
Translating Submachine Locality into

Locality of Reference ?

Carlo Fantozzi Andrea Pietracaprina Geppino Pucci ∗

Dipartimento di Ingegneria dell’Informazione, Università di Padova, Padova, Italy

Abstract

In this work, we show that the submachine locality exposed by hierarchical bulk-
synchronous computations can be efficiently turned into locality of reference on
arbitrarily deep hierarchies. Specifically, we develop efficient schemes to simulate
parallel programs written for the Decomposable BSP (a BSP variant which fea-
tures a hierarchical decomposition into submachines) on the sequential Hierarchical
Memory Model (HMM), which rewards the exploitation of temporal locality, and
on its extension with block transfer, the BT model, which also rewards the exploita-
tion of spatial locality. The simulations yield good hierarchy-conscious sequential
algorithms from parallel ones, and provide evidence of the strict relation between
submachine locality in parallel computation and locality of reference in the hier-
archical memory setting. We also devise a generalization of the HMM result to
the self-simulation of D-BSP augmented with hierarchical memory modules, which
yields an interesting analogue of Brent’s lemma, thus proving that the enhanced
model features a seamless integration of memory and network hierarchies.

Key words: Decomposable BSP, Hierarchical Memory Model, Block Transfer,
Submachine Locality, Locality of Reference

? This research was supported in part by MIUR of Italy under project “ALGO-
NEXT: ALGOrithms for the NEXT generation Internet and the Web”, and by
the University of Padova under Grant CPDA033838. Preliminary versions of the
results in the paper were presented at the 18th International Parallel and Distributed
Processing Symposium (IPDPS 2004, Best Paper Award, Algorithms Track), and
at the 29th International Colloquium on Automata, Languages, and Programming
(ICALP 2002).
∗ Corresponding Author: Dip. di Ingegneria dell’Informazione, Via Gradenigo
6/B, 35131 Padova, Italy. Tel. +39 0498277951, Fax: +39 0498277799

Email addresses: carlo.fantozzi@unipd.it (Carlo Fantozzi),
andrea.pietracaprina@unipd.it (Andrea Pietracaprina),
geppino.pucci@unipd.it (Geppino Pucci).

Preprint submitted to Elsevier Science 14 January 2005

1 Introduction

In modern computing platforms the memory system is characterized by

a multilevel hierarchical structure, with capacity and access times increasing

as levels grow farther from the processing unit. In multiprocessors the com-

munication network introduces further levels in the hierarchy. Since the time

to access data varies with the level being accessed, performance is consider-

ably enhanced when the relevant data can be moved (possibly in blocks) up

the hierarchy, close to the unit (or the units) that processes it. To exploit

this fact, the computation must exhibit a property generally referred to as

data locality. On a uniprocessor, data locality, also known as locality of ref-

erence, takes two distinct forms, namely, the frequent reuse of data within

short time intervals (temporal locality), and the access to consecutive data

in subsequent operations (spatial locality). On multiprocessors, another form

of locality is submachine or communication locality, which requires that data

be distributed so that communications are confined within small submachines

featuring high bandwidth and small latency.

It is well known that classical algorithms for prominent computational

problems developed under the assumption of flat memory (RAM model) often

exhibit poor performance when run on real machines with hierarchical mem-

ory. As a consequence, in the last decade, a number of models of sequential

computation have been proposed that explicitly account for the hierarchical

structure of the memory system. Among the others, the Hierarchical Memory

Model (HMM) defined in [1], is a random access machine where access to mem-

ory location x requires time f(x), for a given nondecreasing function f , thus

encouraging the exploitation of temporal locality. The Hierarchical Memory

Model with Block Transfer (BT, for short) [2,3] was subsequently introduced

with the intention of also rewarding spatial locality, by augmenting HMM with

the capability of moving blocks of memory at a reduced cost. Also, a two-level

memory organization is featured by the External Memory (EM) model [4,5],

which has been extensively used in the literature to develop I/O-efficient al-

gorithms. Finally, other multilevel hierarchical models have been defined in

[6,7].

Earlier works provided evidence that efficient sequential algorithms for

two-level hierarchies can be obtained by simulating parallel ones. In [8–10]

schemes are presented that simulate parallel algorithms designed for coarse-

2

grained parallel models, such as BSP [11], BSP* [12], CGM [13], on the EM

model. The main intuition behind these works is that the interleaving between

large local computation and bulk communication phases, which characterizes

coarse-grained parallel algorithms, maps nicely on the two-level structure of

the EM model. However, the flat parallelism offered by the above coarse-

grained models is unable to afford the finer exploitation of locality which is

required to obtain efficient algorithms on deeper hierarchies.

The simulation of PRAM algorithms to obtain efficient sequential ones

was explored in [14], where parallelism is turned into efficient cache prefetch-

ing strategies. Another approach to the development of efficient hierarchy-

conscious algorithms was proposed in [15], also based on the simulation of

fine-grained PRAM algorithms. Beside proving a general simulation result,

the authors show how to turn PRAM computations that involve geometri-

cally smaller subsets of processors into highly efficient EM algorithms. This

suggests that some form of submachine locality in the parallel setting can be

profitably transformed into locality of reference in the memory accesses.

A more general study on the interplay between communication locality

of a parallel algorithm and temporal locality of reference is attempted by

Bilardi and Preparata in [16]. The authors introduce the Md(n, p,m) model,

a d-dimensional mesh of p HMM nodes where the memory at each node has

size nm/p, and access function f(x) = d(x + 1)/me1/d. The cost for sending

a constant-size message from a node to a neighbor is proportional to the

cost of accessing the farthest cell in the node’s local memory. In order to

evaluate how much communication locality can be automatically transformed

into temporal locality, the authors resort to self-simulation results, showing

that an Md(n, n,m) can be simulated by an Md(n, p,m), for p < n and d = 1, 2,

with slowdown (n/p)Λ(n, p,m). This provides an analogue of Brent’s lemma

[17], except for the factor Λ(n, p,m), which represents an extra slowdown due

to the interaction with the larger local memories. Such a slowdown, which can

grow up to (n/p)1/d, is proved to be unavoidable for certain computations [18].

By setting p = 1, the simulation strategy provides HMM algorithms starting

from parallel ones.

The superlinear slowdown result in [16,18] substantiates the widespread

belief that the implementation of a parallel algorithm on a sequential machine

may incur an extra slowdown over the mere loss of parallelism, due to the ag-

gregation of the distinct processors’ hierarchies into a single, deeper one. In this

3

paper, we complement the above result by showing that the submachine local-

ity exposed by hierarchical bulk-synchronous computations can be profitably

translated into locality of reference, proving that for such computations no

extra hierarchy-induced slowdown is incurred when scaling down the number

of processors. Our result is made significant by the fact that several promi-

nent problems can be optimally solved through hierarchical bulk-synchronous

computations.

Our study is based on the Decomposable BSP (D-BSP) model, a variant

of BSP [11] introduced in [19] to account for submachine locality. Specifically,

a v-processor D-BSP consists of a collection of v processors communicating

through a router. The processors are partitioned into several levels of inde-

pendent submachines (clusters) according to a binary decomposition tree for

the machine. The main contribution of the paper is a scheme that simulates

any v-processor D-BSP computation on a sequential HMM machine with the

same aggregate memory size. When the cost of communication within a D-

BSP cluster is chosen to be proportional to the cost of accessing the farthest

cell in an HMM memory of size equal to the cluster’s aggregate memory, our

simulation exhibits an optimal, linear slowdown merely proportional to the

loss of parallelism. The simulation is based on a recursive strategy aimed at

translating D-BSP submachine locality into temporal locality on the HMM.

The strategy is similar in spirit to the one employed in [20] for porting DAG

computations efficiently across sequential memory hierarchies.

The above simulation can be employed to obtain efficient hierarchy-

conscious sequential algorithms from efficient fine-grained ones. In this fashion,

a large body of algorithmic techniques exhibiting structured parallelism can

be effortlessly transferred to the realm of sequential algorithms for memory

hierarchies. We provide evidence of this fact by showing that for a number of

prominent computations (e.g., sorting, FFT and matrix multiplication), op-

timal HMM algorithms can be obtained in this fashion. In this respect, our

work provides a generalization of the results in [8,9] to multi-level memory

hierarchies.

Next, we show how the simulation scheme can be adapted to map any

v-processor D-BSP computation on a v′-processor D-BSP, with v′ ≤ v, where

both machines feature the same amount of aggregate memory and individual

processors are regarded as sequential HMMs. The simulation exhibits an opti-

mal O (v/v′) slowdown, thus yielding an analogue of Brent’s lemma. This result

4

provides evidence that the D-BSP model, when augmented with hierarchical

memory modules, successfully integrates memory and network hierarchies by

regarding the latter as a seamless continuation of the former.

