
Tight Bounds on Parallel List Marking�
Sandeep N. BhattBell Communications ResearchMorristown, NJ 07960 USAGianfranco BilardiDipartimento di Elettronica e InformaticaUniversit�a di PadovaI-35131 Padova, ItalyandDepartment of Electrical Engineering and Computer ScienceUniversity of Illinois at ChicagoChicago, IL 60607 USAKieran T. HerleyDepartment of Computer ScienceUniversity College CorkCork, IrelandGeppino PucciDipartimento di Elettronica e InformaticaUniversit�a di PadovaI-35131 Padova, ItalyAbhiram RanadeDepartment of Computer Science and EngineeringIndian Institute of TechnologyPowai, Mumbai 400076 India

�A preliminary version of this paper appeared in Proc. EURO-PAR'95 Parallel Processing, SpringerLNCS 966, Stockolm, S, 1995, pp. 231{242. 1



Proposed Running HeadTight Bounds on Parallel List Marking
Contact AuthorDr. Geppino PucciDipartimento di Elettronica e InformaticaUniversit�a di PadovaVia Gradenigo, 6/AI-35131 Padova, ItalyPhone: +39 (49) 827 7830Fax: +39 (49) 827 7826E-mail: geppo@artemide.dei.unipd.it

AbstractThe list marking problem involves marking the nodes of an `-node linked list stored inthe memory of a (p; n)-PRAM, when only the position of the head of the list is initiallyknown, while the remaining list nodes are stored in arbitrary memory locations. Underthe assumption that cells containing list nodes bear no distinctive tags distinguishing themfrom other cells, we establish an 
 (minf`; n=pg) randomized lower bound for `-node lists andpresent a deterministic algorithm whose running time is within a logarithmic additive term ofthis bound. Such result implies that randomization cannot be exploited in any signi�cant wayin this setting. For the case where list cells are tagged in a way that di�erentiates them fromother cells, the above lower bound still applies to deterministic algorithms, while we establisha tight � �minn`; `=p+q(n=p) logno� bound for randomized algorithms. Therefore, in thelatter case, randomization yields better performance for a wide range of parameter values.Key words: List Marking; List Ranking; Linked Structures; Shared-Memory Machines;Parallel Algorithms; Randomized Algorithms; Lower Bounds.
2



List of Symbols` Letter ellh, i Angled Brackets�; � Lowercase greek letters (delta, mu)
, � Uppercase greek letters (Omega, Theta)O, o Big-oh, little-ohPr Probability

3



1 IntroductionLinked structures are widely used in non numerical as well as sparse numerical computations.Therefore, it is important to ascertain whether parallelism can be exploited to process suchstructures e�ectively.In this paper, we focus on lists, possibly the simplest type of linked structures, and ona very basic operation, which we call marking, consisting of writing a given value in eachnode of a given list. The essence of marking is that each node in the list has to be a�ected,while other structures stored in the same memory have to stay untouched. This feature isinstrumental to the realization of several basic list operations such as searching an elementor ranking all nodes (determining their distance from the head). Marking itself is used inimportant practical applications, such as garbage collection, for identifying active structuresin a large memory heap. The complexity of parallel list operations crucially depends onthe list representation, and is often a�ected by features that are irrelevant to sequentialcomplexity. When managing lists in parallel, a favourable case arises if the the growthprocess a�ords keeping all list nodes in a compact region of memory. In this case the listcan be represented as an array of ` records, each record corresponding to a list node, with a�eld storing the array index of its successor. Indeed, most list-based parallel algorithms inthe literature (e.g., searching and ranking [2]) do assume such compact representation. Inother scenarios, unfortunately, list nodes become naturally scattered throughout a portionof memory whose size n is much larger than the length of the list. This case arises, forinstance, when a sequence of concatenations and splittings is performed on a set of lists.In the present study, we consider the size ` of the list and the size n of the memory region4



