
On stalling in LogP ?

Gianfranco Bilardi a,b Kieran Herley c

Andrea Pietracaprina a Geppino Pucci a

aDip. di Ingegneria dell’Informazione, Università di Padova, Padova, Italy
bT.J. Watson Research Center, IBM, Yorktown Heights, NY, USA
cDept. of Computer Science, University College Cork, Cork, Ireland

Abstract

We investigate the issue of stalling in the LogP model. In particular, we introduce a
novel quantitative characterization of stalling, referred to as δ-stalling, which intu-
itively captures the realistic assumption that once the network’s capacity constraint
is violated, it takes some time (at most δ) for this information to propagate to the
processors involved. We prove a lower bound that shows that LogP under δ-stalling
is strictly more powerful than the stall-free version of the model where only strictly
stall-free computations are permitted. On the other hand, we show that δ-stalling
LogP with δ = L can be simulated with at most logarithmic slowdown by a BSP
machine with similar bandwidth and latency values, thus extending the equivalence
(up to logarithmic factors) between stall-free LogP and BSP argued in [1,7] to the
more powerful L-stalling LogP.

Key words: BSP, LogP, Parallel Computation, Bridging Models, Stalling.

1 Introduction

Over the past decade considerable attention has been devoted to the

formulation of a suitable computational model that supports the development

? This research was supported, in part, by MIUR of Italy under Project ALINWEB
and by Grant CPDA033838 of the University of Padova. A preliminary version of
this work was presented at the Workshop on Advances in Parallel and Distributed
Computational Models, Cancun, MEX, May 2000.

Email addresses: gianfranco.bilardi@unipd.it (Gianfranco Bilardi),
k.herley@cs.ucc.ie (Kieran Herley), andrea.pietracaprina@unipd.it
(Andrea Pietracaprina), geppino.pucci@unipd.it (Geppino Pucci).

Preprint submitted to Elsevier Science 4 October 2004

of efficient and portable parallel software. The widely-studied BSP [2] and

LogP [3] models were conceived to provide a convenient framework for the

design of algorithms, coupled with a simple yet accurate cost model, to allow

algorithms to be ported across a wide range of machine architectures with

good performance. Both models view a parallel computer as a set of p pro-

cessors with local memory that exchange messages through a communication

medium whose performance is essentially characterized by two key parame-

ters: bandwidth (g for BSP and G for LogP) and latency (` for BSP and L for

LogP).

A distinctive feature of LogP is that it embodies a network capacity con-

straint stipulating that at any time the total number of messages in transit

towards any specific destination should not exceed the threshold dL/Ge. If

this constraint is respected, then every message is guaranteed to arrive within

L steps of its submission time. If, however, a processor attempts to submit

a message with destination d whose injection into the network would violate

the constraint, then the processor is forced to stall until the delivery of some

outstanding messages brings the traffic for d below the dL/Ge threshold. It

seems clear that the intention of the original LogP proposal [3] was to en-

courage strongly the development of stall-free programs. Indeed, the delays

incurred in the presence of stalling were not formally quantified within the

model, making the performance of stalling programs an issue difficult to as-

sess with any precision [4]. At the same time, adhering strictly to the stall-free

mode might make algorithm design artificially complex, e.g., in situations in-

volving randomization where stalling is unlikely but not impossible. Hence,

ruling out stalling altogether might not be desirable.

The relationship between BSP and LogP has been investigated in [5,1],

where it is shown that the two models can simulate one another efficiently, un-

der the reasonable assumption that both exhibit comparable values for their

2

respective bandwidth and latency parameters. These results were obtained

under a precise specification of stalling behaviour, that attempted to be faith-

ful to the original formulation of the model. Interestingly, however, while the

simulation of stall-free LogP programs on the BSP machine can be accom-

plished with constant slowdown, the simulation of stalling programs incurs a

higher slowdown. Indeed, this is a subtle point, which originally escaped the

attention of the authors of [5], who claimed that their techniques for stall-free

simulations would extend to stalling programs with the same slowdown. As

reported in [1], however, Vijaya Ramachandran pointed out [6] that there is no

such straightforward extension. The difference between stalling and stall-free

programs is also stressed in [7], in the context of work-preserving simulations.

