Tight Bounds on Parallel List Marking*

Sandeep N. Bhatt
Bell Communications Research
Morristown, NJ 07960 USA

Gianfranco Bilardi
Dipartimento di Elettronica e Informatica
Universita di Padova
[-35131 Padova, Italy
and
Department of Electrical Engineering and Computer Science
University of Illinois at Chicago
Chicago, 1L 60607 USA

Kieran T. Herley
Department of Computer Science
University College Cork
Cork, Ireland

Geppino Pucci
Dipartimento di Elettronica e Informatica
Universita di Padova
[-35131 Padova, Italy

Abhiram Ranade
Department of Computer Science and Engineering

Indian Institute of Technology
Powai, Mumbai 400076 India

*A preliminary version of this paper appeared in Proc. EURO-PAR’95 Parallel Processing, Springer
LNCS 966, Stockolm, S, 1995, pp. 231-242.

Proposed Running Head

Twght Bounds on Parallel List Marking

Contact Author

Dr. Geppino Pucci

Dipartimento di Elettronica e Informatica
Universita di Padova

Via Gradenigo, 6/A

[-35131 Padova, Italy

Phone: +39 (49) 827 7830
Fax: +39 (49) 827 7826
E-mail: geppo@artemide.dei.unipd.it

Abstract

The list marking problem involves marking the nodes of an /-node linked list stored in
the memory of a (p,n)-PRAM, when only the position of the head of the list is initially
known, while the remaining list nodes are stored in arbitrary memory locations. Under
the assumption that cells containing list nodes bear no distinctive tags distinguishing them
from other cells, we establish an Q (min{¢, n/p}) randomized lower bound for /-node lists and
present a deterministic algorithm whose running time is within a logarithmic additive term of
this bound. Such result implies that randomization cannot be exploited in any significant way
in this setting. For the case where list cells are tagged in a way that differentiates them from
other cells, the above lower bound still applies to deterministic algorithms, while we establish
a tight © (min {E, l/p++/(n/p)log n}) bound for randomized algorithms. Therefore, in the
latter case, randomization yields better performance for a wide range of parameter values.

Key words: List Marking; List Ranking; Linked Structures; Shared-Memory Machines;
Parallel Algorithms; Randomized Algorithms; Lower Bounds.

List of Symbols

14 Letter ell
(,) Angled Brackets
0, 1 Lowercase greek letters (delta, mu)

2, © Uppercase greek letters (Omega, Theta)
0, o Big-oh, little-oh

Pr Probability

1 Introduction

Linked structures are widely used in non numerical as well as sparse numerical computations.
Therefore, it is important to ascertain whether parallelism can be exploited to process such
structures effectively.

In this paper, we focus on lists, possibly the simplest type of linked structures, and on
a very basic operation, which we call marking, consisting of writing a given value in each
node of a given list. The essence of marking is that each node in the list has to be affected,
while other structures stored in the same memory have to stay untouched. This feature is
instrumental to the realization of several basic list operations such as searching an element
or ranking all nodes (determining their distance from the head). Marking itself is used in
important practical applications, such as garbage collection, for identifying active structures
in a large memory heap. The complexity of parallel list operations crucially depends on
the list representation, and is often affected by features that are irrelevant to sequential
complexity. When managing lists in parallel, a favourable case arises if the the growth
process affords keeping all list nodes in a compact region of memory. In this case the list
can be represented as an array of ¢ records, each record corresponding to a list node, with a
field storing the array index of its successor. Indeed, most list-based parallel algorithms in
the literature (e.g., searching and ranking [2]) do assume such compact representation. In
other scenarios, unfortunately, list nodes become naturally scattered throughout a portion
of memory whose size n is much larger than the length of the list. This case arises, for
instance, when a sequence of concatenations and splittings is performed on a set of lists.

In the present study, we consider the size ¢ of the list and the size n of the memory region

which is known a prior: to contain the list as independent parameters.

We also distinguish between tagged and untagged lists, a tagged list being one where
each node contains a tag that uniquely identifies the list. Tags can be maintained with small
overhead if the list is modified only by insertion and deletion of nodes. However, the overhead
is not negligible if other operations, such as concatenation and splitting, are allowed. Note
that a node of a tagged list can be recognized as such by simply checking the tag stored with
the node. In contrast, cells storing untagged list nodes are indistinguishable from other cells
by simple inspection.