which is known a priori to contain the list as independent parameters.We also distinguish between tagged and untagged lists, a tagged list being one whereeach node contains a tag that uniquely identi�es the list. Tags can be maintained with smalloverhead if the list is modi�ed only by insertion and deletion of nodes. However, the overheadis not negligible if other operations, such as concatenation and splitting, are allowed. Notethat a node of a tagged list can be recognized as such by simply checking the tag stored withthe node. In contrast, cells storing untagged list nodes are indistinguishable from other cellsby simple inspection.We investigate the extent to which parallelism, randomization, and tagging can be prof-itably exploited to improve upon sequential performance when lists are scattered throughoutthe memory. Speci�cally, we develop deterministic and randomized upper and lower boundsfor marking a tagged or untagged list of ` nodes stored in the memory of a p-processorPRAM with n memory cells, when only the position of the head of the list is initially knownand the remaining list nodes are scattered among arbitrary memory locations.A restricted version of the list marking problem was introduced and analyzed by Luccioand Pagli in [7]. The authors prove a deterministic 
 (minf`; n=pg) lower bound for markingtagged lists and provide a tight upper bound when p = O(`= log `) and n = O(` log `). In thispaper, after formalizing the problem in Section 2, we improve and generalize these results inthe following directions:1. In Section 3, we prove that an 
 (minf`; n=pg) lower bound also holds for any ran-domized algorithm for marking an untagged list. Moreover, we give a deterministicalgorithm optimal to within a logarithmic additive term, therefore showing that ran-
5



domization can not be exploited in any signi�cant way in this setting.2. In Section 4, we establish a tight, randomized � �minn`; `=p+q(n=p) logno� boundfor marking a tagged list, showing that, for a wide range of list lengths, considerablespeedups can be attained by means of randomization.A synopsis of results for the marking problem is given in Section 5.
2 Problem FormulationWe will assume that each memory cell has the same format and contains a memory addresswhich will be interpreted as a pointer (called the successor pointer) to another cell, a tag�eld, capable of holding a distinctive symbol, a data �eld, and a small constant amount ofadditional space, called scratch space. The head of the list, denoted by h, occupies cell 0and its data �eld contains some arbitrary symbol which we will refer to as the signature ofthe list. Finally, each list node points to its successor in the list, and the pointer �eld of thelast node r contains the address of cell 0, which we will interpret as a nil pointer.We identify two variants of the problem. The list is untagged if list nodes bear nodistinctive mark or symbol that renders them instantly identi�able as such. The list istagged if each list node bears a distinctive symbol in its tag �eld which no non-list nodebears, thus allowing list nodes to be identi�ed by inspection. In both cases, the goal of thelist marking problem is to copy the signature into the data �eld of every node in the list; thedata �elds of all other nodes should remain unchanged. A node is said to be marked onceits data �eld bears the appropriate signature.

6



Since each memory cell contains a successor pointer, the entire memory can be interpretedas a directed graph G of n nodes. Note that each node has outdegree zero or one, but a node(including list nodes) may have indegree zero (leaves), one (unary nodes), or higher. Such agraph is known as a pseudoforest. (These structures feature in some connected componentalgorithms, see for example [5].) Within the pseudoforest, the chain of list nodes forms adirected path in a structure T that we may interpret as a tree, the edges of which are orientedfrom child to parent. The node h is a leaf of T and the list nodes are the ancestors of h inT located along the directed path from h to r, the root of T . In fact, G consists of T plusa collection of node-disjoint components each of which is either a tree or one or more treesjoined by a cycle connecting their roots (see Figure 1 for an example). In this setting, theobjective is to mark all those nodes in G that are ancestors of h in T .The algorithms and the lower bound arguments presented in the paper all assume theARBITRARY CRCW variant of the PRAMmodel of shared-memory computation [5]. Thus,concurrent reads and writes are permitted. Whenever a number of processors attempt towrite simultaneously to a cell, one of them, chosen arbitrarily, succeeds, while the othersfail. For convenience, we will refer to a PRAM with p processors and n cells of memoryas a (p; n)-PRAM and will assume throughout that p � n. We will also assume that eachprocessor has a private area of O(1) storage for workspace.We want to remark that the lower bound arguments on list marking apply to the lesspowerful EREW and CREW variants of the PRAM model, while the algorithms presentedin the paper can be ported to these weaker models with an O(log p) extra factor in theirrunning time. In fact, for many choices of the relevant parameters, the slowdown incurred in
7



running either the deterministic or the randomized marking algorithm on the EREW PRAMcan be reduced to a constant factor. The technicalities involved are quite standard and areomitted.
3 Marking Untagged ListsIn this section we determine the complexity of the untagged variant of the list markingproblem. In Subsection 3.1, we prove that any randomized Las Vegas [8] algorithm for theproblem requires 
 (minf`; n=pg) time with high probability. In Subsection 3.2, we give adeterministic algorithm whose running time is within an additive logarithmic term of thelower bound, showing that randomization cannot be signi�cantly exploited in this case.3.1 A Randomized Lower BoundThe intuition behind the lower bound is that a list element becomes distinguishable from anon-list element only when every element along the directed path from the head of the listto that element has been identi�ed. As a consequence, random probes of the memory cellswill not speed-up the computation in any signi�cant way. This argument is formalized inthe following theorem.Theorem 1 Suppose that with probability 1 � o(1) a randomized parallel algorithm on a(p; n)-PRAM marks every element of an untagged list of length ` within t time steps. Thent = 
 min(`; np)! :