Should stalling programs turn out inherently to require a larger slowdown, it

would be an indication that stalling adds power to the LogP model, conflicting

with the objective of discouraging its use.

The definition of stalling proposed in [1] states that at each step the

network accepts submitted messages up to the capacity threshold for each des-

tination, forcing a processor to stall immediately upon submitting a message

that exceeds the network capacity, and subsequently awakening the processor

immediately when its message can be injected without violating the capacity

constraint. Although consistent with the informal descriptions given in [3],

the above definition of stalling implies the somewhat unrealistic assumption

that the network is able to detect and react to the occurrence of a capacity

constraint violation instantaneously. More realistically, some time lag is nec-

essary between the submission of a message and the onset of stalling, to allow

information to propagate through the network.

In this paper we delve further into the issue of stalling in LogP along

the following directions:

3

• We generalize the definition of stalling, by introducing the notion of δ-

stalling. Intuitively, δ captures the time lag between the submission of a

message by a processor which violates the capacity constraint, and the time

that the processor “realizes” that it must stall. (A similar time lag affects the

“unstalling” process.) The extreme case of δ = 1 essentially corresponds to

the stalling interpretation given in [1]. While remaining close to the spirit

of the original LogP, δ-stalling LogP has the potential of reflecting more

closely the behaviour of actual platforms, without introducing further com-

plications in the design and analysis of algorithms.

• We prove that allowing for stalling in a LogP program enhances the com-

putational power of the model. In particular, we prove a lower bound which

separates δ-stalling LogP from stall-free LogP computations by a noncon-

stant factor.

• We devise an algorithm to simulate δ-stalling LogP programs in BSP, which

achieves at most logarithmic slowdown under the realistic assumption δ = L,

and O((L/G) log p) slowdown for the extreme case of δ = 1. The former re-

sult, combined with those in [1], extends the equivalence (up to logarithmic

factors) between LogP and BSP to L-stalling computations. The latter re-

sult appears to be in contrast with [7, Theorem 3.9], where it is stated that

any step-by-step simulation of a stalling LogP program on BSP can have

arbitrarily large slowdown. However, the authors of [7] base their claim on

a very rigid subdivision of the LogP program into BSP supersteps, which

artificially restricts the class of possible simulation strategies.

The rest of the paper is organized as follows. In Section 2 the definitions

of BSP and LogP are reviewed , the new δ-stalling rule is introduced, and a

lower bound argument is illustrated that separates δ-stalling LogP from stall-

free LogP computations. In Section 3 the simulation of δ-stalling LogP in BSP

is presented. Finally. Section 4 provides some concluding remarks.

4

2 The models

Both the BSP [2] and the LogP [3] models can be defined in terms of a

virtual machine consisting of p serial processors with unique identifiers. Each

processor i, 0 ≤ i < p, has direct and exclusive access to a private memory and

has a local clock. All clocks run at the same speed. The processors interact

through a communication medium, typically a network, which supports the

routing of messages. In the case of BSP, the communication medium also

supports global barrier synchronization. The distinctive features of the two

models are discussed below. In the rest of this section we will use PB
i and P L

i

to denote, respectively, the i-th BSP processor and the i-th LogP processor,

with 0 ≤ i < p.

BSP A BSP machine operates by performing a sequence of supersteps, where

in a superstep each processor may perform local operations, send messages

to other processors and read messages previously delivered by the network.