Finally, we extend the investigation to encompass spatial locality, so to

assess to what extent submachine locality can lead to a combined exploitation

of both forms of locality of reference in multi-level hierarchies. More specifi-

cally, we turn the HMM simulation of D-BSP into a simulation of D-BSP on

the BT model. This latter simulation reveals that optimal or quasi-optimal

BT algorithms can be obtained starting from D-BSP algorithms exhibiting a

much coarser level of submachine locality than the one needed for the HMM,

which strictly depends on the access function. Our results are in accordance

with those in [2], which show that an efficient exploitation of the powerful

block transfer capability of the BT model is able to hide access costs almost

completely.

The importance of our contribution is twofold. On the one hand, to

the best of our knowledge, ours is the first work that establishes a relation be-

tween the locality of communications embodied in parallel algorithms and both

temporal and spatial locality of reference in sequential algorithms for general

hierarchies. On the other, our simulation provides a powerful tool to obtain

efficient hierarchy-conscious algorithms automatically from the large body of

parallel algorithms developed in the literature over the last two decades.

The rest of the paper is organized as follows. Section 2 defines our refer-

ence models. Section 3 presents the scheme that simulates an arbitrary D-BSP

computation on the HMM, and shows how optimal HMM algorithms can be

obtained from optimal parallel ones. The generalized D-BSP self-simulation

yielding the analogue of Brent’s Lemma and the related modeling issues are

discussed in Section 4. The extension of the simulation to the BT model is

presented and analyzed in Section 5. Finally, Section 6 offers a number of

concluding remarks.

2 Machine Models

HMM The Hierarchical Memory Model (HMM) was introduced in [1] as

a random access machine where access to memory location x requires time

f(x), for a given nondecreasing function f(x). The model assumes that an

n-ary operation involving memory cells x1, . . . , xn can be completed in time

5

1 +
∑n

i=1 f(xi), regardless of the value of n. We refer to such a model as

f(x)-HMM. As most works in the literature, we will focus our attention on

nondecreasing functions f(x) for which there exists a constant c ≥ 1 such that

f(2x) ≤ cf(x), for any x. As in [20], we will refer to these functions as (2, c)-

uniform (in the literature these functions have also been called well behaved [3]

or, somewhat improperly, polynomially bounded [1]). Particularly interesting

and widely studied special cases are the polynomial function f(x) = xα and

the logarithmic function f(x) = log x. The following technical fact is proved

in [1].

Fact 1 If f(x) is (2, c)-uniform, then the time to access the first n memory

cells of an f(x)-HMM is Θ (nf(n)).

BT The Hierarchical Memory Model with Block Transfer was introduced in

[2] by augmenting the f(x)-HMM model with a block transfer facility. We

refer to this model as f(x)-BT. Specifically, as in the f(x)-HMM, an access to

memory location x requires time f(x), but the model makes also possible to

copy a block of b memory cells [x− b + 1, x] into a disjoint block [y− b + 1, y]

in time max{f(x), f(y)} + b, for arbitrary b > 1. As before, we will restrict

our attention to the case of (2, c)-uniform access functions.

It must be remarked that the block transfer mechanism featured by the

model is rather powerful since it allows for the pipelined movement of arbitrar-

ily large blocks. This is particularly noticeable if we look at the fundamental

touching problem, which requires to bring each of a set of n memory cells to

the top of memory. Let f (k)(x) be the iterated function obtained by applying

function f k times, and let f ∗(x) = min{k ≥ 1 : f (k)(x) ≤ 1}. The following

fact is easily established from [2].

Fact 2 The touching problem on f(x)-BT requires time TTCH(n) = Θ (nf ∗(n)).

In particular, we have that TTCH(n) = Θ (n log∗ n) if f(x) = log x, and

TTCH(n) = Θ (n log log n) if f(x) = xα, for a positive constant α < 1.

The fact gives a nontrivial lower bound on the execution time of many prob-

lems where all the inputs, or at least a constant fraction of them, must be

examined. For the sake of comparison, observe that on f(x)-HMM the touch-

ing problem requires time Θ (nf(n)), which shows the added power introduced

by block transfer.

The memory transfer capabilities postulated by the BT model are al-

6

ready (reasonably) well approximated by current hierarchical designs. First

of all observe that f(x)-BT can be simulated with constant slowdown by a

restricted version of the model which in time f(x) allows only to transfer f(x)

consecutive cells between non-overlapping regions of maximum address x. In

a current generation machine, the latency f(x) for an access to main memory

is in the order of 100÷200 cycles; considering that line sizes of 8÷16 words

and about 10 simultaneously outstanding memory requests are typical, in the

aforementioned 100÷200 cycles about 80÷160 words can be accessed, which

meets the restricted BT capabilities to an excellent degree. The situation is

similar for other levels of the internal and external hierarchy. Furthermore, in

[21] the physical and architectural feasibility has been established, in princi-

ple, for hierarchical memories where even non-consecutive addresses can be

pipelined, thus leading to a model even more powerful than BT (where, for

example, touching can be accomplished in linear time).

D-BSP The Decomposable Bulk Synchronous Parallel (D-BSP) model was

introduced in [19] to capture submachine locality in a structured way through

submachine decomposition, and was further investigated in [22–24].

Let v be a power of two. A D-BSP(v, µ, g(x)) is a collection of v pro-

cessors {Pj : 0 ≤ j < v} communicating through a router whose bandwidth

characteristics are captured by function g(x); each processor is equipped with

a local memory of size µ. For 0 ≤ i ≤ log v, the v processors are partitioned

into 2i fixed, disjoint i-clusters C
(i)
0 , C

(i)
1 , · · · , C(i)

2i−1 of v/2i processors each,

where the processors of a cluster are capable of communicating among them-

selves independently of the other clusters. The clusters form a hierarchical,

binary decomposition tree of the D-BSP machine: specifically, C log v
j = {Pj},

for 0 ≤ j < v, and C
(i)
j = C

(i+1)
2j ∪ C

(i+1)
2j+1 , for 0 ≤ i < log v and 0 ≤ j < 2i.

A D-BSP program consists of a sequence of labeled supersteps. In an

i-superstep, 0 ≤ i ≤ log v, each processor executes internal computation on

locally held data and sends messages exclusively to processors within its i-

cluster (buffers for incoming and outgoing messages are provided as part of

the processor’s local memory). The superstep is terminated by a barrier, which

synchronizes processors within each i-cluster independently. It is assumed that

messages are of constant size, and that messages sent in one superstep are

available at the destinations only at the beginning of the next superstep. It

is also reasonable to assume that any D-BSP computation ends with a global

7

synchronization, i.e., a 0-superstep. If each processor spends at most τ units of

time performing local computation during the superstep, and if the messages

that are sent form an h-relation, h > 0, (i.e., each processor is the source or

destination of at most h messages), then the cost of the i-superstep is upper

bounded by τ + hg(µv/2i). Note that since message buffers are part of the

processors’ contexts h cannot be larger than µ. With this particular choice

of the cost function, each message delivery performed in an i-superstep is

envisioned as a sort of remote access with access function g(x) outside the

aggregate memory of an i-cluster.

Since our main objective is to assess to what extent submachine locality

can be transformed into locality of reference, in the paper we will mostly be

concerned with the simulation of fine-grained D-BSP programs where the local

memory of each processor has constant size (i.e., µ = O (1)). In this fashion,

submachine locality is the only locality that can be exhibited by the parallel

program. We will deviate from this scenario only in Section 4 where, in order

to obtain self-simulations of D-BSP machines, we will need the individual D-

BSP processors to feature internal hierarchies of nonconstant size. (For clarity,

throughout the paper we will always indicate µ in the asymptotic expressions

even in the case of fine-grained programs.)

Although in this paper we deal with arbitrary (2, c)-uniform access func-

tions f(x), we will support our findings by considering, as case studies, the

aforementioned polynomial and logarithmic functions.

3 Simulation of D-BSP on HMM

The core result of this section (Theorem 5 and Corollary 6) is a scheme

to simulate a fine-grained D-BSP(v, µ, g(x)) program P on an f(x)-HMM with

(2, c)-uniform access function f , with a slowdown which is merely proportional

to the loss of parallelism (i.e., slowdown linear in v). The scheme succeeds in

hiding the memory hierarchy costs induced by the HMM access function by

efficiently transforming submachine locality into temporal locality of reference.

We refer to D-BSP and HMM as the guest and host machine, respectively.

The memory of the host machine is divided into blocks of µ cells each, with

block 0 at the top of memory. At the beginning of the simulation, block j,

j = 0, 1, . . . , v − 1, contains the context (i.e., the local memory) of processor

Pj, but this association changes as the simulation proceeds.

8

For technical purposes, we need to define the following special class of

D-BSP(v, µ, g(x)) programs.

