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Abstract

We study the issue of performance prediction on the SGI-
Power Challenge, a typical SMP. On such a platform, the
cost of memory accesses depends on their locality and on
contention among processors. By running a carefully de-
signed suite of microbenchmarks, we provide quantitative
evidence that memory hierarchy effects impact performance
far more substantially than other phenomena related to con-
tention. We also fit three cost functions based on variants of
the BSP model, which do not account for the hierarchy, and
a newly defined function F, expressed in terms of hardware
counters, which captures both memory hierarchy and con-
tention effects. We test the accuracy of all the functions on
both synthetic and application benchmarks showing that,
unlike the other functions, F achieves an excellent level of
accuracy in all cases. Although hardware counters are only
available at run time, we give evidence that function F can
still be employed as a prediction tool by extrapolating val-
ues of the counters from pilot runs on small input sizes.

1 Introduction

Despite the vast body of ingenious parallel algorith-
mic techniques developed over the last two decades, the
widespread use of parallel computers is still hampered by
the difficulty of exploiting their massive computational po-
tential to an extent that warrants their large cost. Indeed, it
has often been noted that theoretically efficient algorithms�This research was supported in part by NATO CRG 961243
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CCR970010N. The work at Texas A&M was also supported by the NSF
CAREER award CCR-9624315 and grants IRI-9619850, ACI-9872126,
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exhibit poor performance when implemented on real ma-
chines. Very often, this is due to the inadequacies of the
cost functions employed to predict performance, which do
not properly account – or totally disregard – aspects of the
machine that have a major impact on performance.

Although much progress has been made, the develop-
ment of adequate tools for predicting actual performance
on real machines remains one of the most challenging prob-
lems in parallel processing. We believe that further progress
towards this goal requires a tighter coupling of cost models
to architectures than has been previously employed.

The issue of predictivity is especially challenging for
the class ofSymmetric MultiProcessors (SMPs). These
widely spread parallel platforms are built upon power-
ful off-the-shelf microprocessors interacting through a dis-
tributed shared-memory via a communication medium, typ-
ically a bus. In such a system, the cost of an access to a
shared datum may vary dramatically: from a few cycles if
the data is in first-level cache (L1), to tens of cycles for
second-level (L2) cache, to hundreds of cycles if the data
must be accessed from main memory. The cost may be
even greater in the presence of high contention among the
processors for the bus or memory banks, or of (false) data
sharing.

Our Contribution In this paper, we study the relative im-
pact on performance of hierarchy and contention phenom-
ena on an SGI-Power Challenge (SGI-PC), which is a typ-
ical representative of the class of SMPs. More specifically,
we present a suite of synthetic microbenchmarks which ex-
ercise different usages of the hierarchy under a set of con-
trolled scenarios obtained by varying the level and type of
contention among the processors. Based on the access times
measured through the microbenchmarks, we infer parame-
ter values for a set of linear cost functions inspired by some
variants of the popularBulk-Synchronous Parallel(BSP)
model [14], and of a newly defined function which relies on
the MIPS R10000 hardware counters describing the mem-
ory hierarchy usage of a program. While the BSP-derived



functions account for bus and bank contention and for data
sharing but disregard hierarchy effects, the counter-based
function tries to encompass all of these phenomena.

We test the accuracy of the cost functions on the whole
set of microbenchmarks, and on application benchmarks,
namely, the NAS suite of parallel benchmarks and three
sorting algorithms. Our tests show that the function based
on hardware counters, which accounts for the crucial im-
pact of the memory hierarchy on performance, achieves an
excellent level of accuracy in all cases, with times less than
a factor 2 away from actual times on average, and less than
a factor 3 in the worst case. In contrast, the cost functions
inspired by the BSP-like models, which disregard hierarchy
effects, provide performance predictions that can be more
than two orders of magnitude away from actual times. Our
study provides quantitative evidence that the memory hi-
erarchy is the primary factor that affects performance on
SMPs, while the impact of the other phenomena, although
noticeable, is considerably less crucial.

It has to be remarked that while the BSP-like cost func-
tions are easily computeda priori by code inspection,
the counter-based function involves quantities (such as the
number of accesses at the various levels of the memory hi-
erarchy) that are easily computable only at run-time. How-
ever, we claim that the latter function can still be used as a
prediction tool whenever accurate guesses of such quanti-
ties can be inferred from the code or extrapolated from pilot
runs on small input sizes. In order to validate our claim, we
provide examples of performance prediction for large sort-
ing instances based on extrapolation of the relevant coun-
ters.