We investigate the extent to which parallelism, randomization, and tagging can be prof-
itably exploited to improve upon sequential performance when lists are scattered throughout
the memory. Specifically, we develop deterministic and randomized upper and lower bounds
for marking a tagged or untagged list of ¢/ nodes stored in the memory of a p-processor
PRAM with n memory cells, when only the position of the head of the list is initially known
and the remaining list nodes are scattered among arbitrary memory locations.

A restricted version of the list marking problem was introduced and analyzed by Luccio
and Pagli in [7]. The authors prove a deterministic 2 (min{¢, n/p}) lower bound for marking
tagged lists and provide a tight upper bound when p = O(¢/log¢) and n = O(¢log/). In this
paper, after formalizing the problem in Section 2, we improve and generalize these results in

the following directions:

1. In Section 3, we prove that an Q (min{¢,n/p}) lower bound also holds for any ran-
domized algorithm for marking an untagged list. Moreover, we give a deterministic

algorithm optimal to within a logarithmic additive term, therefore showing that ran-

domization can not be exploited in any significant way in this setting.

2. In Section 4, we establish a tight, randomized © (min {E, l/p++/(n/p)log n}) bound
for marking a tagged list, showing that, for a wide range of list lengths, considerable

speedups can be attained by means of randomization.

A synopsis of results for the marking problem is given in Section 5.

2 Problem Formulation

We will assume that each memory cell has the same format and contains a memory address

which will be interpreted as a pointer (called the successor pointer) to another cell, a tag
field, capable of holding a distinctive symbol, a data field, and a small constant amount of
additional space, called scratch space. The head of the list, denoted by A, occupies cell 0
and its data field contains some arbitrary symbol which we will refer to as the signature of
the list. Finally, each list node points to its successor in the list, and the pointer field of the
last node r contains the address of cell 0, which we will interpret as a nil pointer.

We identify two variants of the problem. The list is untagged if list nodes bear no
distinctive mark or symbol that renders them instantly identifiable as such. The list is
tagged if each list node bears a distinctive symbol in its tag field which no non-list node
bears, thus allowing list nodes to be identified by inspection. In both cases, the goal of the
list marking problem is to copy the signature into the data field of every node in the list; the
data fields of all other nodes should remain unchanged. A node is said to be marked once

its data field bears the appropriate signature.

Since each memory cell contains a successor pointer, the entire memory can be interpreted
as a directed graph G of n nodes. Note that each node has outdegree zero or one, but a node
(including list nodes) may have indegree zero (leaves), one (unary nodes), or higher. Such a
graph is known as a pseudoforest. (These structures feature in some connected component
algorithms, see for example [5].) Within the pseudoforest, the chain of list nodes forms a
directed path in a structure 7" that we may interpret as a tree, the edges of which are oriented
from child to parent. The node A is a leaf of 7" and the list nodes are the ancestors of A in
T located along the directed path from h to r, the root of T In fact, G consists of T" plus
a collection of node-disjoint components each of which is either a tree or one or more trees
joined by a cycle connecting their roots (see Figure 1 for an example). In this setting, the
objective is to mark all those nodes in G that are ancestors of h in T.

The algorithms and the lower bound arguments presented in the paper all assume the
ARBITRARY CRCW variant of the PRAM model of shared-memory computation [5]. Thus,
concurrent reads and writes are permitted. Whenever a number of processors attempt to
write simultaneously to a cell, one of them, chosen arbitrarily, succeeds, while the others
fail. For convenience, we will refer to a PRAM with p processors and n cells of memory
as a (p,n)-PRAM and will assume throughout that p < n. We will also assume that each
processor has a private area of O(1) storage for workspace.

We want to remark that the lower bound arguments on list marking apply to the less
powerful EREW and CREW variants of the PRAM model, while the algorithms presented
in the paper can be ported to these weaker models with an O(logp) extra factor in their

running time. In fact, for many choices of the relevant parameters, the slowdown incurred in

running either the deterministic or the randomized marking algorithm on the EREW PRAM
can be reduced to a constant factor. The technicalities involved are quite standard and are

omitted.

3 Marking Untagged Lists

In this section we determine the complexity of the untagged variant of the list marking
problem. In Subsection 3.1, we prove that any randomized Las Vegas [8] algorithm for the
problem requires Q (min{¢,n/p}) time with high probability. In Subsection 3.2, we give a
deterministic algorithm whose running time is within an additive logarithmic term of the

lower bound, showing that randomization cannot be significantly exploited in this case.