Definition 3 Let L be a fixed subset of superstep labels 0 = `0 < `1 < . . . <

`m = log v. A program P for a D-BSP(v, µ, g(x)) is L-smooth if the following

two properties hold:

(1) The label of every superstep of P belongs to L;

(2) If a superstep with label `i directly follows a superstep with label `j > `i

then i = j − 1.

For convenience, we assume that the input D-BSP program P is L-

smooth, for some set of indices L. If this is not the case, P can be easily

turned into a functionally equivalent L-smooth program P ′ by performing the

following two operations in sequence.

(1) First, “upgrade” each i-superstep in P to an `-superstep, with ` the

largest index in L not greater than i. Note that in this fashion several

supersteps of different indices may be bundled into a single group of

supersteps with the same index.

(2) Then, add a suitable number of “dummy” supersteps with the missing

labels in L between consecutive supersteps pairs (`j, `i) such that i < j−1.

Although this transformation may yield a higher D-BSP running time for P ′,

our analysis will study the slowdown of the simulation with respect to the

running time of the original program P .

Let the supersteps of P ′ be numbered consecutively, and let is be the

label of the s-th superstep, with s ≥ 0 (i.e., the s-th superstep is executed

independently within is-clusters). At some arbitrary point during the simula-

tion, an is-cluster C is said to be s-ready if, for all processors in C, supersteps

0, 1, . . . , s− 1 have been simulated, while Superstep s has not been simulated

yet. The simulation, whose pseudocode is given in Figure 1, is organized into

a number of rounds, corresponding to the iterations of the while loop in the

code. A round simulates the operations prescribed by a certain Superstep s

for a certain s-ready cluster C, and performs a number of context swaps to

prepare for the execution of the next round. In order to transform the subma-

chine locality exhibited by the D-BSP program into temporal locality on the

HMM, the simulation proceeds unevenly on the different D-BSP clusters. This

is achieved by suitably selecting the next cluster to be simulated after each

round, which, if needed, must be brought on top of memory. In particular,

9

while true do
1 P ← processor whose context is on top of memory

s← superstep number to be simulated next for P
C ← is-cluster containing P

2 Simulate Superstep s for C
3 if P has finished its program then exit
4 if is+1 < is then

b← 2is−is+1

Let Ĉ be the is+1-cluster containing C,
and let Ĉ0 . . . Ĉb−1 be its component is-clusters,
with C = Ĉj for some index j

if j > 0 then swap the contexts of C with those of Ĉ0

if j < b− 1 then
swap the contexts of Ĉ0 with those of Ĉj+1

Fig. 1. The simulation algorithm

the same cluster could be simulated for several consecutive supersteps so to

avoid repeated, expensive relocations of its processors’ contexts in memory.

Note that the simulation is on-line in the sense that the entire sequence of

supersteps needs not be known by the processors in advance. Moreover, the

simulation code is totally oblivious to the D-BSP bandwidth function g(x).

As will be proved later, the algorithm maintains the following two in-

variants at the beginning of each round. Let s and C be defined as in Step 1

of the round.

Invariant 1 C is s-ready.

Invariant 2 The contexts of all processors in C are stored in the topmost

|C| blocks, sorted in increasing order by processor number. Moreover, for any

other cluster C ′, the contexts of all processors in C ′ are stored in consecutive

memory blocks (although not necessarily sorted).

Consider a generic round where Superstep s is simulated for an is-cluster

C. If is+1 ≥ is then no cluster swaps are performed at the end of the round,

and the next round will simulate Superstep s + 1 for the topmost is+1-cluster

contained in C and currently residing on top of memory. Such a cluster is

clearly (s + 1)-ready. Instead, if is+1 < is, Superstep s + 1 involves a coarser

level of clustering, hence the simulation of this superstep can take place only

after Superstep s has been simulated for all is-clusters that form the is+1-

cluster Ĉ containing C. Step 4 is designed to enforce this schedule. In partic-

ular, let Ĉ contain b = 2is−is+1 is-clusters, including C, which we denote by

Ĉ0, Ĉ1, . . . , Ĉb−1, and suppose that C = Ĉ0 is the first such is-cluster for which

10

7 7 7 7 7

1

6 6

5

4

3

2

0

1

1

2

0

3

4

5

6 6

5

4

0

2

1

3

1

4

2

3

0

5

6

2

3

4

5

7

6

0

3

2

4

1

5

7

1

6

2

3

4

5

0 6

5

4

1

7

0

2

3

7

1

0

2

3

4

5

6

t

0

Fig. 2. Snapshots of the HMM memory highlighting cluster movements during a
cycle involving an is+1-cluster that contains b = 8 is-clusters. Each box represents
the processor contexts of a different is-cluster. Grey boxes indicate s-ready (i.e., not
yet simulated) clusters, while white boxes refer to clusters that are being or have
already been simulated. Snapshots are taken at the beginning of each phase and at
the end of the cycle. Rounded boxes indicate the clusters involved in memory swaps
during the previous phase.

Superstep s is simulated. By Invariant 2, at the beginning of the round under

consideration the contexts of all processors in Ĉ are at the top of memory.

This round starts a cycle of b phases, each phase comprising one or more sim-

ulation rounds. In the k-th phase, 0 ≤ k < b, the contexts of the processors in

Ĉk are brought to the top of memory, then all supersteps up to Superstep s

are simulated for these processors, and finally the contexts of Ĉk are moved

back to the positions occupied at the beginning of the cycle. An example of

the cluster movements performed during a cycle is depicted in Figure 2.

If the two invariants hold, then the simulation of cluster C in Step 2 can

be performed as follows. First the context of each processor in C is brought

in turn to the top of memory and its local computation is simulated. Then,

message exchange is simulated by scanning the processors’ outgoing message

buffers sequentially and delivering each message to the incoming message

buffer of the destination processor. The location of these buffers is easily de-

termined since, by Invariant 2, the contexts of the processors are sorted by

processor number.

Theorem 4 The simulation algorithm is correct.

11

PROOF. The correctness of the entire simulation algorithm is immediately

established once we show that Invariants 1 and 2 hold at the beginning of

each round. This can be proved by induction on the number v of D-BSP

processors. The claim is trivial for the basis v = 1. Suppose that the claim

is true for machines of up to v processors and consider the simulation of an

L-smooth program P ′ of t supersteps for a D-BSP with 2v processors. First,

consider the case that the t supersteps include a single 0-superstep (which,

by our former assumption, must be the last superstep). If t = 1 then the

claim trivially follows. Otherwise let C0, C1, . . . , Cb−1, with b = 2it−1 , be the

set of all it−1-clusters in the machine. It follows that the algorithm will initially

simulate the first t− 1 supersteps of P ′ for the processors of cluster C0, since

the first t − 1 supersteps do not involve clusters larger than C0 and P ′ is

smooth. Moreover, these steps form themselves an L-smooth program for a

D-BSP with 2v/2it−1 ≤ v processors.

By the inductive hypothesis, the two invariants will hold for all the

rounds performed in this initial phase, which ends with a round that simulates

Superstep t− 1 for cluster C0. As observed before, at the end of such a round

the algorithm proceeds with the remaining b − 1 phases that simulate the

sibling it−1-clusters C1, C2, . . . , Cb−1 by bringing each such cluster in turn to

the top of memory and simulating up to the (t − 1)-th superstep for the

processors of the cluster. After the simulation of Superstep t − 1 for Cb−1 is

completed, all it−1-clusters occupy their original positions, and the invariants

hold at the beginning of the next final round, which will thus correctly simulate

the 0-superstep.

If P ′ contains more than one 0-superstep, we can split the program

into subprograms terminating at 0-superstep boundaries and iterate the above

argument for each such subprogram.

Let us now evaluate the running time of a generic round of our algorithm,

where a given Superstep s is simulated for a given is-cluster C. Clearly, Steps 1

and 3 require constant time. Consider now Step 2, and note that the simulation

of the local operations of each processor in C incurs constant slowdown, since

it is done with the processor’s (constant-size) context at the top of the HMM

memory. Note also that by virtue of Invariant 2, message exchange can be

completed by accessing the first µ|C| HMM memory cells only a constant

number of times. Finally, it is easy to see that bringing the contexts iteratively

12

to the top of memory requires accessing the first µ|C| HMM memory cells

only a constant number of times. Hence, letting τs denote the maximum local

computation time for a processor in Superstep s, by Fact 1 the simulation of

Step 2 is accomplished in time O (|C| (τs + µf(µ|C|))).