8



Proof: Observe that a randomized algorithm can be seen as one chosen uniformly at randomfrom a set D of deterministic algorithms (each deterministic algorithm being characterizedby the outcome of a sequence of unbiased, independent random binary trials). In order toprove our lower bound for the untagged case, we construct a set of inputs with the propertythat every algorithm in D fails to mark the list in less than the time prescribed by thelower bound for a constant fraction of the inputs. From this, it immediately follows that,for some input in the set, a constant fraction among all the deterministic algorithms fail tomark the list in the prescribed time. Therefore, the failure probability of a randomly chosenalgorithm, on that particular input, is bounded below by a positive constant. This lowerbound technique was introduced by Yao in [11].We will assume that ` is �xed and will restrict our attention to the following set of inputs.The contents of the memory are organized as a circular list of length n. The target list oflength ` is a contiguous sublist of the circular list, and the address of the head and tail of thetarget list is given as input to the algorithm. (This formulation of the problem is essentiallyequivalent to that presented in the introduction, but more convenient in the current context.)There are n! di�erent inputs, corresponding to the (n � 1)! di�erent circular lists of lengthn and the choice for the address of the head of the target list.If t > n=(2p), then the stated bound on t certainly holds. We can therefore concentrateon the case t � n=(2p). At any time step, the algorithm probes a set of at most p memorycells. At each step i � t, we view the nodes on the circular list as grouped into ki sublists,de�ned as maximal sets of adjacent probed nodes terminated by an unprobed node. Initially,there are n sublists, each consisting of a single distinct unprobed node. When a node v is
9



probed, its pointer to the next element v0 in the list becomes known, and their correspondingsublists merge. The sublist containing the head of the target list, referred to as the principalsublist, contains a pre�x of the target list, whose length is nondecreasing and becomes `upon termination. Since each step of the algorithm causes at most p merges, at least n� pisublists remain after i steps.Let nij denote the number of nonprincipal sublists of length j at the beginning of the i-thstep, so that Pnj=1 nji = ki � 1. For convenience, we assume that each step consists of a �rstsubstep during which p � 1 arbitrary cells are probed, followed by a second substep whenthe tail of the principal sublist is probed, which has the e�ect of grafting a single sublistonto the end of the principal sublist. Clearly, conforming to this discipline will not alter therunning time of an algorithm by more than a constant factor. The merges provoked by thep�1 probes of the �rst substep yield ki+1 nonprincipal sublists. With the possible exceptionof the single sublist that will be grafted onto the principal sublist during the second substep,there are at most ni+1j sublists of length j. One of these sublists is grafted onto the principalsublist during this step, and because all input lists are equally likely, each of these sublistsis equally likely to be chosen. Thus, the expected value of �i, the increase in the length ofthe principal sublist during step i, is bounded as followsE[�i] � nXj=1 jni+1jki+1 + nki+1 � 2nn� pi � 4;since ki+1 � n�pi � n=2. The above summation accounts for all but one of the nonprincipalsublists, whose contribution is accounted for by the term n=ki+1. Therefore, only constantprogress is made, on average, at each step on the pre�x of the list, and the stated result10