3.1 A Randomized Lower Bound

The intuition behind the lower bound is that a list element becomes distinguishable from a
non-list element only when every element along the directed path from the head of the list
to that element has been identified. As a consequence, random probes of the memory cells
will not speed-up the computation in any significant way. This argument is formalized in

the following theorem.

Theorem 1 Suppose that with probability 1 — o(1) a randomized parallel algorithm on a

(p,n)-PRAM marks every element of an untagged list of length ¢ within t time steps. Then

ofenf])

Proof: Observe that a randomized algorithm can be seen as one chosen uniformly at random
from a set D of deterministic algorithms (each deterministic algorithm being characterized
by the outcome of a sequence of unbiased, independent random binary trials). In order to
prove our lower bound for the untagged case, we construct a set of inputs with the property
that every algorithm in D fails to mark the list in less than the time prescribed by the
lower bound for a constant fraction of the inputs. From this, it immediately follows that,
for some input in the set, a constant fraction among all the deterministic algorithms fail to
mark the list in the prescribed time. Therefore, the failure probability of a randomly chosen
algorithm, on that particular input, is bounded below by a positive constant. This lower
bound technique was introduced by Yao in [11].

We will assume that ¢ is fixed and will restrict our attention to the following set of inputs.
The contents of the memory are organized as a circular list of length n. The target list of
length £ is a contiguous sublist of the circular list, and the address of the head and tail of the
target list is given as input to the algorithm. (This formulation of the problem is essentially
equivalent to that presented in the introduction, but more convenient in the current context.)
There are n! different inputs, corresponding to the (n — 1)! different circular lists of length
n and the choice for the address of the head of the target list.

If £ > n/(2p), then the stated bound on ¢ certainly holds. We can therefore concentrate
on the case t < n/(2p). At any time step, the algorithm probes a set of at most p memory
cells. At each step i < ¢, we view the nodes on the circular list as grouped into k; sublists,
defined as maximal sets of adjacent probed nodes terminated by an unprobed node. Initially,

there are n sublists, each consisting of a single distinct unprobed node. When a node v is

probed, its pointer to the next element v’ in the list becomes known, and their corresponding
sublists merge. The sublist containing the head of the target list, referred to as the principal
sublist, contains a prefix of the target list, whose length is nondecreasing and becomes /
upon termination. Since each step of the algorithm causes at most p merges, at least n — pi
sublists remain after i steps.

Let n; denote the number of nonprincipal sublists of length j at the beginning of the i-th
step, so that >°7_, nf = k; — 1. For convenience, we assume that each step consists of a first
substep during which p — 1 arbitrary cells are probed, followed by a second substep when
the tail of the principal sublist is probed, which has the effect of grafting a single sublist
onto the end of the principal sublist. Clearly, conforming to this discipline will not alter the
running time of an algorithm by more than a constant factor. The merges provoked by the
p—1 probes of the first substep yield £; 1 nonprincipal sublists. With the possible exception
of the single sublist that will be grafted onto the principal sublist during the second substep,
there are at most n?’l sublists of length 7. One of these sublists is grafted onto the principal
sublist during this step, and because all input lists are equally likely, each of these sublists
is equally likely to be chosen. Thus, the expected value of §;, the increase in the length of

the principal sublist during step i, is bounded as follows

E& <> e + < < 4,

nogntt n 2n
o ki ki T on—pi

since k;y1 > n—pi > n/2. The above summation accounts for all but one of the nonprincipal
sublists, whose contribution is accounted for by the term n/k;,;. Therefore, only constant

progress is made, on average, at each step on the prefix of the list, and the stated result

10

follows. O

Note that the above bound is obtained under the optimistic assumption that a node
belonging to the target list is recognized as such as soon as all the other nodes between the
head of the target list and that node are probed, even though the algorithm, by the time it
touches the corresponding memory cells, may not have sufficient information to determine

that these cells actually contain list elements.