The counter-based function may also prove useful in the
design of software systems, compilers, or large applica-
tions, to profile the memory hierarchy usage of critical por-
tions of their code.

Previous Work The issue of performance prediction of
parallel software has received considerable attention over
the last decade, often within the context of the more gen-
eral quest for a bridging model of parallel computation,
i.e., one that balances among conflicting requirements such
as simplicity, accuracy and generality. One of the most
popular attempts at defining a bridging model has been
made by Valiant [14] with the BSP model. BSP is a bulk-
synchronous model where computation is organized as a se-
quence ofsuperstepsseparated by barrier synchronizations,
and processors operate asynchronously within each super-
step. The large body of work this model has generated has
demonstrated its suitability for the development of portable
software (see e.g., [9]).

Although the original BSP is meant to model message-
passing architectures, two BSP variants specifically tailored
to shared-memory systems have been recently developed,

namely, theQueuing Shared Memory(QSM) [8] and the(d; x)-BSP [4], which both embody some aspects of mem-
ory contention. In particular, QSM’s cost function includes
a parameter that accounts for the maximum number of con-
current accesses to the same memory location, while(d; x)-
BSP’s cost function accounts for memory bank contention
(parametersd andx represent, respectively, bank delay and
banks to processors ratio). The set of BSP-derived cost
functions considered in this paper include those of QSM
and (d; x)-BSP, and a third function, inspired by theEx-
tended BSP(EBSP) model [10], which extends BSP to ac-
count for unbalanced communication. Although EBSP was
meant to model message-passing systems, we obtain the
cost function by reinterpreting its original definition for a
shared-memory machine.

In [1] the Parallel Memory Hierarchy(PMH) model is
introduced which uses a single mechanism to model both
interprocessor communication and memory hierarchy in a
parallel computer through a tree-structured view of the ma-
chine’s organization. Although the model encompasses pa-
rameters which characterize the performance at each level
of the tree, it does not provide a global cost function that
can be used to predict program performance.

Finally, hardware counters are nowadays extensively
used to profile sequential and parallel code. Examples of
such use of the counters on the SGI-PC can be found in
[16].

2 Hardware and Software Platforms

The SGI-PC configuration we used consists of eight
R10000 194 MHz processors, each provided with a 32 KB
on-chip instruction cache, a 32 KB on-chip level-1 (L1) data
cache, and a 1 MB off-chip unified (instructions and data)
level-2 (L2) cache. Cache line size is 32B (8 words) for L1
and 128B (32 words) for L2. Both L1 and L2 are two-way
set associative. An 8-way interleaved, 2 GB main mem-
ory distributed across 8 banks is accessed by the processors
through a 1.2GB/s shared-bus using a cache-coherent pro-
tocol [12].

All our experiments on the SGI-PC have been coded ac-
cording to an SPMD bulk-synchronous programming style
[14, 8], where all processors execute the same program con-
sisting of a sequence ofsuperstepsseparated by barriers. In
a superstep, each processor performs a number ofmemory
accesses(load or store instructions) on words which
may reside either in the processor’s L1/L2 caches or in main
memory, and a number oflocal operationson data held in
registers. Barriers have been implemented using the SGI
nativem sync() primitive. In this work, we are mainly
interested in predicting the cost of memory accesses and we
will not deal with local operations.

The running time of each superstep was measured by
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mapping the CPU cycle counter to memory (syssgi()
andmmap()), reading that value as each superstep started
and ended, and using a scaling factor (syssgi() pro-
vided) to convert clock cycles to microseconds. Also, in
each superstep we monitored loads/stores issued, and L1/L2
cache misses/writebacks at each individual processor by
means of some hardware counters provided by the R10000
design [13]. We verified experimentally that the counters
are non-intrusive. (The employed counters are described in
Section 4.2.)

3 Experimental Testbed

In this section, we describe a suite of simple microbench-
marks whose purpose is to measure the cost of accessing
the SGI-PC memory system under a variety of scenarios.
The suite was designed with the intention of ascertaining
the relative impact of the following key phenomena on ac-
cess time:

Locality: the level of the hierarchy where the accesses take
place (i.e., either L1/L2 caches or main memory);

Bus Contention: the volume of bus traffic generated by the
accesses;

Bank Contention: the amount of accesses directed to the
same memory bank;

Coherence: the different coherency activities triggered by
the accesses.