The running time of Step 4 is relevant only when is > is+1, and its

analysis needs more careful consideration. We carry it out by aggregating the

cost of all executions of Step 4 in those rounds where Superstep s is simulated

for the 2is−is+1 is-clusters, including C, which form the is+1-cluster Ĉ. In this

cycle, memory blocks 0, 1, |C| − 1 are accessed a constant number of times for

each is-cluster being simulated, so this cost is amortized by that of Step 2 in

the simulation of that cluster. Memory blocks |C|, |C|+1, . . . , |Ĉ|−1 are read

and written twice, hence the cost of these accesses is amortized by the cost of

the future execution of Superstep s + 1 for the Ĉ-cluster.

By combining these observations and summing up the contributions of

all the rounds in the simulation algorithm, we have that P ′ is simulated on

f(x)-HMM in time

O

v

τ + µ
∑
`∈L

λ′`f(µv/2`)

 , (1)

where λ′` denotes the number of `-supersteps executed by P ′, for ` ∈ L. How-

ever, recall that P ′ may represent the L-smooth equivalent of an original pro-

gram P , and our goal is to obtain an expression for the simulation time depen-

dent on the parameters of P , rather than those of P ′. This goal can be achieved

by smoothing P using a set of labels L = {0 = `0 < `1 < . . . < `m = log v}
such that, for two suitable fixed constants c1, c2, with 0 < c1 ≤ c2 < 1 it

holds that: (a) f(µv/2`i+1) ≥ c1f(µv/2`i), for every 0 ≤ i < m; and (b)

f(µv/2`i+1) ≤ c2f(µv/2`i), for every 0 ≤ i < m − 1. L can be constructed

iteratively as follows. Fix a constant 0 < c2 < 1 arbitrarily, and suppose that

0 = `0 < `1 < . . . < `i < log v have already been determined. Then `i+1 is

chosen as the first index greater than `i such that f(µv/2`i+1) ≤ c2f(µv/2`i), if

any. If no such index exsists, then set m = i+1 and `m = log v. It is easy to see

that since f(x) is (2, c)-uniform it also holds that f(µv/2`i+1) ≥ c1f(µv/2`i),

with c1 = c2/c ≤ c2.

Consequently, each i-superstep of P is upgraded in P ′ to an `-superstep,

where i and ` are such that f(µv/2i) = Θ
(
f(µv/2`)

)
. Moreover, in P ′ the

total contribution of all the added dummy supersteps to Formula 1 cannot be

13

greater than a constant fraction of the one due to real supersteps. Thus, we

have:

Theorem 5 Consider a fine-grained D-BSP(v, µ, g(x)) program P, where each

processor performs local computation for O (τ) time, and there are λi i-supersteps

for 0 ≤ i ≤ log v. If f(x) is (2, c)-uniform, then P can be simulated on a f(x)-

HMM in time O
(
v

(
τ + µ

∑log v
i=0 λif(µv/2i)

))
.

Tedious yet simple computations show that the hidden constant in the asymp-

totic expression of the simulation time is polynomial in the constant c. Such

a dependence stems from the required smoothing of the program being simu-

lated.

By setting the D-BSP(v, µ, g(x)) bandwidth function g(x) equal to the

HMM access function f(x), we obtain the following corollary which states the

linear slowdown result claimed in the introduction.

Corollary 6 If f(x) is (2, c)-uniform then any T -time fine-grained program

for a D-BSP(v, µ, f(x)) can be simulated in optimal time Θ (Tv) on f(x)-

HMM.

3.1 Application to Case-Study Problems

In this section we focus on a number of prominent reference problems to

show that our simulation can be employed to transform efficient fine-grained

D-BSP algorithms into optimal solutions for those problems on the HMM. This

provides evidence that the structured parallelism exposed in D-BSP through

submachine locality can be (automatically) transformed into temporal locality

on a memory hierarchy. As a consequence, D-BSP can be profitably employed

to obtain efficient, portable algorithms for hierarchical architectures.

For concreteness, we will consider the access functions f(x) = xα, with

0 < α < 1, and f(x) = log x. Under these functions, upper and lower bounds

for our reference problems have been developed directly for the HMM in [1].

We will make use of these HMM results as a comparison stone for the results

obtained through our simulation.

Matrix multiplication. We call n-MM the problem of multiplying two
√

n×
√

n matrices on an n-processor D-BSP using only semiring operations.

Both the input matrices and the output matrix are evenly and arbitrarily

14

Initial configuration

A , B11 11 A , B12 12

A , B21 21 A , B22 22

Round 1

A , B11 11 A , B12 22

A , B22 21 A , B21 12

Round 2

A , B12 21 A , B11 12

A , B21 11 A , B22 22

Fig. 3. Assignment of submatrices to the four D-BSP 2-clusters during the execution
of the matrix multiplication algorithm

distributed among the D-BSP processors. We have

Proposition 7 For the n-MM problem there is an algorithm that runs in time

Tα
MM(n) =

O (nα) for 1/2 < α < 1,

O (
√

n log n) for α = 1/2,

O (
√

n) for 0 < α < 1/2,

on D-BSP(n, O (1) , xα), and in time T log
MM(n) = O (

√
n) on D-BSP(n, O (1) , log x).

The simulation of this algorithm yields optimal performance on xα-HMM and

log x-HMM, respectively.

PROOF. We resort to the standard decomposition of n-MM into eight (n/4)-

MM subproblems, which are then solved recursively by the four D-BSP 2-

clusters. To keep memory space requirements at a minimum, the subproblems

are solved in two rounds, organized in such a way that each submatrix is

required exactly once in each round. A reasonable assignment of subproblems

to the 2-clusters is sketched in Figure 3. In each round, the data can be moved

to the correct position through one 0-superstep during which every D-BSP

processor exchanges O (1) data: the running time of the algorithm is therefore

given by the recurrence equation

TMM(n) =

2TMM(n/4) + Θ (g(n)) for n > 1,

O (1) for n = 1.

The solution of this equation leads to the stated D-BSP running times. By

Corollary 6, the simulation of the algorithm on HMM yields a performance

15

matching the lower bounds for the n-MM problem proved in [1].

Discrete Fourier Transform. We call n-DFT the problem of comput-

ing the Discrete Fourier Transform of an n-vector evenly and arbitrarily dis-

tributed among the n D-BSP processors. We have

Proposition 8 For the n-DFT problem there is a D-BSP(n,O (1) , xα) al-

gorithm that runs in time Tα
DFT(n) = O (nα), and a D-BSP(n, O (1) , log x)

algorithm that runs in time T log
DFT(n) = O (log n log log n). The simulation of

these algorithms matches the best known bounds for xα-HMM and log x-HMM,

respectively.

PROOF. For D-BSP(n, O (1) , xα) it is sufficient to adopt the straightforward

schedule of the standard n-input FFT computation dag on the n processors

of the D-BSP machine. The algorithm requires O (1) i-supersteps for 0 ≤ i <

log n, therefore its running time is

Tα
DFT(n) = O

log n−1∑
i=0

(
n/2i

)α

 = O (nα) .

Instead, for D-BSP(n, O (1) , log x) it is more efficient to recursively decompose

the n-input FFT dag into 2 layers of
√

n independent
√

n-input FFT sub-

graphs; the two layers are separated by a permutation, i.e., by a 0-superstep.

Each subgraph can be scheduled onto a distinct (log n)/2-cluster, hence the

running time on D-BSP(n,O (1) , log x) is given by the recurrence equation

T log
DFT(n) =

2T log

DFT(
√

n) + O (log n) for n > 1,

O (1) for n = 1,

which yields T log
DFT(n) = O (log n log log n). Observe that the latter strategy

would yield an alternative O (nα)-time algorithm for D-BSP(n,O (1) , xα).

The performance of the HMM algorithms obtained by applying the sim-

ulation result of Corollary 6 matches the best known bounds of O (n1+α) on

xα-HMM and of O (n log n log log n) on log x-HMM, proved in [1].

Sorting. We call n-sorting the problem in which n keys are initially evenly

distributed among the n D-BSP processors and have to be redistributed so

16

that the smallest key is held by processor P0, the second smallest one by

processor P1, and so on.

Proposition 9 There is an n-sorting algorithm for D-BSP(n, O (1) , xα) that

runs in time Tα
SORT(n) = O (nα). The simulation of this algorithm on xα-HMM

exhibits optimal performance.

PROOF. In [24, Proposition 2] a D-BSP(n, O (1) , xα) sorting algorithm is

given that runs in time O (nα). By Corollary 6, this algorithm can be simulated

in time O (n1+α) on xα-HMM. Optimality follows from the lower bound proved

in [1].

We remark that all n-sorting strategies known in the literature for BSP-like

models seem to yield Ω
(
log2 n

)
-time algorithms when implemented on D-

BSP(n, O (1) , log x). By simulating one such algorithm on the log x-HMM

we get a running time of Ω
(
n log2 n

)
, which is a log n/ log log n factor away

from optimal [1]. However, we conjecture that non-optimality is due to the

inefficiency of the D-BSP algorithm employed and not to a weakness of the

simulation. In fact, our simulation implies a Ω (log n log log n) lower bound

for n-sorting on the D-BSP(n, O (1) , log x). No tighter lower bound or better

algorithms are known so far.