3.2 A Deterministic Upper Bound

We begin by outlining a relatively simple, slightly inefficient deterministic algorithm for the
untagged list marking problem. We then provide a fast technique to transform the input
instance into an equivalent, smaller one so that the running time of the algorithm on the new
instance is within the desired bound. This “shrinking” process is accomplished by deleting
nodes and rearranging edges of the pseudoforest underlying the original input instance.
Consider an untagged list of £ nodes stored in the memory of a (p,n)-PRAM, and let h
be the (given) distinguished pointer to the head of the list. As we observed in Section 2,
the nodes to be marked are the ancestors of h in a tree 1" whose root is r, the tail of the
list. Suppose that we are given the preorder and postorder number of every node in 7.
Then, a particular node z is an ancestor of h if and only if preorder(x) < preorder(h) and
postorder(z) > postorder(h) (see Fig. 2). Although the Euler-tour techniques of Tarjan and
Vishkin [9] can be used to efficiently compute the preorder and postorder numberings in
trees, these may not be applied immediately in the present context. Firstly, the presence of

other components in the pseudoforest may complicate matters, and secondly the techniques

11

rely on an adjacency list representation for trees.

We circumvent the first difficulty as follows. Using a straightforward pointer-jumping
technique, each node in T can identify the root r in O(logn) time per node or O((n/p) logn)
time overall. Nodes not in 7" executing the same algorithm will “converge” on some node
other than r and will hence be clearly identifiable as not belonging to 7. All such nodes will
remain dormant for the remainder of the algorithm.

Having eliminated all nodes not in 7', we may now construct an adjacency list repre-
sentation for T. Label the i-th cell C; with the pair < s,7 > where s is the address of its
parent in 7. By sorting the cells lexicographically using Cole’s algorithm [1], the children
of each node occupy adjacent positions, and so they may be easily linked together in an
adjacency list for that node. (These linking pointers are distinct from the successor pointers
for the nodes and are stored in the scratch storage associated with the nodes in question.)
The cells are then resorted with respect to their original addresses in order to reconstruct
the original structure of T" and to attach adjacency lists to the appropriate tree nodes. The
implementation details are straightforward. The sorting steps dominate the running time
and so the adjacency list representation for 7' can be constructed in O((n/p)logn) time.

Given the adjacency list representation for 7', the preorder and postorder numberings can
be computed in O((n/p)logn) time [9]. The identification and marking of the ancestors of
h can be completed within the same time bound. Interleaving this O((n/p)logn) algorithm

with the obvious O(¢) sequential algorithm, we obtain the following result.

Proposition 1 An untagged list of length € in the memory of an (p,n)-PRAM can be marked

deterministically in O (min{¢, (n/p)logn}) time.

12

We now proceed to develop a more efficient algorithm, which, by a sequence of pruning
steps, will reduce the pseudoforest G to one, G’, significantly smaller, and such that the
ancestors of h in G’ be among the ancestors of h in G. Marking of G’ can be fast, due to
small size, and then extended to mark all the ancestors of A in G. Each pruning step reduces
the number of nodes in the pseudoforest by a constant factor by deleting some nodes and
rearranging pointers among the active (undeleted) nodes. The basis for pruning steps is

provided by the following lemma.

Lemma 1 There is a constant p < 1 such that, for any pseudoforest G = (V, E) containing

h, there is a subset W CV — {h} of leaves and unary nodes, such that:

(i) No pair of nodes in W are neighbors in G (W is an independent set).

(ii) (W] = pu[V]=1;
Moreover, set W can be computed in O(|V'|/p + logn/loglogn) time.

Proof: Let G = (V, E) be a pseudoforest. The nodes eligible for inclusion in W are the nodes
in GG of indegree zero or one, apart from h. This set induces a set of maximal node-disjoint
linear chains (i.e., either simple paths or cycles) of eligible nodes. Apply the following
operation to each such chain. If the chain is of length one or two, then select one node; if
the chain has length three or more, then select a subset of the nodes such that (i) no two
adjacent nodes are selected, and (ii) the maximum number of consecutive unselected nodes
on the chain is two. The union of the selected nodes for the various chains forms the desired
set W.

The identification of nodes in GG of indegree at most one is and the selection of one node in

each chain of length at most two are straightforward and require only constant work per node.

13

The selection of nodes belonging to chains of length three or greater is instead accomplished
by applying the 2-ruling algorithm of Cole and Vishkin [2] and selecting the nodes in the
ruling. (Their algorithm is formulated in terms of circular lists, but this restriction can be
easily relaxed.) This latter step can be completed in O(|V'|/p + logn/loglogn) time.