In the generic microbenchmark, a number ofactive pro-
cessorsperform a sequence of accesses (either aload or
a store sequence) to (possibly coincident) sub-arrays of
a large shared array. The sequence of accesses is iterated
several times to filter out noise in the measurements and
cold-start effects. In order to exercise different combina-
tions of the four phenomena illustrated above, we instan-
tiate this generic microbenchmark by varying the number
of active processors, which affects bus contention, and by
varying access stride, size and base address of the sub-
arrays, which affects locality, bank contention and coher-
ence. More specifically, in a microbenchmark, the stride,
the sub-array size, and the number of accesses for each ac-
tive processor are the same, while suitable base addresses
are chosen so that processors work either exclusively on dis-
tinct sub-arrays or concurrently on the same sub-array. Fi-
nally, all the accesses are evenly distributed among a num-
ber oftarget banks, so that each target bank serves the same
number of requests.

We designed microbenchmarks with 1, 2, 4, 8 proces-
sors active, strides ranging from 1 to 256 words, three
subarray sizes, namely,size(L1), size(L2), and

2�size(L2), and 0, 1, 2, 4, 8 target banks. All combi-
nations of the above parameters have been exercised once
for loads and once for stores, and by having processors
operate once exclusively and once concurrently on sub-
arrays. We refer to a microbenchmark using the mnemonic
code px.sty.szw.bz, wherex denotes the number of ac-
tive processors,y the stride,w the subarray size (w = 1
for size(L1), w = 2 for size(L2), andw = 3 for2�size(L2)), andz the number of target banks. More-
over, we append the mnemonic code with an extra field of
two letters identifying the type of accesses (L forload or
S forstore) and the sharing of sub-arrays (E for exclusive
or C for concurrent accesses). (See [2] for a full description
of the microbenchmarks.)

A few examples should help clarify how the parame-
ters that characterize our microbenchmarks can be set to
exercise different memory usages. Consider, for instance,
microbenchmark px.st1.sz1.b0.LE, wherex active proces-
sors load consecutive words from distinct sub-arrays of size
size(L1). After the first iteration, all data reside in the
processors’ L1 caches, hence all future loads will take place
in L1. Similarly, in microbenchmark px.st8.sz2.b0.LE, af-
ter the first iteration every load performed by an active pro-
cessor will result in one L1 miss and one L2 hit. Finally, in
microbenchmark px.st256=i.sz3.bi.LE, every load is served
by main memory, and all active processors distribute their
accesses evenly amongi banks.

The two graphs in Figure 1 show the impact of bank and
bus contention, respectively, on the access time of a small
sample of microbenchmarks. Specifically, in Figure 1(a) ac-
cess times are plotted, for both loads and stores and for both
the exclusive and the concurrent scenarios, as a function of
the ratio of active processors to target banks. Clearly, in
our microbenchmarks such a ratio is directly proportional
to bank contention. Figure 1(b) shows a similar plot, as a
function of the number of active processors, for a subset
of microbenchmarks where the number of target banks is
fixed equal to the number of active processors. That is, the
access times are shown as a function of bus contention for
fixed bank contention. We note that for loads the impact
of both bus and bank contention is somewhat minor, while
for stores it is more significant, especially when combined
with coherency traffic (concurrent scenario). However, in
any case neither of these phenomena affects access times
by more than a factor 4, while, as we will see in the fol-
lowing sections, access times may vary by more than two
orders of magnitude due to memory hierarchy effects.

4 Predicting Performance

In this section, we introduce a number of cost functions
which can be used to predict the running time of a super-
step on the SGI-PC. As mentioned before, we will focus on
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Figure 1. Access times measured from a sample of mi-
crobenchmarks, plotted as a function of (a) ratio of active
processors to target banks; and (b) number of active proces-
sors.

the contribution of memory accesses to the running time.
In the first subsection, we present three functions inspired
by the BSP variants mentioned in the introduction. These
functions base their predictions on quantities that are com-
putable, to a large extent, by inspecting the (assembly) code.
The code allows one only to distinguish between operations
on data held in registers, which we regard as local opera-
tions, and accesses to the rest of the memory system, with-
out explicitly distinguishing between accesses to caches or
main memory. Consequently, the three BSP-like functions
considered here treat all such accesses in the same way, and
cannot account for memory hierarchy effects. In the other
subsection, a new function is defined which explicitly ac-
counts for the memory hierarchy and is expressed in terms
of the values of the MIPS R10000 hardware counters.