The superstep is concluded by a barrier synchronization, which informs the

processors that all local computations are completed and that every message

sent during the superstep has reached its intended destination. The model

prescribes that the next superstep may commence only after completion of

the previous barrier synchronization, and that the messages generated and

transmitted during a superstep are available at the destinations only at the

start of the next superstep. The performance of the network is captured by

a bandwidth parameter g and a latency parameter `. The running time of a

superstep is expressed in terms of g and ` as Tsuperstep = w + gh + `, where w

is the maximum number of local operations performed by any processor and

h the maximum number of messages sent or received by any processor during

the superstep. The overall time of a BSP computation is simply the sum of

5

the times of its constituent supersteps.

LogP In a LogP machine, at each time step, a processor can be either oper-

ational or stalling. If it is operational, then it can perform one of the following

types of operations: execute an operation on locally held data (compute); sub-

mit a message to the network destined to another processor (submit); receive

a message previously delivered by the network (receive). A LogP program

specifies the sequence of operations to be performed by each processor.

As in BSP, the behaviour of the network is modeled by a bandwidth

parameter G (called gap in [3]) and a latency parameter L with the following

meaning. At least G time steps must elapse between consecutive submit or

receive operations performed by the same processor. If, at the time that a

message is submitted, the total number of messages in transit (i.e., submitted

to the network but not yet delivered) for that destination is at most dL/Ge,

then the message is guaranteed to be delivered within L steps. If, however,

the number of messages in transit exceeds dL/Ge, then, due to congestion, the

message may take longer to reach its destination, and the submitting processor

may stall for some time before continuing its operations. The quantity dL/Ge

is referred to as the network’s capacity constraint. Note that message delays

are unpredictable, hence different executions of a LogP program are possible.

If no stalling occurs, then every message arrives in at most L time steps after

its submission.

Upon arrival, a message is promptly removed from the network and

buffered in some input buffer associated with the destination processor. How-

ever, the actual acquisition of the incoming message by the processor, through

a receive operation, may occur at a later time. We also assume that a receive

instruction is non-blocking, in the sense that the receiving processor proceeds

with its execution if no message is available for acquisition at the time the

6

instruction is issued. Clearly, it is up to the programmer to implement a busy-

waiting cycle in case the processor cannot proceed correctly without acquiring

the message.

LogP also introduces an overhead parameter o to represent both the time

required to prepare a message for submission and the time required to unpack

the message after it has been received. Throughout the paper we will assume

that max{2, o} ≤ G ≤ L ≤ p (the reader is referred to [1] for a justification of

this assumption).

2.1 LogP’s stalling behaviour

The original definition of the LogP model in [3] provides only a qual-

itative description of the stalling behaviour and does not specify precisely

how the performance of a program is affected by stalling. In [1], the following

rigorous characterization of stalling was proposed. At each step the network

accepts for each destination messages up to the threshold dictated by the ca-

pacity constraint, possibly blocking the messages exceeding this threshold at

the senders. From a processor’s perspective, the attempt to submit a message

violating the capacity constraint results in immediate stalling, and the stalling

lasts until the message can be accepted by the network without violating that

constraint.

The above characterization of stalling, although consistent with the in-

tentions of the model’s proposers, relies on the somewhat unrealistic assump-

tion that the network is able to monitor at each step the number of messages

in transit for each destination, blocking (unblocking) a processor instanta-

neously in case a capacity constraint violation is detected (ends). In reality,

the stall/unstall information would require some time to propagate through

the network and reach the intended processors. Below we propose an alter-

7

native, yet rigorous, definition of stalling, which respects the spirit of LogP

while modelling the behaviour of real machines more accurately.

Let 1 ≤ δ ≤ L be an integer-valued parameter. Suppose that at time

step t processor P L
i submits a message m destined to P L

j , and let cj(t) denote

the total number of messages destined to P L
j which have been submitted up to

(and including) step t and are still in transit at the beginning of this step. If

cj(t) ≤ dL/Ge, then m reaches its destination at some step tm, with t < tm ≤

t + L. If, instead, cj(t) > dL/Ge (i.e., the capacity constraint is violated), the

following happens:

(1) Message m reaches its destination at some step tm, with t < tm ≤ t +

Gcj(t) + L.