follows. 2Note that the above bound is obtained under the optimistic assumption that a nodebelonging to the target list is recognized as such as soon as all the other nodes between thehead of the target list and that node are probed, even though the algorithm, by the time ittouches the corresponding memory cells, may not have su�cient information to determinethat these cells actually contain list elements.3.2 A Deterministic Upper BoundWe begin by outlining a relatively simple, slightly ine�cient deterministic algorithm for theuntagged list marking problem. We then provide a fast technique to transform the inputinstance into an equivalent, smaller one so that the running time of the algorithm on the newinstance is within the desired bound. This \shrinking" process is accomplished by deletingnodes and rearranging edges of the pseudoforest underlying the original input instance.Consider an untagged list of ` nodes stored in the memory of a (p; n)-PRAM, and let hbe the (given) distinguished pointer to the head of the list. As we observed in Section 2,the nodes to be marked are the ancestors of h in a tree T whose root is r, the tail of thelist. Suppose that we are given the preorder and postorder number of every node in T .Then, a particular node x is an ancestor of h if and only if preorder(x) � preorder(h) andpostorder(x) � postorder(h) (see Fig. 2). Although the Euler-tour techniques of Tarjan andVishkin [9] can be used to e�ciently compute the preorder and postorder numberings intrees, these may not be applied immediately in the present context. Firstly, the presence ofother components in the pseudoforest may complicate matters, and secondly the techniques11



rely on an adjacency list representation for trees.We circumvent the �rst di�culty as follows. Using a straightforward pointer-jumpingtechnique, each node in T can identify the root r in O(logn) time per node or O((n=p) logn)time overall. Nodes not in T executing the same algorithm will \converge" on some nodeother than r and will hence be clearly identi�able as not belonging to T . All such nodes willremain dormant for the remainder of the algorithm.Having eliminated all nodes not in T , we may now construct an adjacency list repre-sentation for T . Label the i-th cell Ci with the pair < s; i > where s is the address of itsparent in T . By sorting the cells lexicographically using Cole's algorithm [1], the childrenof each node occupy adjacent positions, and so they may be easily linked together in anadjacency list for that node. (These linking pointers are distinct from the successor pointersfor the nodes and are stored in the scratch storage associated with the nodes in question.)The cells are then resorted with respect to their original addresses in order to reconstructthe original structure of T and to attach adjacency lists to the appropriate tree nodes. Theimplementation details are straightforward. The sorting steps dominate the running timeand so the adjacency list representation for T can be constructed in O((n=p) logn) time.Given the adjacency list representation for T , the preorder and postorder numberings canbe computed in O((n=p) logn) time [9]. The identi�cation and marking of the ancestors ofh can be completed within the same time bound. Interleaving this O((n=p) logn) algorithmwith the obvious O(`) sequential algorithm, we obtain the following result.Proposition 1 An untagged list of length ` in the memory of an (p; n)-PRAM can be markeddeterministically in O (minf`; (n=p) logng) time.12



We now proceed to develop a more e�cient algorithm, which, by a sequence of pruningsteps, will reduce the pseudoforest G to one, G0, signi�cantly smaller, and such that theancestors of h in G0 be among the ancestors of h in G. Marking of G0 can be fast, due tosmall size, and then extended to mark all the ancestors of h in G. Each pruning step reducesthe number of nodes in the pseudoforest by a constant factor by deleting some nodes andrearranging pointers among the active (undeleted) nodes. The basis for pruning steps isprovided by the following lemma.Lemma 1 There is a constant � < 1 such that, for any pseudoforest G = (V;E) containingh, there is a subset W � V � fhg of leaves and unary nodes, such that:(i) No pair of nodes in W are neighbors in G (W is an independent set).(ii) jW j � �jV j � 1;Moreover, set W can be computed in O(jV j=p+ logn= log logn) time.Proof: Let G = (V;E) be a pseudoforest. The nodes eligible for inclusion inW are the nodesin G of indegree zero or one, apart from h. This set induces a set of maximal node-disjointlinear chains (i.e., either simple paths or cycles) of eligible nodes. Apply the followingoperation to each such chain. If the chain is of length one or two, then select one node; ifthe chain has length three or more, then select a subset of the nodes such that (i) no twoadjacent nodes are selected, and (ii) the maximum number of consecutive unselected nodeson the chain is two. The union of the selected nodes for the various chains forms the desiredset W .The identi�cation of nodes in G of indegree at most one is and the selection of one node ineach chain of length at most two are straightforward and require only constant work per node.13