4.1 BSP-like cost functions

We define three cost functions based, respectively, on the
QSM, E-BSP, and(d; x)-BSP models. The functions, which
are described below, are used to predict the running time of
a superstep. In all of the functionsH represents the maxi-
mum number of loads or stores issued by a processor in the
superstep. In what follows we will use the termaccessto
refer to either a load or a store operation.

Function QSM Function QSM is defined asmaxfg1QSM �H; g2QSM �Kg;
whereK is the maximum number of accesses performed on
the same word by all processors,g1QSM is the cost per ac-
cess experienced by a processor, andg2QSM is the cost per
access relative to a single word. According to the model,
the second term is expected to dominate in case of high con-
tention at a cell.

Since the function does not distinguish among accesses
placed at different levels of the hierarchy, nor does it distin-
guish among loads and stores, which generally have differ-
ent costs, one cannot provide unique values for the parame-
ters but, rather, intervals of possible values. On the SGI-PC,
we employed the suite of microbenchmarks of Section 3 to
obtain minimum and maximum values for each parameter
involved in the function, by considering best case and worst
case scenarios with respect to phenomena not captured by
the parameter.

For g1QSM, the minimum value� (0.0083) resulted
from the microbenchmark performing loads from L1
(p1.st1.sz1.b0.LE), while the maximum (5.35) resulted
from the microbenchmark performing stores to main mem-
ory with maximum bank and bus contention, and maxi-
mum coherency traffic (p8.st256.sz3.b1.SC). Forg2QSM,
the minimum value (0.001) resulted from the microbench-
mark with all processors repeatedly loading the same
word (a variant of p8.st1.sz1.b0.LC), while the maximum
(0.67) resulted from the microbenchmark with all pro-
cessors repeatedly storing the same word (a variant of
p8.st256.sz3.b1.SC).

Hence, we can define an “optimistic” version
(QSM.MIN) and a “pessimistic” version (QSM.MAX) of
the QSM function based, respectively, on the minimum and
maximum values ofg1QSM andg2QSM. The two versions
are: QSM:MIN = maxf0:0083 �H; 0:001 �Kg;QSM:MAX = maxf5:35 �H; 0:67 �Kg:�All parameter values are expressed in�sec per access.
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Function EBSP Function EBSP is defined asmaxfg1EBSP �H; g2EBSP �M=pg;
whereM is the total number of accesses performed by allp processors,g1EBSP is the cost per access experienced
by a processor when no other processor accesses memory,
and g2EBSP is the cost per access experienced by a pro-
cessor when all other processors perform approximately the
same number of accesses, thus resulting in potentially high
congestion. Clearly, we expectg1EBSP � g2EBSP. Ac-
cording to the EBSP philosophy, the running time of a su-
perstep characterized by an unbalanced access pattern, i.e.,
one withH � M=p, is determined by the time taken by
the processor performing the largest number of accesses,
as if it worked in isolation, hence the termg1EBSP � H
in the function dominates, whereas whenH ' M=p the
high traffic may slow the processors down, hence the termg2EBSP �M=p dominates.

As before, we determine minimum and maximum val-
ues of the parameters. Forg1EBSP, the minimum value
(0.0083) resulted from loads from L1 (p1.st1.sz1.b0.LE),
while the maximum (1.31) resulted from the microbench-
mark with one processor accessing main memory with max-
imum bank contention (p1.st256.sz3.b1.SE). Forg2EBSP,
the minimum value (0.0083) resulted from the mi-
crobenchmark with all processors accessing their L1’s
(p8.st1.sz1.b0.LE), while the maximum (5.35) resulted
from the microbenchmark with all processors performing
the same number of accesses to main memory with max-
imum bank and bus contention and maximum coherency
traffic (p8.st256.sz3.b1.SC).

The corresponding “optimistic” and “pessimistic” ver-
sions of function EBSP are:EBSP:MIN = maxf0:0083 �H; 0:0083 �M=pg;EBSP:MAX = maxf1:31 �H; 5:35 �M=pg:
Function DXBSP Function DXBSP is defined asmaxfg1DXBSP �H; g2DXBSP �Mbg;
whereMb is the total number of accesses directed to the
same bank,g1DXBSP is the cost per access experienced by a
processor when bank contention is low, andg2DXBSP is the
cost per access at a bank experienced in case of high bank
contention. According to the(d; x)-BSP model, the second
term is expected to dominate only when many accesses hit
the same bank, which becomes a bottleneck.