4 An Analogue of Brent’s Lemma

In order to extend the simulation result of Corollary 6 to the self-

simulation of D-BSP machines, we need to handle the case of nonconstant

local memory size µ. Specifically, we regard each D-BSP(v, µ, g(x)) processor

as a g(x)-HMM of size µ. Then, the following theorem provides an analogue

of Brent’s lemma [17] for parallel and hierarchical computations.

Theorem 10 Consider a program P of a D-BSP(v, µ, g(x)), where each pro-

cessor performs local computation for O (τ) time, and there are λi i-supersteps,

for 0 ≤ i < log v. If g(x) is (2, c)-uniform, then for any 1 ≤ v′ ≤ v, P can be

simulated in time

O

(v/v′)

τ + µ
log v−1∑

i=0

λig(µv/2i)

on D-BSP(v′, µv/v′, g(x)).

17

PROOF. Let us refer to D-BSP(v, µ, g(x)) and the D-BSP(v′, µv/v′, g(x)) as

guest and host machine, respectively. For every 0 ≤ j < v′, the simulation

of the processors in cluster C
(log v′)
j of the guest machine is assigned to host

processor Pj. The local memory of Pj is organized into v/v′ blocks of µ cells

each, with block i containing the context of the i-th processor of C
(log v′)
j .

The simulation strategy deals differently with supersteps of label i <

log v′ and i ≥ log v′. Specifically, the simulation regards program P as parti-

tioned into maximal runs of consecutive supersteps whose labels are either all

less than log v′ or all greater than or equal to log v′. Consider a run of the first

type. The supersteps of the run are simulated one after the other: in particu-

lar, each i-superstep of the guest machine is simulated through an i-superstep

followed by a log v′-superstep on the host machine. In the i-superstep, each

host processor Pj takes care of the local computation of its assigned guest

processors by iteratively moving their contexts to the top of memory and

then sending the messages generated by the v/v′ guest processors to the host

processors associated with the message destinations. In the subsequent log v′-

superstep, each host processor moves the received messages to the incoming

message buffers of the appropriate guest processors.

A run of supersteps with labels greater than or equal to log v′ is simulated

in parallel on each host processor as if it were a program P ′ designed for a

D-BSP(v/v′, µ, g(x)), regarding an i-superstep of P as an (i− log v′)-superstep

in P ′. This simulation is accomplished by a straightforward adaptation of the

strategy presented in Section 3 (the only difference being that P may not be

fine-grained).

Let us now evaluate the running time of the simulation. An i-superstep

in a run of the first type, requiring O (τ ′) local computation time at each guest

processor and the execution of an h-relation, is simulated in time

O
(
(v/v′)(τ ′ + hg(µv/2i)) + µg(µv/v′))

)
,

where the term (v/v′)hg(µv/2i) accounts for the execution of an h(v/v′)-

relation within i-clusters on the host, while the term (v/v′)µg(µv/v′) accounts

for the cost of moving the guest processors’ contexts to the top of memory dur-

ing the simulation of the v/v′ local computations. Since h ≤ µ and i < log v′,

the above formula simplifies to

O
(
(v/v′)(τ ′ + µg(µv/2i))

)
.

18

Consider now a run of supersteps of labels greater than or equal to log v′.

Suppose that the run comprises δi i-supersteps, with log v′ ≤ i ≤ log v, and

that each guest processor performs O (τ ′) local computation in the run. By

applying Theorem 5, the run is simulated in time

O

(v/v′)

τ ′ + µ
log v∑

i=log v′
δig(µv/(v′2i−log v′))

 .

The theorem follows by adding up the contributions of all the runs.

We call a program for a D-BSP(v, µ, g(x)) full if the communica-

tion required by every superstep is a Θ (µ)-relation, that is, each processor

sends/receives an amount of data proportional to its local memory size. Ob-

viously, a fine-grained program is full. The following corollary establishes the

analogue of Brent’s lemma for full programs.

Corollary 11 If g(x) is (2, c)-uniform, then any T -time full program

for a D-BSP(v, µ, g(x)) can be simulated in time Θ (Tv/v′) on a D-

BSP(v′, µv/v′, g(x)), for any 1 ≤ v′ ≤ v.

5 Simulation of D-BSP on BT

In this section we present an algorithm that simulates a fine-grained

D-BSP(v, µ, g(x)) program P on f(x)-BT. We will refer to D-BSP and BT

as the guest and host machine, respectively. We assume that f(x) = O (xα),

for some arbitrary constant 0 < α < 1, and that Θ (v log log v) memory is

available on the host BT machine. Note that all relevant BT access functions

f(x) considered in the literature [2] are captured by the above scenario.

We adopt the same overall simulation strategy as the one presented in

Section 3. However, in order to exploit spatial locality effectively, as encour-

aged by the BT model, the actual implementation of the strategy requires

crucial modifications, which are described in Subsections 5.1 and 5.2. The ap-

plication of the simulation to relevant problems is discussed in Subsection 5.3.

19

5.1 Memory Layout

Although the simulation algorithm of Section 3 yields a valid BT pro-

gram, it is not designed to exploit block transfer. For example, in Step 2 the

algorithm brings one context at a time to the top of memory and simulates

communications touching the contexts in a random fashion, which is highly in-

efficient in the BT framework. As suggested in [2], a good BT algorithm should

be recursive, with block transfer used at every level of recursion. Since the BT

model supports block copy operations only for non-overlapping memory re-

gions, additional buffer space is required to perform swaps of large chunks of

data; moreover, in order to minimize access costs, such buffer space must be

allocated close to the blocks to be swapped. As a consequence, the required

buffers must be interspersed with the contexts.

During the simulation, buffer space is dynamically created or de-

stroyed by means of the PACK and UNPACK subroutines. More specifically,

UNPACK(i), with 0 ≤ i ≤ log v, is invoked when all contexts of an i-cluster

are consecutively stored on top of memory, followed by an empty space equal

to the cluster size (i.e., v/2i empty blocks). The code for UNPACK(i) is the

following:

if i = log v then return
Copy blocks v/2i+1, . . . , v/2i − 1 onto blocks v/2i, . . . , 3v/2i+1 − 1
UNPACK(i + 1)

Note that the copy operation executed by UNPACK can be performed with a

single block transfer. The net effect of a call to UNPACK(i) when an i-cluster

C is on top of memory, is to intersperse the v/2i empty blocks which follow

C among the contexts of C itself. Figure 4 illustrates how the memory layout

is modified by a call to UNPACK(0) when v = 8. It is not difficult to prove

that the buffer creation process guarantees that the starting memory address

for each context in C is at most doubled by the presence of the buffers. Since

f(x) is (2, c)-uniform, we can conclude that the buffers do not alter memory

access time by more than a multiplicative constant.

Subroutine PACK(i) performs the same operations of UNPACK(i) but

in reverse order, thus compacting the contexts belonging to the (unpacked)

topmost i-cluster. (The code is omitted for brevity.) A simple recurrence proves

that the complexity of UNPACK(i) is dominated by the initial movement

of v/2i+1 blocks, which takes time proportional to the size of the i-cluster.

20

UNPACK(0) UNPACK(1) UNPACK(2)

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

P4

P5

P6

P7

Fig. 4. Snapshots of the BT memory layout during an UNPACK(0) operation. The
host D-BSP machine has 8 processors. Solid boxes indicate processor contexts, and
white boxes indicate empty buffers.

Clearly, the same complexity applies to PACK(i). Thus, the running times of

the two subroutines are

TUNPACK(i), TPACK(i) = O
(
µv/2i

)
.

5.2 The simulation algorithm

The structure of the simulation algorithm, whose pseudocode is given

in Figure 5, is identical to the one of Section 3, except that suitable calls to

UNPACK and PACK have been introduced in order to create the required

buffer space needed to perform swaps that efficiently exploit block transfer.

Observe that at the beginning of each round, the overall memory layout

is the same as the one resulting from a call to UNPACK(0). Moreover, the aug-

mented code still maintains Invariants 1 and 2 stated in Section 3 except that,

in Invariant 2, the contexts of each cluster C maintain the same relative order

but are now interspersed with at most |C| empty blocks. As a consequence,

the correctness of the simulation can be proved using the same argument of

Theorem 4 if we assume that the input program is L-smooth, for some set of

labels L. If the program P to be simulated is not L-smooth, it is first trans-

formed into a functionally equivalent L-smooth program P ′, as discussed in

Section 3. Note that the correctness does not depend on the specific set L

21

0 UNPACK(0)
while true do

1 P ← processor whose context is on top of memory
s← superstep number to be simulated next for P
C ← is-cluster containing P

1.a PACK(is)
2 Simulate Superstep s for C
3 if P has finished its program then exit
4 if is+1 < is then

b← 2is−is+1

Let Ĉ be the is+1-cluster containing C,
and let Ĉ0 . . . Ĉb−1 be its component is-clusters,
with C = Ĉj for some index j

if j > 0 then swap the contexts of C with those of Ĉ0

if j < b− 1 then
swap the contexts of Ĉ0 with those of Ĉj+1

5 UNPACK(is)

Fig. 5. The revised simulation algorithm

with respect to which the program is made smooth. However, the choice of L
may affect the simulation time and we will postpone it to Subsection 5.2.2.