(2) P L
i may be signalled to stall at some time step t′, with t < t′ ≤ t + δ.

Until step t′ the processor continues its normal operations.

(3) Suppose P L
i is signalled to stall at t′ and let t̄ denote the latest time

step when a message submitted by P L
i during steps [t, t′) arrives at its

destination. Then, the processor reverts to operational state at some time

t′′, with t̄ < t′′ ≤ t̄ + δ. (Note that if t′ > t′′ no stalling takes place.)

Intuitively, parameter δ represents an upper bound on the time the network

takes to inform a processor that one of the messages it submitted violated the

capacity constraint, or that it may revert to operational state as the result of

a decreased load in the network.

We refer to the LogP model under the above stalling rule as δ-stalling

LogP , or δ-LogP for short. A legal execution of a δ-LogP program is one where

message delivery times and stalling periods are consistent with the model’s

specifications and with the above rule.

In [1] a restricted version of LogP has been considered, which regards

as correct only those programs whose executions never violate the capacity

8

constraint, that is, programs where processors never stall. We refer to such

a restricted version of the model as stall-free LogP , or SF-LogP for short.

The following theorem shows that, at least for the case G = L, allowing for

δ-stalling in LogP makes the model strictly more powerful than SF-LogP.

Theorem 1 There exists a problem for which the best SF-LogP algorithm is at

least an Ω
(√

log p
)
-factor slower than a simple algorithm running on δ-LogP,

for any δ ≥ 1.

PROOF. Consider the 2-Compaction (2C) problem [8], defined on a shared-

memory machine as the problem of compacting the only two nonzero com-

ponents of an input vector of size p at the front of the vector. The 2C prob-

lem can be naturally rephrased on LogP by having the entries of the input

vector distributed uniformly among the p processors. Clearly on δ-LogP the

2-compaction problem can be solved deterministically in O(L) time, for any

δ ≥ 1, by simply letting each processor holding a nonzero entry transmit its

identity and the entry value to both processors with index 0 and 1. Clearly,

such a strategy would be illegal for SF-LogP, since for G = L stalling may

occur due to violation of the capacity constraint dL/Ge = 1.

An Ω
(√

log p
)

lower bound for 2C was proved in [8] for the EREW-

PRAM model with unbounded local computation, where in a single step each

processor can first read a cell from the shared memory, then perform an un-

bounded amount of local computation, and finally write a value to the shared

memory. Concurrent read and write accesses to the same shared cell are dis-

allowed. This result yields an Ω
(
L
√

log p
)

lower bound for 2C on SF-LogP

by observing that when G = L, any T -step computation of a p-processor

SF-LogP can be easily simulated in O (max{1, T/L}) steps on a p-processor

EREW-PRAM with unbounded local computation. In the simulation, the i-th

PRAM processor simulates cycles of L consecutive steps of the i-th SF-LogP

9

processor, reading the single incoming message for the processor and writing

the single outgoing message generated by the processor (since dL/Ge = 1)

into a shared vector of p components used for communications.

It must be remarked that the proof of the above result heavily relies on

the assumption G = L. We leave the extension of the lower bound to arbitrary

values of G and L as an interesting open problem.

3 Simulation of LogP on BSP

This section shows how to simulate δ-LogP programs efficiently on BSP.

The strategy is similar in spirit to the one devised in [1] for the simulation of

SF-LogP programs, however it features a more careful scheduling of interpro-

cessor communication in order to correctly implement the stalling rule.