For g1DXBSP, the minimum value (0.0083) re-
sulted from one processor performing loads from L1
(p1.st1.sz1.b0.LE), while the maximum (3.40) resulted
from the microbenchmark where all processors access
main memory with moderate bank contention but high

bus contention and coherency traffic (p8.st32.sz3.b8.SC).
For g2DXBSP, the minimum value (0.26) and maximum
value (0.33) resulted from microbenchmarks with all pro-
cessors performing, respectively, loads and stores on dis-
tinct words in the same bank (p8.st256.sz3.b1.LE and
p8.st256.sz3.b1.SE). Here, we chose microbenchmarks
without concurrent accesses to make sure that the running
time was indeed dominated by bank delay and not by other
factors (e.g., coherency activities).

The corresponding “optimistic” and “pessimistic” ver-
sions of function DXBSP are:DXBSP:MIN = maxf0:0083 �H; 0:26 �Mbg;DXBSP:MAX = maxf3:40 �H; 0:33 �Mbg:
4.2 A cost function based on hardware counters

As will be clearly shown by the validations reported in
the next section, the accuracy of all of the above BSP-like
functions is strongly limited by the fact that they disregard
memory hierarchy, which is the main reason for the high
variance in the parameter values, and, consequently, for the
large gap between the optimistic and pessimistic versions of
these functions.

We define a new cost function F that is based on the
MIPS R10000 hardware counters shown in Table 1. The
counters provide a detailed account of the memory hierar-
chy usage. Function F is defined under the assumption that
the running time of a superstep is determined by one of the
following factors: (1) the accesses issued by some processor
at the various levels of the hierarchy (2) the traffic on the bus
caused by accesses to main memory; (3) bank contention
caused by accesses targeting the same bank. To reflect this
assumption, F takes the maximum of three functions F1, F2
and F3 defined as follows. Letpi andbj denote, respec-
tively, the i-th processor and thej-th memory bank, with0 � i < p and0 � j < q, whereq denotes the number of
memory banks.F1 = max0�i<p (g1F1 � (LD(pi) + ST(pi)) ++g2F1 � L1M(pi)g3F1 � L2M(pi)++g4F1 � L1W(pi) + g5F1 � L2W(pi))F2 = g1F2 � X0�i<pL2M(pi) + g2F2 � X0�i<pL2W(pi)F3 = max0�j<q (g1F3 � LM(bj) + g2F3 �WB(bj)) ;
where counters LD(pi), ST(pi), L1M(pi), L2M(pi) and
L2W(pi) denote the values of the respective counters of
processorpi, while LM(bj) and WB(bj) denote, respec-
tively, the total number of L2 misses served by bankbj and
the quadwords written back from L2 to bankbj , and they
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MIPS R10000 Hardware Counters

LD (C0E2) Loads issued
ST (C0E3) Stores issued
L1M (C1E9) L1 misses
L2M (C1EA) L2 misses
L1W (C1E6) L1 lines written back from L1 to L2
L2W (C0E7) Quadwords (16 B) written back from L2 to RAM

Table 1. MIPS R10000 hardware counters used for F

must be inferred from counters L2M and L2W and from
code inspection.

F1 accounts for the usage of the memory hierarchy by
individual processors. Specifically,g1F1 reflects the cost
of accessing L1 and is multiplied by the total number of
loads and stores made by a processor, since all of them act
eventually on L1;g2F1 andg4F1 account for the costs of
data movements (respectively misses and writebacks) be-
tween L1 and L2; analogously,g3F1 andg5F1 account for
the costs of data movements between L2 and main memory.
F2 accounts for bus contention and should dominate when
most of the processors are active and each active processor
issues many requests for data in main memory. Specifically,g1F2 andg2F2 reflect the delay introduced by the bus for an
L2 miss and quadword writeback, respectively. Finally, F3
accounts for bank contention and is expected to dominate
when many active processors issue many access requests
served by the same bank. Parametersg1F3 andg2F3 reflect
the time taken by a bank to serve an L2 miss and quadword
writeback, respectively.