Consider a chain of length k. If £ < 2, then [k/2] of the nodes on the chain are selected.
If £ > 3, then each pair of selected nodes is separated by at most two unselected nodes.
Allowing for the possibility that the first two nodes on a chain might be unselected, we see
that in this case the number of selected nodes is at least [(k — 2)/3] > (1/9)k.

If we let s denote the number of nodes in G of indegree at most one (including h),
it is clear that s > (|V| + 1)/2. The s — 1 eligible nodes are arranged into chains of
length one, two, or greater, and by the previous argument we are guaranteed that at least

(1/9)(s — 1) > (1/18)|V| — 1 nodes are selected. This establishes our claim with g = 1/18.

O

A possible choice of set W for the pseudoforest of Figure 1 is shown in Figure 3. Notice
that it is easy to delete a node w in W from G by redirecting the only edge incident on w (if
any) to point to w’s parent (or nil, if w has outdegree zero). By the above lemma, the graph
G’ thus obtained contains significantly fewer nodes than G (at most (1 — p)|V]+1). It is
also easy to verify that for every pair of nodes x and y in H', z is an ancestor of y in G' if
and only if z is an ancestor of y in G. Thus, while smaller in size, the graph G’ retains some
of the ancestor-descendent information of the original graph G. The effect of the pruning
step on the pseudoforest of Figure 1 is shown in Figure 4.

Before we describe the implementation of the pruning step in greater detail, we must

14

introduce some auxiliary data structures employed by the algorithm, the role of which will
become clear in due course.

Each processor maintains a private stack that is empty before the first pruning. When
a processor deletes a node during a pruning step, it pushes that node onto its stack. This
facilitates the reconstruction of the graph at a later stage in the algorithm. Fach processor
also has a private list called its work list. Collectively, the p work lists hold all the active
nodes in the graph. Between pruning steps, nodes are redistributed among work lists to
ensure that each processor’s work list contains an equal number of items. A processor is
responsible for performing whatever operations are required for the nodes on its work list
during a pruning step.

It should be emphasized that the only space overhead for these stacks and work lists is
O(1) per processor for a header pointer: the objects in these structures are nodes linked
by pointers. These linking pointers are distinct from the successor pointers of the nodes in
question and are represented within the scratch space of the nodes.

In summary, the pruning step applied to a pseudoforest G = (V, F') may be described as

follows.

1. Identify the set W.

2. Perform the following step for each active node x in W: mark z deleted, label the node
with the current time and the name of its lone child, and push the node onto the local
stack. For each active node ¢ whose parent x is in W do the following: redirect c’s
successor pointer to point to x’s parent, or to nil if x has no parent. (Each processor

is responsible for the nodes on its own work list.)

15

3. Update the work lists.

Let a; denote the total number of active nodes at the beginning of the i-th pruning step,
for ¢+ > 0, that is, the number of nodes in the current pseudoforest. From Lemma 1 it
follows that Step 1 above is completed in O(a;/p + logn/loglogn) time. Assuming that
every processor work list holds O(a;/p) active nodes at the start of the pruning step, it is
easy to see that Step 2 requires O(a;/p) time. To update the work lists in Step 3, each
processor scans through its own list removing the deleted nodes and counting the active
nodes. Finally, using a straightforward combination of parallel prefix [3] and routine pointer
manipulations, it is possible to redistribute the active nodes among the work lists so that
each processor’s list receives at most [a;1/p| nodes in O(a;/p+logn/loglogn) time. Thus,
the i-th pruning step can be completed in O(a;/p + logn/loglogn) time.

The following recurrence provides an upper bound for the a;’s:

(1—p)a;—y+1, fori>0,

n, for ¢ = 0.

Thus, a; < (1 — p)'n 4+ ¥/24(1 — p)?, which is bounded above by p~'n/logn when i >
[loglogn/log(l — u)~1]. Selecting k to be this latter quantity, we see that the number of

active nodes can be reduced to at most u~'n/logn in time

o k-1 (1_M)m+“_1+k logn 0 ﬁ—klogn
—~ p loglogn p '

In conclusion, the overall algorithm is as follows.

16

1. Apply k pruning steps to the initial pseudoforest G to produce a pseudoforest G' with

at most u~'n/logn nodes.
2. Apply the algorithm of Proposition 1 to mark all nodes in G' that are ancestors of h.