The algorithm simulates cycles of C = max{G, δ} ≤ L consecutive time

steps (including possible stalling steps) of a legal execution of the LogP pro-

gram. For 0 ≤ i < p, processor PB
i simulates the behaviour of processor P L

i

using its own local memory to store the contents of P L
i ’s local memory. In

order to simplify bookkeeping operations, we assume that L is an integral

multiple of the cycle time C, and that the particular LogP execution chosen

for simulation is one where all messages are delivered by the network to their

destinations at cycle boundaries. The analysis will show that such a legal exe-

cution exists. Note that in the chosen execution more the one message may be

delivered to one processor at the same time 1 . However, our simulation can be

adapted easily to the case where C does not divide L and messages destined

to the same processor cannot be delivered at the same time step.

1 In fact, although the definition of LogP requires that at least G time steps elapse
between consecutive receive operations issued by a processor, it does not put any
constraint on the actual message delivery by the network.

10

Consider the simulation of an arbitrary LogP program. Throughout the

simulation, each processor PB
i maintains two integer variables ti and wi, and

a program counter ρi. Variable ti represents the simulation clock and always

indicates the next time step of the simulation process. The variable ρi acts

a “program counter”: at any time, ρi indicates to the next instruction to be

executed by P L
i in the computation being simulated. The role of wi is to keep

track of whether or not P L
i is stalled or operational and, in the case of the

former, when it should be re-awakened. Specifically, P L
i is stalling in the time

interval [ti, wi − 1] if wi > ti, and is operational at step ti otherwise. Initially,

both ti and wi are set to 0.

In order to correctly simulate LogP communication, each processor PB
i

maintains three queues in its local memory: Qin(i), Qout(i), and U(i). In the

simulation of a cycle, Qin(i) stores all those messages that have been already

delivered but not yet received by P L
i (i.e. not yet subject of a receive oper-

ation); Qout(i) accumulates all messages submitted by P L
i during the cycle;

finally, U(i) stores those messages submitted by P L
i in previous cycles and

still in transit to their destinations during the current cycle.

We now describe the details of the simulation of the k-th cycle, k ≥ 0,

which comprises time steps C · k, C · k + 1, . . . C · (k + 1)− 1. Note that at the

beginning of the cycle’s simulation we have that ti = C · k.

(1) For 0 ≤ i < p, if wi < C · (k + 1) then PB
i simulates the next x = C · (k +

1)−max{ti, wi} instructions in PL
i ’s program, updates ρi accordingly and sets

ti = C · (k + 1). A submit is simulated by inserting the message into Qout(i),

and a receive is simulated by extracting a message from Qin(i).

(2) All messages in
⋃

i (Qout(i) ∪ U(i)) are sorted by destination and, within each

destination group, by time of submission.

(3) Within each destination group, messages are ranked and a message with rank

11

r is assigned delivery time C · (k + dr/(1 + dC/Ge)e) (i.e., the message will be

delivered at the beginning of the (dr/(1 + dC/Ge)e)-th next cycle).

(4) Each message to be delivered in cycle k + 1 is sent to its destination processor

that stores it in queue Qin, while all other messages are sent back to their

source processors, which store them in queue U .

(5) For 0 ≤ i < p, if one of the messages in queue U(i) was assigned rank r >

dL/Ge in Step 3, then

(a) wi is set to the maximum delivery time of all messages in U(i);

(b) If δ < G, then all operations performed by PL
i in the simulated cycle sub-

sequent to the submission of the first message that violated the capacity

constraint are “undone” and ρi is adjusted accordingly.

Comment: Note that when δ < G, processor PL
i submits only one mes-

sage in the cycle, hence the operations to be undone do not involve submits

and their undoing is straightforward.

We first show the correctness of the simulation by proving that the BSP

processors do indeed mimic the steps of a legal execution of the LogP program.

Consider a message m submitted by P L
i at time t during the k-th cycle, and

destined to P L
j . As before, we let cj(t) denote the total number of messages

destined to P L
j submitted at or before time step t, which are still in transit at

the beginning of the step.