Table 2 shows the values of the parameters obtained
by fitting each function (through least squares fitting) on
a set of microbenchmarks where that function is expected
to dominate. We used: microbenchmarks p1.st1.sz1.b0.*E,
p1.st8.sz2.b0.*E, p1.st32.sz3.b8.*E for F1; microbench-
marks p8.st256.sz3.b8.*E, for F2; and microbenchmarks
p8.st256.sz3.b1.*E, for F3 (* stands for both L and S).

Although F cannot be immediately computed by simply
inspecting the code, it may still be used to predict perfor-
mance of an application in those situations where accurate
estimates of the relevant counters can be inferreda priori or
extrapolated from pilot runs on small input sizes. An exam-
ple of such use is given in Section 5.4. Moreover, the func-
tion could prove useful in the design of software systems,
compilers, or large applications, to profile the memory hi-
erarchy usage of critical portions of their code. It must be
remakred

5 Validations

In this section we investigate the predictive quality of the
cost functions introduced before, by checking their accu-

Fi g1Fi g2Fi g3Fi g4Fi g5Fi
F1 0.0088 0.055 0.97 0.013 0.026
F2 0.15 0.02
F3 0.26 0.051

Table 2. Parameters measured for F1, F2, and F3.

racy over a set of synthetic access patterns and over a num-
ber of real applications, namely, three bulk-synchronous
implementations of parallel sorting and the NAS Parallel
Benchmarks [6, 7]. Specifically, we determined measured
and predicted times (indicated byT andP , respectively)
and calculated the prediction error asERR = maxfT; PgminfT; Pg ;
which indicates how much smaller or larger predicted time
is with respect to measured time.

5.1 Synthetic Access Patterns

Syntheticaccess patternswere obtained by running the
original set of microbenchmarks under a variety of scenar-
ios featuring different phenomena that could have an impact
on access time. More specifically, along with the already
discussed Load/Store–Exclusive/Concurrent combinations,
we introduced other variants where processors access data
which are present asclean, sharedor dirty in some other
processors’ caches, so to include patterns exercising differ-
ent aspects of the coherency protocol. Overall, we obtained
a Validation Suite(VS, for short) of 412 different access
patterns.

Table 3 reports, for all functions, the average and maxi-
mum values of ERR obtained over the entire suite VS, while
Figure 2 shows plots of measured and predicted running
times of a subset of VS derived from the microbenchmarks
employed for Figure 1.(a).

The results of the validations clearly show that disregard-
ing hierarchy effects when evaluating performance has a

Function AVG ERR MAX ERR

QSM-MIN 24.15 88.02
QSM-MAX 53.85 636.79
EBSP-MIN 24.15 88.02
EBSP-MAX 27.29 648.35
DXBSP-MIN 6.36 31.84
DXBSP-MAX 34.8 411.46
F 1.19 1.91

Table 3. Cost function errors for VS.
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huge negative impact on predictive accuracy, while model-
ing other architectural aspects, such as bus and bank con-
tention, or concurrency to the same cell, yields a rather
modest payoff in achieving higher accuracy. Moreover, the
fact that function F exhibits high accuracy on all the ex-
periments in VS suggests that phenomena that were dis-
regarded when defining the function (such as some types
of coherency overheads) have only a minor impact on per-
formance. Finally, we note that although quantifying bank
contention, as required to apply functions F3 (hence F) and
DXBSP, may be hard to do in practical situations, a num-
ber of measurements, not reported in this extended abstract,
show that F remains quite accurate even if only the maxi-
mum between F1 and F2 is considered.

5.2 Sorting Programs

Our first set of applications consists of three sorting al-
gorithms:samplesort[15], columnsort[11], and a parallel
version ofradixsort[3]. These algorithms were chosen be-
cause they are well-understood parallel algorithms that ex-
hibit a variety of communication patterns. We coded all
algorithms in a bulk-synchronous fashion, with no special
effort made to optimize the implementations, since our goal
was to test the accuracy of the cost functions rather than to
develop efficient algorithms.

Each algorithm was run on a wide range of input sizes;
namely,n=p = 105 � i, for 1 � i � 10, wheren is the total
number of keys to be sorted. For each run, we applied the
functions to every superstep. For the most part, applying
the functions was straightforward. The only difficulty was
posed by functionsDXBSP and F3, which require knowl-
edge of the maximum number of L2 misses and writebacks
targeting a particular memory bank. While this information
is known for the synthetic access patterns of VS, it cannot
be readily obtained for real applications. However, for the
purposes of our validations, we have used estimates which
assume that all such accesses are equally distributed among
the eight banks. This is a reasonable assumption for the
sorting programs, whose access patterns tend to be balanced
amongst the 8 banks.