The selection of nodes belonging to chains of length three or greater is instead accomplishedby applying the 2-ruling algorithm of Cole and Vishkin [2] and selecting the nodes in theruling. (Their algorithm is formulated in terms of circular lists, but this restriction can beeasily relaxed.) This latter step can be completed in O(jV j=p+ logn= log logn) time.Consider a chain of length k. If k � 2, then dk=2e of the nodes on the chain are selected.If k � 3, then each pair of selected nodes is separated by at most two unselected nodes.Allowing for the possibility that the �rst two nodes on a chain might be unselected, we seethat in this case the number of selected nodes is at least d(k � 2)=3e � (1=9)k.If we let s denote the number of nodes in G of indegree at most one (including h),it is clear that s � (jV j + 1)=2. The s � 1 eligible nodes are arranged into chains oflength one, two, or greater, and by the previous argument we are guaranteed that at least(1=9)(s� 1) � (1=18)jV j � 1 nodes are selected. This establishes our claim with � = 1=18.2 A possible choice of set W for the pseudoforest of Figure 1 is shown in Figure 3. Noticethat it is easy to delete a node w in W from G by redirecting the only edge incident on w (ifany) to point to w's parent (or nil, if w has outdegree zero). By the above lemma, the graphG0 thus obtained contains signi�cantly fewer nodes than G (at most (1 � �)jV j + 1). It isalso easy to verify that for every pair of nodes x and y in H 0, x is an ancestor of y in G0 ifand only if x is an ancestor of y in G. Thus, while smaller in size, the graph G0 retains someof the ancestor-descendent information of the original graph G. The e�ect of the pruningstep on the pseudoforest of Figure 1 is shown in Figure 4.Before we describe the implementation of the pruning step in greater detail, we must14



introduce some auxiliary data structures employed by the algorithm, the role of which willbecome clear in due course.Each processor maintains a private stack that is empty before the �rst pruning. Whena processor deletes a node during a pruning step, it pushes that node onto its stack. Thisfacilitates the reconstruction of the graph at a later stage in the algorithm. Each processoralso has a private list called its work list. Collectively, the p work lists hold all the activenodes in the graph. Between pruning steps, nodes are redistributed among work lists toensure that each processor's work list contains an equal number of items. A processor isresponsible for performing whatever operations are required for the nodes on its work listduring a pruning step.It should be emphasized that the only space overhead for these stacks and work lists isO(1) per processor for a header pointer: the objects in these structures are nodes linkedby pointers. These linking pointers are distinct from the successor pointers of the nodes inquestion and are represented within the scratch space of the nodes.In summary, the pruning step applied to a pseudoforest G = (V;E) may be described asfollows.1. Identify the set W .2. Perform the following step for each active node x inW : mark x deleted, label the nodewith the current time and the name of its lone child, and push the node onto the localstack. For each active node c whose parent x is in W do the following: redirect c'ssuccessor pointer to point to x's parent, or to nil if x has no parent. (Each processoris responsible for the nodes on its own work list.)15



3. Update the work lists.Let ai denote the total number of active nodes at the beginning of the i-th pruning step,for i � 0, that is, the number of nodes in the current pseudoforest. From Lemma 1 itfollows that Step 1 above is completed in O(ai=p + logn= log logn) time. Assuming thatevery processor work list holds O(ai=p) active nodes at the start of the pruning step, it iseasy to see that Step 2 requires O(ai=p) time. To update the work lists in Step 3, eachprocessor scans through its own list removing the deleted nodes and counting the activenodes. Finally, using a straightforward combination of parallel pre�x [3] and routine pointermanipulations, it is possible to redistribute the active nodes among the work lists so thateach processor's list receives at most dai+1=pe nodes in O(ai=p+logn= log logn) time. Thus,the i-th pruning step can be completed in O(ai=p+ logn= log logn) time.The following recurrence provides an upper bound for the ai's:ai � 8>>><>>>: (1� �)ai�1 + 1; for i > 0,n; for i = 0.Thus, ai � (1 � �)in + Pi�1j=0(1 � �)j, which is bounded above by ��1n= logn when i �dlog logn= log(1 � �)�1e. Selecting k to be this latter quantity, we see that the number ofactive nodes can be reduced to at most ��1n= logn in timeO k�1Xi=0 (1� �)in + ��1p + k lognlog logn! = O np + logn! :In conclusion, the overall algorithm is as follows.
16



