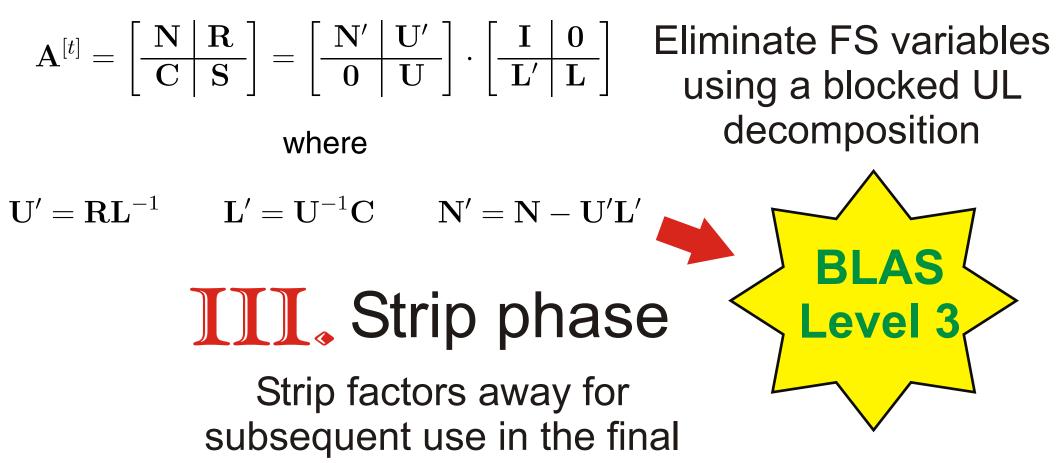


34

Copy FS blocks into

temporary buffers

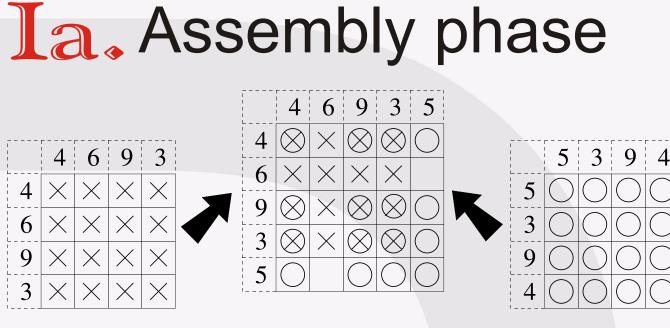
Elimination phase



 $\gamma_l^{[t]}(k) = \langle$

 $\gamma_r^{[t]}(k) = \langle$

backward and forward substitution



Merge the two reduced components into a new composite region $\mathbf{A}^{[t]} = \mathbf{ar{A}}^{[\mathrm{lx}(t)]} \oplus \mathbf{ar{A}}^{[\mathrm{rx}(t)]}$