A summary of our results is contained in Table 4 where
we report, for each superstep, the maximum value of ERR
over all runs (the average values of ERR are similar and can
be found in [2]). Since the sorting algorithms exhibit a high
degree of locality, we would expect the optimistic versions
of theBSP-like functions to perform much better than their
pessimistic counterparts, and indeed this is the case (errors
are not shown forEBSPmin andDXBSPmin because they are
almost identical to the errors forQSMmin). Although the dif-
ference is not as dramatic as for the synthetic applications,
F is still clearly seen to be significantly more accurate than
any of theBSP-like functions. This indicates that disregard-

Sorting Programs – Maximum Prediction Errors

Sort/SS QSMmin QSMmax EBSPmax DXBSPmax F

Rad:SS1 2.12 400.14 320.48 258.55 1.41
Rad:SS2 3.35 505.89 298.79 326.88 1.86
Rad:SS3 3.08 473.30 295.88 305.83 1.83
Rad:SS4 2.72 321.56 302.11 207.78 1.39

Sam:SS1 2.62 339.75 196.86 219.53 1.44
Sam:SS2 2.17 320.95 252.25 207.38 1.15
Sam:SS3 1.98 404.26 195.76 261.21 1.30
Sam:SS4 2.89 287.72 247.31 185.91 1.11
Sam:SS5 2.58 361.36 327.08 233.49 1.26

Col:SS1 3.44 268.13 205.23 173.25 1.06
Col:SS2 2.46 268.13 264.49 173.25 2.05
Col:SS3 2.88 230.37 228.11 148.85 1.88
Col:SS4 2.61 245.56 247.10 158.67 2.09
Col:SS5 1.36 484.93 280.03 313.34 1.16

Table 4. Sorting algorithms: accuracy of the cost func-
tions on individual supersteps.

ing hierarchy effects results in a noticeable lack of accuracy
even for regular programs.

5.3 NAS Parallel Benchmarks

We tested our functions on theNAS Parallel Benchmarks
(NPB) [6, 7]. NPB is a set of 8 programs, derived from
computational fluid dynamics (CFD) applications, that is
designed to evaluate the performance of parallel machines.
TheCG kernel solves an unstructured sparse linear system
by the conjugate gradient method.EP is an embarrassingly
parallel kernel that generates pairs of Gaussian random de-
viates and tabulates the number of pairs in successive square
annuli.FT is a fairly standard implementation of a 3D FFT
PDE. IS is an integer sorting program; the keys are gener-
ated in an initial sequential portion. TheLU solver appli-
cation is a diagonal pipelining computation that results in a
large number of small messages.MG is a simple 3D multi-
grid benchmark. TheSP andBT applications each solve
three sets of uncoupled systems of equations using a multi-
partition scheme [5] which provides good load balance and
uses coarse grained communication.

The benchmarks are MPI-based source-code implemen-
tations that are intended to run ‘as is’. As we did not wish to
alter the benchmarks, we decided to treat each program as
a single ‘superstep’ for the purposes of evaluating the cost
functions, that is, measurements (times and counters) were
performed external to the benchmark execution using the
SGIPerfex utility. This seemed a reasonable compromise
as the NAS benchmarks have only a few barrier synchro-
nizations, which are very fast on the SGI-PC, and, more-
over, with the exception of LU, exchange small numbers of
large messages, hence the overhead introduced by the MPI
message-passing routines is rather limited. Finally, two of
the benchmarks, BT and SP, required a square number of
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NAS Parallel Benchmarks – Prediction Errors

Benchmark QSMmin QSMmax EBSPmax DXBSPmax F

CG 2.46 258.31 210.10 166.91 1.46
EP 2.42 262.53 252.32 169.64 1.02
FT 2.05 309.40 245.64 199.92 1.63
IS 1.57 404.81 354.47 261.57 1.39
LU 2.15 295.01 236.80 190.62 1.32
MG 1.57 403.48 289.11 260.71 1.73
BT 2.77 229.68 189.08 148.41 1.05
SP 2.13 298.69 194.21 193.00 1.05

Table 5. NAS Parallel Benchmarks: accuracy of the cost
functions on the individual benchmarks.

processors to run. In these cases, we used a nine-processor
configuration of the machine but applied the functions de-
rived for the eight-processor configuration, assuming that
parameter values would not change significantly. Our as-
sumption is confirmed by the very low errors obtained by F
on these latter benchmarks.