3. Reincorporate the nodes deleted during Step 1 in the reverse order to which they were
deleted. In other words, first undo the deletions of the k-th pruning, then those of the

(k — 1)-st pruning, and so on. For each reinserted node, mark it if its child is marked.

We have already noted that Step 1 runs in O (n/p + logn) time. Step 3 basically performs
the same operations as Step 1, but in reverse order, therefore it has a comparable running
time. Finally, by Proposition 1, Step 2 is completed in O(((z~'n/logn)/p)logn) = O(n/p+
logn) time.

The correctness of the above algorithm can be proved as follows. Since an ancestor of a
node z in G’ is also an ancestor of x in (G, and only leaves and unary nodes are deleted, all
of the nodes marked by the algorithm are ancestors of A in G. On the other hand, suppose
that some node along the directed path from A to r is not marked by the algorithm, and
let = be the first such node. This node must have been deleted during one of the pruning
operations in Step 1, otherwise it would have been marked during Step 2. Suppose that ¢
was the lone child of z at the time that x was deleted. By assumption, node ¢ is marked by
the algorithm, and so when =z is reinserted during Step 3, it too would be marked.

The main result of this section is summarized in the following theorem:

Theorem 2 An untagged list of length ¢ stored in the memory of a (p,n)-PRAM can be

marked deterministically in O (min{¢,n/p + logn}) time.

17

4 Marking Tagged Lists

Recall that in a tagged list each node carries a special symbol in its tag field so that it
can be distinguished from non-list elements by inspection. The results of [7] show that
tagging cannot lead to deterministic list-marking algorithms significantly faster than stated
in Theorem 2. However, in this section, we sketch a simple randomized strategy which takes
advantage of tags, and then we establish its optimality.

The randomized algorithm is quite simple and proceeds in two stages. In the first stage,
each processor randomly accesses ¢ memory locations and retains the addresses of those
locations that contain list elements. Successful probes split the original list into sublists
of nodes whose heads are marked and randomly distributed among the processors. Our
intuition is that the gp random probes in the first stage will select list elements so that g,
the length of longest sublist, is sufficiently small. Once the list has been split in this way,
in the second stage we invoke a straightforward adaptation to the CRCW-PRAM of the
well known randomized backtrack search algorithm of Karp and Zhang [6] that marks all
the list nodes while balancing the work among the processors in O(¢/p + g) time, with high
probability. Variants of this splitting technique are employed by Greene and Knuth [4] for
graph traversal, and by Ullman and Yannakakis [10] for graph searching.

By interleaving the above strategy with the straightforward O(¢) sequential algorithm we
can see that the list can be marked in O(min{¢, ¢/p+q+g}) time, with high probability. The
following lemma illustrates the tradeoff between the parameters ¢ and g, the two quantities

that determine the running time of the algorithm.

Proposition 2 Suppose that a tagged list of length ¢ is stored in the memory of a (p,n)-

18

PRAM, into which t probes are made at random. Let random variable X denote the length

of a longest contiguous subsequence of unprobed list elements. Then Pr(X > g) < Let9lm,

Proof: The probability that no probes are made within a fixed subsequence of length g < /¢

equals (1 — g/n)t < e™*/" and there are at most £ — g + 1 such subsequences. O

With p processors making a total of pg probes, we have Pr(X > g) < £e™P99/", Setting

q =g =/k(n/p)logn where k is an arbitrary constant greater than one, we can see that

Pr (X > 1/kﬁlogn> < tnF <p kD,
p

Thus our algorithm runs in O(min {E, l/p++/(n/p)log n}) time, with high probability.

Next, we establish a lower bound that is within a constant factor of this upper bound.

Theorem 3 Suppose that with probability at least 1 —n~", with k > 0, a randomized parallel

algorithm on a (p,n)-PRAM marks every element of a tagged list of length ¢ within t time

=Q (E + min {E, \ /kﬁlogn}> .
p p

Proof: First note that ¢/p is a trivial work-based lower bound for the problem. Next, assume

steps. Then

that in 7 steps the first i list elements are marked, for all 1 < ¢ < /. This assumption does
not weaken the argument for the lower bound.

Let W; be the event that each of the first j 4 1 list elements is marked within the first
7 steps. Also, let C; be the event that every list element has been marked within ¢ or fewer
steps. Assume that ¢ < ¢. Then C; C W;, which means that Pr(C;) < Pr(W;) and, therefore

Pr(Cy) > Pr(W,).