5.2.1 Implementation of Step 2

As mentioned before, in order to exploit block transfer, the simulation

of a Superstep s for an is-cluster C performed in Step 2 must be carefully re-

structured. Specifically, we organize it in two phases: first, local computations

are executed in a recursive fashion, and then the communications required by

the superstep are simulated.

Simulation of local computations. By virtue of the aforementioned in-

variant and by Step 1.a, the simulation of Superstep s for cluster C begins

with all contexts of C packed at the top of memory, followed by |C| empty

blocks. In order to exploit both temporal and spatial locality, processor con-

texts are iteratively brought to the top of memory in chunks of suitable size,

and the prescribed local computation is then performed for each chunk recur-

sively. Let n be a power of 2 and define c(n) as the greatest power of 2 such

that c(n) ≤ min{f(µn)/µ, n/2}. The local computation of Superstep s for C is

simulated by invoking the recursive function COMPUTE(n), with n = v/2is ,

whose code is given in Figure 6.

The correctness of COMPUTE(n) can be proved by induction, based on

22

COMPUTE(n)
if n = 1 then

Simulate local computation for the context in block 0
else

c← c(n)
t← n/c {number of chunks}
Shift blocks c, . . . , n− 1 to blocks 2c, . . . , n + c− 1
COMPUTE(c)
for j ← 2 to t do

Swap blocks 0, . . . , c− 1 with blocks jc, . . . , (j + 1)c− 1
COMPUTE(c)
Swap blocks jc, . . . , (j + 1)c− 1 with blocks 0, . . . , c− 1

Shift blocks 2c, . . . , n + c− 1 onto blocks c, . . . , n− 1

Fig. 6. The COMPUTE subroutine.

the observation that each of the recursive calls to COMPUTE(c) starts and

ends with the c processor contexts packed on top of memory, followed by c

empty blocks, which leaves sufficient space to perform the swaps using block

transfer.

Since local computation for a processor is always performed while the

corresponding context is stored in the topmost memory block, the running

time of COMPUTE(n) is given by the sum of the original computation times

for the guest processors belonging to cluster C, plus the overhead caused by

the memory movements. Let TM(n) denote this overhead. Since each shift or

swap operation requires a constant number of block transfers, it is easy to see

that

TM(n) = (n/c(n))TM(c(n)) + O

µn +
n/c(n)∑
j=1

f(µjc(n))

 .

By noting that
∑n/c(n)

j=1 f(µjc(n)) = O ((n/c(n))f(µn)) and by applying the

definition of c(n), we conclude that the additive term in the equation for the

case n > 1 is O (µn). Let c∗(x) = min{k ≥ 1 : c(k)(x) ≤ 1}. Then, it can be

seen that

TM(n) = O (µnc∗(n)) .

As specific instances, we have that TM(n) is O (µn log∗(µn)) if f(x) = log x,

and O (µn log log(µn)) if f(x) = xα. For the purposes of our simulation it

is sufficient to say that TM(n) = O (µn log log(µn)) for any f(x) = O (xα).

Therefore, we have that the time required to simulate the local computation

23

of is-cluster C for Superstep s is

O
(
(v/2is)τs + (µv/2is) log log(µv/2is)

)
, (2)

where τs is the maximum computation time spent by any processor in C during

Superstep s.

Simulation of communications. The second phase of the simulation of

Superstep s for is-cluster C takes care of the communication prescribed by the

superstep. For ease of presentation, we suppose that the incoming and outgoing

message buffers of each processor are located at the end of its context. To

deliver all messages to their destinations, we make use of sorting. Specifically,

the contexts of C are divided into Θ (µ|C|) constant-sized elements, which are

then sorted in such a way that after the sorting, contexts are still ordered by

processor number and all messages destined to processor Pj are stored at the

end of Pj’s context. This is easily achieved by sorting elements according to

suitably chosen tags attached to the elements, which can be produced during

the simulation of local computation without asymptotically increasing the

running time.

Although the idea behind the message delivery phase is quite simple,

there are two technical issues that must be dealt with. First of all, the sorting

algorithm must use block transfer effectively. To satisfy this requirement, we

employ the Approx-Median-Sort algorithm proposed in [2]. This algorithm

is capable of sorting m constant-sized items in time O (m log m) if f(x) =

O (xα), for any constant 0 < α < 1; unfortunately, the algorithm requires

Θ (m log log m) space. In our case, the number of elements to sort is Θ (µv/2is)

so the required memory space is

L(is) = O
(
(µv/2is) log log(µv/2is)

)
.

Our buffer policy ensures that when we start simulating the message exchange,

the is-cluster is followed by an empty space of size µv/2is , which is clearly

not enough for sorting. To obtain more free space, we are forced to involve

a cluster bigger than C in the sorting stage. Recall that the buffer creation

policy ensures that, for every 0 ≤ i ≤ is, if we pack the topmost i-cluster, we

create an adjacent free memory region having the same size of the cluster. Let

ik < is be the biggest integer such that µv/2ik ≥ L(is), or 0 if µv < L(is).

24

Then, we can free a sufficient amount of space for sorting through the following

steps.

UNPACK(is)
PACK(ik)
Shift blocks v/2is , . . . , v/2ik − 1 to the memory region

that starts with block v/2is + dL(is)/µe

It is easily seen that these steps can be completed in O (L(is)) time. Clearly,

after sorting is completed, the same steps must be executed in reverse order.

The second technical issue arises since the message delivery phase may

alter the size (hence the position) of the contexts. Indeed, the size of a pro-

cessor’s context after sorting depends on the amount of data received by the

processor. As a consequence, it is necessary to realign the contexts so that

the context of the j-th processor of C ends up again in memory block j, for

0 ≤ j < |C|. This operation can be performed by the following recursive

subroutine (initially invoked with n = |C| = v/2is).

ALIGN(n)
if n = 1 then exit
Locate the (n/2)-th topmost context
Copy contexts n/2, . . . , n− 1 to the memory region

that starts with block n

ALIGN(n/2)
Swap blocks 0, . . . , n/2− 1 with blocks n, . . . , 3n/2− 1
ALIGN(n/2)
Copy blocks 0, . . . , n/2− 1 onto blocks n/2, . . . , n− 1
Copy blocks n, . . . , 3n/2− 1 onto blocks 0, . . . , n/2− 1

A context can be easily located through binary search over the tags. It is easy

to see that each recursive call to ALIGN(x) is made with x contexts occupying

(at most) the top x blocks, followed by x empty blocks. This provides sufficient

space for the swaps to be performed. A simple analysis shows that the running

time of ALIGN(n) is O (µn log µn), which is the same time taken by sorting.

Since the time required by the creation of buffer space prior to sorting

and the corresponding recompaction at the end is dominated by the sorting

time, we conclude that the simulation of the message exchange prescribed by

Superstep s for is-cluster C can be accomplished in time

O
(
(µv/2is) log(µv/2is)

)
. (3)

25

To conclude this section, Figure 7 summarizes the steps which are necessary

to simulate Superstep s for cluster C.

COMPUTE(v/2is)
ik ← biggest integer such that µv/2ik ≥ L(is)
UNPACK(is)
PACK(ik)
Shift blocks v/2is , . . . , v/2ik − 1 to the memory region

that starts with block v/2is + dL(is)/µe
Divide the contexts of C into constant sized-elements

and sort them via Approx-Median-Sort
ALIGN(v/2is)
Shift blocks v/2is , . . . , v/2ik − 1 back

to their original positions
UNPACK(ik)
PACK(is)

Fig. 7. Pseudocode for Step 2 in the revised simulation algorithm.

5.2.2 Analysis of the simulation time

In order to analyze the running time of the simulation algorithm on f(x)-

BT, we need to define a suitable set L of superstep labels with respect to which

the input program P is transformed into an equivalent L-smooth program P ′.