Pack FS rows and columns at the bottom-right corner of the non-reduced region

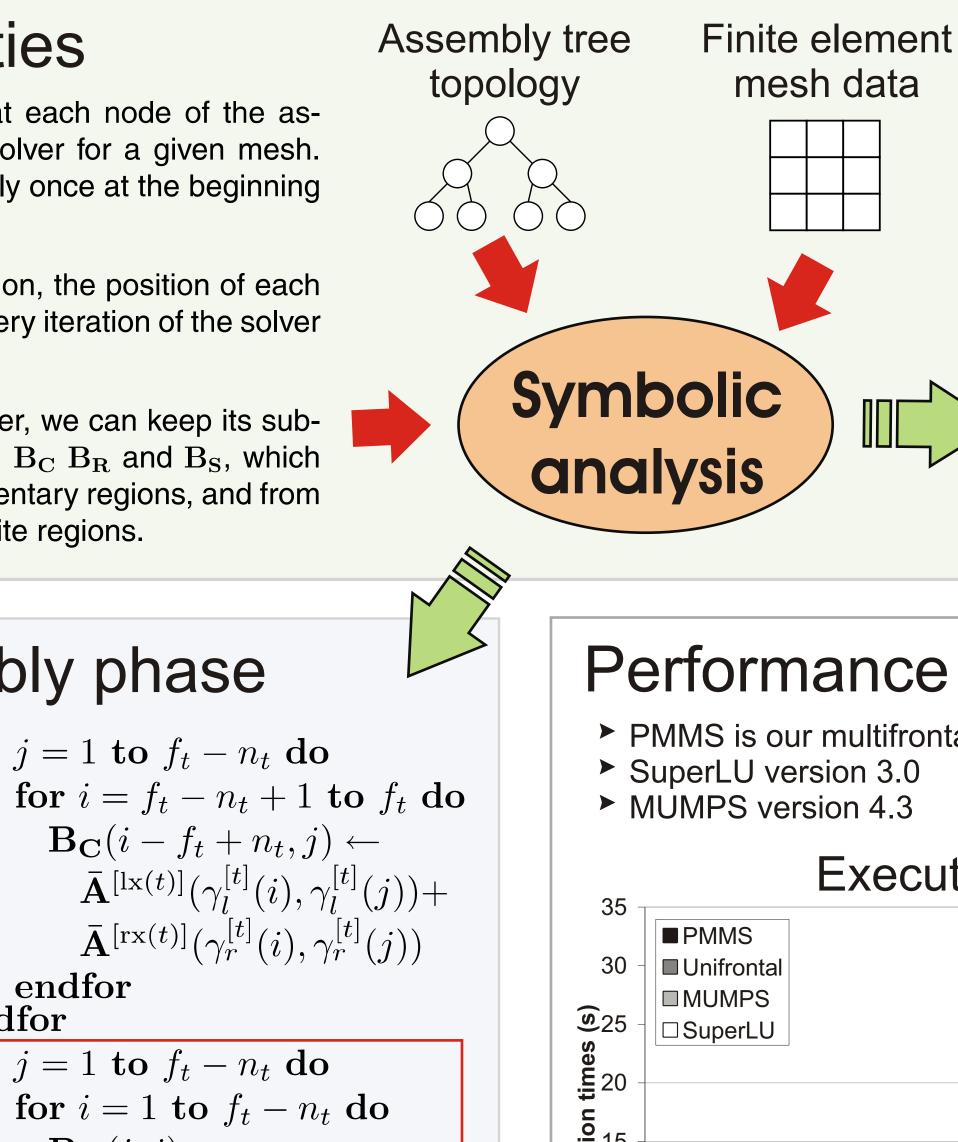
= Super-assembly phase

Computation properties

- The rows and columns that become fully-summed at each node of the assembly tree are the same at every iteration of the solver for a given mesh. Therefore, we can compute the related information only once at the beginning of the simulation.
- As a consequence of the previous point, for each region, the position of each variable in the blocks N, C, R, and S is the same at every iteration of the solver for a given mesh.
- We do not really need to explicitly assemble $A^{[t]}$, rather, we can keep its submatrices N, C, R, and S within separate buffers B_N, B_C B_R and B_S, which are obtained directly from the mesh elements for elementary regions, and from the Schür complements $\bar{\mathbf{A}}^{[\mathrm{rx}(t)]}$ and $\bar{\mathbf{A}}^{[\mathrm{lx}(r)]}$ for composite regions.

Algorithm of super-assembly phase

```
for j = f_t - n_t + 1 to f_t do
                                                                           for j = 1 to f_t - n_t do
       for i = f_t - n_t + 1 to f_t do
          \mathbf{B}_{\mathbf{S}}(i - f_t + n_t, j - f_t + n_t) \leftarrow
                                                                                     \mathbf{B}_{\mathbf{C}}(i - f_t + n_t, j) \leftarrow
              \bar{\mathbf{A}}^{[\mathrm{lx}(t)]}(\gamma_{l}^{[t]}(i),\gamma_{l}^{[t]}(j)) +
             ar{\mathbf{A}}^{[\mathrm{rx}(t)]}(\gamma_r^{[t]}(i),\gamma_r^{[t]}(j))
       endfor
                                                                                   endfor
endfor
                                                                           endfor
                                                                           for j = 1 to f_t - n_t do
for j = f_t - n_t + 1 to f_t do
       for i = 1 to f_t - n_t do
                                                                                   for i = 1 to f_t - n_t do
          \mathbf{B}_{\mathbf{R}}(i, j - f_t + n_t) \leftarrow
                                                                                      \mathbf{B}_{\mathbf{N}}(i,j) \leftarrow
              \bar{\mathbf{A}}^{[\text{lx}(t)]}(\gamma_{l}^{[t]}(i),\gamma_{l}^{[t]}(j)) +
```



Symbolic data

These data are computed once at the beginning of the computation, but used at each iteration to perform the super-assembly phase.

For each assembly tree node *t*:

 f_t : dimension of $\mathbf{A}^{[t]}$ (front size)