19

Now, the probability that the (i + 1)st list element was touched by a random probe

within the first ¢ steps does not exceed pi/n. Hence, Pr(W;|W;_;) < pi/n, and consequently,

Pr(W;|W; 1) > 1 — pi/n. Combining this with the observation that Pr(W}) = 1 — p/n, we

can see that

for t > 1.

Thus, if Pr(Cy) < n*,

and the theorem follows.

5 Conclusions

(V4
—
|
S|E
~—

it must be the case that n=% = eQ(”’tQ/”), hence

t= (Mkﬁlogn) ,
p

The results of this paper are summarized in Figure 5. The figure shows that in all cases,

speed-ups over sequential performance can be obtained only for a number of processors

larger than a certain threshold py. In the deterministic untagged case, py = ©(n/{) and

logn = o(f); in the randomized tagged case, py = O(nlogn/¢*). Moreover, in the untagged

case, the deterministic upper bound and the randomized lower bound match except for

20

p = Q(n/logn), therefore randomization cannot be of substantial help. For tagged lists,
however, with length in the range (/(n/p)logn < ¢ < n/p + logn, randomization affords
considerable speedups.

Finally, preliminary investigations indicate that aspects of the above behavior remain
when extending the algorithms for marking to other basic operations and/or to broader

classes of linked structures.

Acknowledgments

The authors wish to thank the referees of EUROPAR’95 for their valuable feedback on the
conference version of the paper, which resulted in improvements of the manuscript. This
research was supported, in part, by the Istituto Trentino di Cultura through the Leonardo
Fibonacci Institute, in Trento, Italy. Further research support was provided by MURST and
CNR of Ttaly to G. Bilardi and G. Pucci , and by the ESPRIT contract No. 9072 (project

GEPPCOM) to G. Bilardi, G. Pucci and K.T. Herley.

References

[1] Cole, R. Parallel merge sort. STAM J. Comput. 17, 4 (August 1988), 770-785.

[2] Cole, R., and Vishkin, U. Deterministic coin tossing with applications to optimal parallel

list ranking. Inform. and Control 70, 1 (July 1986), 32-53.

[3] Cole, R., and Vishkin, U. Faster optimal prefix sums and list ranking. Inform. and

Comput. 81, 3 (June 1989), 344-352.

21

Greene, D. H., and Knuth, D. E. Mathematics for the Analysis of Algorithms. Birkauser,

Boston MA, 1982.

JaJa, J. An Introduction to Parallel Algorithms. Addison-Wesley, Reading MA, 1992.

Karp, R. M., and Zhang, Y. Randomized parallel algorithms for backtrack search and

branch and bound computation J. ACM 40, 3 (July 1993), 765-789.

Luccio, F., and Pagli, L. A model of sequential computation with pipelined access to

memory. Math. Systems Theory 26, 4 (July 1993), 343-356.

Motwani. R., and Raghavan, P. Randomized Algorithms. Cambridge University Press,

Cambridge UK, 1995.

Tarjan, R. E., and Vishkin, U. Finding biconnected components and computing tree

functions in logarithmic time. STAM J. Comput., 14, 4 (August 1985), 862-874.

[10] Ullman J. D., and Yannakakis, M. High-probability parallel transitive closure algo-

rithms. In Proc. 2-nd Annual ACM Symposium on Parallel Algorithms and Architectures,

ACM Press, Crete, GR, 1990, pp. 200-209.

[11] A. C.-C. Yao. Probabilistic computations: Toward a unified measure of complexity. In

Proc. 18-th Annual IEEE Symposium on Foundations of Computer Science, IEEE Press,

Providence, RI, 1977, pp. 222-227.

22

Figure 1: A pseudoforest. Thick lines and disks indicate the four-node list to be
marked.

23

(3,4) / (9.7) (1&
4,1 (5,2) lk (6,3)

Figure 2: (preorder, postorder) numbers for nodes in T. A node x is an ancestor of
h iff preorder(z) < preorder(h) and postorder(x) > postorder(h).

24

N, TEae A
N
C @/\@/%/\E\@

Figure 3: An independent set W (nodes enclosed into squares) for the pseudoforest
of Figure 1.

25

@ 7

\
N N

Figure 4: The pseudoforest of Figure 1 after the pruning step.