1. Apply k pruning steps to the initial pseudoforest G to produce a pseudoforest G0 withat most ��1n= logn nodes.2. Apply the algorithm of Proposition 1 to mark all nodes in G0 that are ancestors of h.3. Reincorporate the nodes deleted during Step 1 in the reverse order to which they weredeleted. In other words, �rst undo the deletions of the k-th pruning, then those of the(k� 1)-st pruning, and so on. For each reinserted node, mark it if its child is marked.We have already noted that Step 1 runs in O (n=p+ logn) time. Step 3 basically performsthe same operations as Step 1, but in reverse order, therefore it has a comparable runningtime. Finally, by Proposition 1, Step 2 is completed in O(((��1n= logn)=p) logn) = O(n=p+logn) time.The correctness of the above algorithm can be proved as follows. Since an ancestor of anode x in G0 is also an ancestor of x in G, and only leaves and unary nodes are deleted, allof the nodes marked by the algorithm are ancestors of h in G. On the other hand, supposethat some node along the directed path from h to r is not marked by the algorithm, andlet x be the �rst such node. This node must have been deleted during one of the pruningoperations in Step 1, otherwise it would have been marked during Step 2. Suppose that cwas the lone child of x at the time that x was deleted. By assumption, node c is marked bythe algorithm, and so when x is reinserted during Step 3, it too would be marked.The main result of this section is summarized in the following theorem:Theorem 2 An untagged list of length ` stored in the memory of a (p; n)-PRAM can bemarked deterministically in O (minf`; n=p+ logng) time.17



4 Marking Tagged ListsRecall that in a tagged list each node carries a special symbol in its tag �eld so that itcan be distinguished from non-list elements by inspection. The results of [7] show thattagging cannot lead to deterministic list-marking algorithms signi�cantly faster than statedin Theorem 2. However, in this section, we sketch a simple randomized strategy which takesadvantage of tags, and then we establish its optimality.The randomized algorithm is quite simple and proceeds in two stages. In the �rst stage,each processor randomly accesses q memory locations and retains the addresses of thoselocations that contain list elements. Successful probes split the original list into sublistsof nodes whose heads are marked and randomly distributed among the processors. Ourintuition is that the qp random probes in the �rst stage will select list elements so that g,the length of longest sublist, is su�ciently small. Once the list has been split in this way,in the second stage we invoke a straightforward adaptation to the CRCW-PRAM of thewell known randomized backtrack search algorithm of Karp and Zhang [6] that marks allthe list nodes while balancing the work among the processors in O(`=p+ g) time, with highprobability. Variants of this splitting technique are employed by Greene and Knuth [4] forgraph traversal, and by Ullman and Yannakakis [10] for graph searching.By interleaving the above strategy with the straightforward O(`) sequential algorithm wecan see that the list can be marked in O(minf`; `=p+q+gg) time, with high probability. Thefollowing lemma illustrates the tradeo� between the parameters q and g, the two quantitiesthat determine the running time of the algorithm.Proposition 2 Suppose that a tagged list of length ` is stored in the memory of a (p; n)-18



PRAM, into which t probes are made at random. Let random variable X denote the lengthof a longest contiguous subsequence of unprobed list elements. Then Pr(X > g) < `e�tg=n.Proof: The probability that no probes are made within a �xed subsequence of length g � `equals (1� g=n)t < e�tg=n, and there are at most `� g + 1 such subsequences. 2With p processors making a total of pq probes, we have Pr(X > g) < `e�pqg=n. Settingq = g = qk(n=p) logn where k is an arbitrary constant greater than one, we can see thatPr X > sknp logn! < `n�k � n�(k�1):Thus our algorithm runs in O(minn`; `=p+q(n=p) logno) time, with high probability.Next, we establish a lower bound that is within a constant factor of this upper bound.Theorem 3 Suppose that with probability at least 1�n�k, with k > 0, a randomized parallelalgorithm on a (p; n)-PRAM marks every element of a tagged list of length ` within t timesteps. Then t = 
 p̀ +min(`;sknp logn)! :Proof: First note that `=p is a trivial work-based lower bound for the problem. Next, assumethat in i steps the �rst i list elements are marked, for all 1 � i � `. This assumption doesnot weaken the argument for the lower bound.Let Wj be the event that each of the �rst j + 1 list elements is marked within the �rstj steps. Also, let Ct be the event that every list element has been marked within t or fewersteps. Assume that t < `. Then Ct � Wt, which means that Pr(Ct) � Pr(Wt) and, thereforePr(Ct) � Pr(Wt). 19