Labels in L must be carefully chosen so that the smoothing process does not

unduly increase the asymptotic complexity of the simulation, which will be

eventually expressed in terms of the original program P , rather than P ′. To

this purpose, we set L = {0 = `0 < `1 < . . . < `m = log v} such that,

for suitable constants c1, c2, d1, d2, with 0 < c1 ≤ c2 < 1 and d1, d2 > 1,

it holds that: (a) log(d1µv/2`i+1) ≥ c1 log(d1µv/2`i), for every 0 ≤ i < m;

(b) log(d1µv/2`i+1) ≤ c2 log(d1µv/2`i), for every 0 ≤ i < m − 1; and (c)

f(µv/2`i) ≤ d2µv/2`i+1 , for every 0 ≤ i < m. It can be shown that such a

set L is well defined by means of techniques similar to the ones employed in

the analysis of the HMM simulation. More specifically, recalling that f(x) =

O (xα) with α < 1, fix an arbitrary value c2, with α < c2 < 1 and fix d1 so that

log(d1x) is (2, c)-uniform for c = c2/α. Then L can be determined as before

and the three properties follow with c1 = c2/c = α and d2 = d1−α
1 .

First, consider Step 2. By combining Equations 2 and 3, we con-

clude that the simulation of Superstep s for is-cluster C requires time

O ((v/2is)τs + (µv/2is) log(µv/2is)). Therefore, the overall contribution of Su-

26

perstep s to the simulation time is

O
(
v(τs + µ log(µv/2is))

)
.

Observe that the above running time dominates the aggregate time required

by the PACK and UNPACK operations (Steps 1.a and 5) performed in the

rounds simulating the superstep. Note also that Step 2 needs not be executed

for the dummy supersteps introduced in the smoothing process. Therefore,

the contribution of each such superstep to the simulation time is only due to

the PACK and UNPACK operations, which is O (µv).

When is+1 < is, the simulation algorithm incurs the additional cost due

to the need of moving the 2is−is+1 sibling is-clusters internal to an is+1-cluster

to the top of memory, as prescribed by Step 4 of the pseudocode presented in

Figure 5. Thanks to the availability of buffer space, the swaps required by the

j-th such move, 0 ≤ j < 2is−is+1 , can be performed with at most three block

transfers taking time O (f(µj|C|) + µ|C|). By summing over all values of j,

we have that the overhead incurred by cluster swaps before the simulation of

an is+1-cluster is

O
(
2is−is+1f(µv/2is+1) + µv/2is+1

)
= O

(
µv/2is+1

)
,

where the equality follows by the L-smoothness of the program. Therefore, the

aggregate cost of all executions of Step 4 in the rounds simulating Superstep s

is amortized by the cost of the future simulation of Superstep s + 1, hence it

can be ignored.

In conclusion, the time for simulating P ′ is simply the sum of the times

for the simulation of its supersteps, namely

O

v

τ + µ
∑
`∈L

λ′` log(µv/2`)

 ,

where τ is the maximum local computation time of any processor and λ′`
denotes the number of `-supersteps executed by P ′, for ` ∈ L. In order to

obtain an expression for the simulation time dependent on the parameters of

P , rather than those of P ′, we observe that each i-superstep of P is upgraded in

P ′ to an `-superstep, where i and ` are such that log(µv/2i) = Θ
(
log(µv/2`)

)
.

Moreover, since f(x) = O (xα), it is easy to see that in P ′ there cannot be

more than O (log log(µv/2j)) dummy supersteps introduced between a pair of

27

consecutive original supersteps of labels i and j, with j < i. Therefore, the

overall simulation cost of each such run of dummy supersteps is amortized by

the cost of simulating the original superstep closing the run.

The above discussion establishes the following result.

Theorem 12 Consider a fine-grained D-BSP(v, µ, g(x)) program P, where

each processor performs local computation for O (τ) time, and there are λi

i-supersteps for 0 ≤ i ≤ log v. For any (2, c)-uniform access function f(x) =

O (xα), with constant 0 < α < 1, P can be simulated on f(x)-BT in time

O
(
v

(
τ + µ

∑log v
i=0 λi log(µv/2i)

))
.

We remark that, besides the unavoidable term vτ , the complexity of the

sorting operations performed in Step 2 is the dominant factor in the simulation

time. Moreover, it is important to observe that, unlike the HMM case, the

simulation time in the above theorem does not depend on f(x). This is in

accordance with the findings of [2], which show that an efficient exploitation

of the powerful block transfer capability of the BT model is able to hide access

costs almost completely.

5.3 Application to Case-Study Problems

In this subsection we provide evidence of the effectiveness of our simu-

lation by showing how it can be employed to obtain efficient BT algorithms

starting from D-BSP ones. For the sake of comparison, we observe that Fact 2

implies that for relevant access functions f(x), any straightforward approach

simulating one entire superstep after the other would require time ω(v) per

superstep just for touching the v processor contexts, while our algorithm can

overcome such a barrier by carefully exploiting submachine locality.

First consider the n-MM problem. It is easily seen that the n-processor

D-BSP algorithm described in Subsection 3.1 uses 2i 2i-supersteps, for ev-

ery 0 ≤ i < log(n)/2, performing constant local computation per superstep.

By applying Theorem 12 our simulation of this algorithm yields an opti-

mal O
(
n3/2

)
algorithm for f(x)-BT, while a trivial step-by-step simulation

would have required at least time Ω
(
n3/2 log∗ n

)
for f(x) = log x, and time

Ω
(
n3/2 log log n

)
for f(x) = xα.

In general, different D-BSP bandwidth functions g(x) may promote dif-

ferent algorithmic strategies for the solution of a given problem. Therefore,

28

without a strict correspondence between g(x) and the BT access function f(x)

in the simulation, the question arises of which function g(x) suggests the best

“coding practices” for BT. Unlike the HMM scenario (see Corollary 6), the

choice g(x) = f(x) is not always the best. Consider, for instance, the n-DFT

problem. As mentioned in the proof of Proposition 8, two D-BSP algorithms

for this problem are applicable. The first algorithm is a standard execution

of the n-input FFT dag and requires one i-superstep, for 0 ≤ i < log n.

The second algorithm is based on a recursive decomposition of the same dag

into two layers of
√

n independent
√

n-input subdags, and can be shown to

require 2i supersteps with label (1 − 1/2i) log n, for 0 ≤ i < log log n. On

D-BSP(n, O (1) , xα), both algorithms yield a running time of O (nα), which

is clearly optimal. However, the simulations of these two algorithms on the

xα-BT take time O
(
n log2 n

)
and O (n log n log log n), respectively. This im-

plies that the choice g(x) = f(x) is not effective [23], in the sense that D-

BSP(n, O (1) , xα) does not reward the use of the second algorithm over the

first one. On the other hand, D-BSP(n,O (1) , log x) correctly distinguishes

among the two algorithms, since their respective parallel running times are

O
(
log2 n

)
and O (log n log log n).

The above example is a special case of the following more general consid-

eration. Observe that Theorem 12 yields a simulation with linear slowdown for

any D-BSP(v, O (1) , log x) program on f(x)-BT, and that a program for D-

BSP(v, O (1) , g(x)) is also valid for D-BSP(v, O (1) , log x). Combining these

observations, it can be argued that the choice g(x) = log x yields the most

effective instance of the D-BSP model for obtaining sequential algorithms for

the class of f(x)-BT machines. Indeed, observe that given two D-BSP algo-

rithms A1, A2 solving the same problem, if the simulation of A1 on f(x)-BT

runs faster than the simulation of A2, then A1 exhibits a better asymptotic

performance than A2 also on D-BSP(v, O (1) , log x).

6 Conclusions

The fact that code written with parallelism in mind can run efficiently

on platforms with hierarchical memory, is a widespread belief in the computer

science community. Prior results in the literature have mostly related flat par-

allelism (i.e., parallelism in machine models with symmetric communication

infrastructures) to efficiency on two-level hierarchies. In this paper we have

29

embarked on the investigation of a more general scenario by considering the

relation between locality of communications in parallel programs (as exposed

by submachine locality) and locality of reference (both temporal and spatial)

in multi-level hierarchies.

In particular, we have developed efficient schemes to simulate paral-

lel programs written for the D-BSP, a model where submachine locality can

be explicitly exposed, on the sequential HMM model, which rewards the ex-

ploitation of temporal locality, and on its extension with block transfer, the

BT model, which also rewards the exploitation of spatial locality.

The simulation on the HMM achieves linear slowdown when the band-

width function g(x) of D-BSP coincides with the HMM access function f(x),

thus charging communications in a D-BSP cluster as accesses to a hierarchical

memory with size proportional to that of the cluster’s aggregate memory. This

result provides evidence of a strict relation between submachine locality and

temporal locality. Further evidence comes from the observation that efficient

algorithms designed on the D-BSP for prominent problems are translated by

our simulation into optimal HMM algorithms. Moreover, by regarding each

individual D-BSP processor as an HMM, the simulation can be extended to

provide an analogue of Brent’s lemma for parallel and hierarchical platforms.

In this respect, the augmented D-BSP model features a seamless integration

of parallelism and memory hierarchy.