26

Deterministic Untagged O (min {¢,n/p + logn})
Randomized Untagged Q (min {¢,n/p})

Randomized Tagged | O (min {E, l/p++/(n/p)log n})

Figure 5: Summary of bounds for the marking problem.

27

Biographies

Gianfranco Bilardi received the Laurea (1978) (summa cum laude) in Electrical Engi-
neering from the University of Padova and the Master (1982) and the PhD (1985) degrees,
both in Electrical Engineering, from the University of Illinois at Urbana-Champaign. As
a graduate student, he was awarded a Rotary International fellowship (1980) and the IBM
predoctoral fellowship (1982-1984). From 1984 to 1990, he was an assistant professor of Com-
puter Science at Cornell University, Ithaca, New York. In 1990, he joined the Department
of Electronics and Informatics at the University of Padova, Italy, as a professor of Computer
Science. Since 1996, he is also a professor of Electrical Engineering and Computer Science
at the University of Illinois at Chicago. His research interests lie in the area of parallel and
VLSI computing. He is the author of more than 60 publications in international journals
and conferences. Dr. Bilardi is a member of the ACM and of the EATCS and is a senior

member of the IEEE.

Sandeep N. Bhatt is Director of the Network Optimization and Computing research group
at Bellcore, Morristown, New Jersey, and a research professor of Computer Science at Rut-
gers University. He received his SB, SM, and Phd (1984) from the Massachusetts Institute
of Technology and was an associate professor of Computer Science at Yale University before
joining Bellcore in 1982. During 1990, he was a visiting associate professor of Computer
Science at Caltech. Dr. Bhatt’s research interests include algorithmic models and architec-
tures for parallel and distributed computing, high performance implementations of N-body

algorithms for fluid dynamics, and network monitoring and surveillance. His research con-

28

tributions include new techniques and applications of graph embeddings, randomized algo-
rithms for load-balancing, and the design of network architectures. His doctoral thesis on
theoretical aspects of VLSI circuit layout provided a robust framework for solving different
layout problems and presented efficient channel routing algorithms. Dr. Bhatt’s broader

interests include data structures, graph algorithms, and computational complexity.

Kieran T. Herley received his BSc (1982) and MSc (1983) both in Computer Science
from University College Cork, Ireland. Further studies at Cornell University lead to an MS
(1986) and a Phd (1990) in Computer Science. Since 1990, he has been a lecturer in the
Department of Computer Science of University College Cork, Ireland. Dr. Herley’s research

interests include the design and analysis of parallel algorithms and parallel computational

models. He is a member of ACM and EATCS.

Geppino Pucci received the Laurea (1987) (summa cum laude) and the Ph.D. (1993)
degrees both in Computer Science from the University of Pisa, Italy. His Laurea thesis
was awarded the IBM and the UNITEAM prizes for the best Italian theses in computer
science. From 1988 to 1990 he was with the Computing Laboratory of the University of
Newcastle-upon-Tyne, United Kingdom, as a research associate. In 1992, he joined the
Department of Electronics and Informatics of the University of Padova, Italy, as an assistant
professor. On leave from Padova, he spent 1993 at the International Computer Science
Institute, Berkeley, California, as a postdoctoral fellow. His research interests include design

and analysis of parallel algorithms, theory of computation, and probabilistic modeling. Dr.

Pucci is a member of ACM.

29

Abhiram Ranade received the BTech degree in Electrical Engineering from the Indian
Institute of Technology, Bombay, in 1981 and the doctorate in Computer Science from Yale
University in 1989. Soon after graduation, he joined the Computer Science Division of the
University of California at Berkeley as an assistant professor. Currently, he is with the
Department of Computer Science and Engineering, Indian Institute of Technology, Bombay.
His research interests include parallel architectures and algorithms, parallel programming

techniques, and data structures.

30

Figure legends

Figure 1: A pseudoforest. Thick lines and disks indicate the four-node list to be marked.

Figure 2: (preorder, postorder) numbers for nodes in T. A node z is an ancestor of h iff

preorder(x) < preorder(h) and postorder(x) > postorder(h).

Figure 3: An independent set W (nodes enclosed into squares) for the pseudoforest of Fig-

ure 1.
Figure 4: The pseudoforest of Figure 1 after the pruning step .

Figure 5: Summary of bounds for the marking problem.

31