Lemma 2 In the execution being simulated, m is arrives within step t+L, if

cj(t) ≤ dL/Ge, and within step t + Gcj(t) + L, otherwise.

PROOF. The lemma easily follows from the fact that the algorithm sched-

ules m to arrive at time step tm ≤ t + Cdcj(t)/(1 + dC/Ge)e, and from the

assumption that L is an integral multiple of C.

Lemma 3 Let r > dL/Ge be the rank assigned to m. Then, in the execution

12

being simulated, P L
i starts stalling within δ steps from the submission of m at

step t, and reverts to operational state within δ steps of the arrival of the last

of its messages submitted prior to the onset of stalling.

PROOF. If δ < G then, as a consequence of Step 5(b), P L
i is forced to stall

immediately after submission of m. If δ ≥ G then the stalling will start at

the beginning of the next cycle, which is at most C = δ time steps from the

submission of m. In both cases, the setting of wi done in Step 5(a) ensures that

the processor reverts to operational state immediately after the last message

submitted before stalling arrives at its destination.

The following theorem is an immediate consequence of the above lemmas

Theorem 4 For any given LogP program, the above algorithm simulates one

of its legal executions.

The next theorem establishes the performance of the simulation algo-

rithm.

Theorem 5 For any δ, 1 ≤ δ ≤ L, the above algorithm correctly simulates a

cycle of C = max{G, δ} arbitrary δ-LogP steps in time

O

(
C +

L

G
log p +

(
L

G
g + `

)
log p

log(L/G)
+ `

log p

log(`/g)

)
.

PROOF. Consider the simulation of an arbitrary cycle. Steps 1 and 5.(b)

involve O (C) local computation altogether. It is easy to see that the sort-

ing of
⋃

i (Qout(i) ∪ U(i)) performed in Step 2 involves O ((L/G)) messages

per processor. Indeed, for 0 ≤ i < p, |Qout(i)| = O(C/G), while |U(i)| =

O(L/G), since in U(i) there can be at most dL/Ge messages of rank r ≤

dL/Ge (all these messages are delivered within L time steps of their sub-

mission) and at most dδ/Ge messages of rank r > dL/Ge (the proces-

13

sor begins stalling within δ times from the submission of the oldest among

such messages). Therefore, by employing the BSP sorting algorithm of [9],

Step 2 takes time O ((L/G) log p + ((L/G) g + `) log p/ log(L/G)). Step 3 re-

quires a segmented prefix computation, which can be accomplished in time

O (L/G + ` log p/ log(`/g)) using standard techniques [2]. Finally, Step 4 en-

tails the routing of an O ((L/G))-relation, and Step 5.(a) requires O ((L/G))

local computation. The theorem follows by adding up the contributions of the

individual steps.

The following corollary follows immediately.

Corollary 6 When ` = Θ (L), g = Θ (G) an arbitrary δ-LogP program can

be simulated in BSP with slowdown O ((L/G) log p/ min{G, 1 + log(L/G)}), if

δ = 1, and with slowdown O (log p/ min{G, 1 + log(L/G)}), if δ = Θ (L).

The corollary, combined with the results in [1], shows that LogP, under the

reasonable L-stalling rule, and BSP can simulate each other with at most log-

arithmic slowdown when featuring similar bandwidth and latency parameters.

4 Conclusions

Previous work had exposed a puzzling feature of the stalling regime in

the LogP model of computation. On the one hand, the model was meant

to encourage the design of programs that, by complying with the capacity

constraint, avoid saturating the network. On the other hand, attempts to give

a precise definition of stalling behaviour indicated that stalling could in fact be

a source of computational power, which might make it attractive to program

designers while at the same time making efficient implementations of the LogP

abstraction on realistic platforms more difficult to achieve.

14

In this paper, we have provided further evidence that stalling, in the form

made precise in [1], enhances the computational power of LogP. However, we

have also shown how the newly proposed mechanism of δ-stalling yields a

version of LogP where stalling has a considerably more limited power and

whose implementation on realistic platforms ought to be considerably more

efficient.