Table 5 reports the prediction errors (ERR) incurred
by the functions on each NPB (errors are not shown for
EBSPmin andDXBSPmin because they were practically iden-
tical to the errors forQSMmin). Here, the distinction be-
tween average and maximum errors does not make sense,
since only one input size was used for each benchmark.
(For the DXBSP and the F3 functions we made the same
approximation for bank contention as done for the sorting
applications.) Again, it can be seen that the F function per-
forms significantly better than the other functions, with al-
most perfect predictions for the EP, BT, and SP benchmarks,
and discrepancies of less than 75% in all cases. As with
the sorting programs, the optimistic versions of theBSP-
like functions perform much better than their pessimistic
counterparts, which can be attributed to the high locality
and regularity exhibited by the benchmarks. However, even
the former are significantly worse than the F function, in
almost all cases, with errors up to 180%. Again, the reason-
able level of accuracy attained by the optimistic versions of
the BSP-like cost functions is to be attributed to the high
locality and regularity exhibited by the benchmarks.

5.4 Extrapolating Performance

One of the advantages of theBSP-like functions over the
counter-based function F, is that, to a large extent, the pro-
grammer can easily determine the input values for the func-
tion (e.g.,H orM ). However, as we have seen, these func-
tions may not provide meaningful predictions as they all fail
to account for hierarchy effects.

While the counter-based function exhibits excellent ac-
curacy, it seems that one should actually run the program to
obtain the required counts, which would annihilate its po-

Errors for F Errors for F
Sort Superstep Measured Counts Estimated Counts

AVG MAX AVG MAX

Radix SS1: Count Elts 1.22 1.32 1.01 1.09
SS4: Move Elts 1.11 1.16 1.13 1.16

SS2: Count Elts 1.05 1.09 1.20 1.21
Sample SS4: Fill Bkts 1.06 1.11 1.03 1.04

SS5: Sort Bkts 1.13 1.17 1.24 1.26

SS1: Init 1.12 2.49 1.17 1.72
SS2: Sort/Trans 1.80 1.89 2.02 2.12

Column SS3: Sort/RTrans 1.66 1.69 1.84 1.87
SS4: Sort 1.78 1.83 2.05 2.06

SS5: rs/Sort/ls 1.16 1.17 1.88 1.90

Table 6. Sorting algorithms: comparison of F’s accuracy
with measured vs estimated counters, over selected sorting
supersteps and large input sizes.

tential as a performance predictor. However, there are many
cases where counter values can be guessed in advance with
reasonable confidence, and then plugged in F to obtain ac-
curate predictions. In fact, we claim that meaningful esti-
mates for the counters can be derived by extrapolating val-
ues for large problem sizes from pilot runs of the program
on small input sets.

To substantiate the above claim, we developed least-
squares fits for each of the counters used in F for those su-
persteps in our three sorting algorithms that had significant
communication. The input sizen of the sorting instance
was used as the independent variable. For each counter, we
obtained the fits upon small input sizes (n=p = 105 � i, for1 � i � 5), and then used the fits to forecast the counter
values for large input sizes (n=p = 105 � i, for 5 < i � 10).
These estimated counter values were then plugged in F to
predict the execution times for the larger runs.

The results of this study are summarized in Table 6. In-
terestingly, but somewhat accidentally, in some cases the
predictions obtained with the estimated counter values were
actually slightly better than those obtained with the mea-
sured counter values (e.g., Column sort’s superstep 1, Radix
sort’s superstep 1, and Sample sort’s superstep 4). More im-
portantly, however, it can be seen that inall cases, the level
of accuracy of F using the extrapolated counter values was
not significantly worse than what obtained with the actual
counter values. These preliminary results indicate that a
hardware counter-based function does indeed have poten-
tial as ana priori predictor of performance.
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Figure 2. Measured and predicted times for a set of 16
access patterns consisting of loads (Plots (a) and (b)) and
stores (Plots (c) and (d)), derived from the microbench-
marks employed in Figure 1.(a). On the x-axis access pat-
terns are ordered by increasing bank and bus contention.
The measured time and F are shown on all plots. Plots (a)
and (c) show the optimistic versions of theBSP-like func-
tions, while Plots (b) and (d) their pessimistic versions.
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