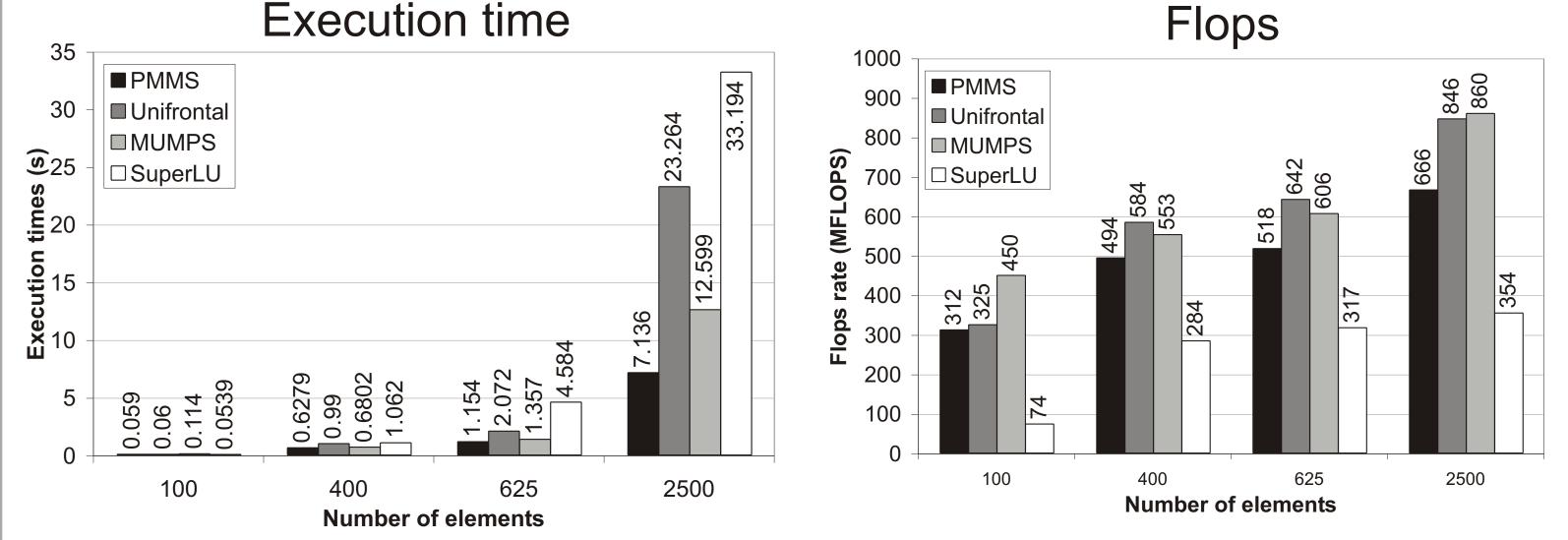
 n_t : number of FS variables in $\mathbf{A}^{[t]}$

 $v_t(i): \{1, \ldots, f_t\} \to \{1, \ldots, n\}$ $i \mapsto \text{variable at position } i \text{ in } \mathbf{A}^{[t]}$

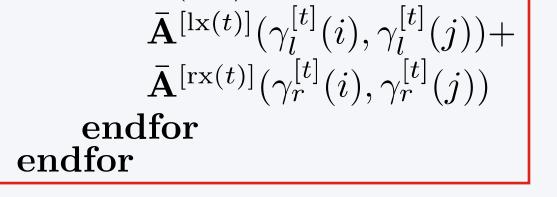
if $\exists h < \infty$: $\upsilon_t(k) = \upsilon_{\mathrm{lx}(t)}(h);$ ∞ otherwise. if $\exists h < \infty$: h $\upsilon_t(k) = \upsilon_{\mathrm{rx}(t)}(h);$

 ∞ otherwise.

Performance Results ► IBM Power3@375MHz with 4 GB mem HPM Toolkit for performance measurements PMMS is our multifrontal solver ► FE square meshes with 100, 400, 625, and 2500 square 8-node elements



 $\bar{\mathbf{A}}^{[\mathrm{rx}(t)]}(\gamma_r^{[t]}(i),\gamma_r^{[t]}(j))$ endfor endfor



- Symbolic data are used to perform the super-assembly phase
- Sub-matrices N, C, R and S of $A^{[t]}$ are directly computed from $\bar{A}^{[lx(t)]}$ and $\bar{A}^{[rx(t)]}$
- Sub-matrices are placed directly into buffers B_N , B_R , B_C , and B_S to save space and reduce memory movement operations
- Buffer B_N reuses as much memory space as possible from the one previously allocated to $ar{\mathbf{A}}^{[\mathrm{lx}(t)]}$
- To avoid comparisons inside loops, whenever one of the two source indexes returned by functions $\gamma_{l}^{[t]}$ or $\gamma_{r}^{[t]}$ yields ∞ , then the indexed matrix entry returns zero
- To ensure correctness, the fourth loop must be executed last

PMMS is faster than Unifrontal solver, but they have the same solving kernel

- PMMS is faster than both SuperLU and MUMPS for all significant problem sizes
- The larger is the problem size, the faster is PMMS with respect to the other solvers
 - MUMPS and Unifrontal solver exhibit larger flop rates than PMMS does

The multifrontal assembly scheme is more efficient

The super-assembly phase and the use of BLAS boosts the computation

For larger test cases we expect a bigger performance improvement

They are better tuned but their algorithm has higher complexity

MIUR Center for Science and Application of Advanced Computing Paradigms at the University of Padova, Italy

Department of Information Engineering University of Padova, Italy

International Centre for Mechanical Sciences, Udine, Italy

l'Energia e l'Ambiente, Roma, Italy