Now, the probability that the (i + 1)st list element was touched by a random probewithin the �rst i steps does not exceed pi=n. Hence, Pr(WijWi�1) � pi=n, and consequently,Pr(WijWi�1) � 1� pi=n. Combining this with the observation that Pr(W1) = 1 � p=n, wecan see that Pr(Wt) � tYi=1�1� pin �� �1� ptn �t= e
(�pt2=n);for t > 1.Thus, if Pr(Ct) � n�k; it must be the case that n�k = e
(�pt2=n), hencet = 
 sknp logn! ;and the theorem follows. 2
5 ConclusionsThe results of this paper are summarized in Figure 5. The �gure shows that in all cases,speed-ups over sequential performance can be obtained only for a number of processorslarger than a certain threshold p0. In the deterministic untagged case, p0 = �(n=`) andlogn = o(`); in the randomized tagged case, p0 = �(n logn=`2). Moreover, in the untaggedcase, the deterministic upper bound and the randomized lower bound match except for

20



p = 
(n= logn), therefore randomization cannot be of substantial help. For tagged lists,however, with length in the range q(n=p) logn � ` � n=p + logn, randomization a�ordsconsiderable speedups.Finally, preliminary investigations indicate that aspects of the above behavior remainwhen extending the algorithms for marking to other basic operations and/or to broaderclasses of linked structures.
AcknowledgmentsThe authors wish to thank the referees of EUROPAR'95 for their valuable feedback on theconference version of the paper, which resulted in improvements of the manuscript. Thisresearch was supported, in part, by the Istituto Trentino di Cultura through the LeonardoFibonacci Institute, in Trento, Italy. Further research support was provided by MURST andCNR of Italy to G. Bilardi and G. Pucci , and by the ESPRIT contract No. 9072 (projectGEPPCOM) to G. Bilardi, G. Pucci and K.T. Herley.
References[1] Cole, R. Parallel merge sort. SIAM J. Comput. 17, 4 (August 1988), 770{785.[2] Cole, R., and Vishkin, U. Deterministic coin tossing with applications to optimal parallellist ranking. Inform. and Control 70, 1 (July 1986), 32{53.[3] Cole, R., and Vishkin, U. Faster optimal pre�x sums and list ranking. Inform. andComput. 81, 3 (June 1989), 344{352. 21



[4] Greene, D. H., and Knuth, D. E. Mathematics for the Analysis of Algorithms. Birkauser,Boston MA, 1982.[5] J�aJ�a, J. An Introduction to Parallel Algorithms. Addison-Wesley, Reading MA, 1992.[6] Karp, R. M., and Zhang, Y. Randomized parallel algorithms for backtrack search andbranch and bound computation J. ACM 40, 3 (July 1993), 765{789.[7] Luccio, F., and Pagli, L. A model of sequential computation with pipelined access tomemory. Math. Systems Theory 26, 4 (July 1993), 343{356.[8] Motwani. R., and Raghavan, P. Randomized Algorithms. Cambridge University Press,Cambridge UK, 1995.[9] Tarjan, R. E., and Vishkin, U. Finding biconnected components and computing treefunctions in logarithmic time. SIAM J. Comput., 14, 4 (August 1985), 862{874.[10] Ullman J. D., and Yannakakis, M. High-probability parallel transitive closure algo-rithms. In Proc. 2-nd Annual ACM Symposium on Parallel Algorithms and Architectures,ACM Press, Crete, GR, 1990, pp. 200{209.[11] A. C.-C. Yao. Probabilistic computations: Toward a uni�ed measure of complexity. InProc. 18-th Annual IEEE Symposium on Foundations of Computer Science, IEEE Press,Providence, RI, 1977, pp. 222{227.
22



f � hv fTv v f f ffv� r
����� 6 @@@@I����

����� 6 ���� @@@I@@@@I
f ff����

f
f ff ff ff f f-
���� @@@I @@@I@@@I -���	? @@@R ���	

Figure 1: A pseudoforest. Thick lines and disks indicate the four-node list to bemarked.

23



f(4,1) � h����� v(5,2) f(6,3)v(3,4) v(2,5) f(7,6) f(9,7) f(10,8)f(8,9)v(1,10) � r
����� 6 @@@@I����

����� 6 ���� @@@I@@@@I
Figure 2: (preorder, postorder) numbers for nodes in T . A node x is an ancestor ofh i� preorder(x) � preorder(h) and postorder(x) � postorder(h).

24



f � hv fv v f f ffv� r
����� 6 @@@@I����

����� 6 ���� @@@I@@@@I
f ff����

f
f ff ff ff f f-
���� @@@I @@@I@@@I -���	? @@@R ���	

Figure 3: An independent set W (nodes enclosed into squares) for the pseudoforestof Figure 1.