Unlike the HMM case, the running time of the D-BSP simulation on

f(x)-BT is independent of the access function f(x). Intuitively, this phe-

nomenon can be attributed to the exploitation of spatial locality afforded

by block transfer, which flattens, in part, the access costs to the memory hi-

erarchy. This finding is in accordance with the results of [2], which show how

relevant problems (such as sorting, FFT, matrix multiplication) require the

same time on such diverse machines as xα-BT and log(x)-BT. Nevertheless, our

simulation is still able to transform optimal D-BSP algorithms into optimal (or

quasi optimal) BT ones. Moreover, linear slowdown can be achieved when sim-

ulating D-BSP(v, O (1) , log x) on the f(x)-BT, for any f(x) = O (xα), which

makes D-BSP(v, O (1) , log x) the most effective choice for obtaining efficient

BT algorithms from parallel ones.

Finally, we remark that the proposed simulation cannot be further im-

proved in the general case, since the lower bound proved in [2] on the execution

of random permutations on f(x)-BT can be employed to design a D-BSP pro-

30

gram for which the time of our simulation algorithm is the least possible.

However, an improved simulation can be obtained when the communication

patterns generated by the algorithm are known a priori and exhibit certain

regularities. As an example, consider again the O (log n log log n)-time algo-

rithm for the n-DFT designed for D-BSP(n, O (1) , log x). By simulating the

transpose permutation generated by each superstep of the algorithm by the

rational permutation algorithm in [2], rather than through sorting, the run-

ning time of the simulation becomes O (n log n), which is optimal on f(x)-BT

for both f(x) = xα and f(x) = log x. This shows that, in this case, the al-

gorithmic strategy indicated by D-BSP is indeed the optimal one for BT and

that non-optimality is due to the generality of the simulation that must deal

with worst case scenarios (e.g., by the use of sorting to cope with random

permutations).

Acknowledgements

The authors are grateful to one of the anonymous reviewers for a number of

profound suggestions that helped improve the quality of the paper. They also

wish to thank Gianfranco Bilardi and Franco Preparata for fruitful discussions

and insights on the subject of this work.

References

[1] A. Aggarwal, B. Alpern, A. Chandra, M. Snir, A model for hierarchical memory,
in: Proc. of the 19th ACM Symp. on Theory of Computing, 1987, pp. 305–314.

[2] A. Aggarwal, A. Chandra, M. Snir, Hierarchical memory with block transfer,
in: Proc. of the 28th IEEE Symp. on Foundations of Computer Science, 1987,
pp. 204–216.

[3] J. Vitter, E. Shriver, Algorithms for parallel memory II: Hierarchical multilevel
memories, Algorithmica 12 (2/3) (1994) 148–169.

[4] A. Aggarwal, J. Vitter, The input/output complexity of sorting and related
problems, Communications of the ACM 31 (9) (1988) 1116–1127.

[5] J. Vitter, E. Shriver, Algorithms for parallel memory I: Two-level memories,
Algorithmica 12 (2/3) (1994) 110–147.

[6] B. Alpern, L. Carter, E. Feig, T. Selker, The uniform memory hierarchy model
of computation, Algorithmica 12 (2/3) (1994) 72–109.

31

[7] S. Sen, S. Chatterjee, N. Dumir, Towards a theory of cache-efficient algorithms,
Journal of the ACM 49 (6) (2002) 828–858.

[8] F. Dehne, W. Dittrich, D. Hutchinson, Efficient external memory algorithms
by simulating coarse-grained parallel algorithms, Algorithmica 36 (2) (2003)
97–122.

[9] F. Dehne, D. Hutchinson, D. Maheshwari, W. Dittrich, Bulk synchronous
parallel algorithms for the external memory model, Theory of Computing
Systems 35 (6) (2002) 567–597.

[10] J. Sibeyn, M. Kaufmann, BSP-like external-memory computation, in: Proc. of
3rd CIAC, LNCS 1203, 1999, pp. 229–240.

[11] L. Valiant, A bridging model for parallel computation, Communications of the
ACM 33 (8) (1990) 103–111.

[12] A. Bäumker, W. Dittrich, F. Meyer auf der Heide, Truly efficient parallel
algorithms: 1-optimal multisearch for and extension of the BSP model,
Theoretical Computer Science 203 (1998) 175–203.

[13] F. Dehne, A. Fabri, A. Rau-Chaplin, Scalable parallel geometric algorithms
for coarse grained multicomputers, International Journal on Computational
Geometry 6 (3) (1996) 379–400.

[14] U. Vishkin, Can parallel algorithms enhance serial implementation?,
Communications of the ACM 39 (9) (1996) 88–91.

[15] Y. Chiang, M. Goodrich, E. Grove, R. Tamassia, D. Vengroff, J. Vitter,
External-memory graph algorithms, in: Proc. of the 6th ACM-SIAM Symp.
On Discrete Algorithms, 1995, pp. 139–149.

[16] G. Bilardi, F. Preparata, Processor-time tradeoffs under bounded-speed
message propagation: Part I, upper bounds, Theory of Computing Systems
30 (1997) 523–546.

[17] R. Brent, The parallel evaluation of general arithmetic expressions, Journal of
the ACM 21 (2) (1974) 201–208.

[18] G. Bilardi, F. Preparata, Processor-time tradeoffs under bounded-speed
message propagation: Part II, lower bounds, Theory of Computing Systems
32 (1999) 531–559.

[19] P. De la Torre, C. Kruskal, Submachine locality in the bulk synchronous setting,
in: Proc. of EUROPAR 96, LNCS 1124, 1996, pp. 352–358.

[20] G. Bilardi, E. Peserico, A characterization of temporal locality and its
portability across memory hierarchies, in: Proc. of 28th Int. Colloquium on
Automata, Languages and Programming, LNCS 2076, 2001, pp. 128–139.

[21] G. Bilardi, K. Ekanadham, P. Pattnaik, Optimal organizations for pipelined
hierarchical memories, in: Proc. of the 14th ACM Symp. on Parallel Algorithms
and Architectures, 2002, pp. 109–116.

32

[22] G. Bilardi, C. Fantozzi, A. Pietracaprina, G. Pucci, On the effectiveness of D-
BSP as a bridging model of parallel computation, in: Proc. of the Int. Conference
on Computational Science, LNCS 2074, 2001, pp. 579–588.

[23] G. Bilardi, A. Pietracaprina, G. Pucci, A quantitative measure of portability
with application to bandwidth-latency models for parallel computing, in: Proc.
of EUROPAR 99, LNCS 1685, 1999, pp. 543–551.

[24] C. Fantozzi, A. Pietracaprina, G. Pucci, A general PRAM simulation scheme
for clustered machines, Intl. Journal of Foundations of Computer Science 14 (6)
(2003) 1147–1164.

Carlo Fantozzi obtained the Laurea (2000) in Computer Engineering
(summa cum laude) from the University of Padova, Italy, where he also re-
ceived the PhD (2004) in Computer Engineering. He is now a designer of em-
bedded systems at CAREL SpA, Italy, where he is a member of the Technical
Department. His research interests encompass algorithms and architectures for
high performance computing, both at the processor and at the system scale
levels, and the management of distributed systems. He has authored several
papers that appeared in international conferences and journals.

Andrea Pietracaprina received the Laurea (1987) in Computer Science
(summa cum laude) from the University of Pisa, Italy and the MS (1991)
and PhD (1994) both in Computer Science from the University of Illinois at
Urbana-Champaign, USA. In 1994, he spent a year as a Postdoctoral Fellow
at the University of Padova. From December 1994 to November 1998 he was
an Assistant Professor at the Department of Pure and Applied Mathemat-
ics of the same university. Since 1998, he has been with the Department of
Information Engineering of the University of Padova, where he is currently
a Professor of Computer Science. Prof. Pietracaprina’s main research inter-
ests lie in the fields of high-performance computation, data mining, network
routing, and combinatorial optimization. He is the author of over 40 papers
in international journals and conferences. Prof. Pietracaprina is a member of
ACM and IEEE.

Geppino Pucci received the Laurea (1987) (summa cum laude) and the PhD
(1993) degrees both in Computer Science from the University of Pisa, Italy.
From 1988 to 1990 he was with the Computing Laboratory of the University
of Newcastle-upon-Tyne, United Kingdom, as a research associate. He spent
1993 at the International Computer Science Institute, Berkeley, California, as
a postdoctoral fellow. Since 1992, he has been with the Department of Infor-
mation Engineering of the University of Padova, Italy, where he is currently
a Professor of Computer Science. His research interests include design and
analysis of parallel algorithms, theory of computation, probabilistic model-

33

ing, and algorithm engineering for problems in computational sciences. On
these subjects, he has authored about 50 papers in international journals and
conferences. Prof. Pucci is a member of ACM and IEEE.

34