25



� hvv
fv� r

6�����
�������� @@@@I

f
f ff f@@@R @@@I -���	

Figure 4: The pseudoforest of Figure 1 after the pruning step.

26



Deterministic Untagged O (min f`; n=p+ logng)Randomized Untagged 
 (min f`; n=pg)Randomized Tagged � �minn`; `=p+q(n=p) logno�Figure 5: Summary of bounds for the marking problem.

27



BiographiesGianfranco Bilardi received the Laurea (1978) (summa cum laude) in Electrical Engi-neering from the University of Padova and the Master (1982) and the PhD (1985) degrees,both in Electrical Engineering, from the University of Illinois at Urbana-Champaign. Asa graduate student, he was awarded a Rotary International fellowship (1980) and the IBMpredoctoral fellowship (1982-1984). From 1984 to 1990, he was an assistant professor of Com-puter Science at Cornell University, Ithaca, New York. In 1990, he joined the Departmentof Electronics and Informatics at the University of Padova, Italy, as a professor of ComputerScience. Since 1996, he is also a professor of Electrical Engineering and Computer Scienceat the University of Illinois at Chicago. His research interests lie in the area of parallel andVLSI computing. He is the author of more than 60 publications in international journalsand conferences. Dr. Bilardi is a member of the ACM and of the EATCS and is a seniormember of the IEEE.Sandeep N. Bhatt is Director of the Network Optimization and Computing research groupat Bellcore, Morristown, New Jersey, and a research professor of Computer Science at Rut-gers University. He received his SB, SM, and Phd (1984) from the Massachusetts Instituteof Technology and was an associate professor of Computer Science at Yale University beforejoining Bellcore in 1982. During 1990, he was a visiting associate professor of ComputerScience at Caltech. Dr. Bhatt's research interests include algorithmic models and architec-tures for parallel and distributed computing, high performance implementations of N-bodyalgorithms for uid dynamics, and network monitoring and surveillance. His research con-28



tributions include new techniques and applications of graph embeddings, randomized algo-rithms for load-balancing, and the design of network architectures. His doctoral thesis ontheoretical aspects of VLSI circuit layout provided a robust framework for solving di�erentlayout problems and presented e�cient channel routing algorithms. Dr. Bhatt's broaderinterests include data structures, graph algorithms, and computational complexity.Kieran T. Herley received his BSc (1982) and MSc (1983) both in Computer Sciencefrom University College Cork, Ireland. Further studies at Cornell University lead to an MS(1986) and a Phd (1990) in Computer Science. Since 1990, he has been a lecturer in theDepartment of Computer Science of University College Cork, Ireland. Dr. Herley's researchinterests include the design and analysis of parallel algorithms and parallel computationalmodels. He is a member of ACM and EATCS.Geppino Pucci received the Laurea (1987) (summa cum laude) and the Ph.D. (1993)degrees both in Computer Science from the University of Pisa, Italy. His Laurea thesiswas awarded the IBM and the UNITEAM prizes for the best Italian theses in computerscience. From 1988 to 1990 he was with the Computing Laboratory of the University ofNewcastle-upon-Tyne, United Kingdom, as a research associate. In 1992, he joined theDepartment of Electronics and Informatics of the University of Padova, Italy, as an assistantprofessor. On leave from Padova, he spent 1993 at the International Computer ScienceInstitute, Berkeley, California, as a postdoctoral fellow. His research interests include designand analysis of parallel algorithms, theory of computation, and probabilistic modeling. Dr.Pucci is a member of ACM.
29



Abhiram Ranade received the BTech degree in Electrical Engineering from the IndianInstitute of Technology, Bombay, in 1981 and the doctorate in Computer Science from YaleUniversity in 1989. Soon after graduation, he joined the Computer Science Division of theUniversity of California at Berkeley as an assistant professor. Currently, he is with theDepartment of Computer Science and Engineering, Indian Institute of Technology, Bombay.His research interests include parallel architectures and algorithms, parallel programmingtechniques, and data structures.

30



Figure legends
Figure 1: A pseudoforest. Thick lines and disks indicate the four-node list to be marked.Figure 2: (preorder, postorder) numbers for nodes in T . A node x is an ancestor of h i�preorder(x) � preorder(h) and postorder(x) � postorder(h).Figure 3: An independent set W (nodes enclosed into squares) for the pseudoforest of Fig-ure 1.Figure 4: The pseudoforest of Figure 1 after the pruning step .Figure 5: Summary of bounds for the marking problem.

31