References

[1] G. Bilardi, K. Herley, A. Pietracaprina, G. Pucci, P. Spirakis, BSP vs LogP,
Algoritmica 24 (1999) 405–422, special Issue on Coarse Grained Parallel
Algorithms.

[2] L. Valiant, A bridging model for parallel computation, Communications of the
ACM 33 (8) (1990) 103–111.

[3] D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos, K. Schauser,
R. Subramonian, T. Eicken, LogP: A practical model of parallel computation,
Communications of the ACM 39 (11) (1996) 78–85.

[4] D. Culler, A. Dusseau, R. Martin, K. Shauser, Fast parallel sorting under
LogP: from theory to practice, in: Proc. of the Workshop on Portability and
Performance for Parallel Processors, Southampton, UK, 1993, pp. 18–29.

[5] G. Bilardi, K. Herley, A. Pietracaprina, G. Pucci, P. Spirakis, BSP vs LogP, in:
Proc. of the 8th ACM Symp. on Parallel Algorithms and Architectures, Padova,
Italy, 1996, pp. 25–32.

[6] V. Ramachandran, Personal communication, June 1998.

[7] V. Ramachandran, B. Grayson, M. Dahlin, Emulations between QSM, BSP and
LogP: A framework for general-purpose parallel algorithm design, Journal on
Parallel and Distributed Computing 63 (2003) 1175–1192.

[8] P. MacKenzie, Lower bounds for randomized exclusive write PRAMs, Theory of
Computing Systems 30 (6) (1997) 599–626.

[9] M. Goodrich, Communication-efficient parallel sorting, in: Proc. of the 28th ACM
Symp. on Theory of Computing, Philadelphia, Pennsylvania USA, 1996, pp. 247–
256.

15

Gianfranco Bilardi received the Laurea (1978) (summa cum laude) in Elec-
trical Engineering from the University of Padova and the Master (1982) and
the PhD (1985) degrees, both in Electrical Engineering, from the University
of Illinois at Urbana-Champaign. From 1984 to 1990, he was an assistant pro-
fessor of Computer Science at Cornell University, Ithaca, New York. In 1990,
he joined the Department of Information Engineering at the University of
Padova, Italy, as a Professor of Computer Engineering. His research interests
lie in the area of parallel and VLSI computing. He is the author of more than
70 publications in international journals and conferences. Prof. Bilardi is a
member of the ACM and a senior member of the IEEE.

Kieran T. Herley received his BS (1982) and MS (1983) both in Computer
Science from University College Cork, Ireland. Further studies at Cornell Uni-
versity lead to an MS (1986) and a PhD (1990) in Computer Science. Since
1990, he has been a Lecturer in the Department of Computer Science of Uni-
versity College Cork, Ireland. Dr. Herley’s research interests include the design
and analysis of parallel algorithms and parallel computational models. He is
a member of ACM and EATCS.

Andrea Pietracaprina received the Laurea (1987) in Computer Science
(summa cum laude) from the University of Pisa, Italy and the MS (1991)
and PhD (1994) both in Computer Science from the University of Illinois at
Urbana-Champaign, USA. From 1994 to 1998 he was an Assistant Professor
at the Department of Pure and Applied Mathematics of the same university.
Since 1998, he has been with the Department of Information Engineering of
the University of Padova, where he is currently a Professor of Computer Sci-
ence. Prof. Pietracaprina’s main research interests lie in the fields of parallel
computation, network routing, graph theory, and combinatorial optimization.
He is the author of about 40 papers in international journals and conferences.
Prof. Pietracaprina is a member of ACM and IEEE.

Geppino Pucci received the Laurea (1987) (summa cum laude) and the PhD
(1993) degrees both in Computer Science from the University of Pisa, Italy.
From 1988 to 1990 he was a Research Associate at the Computing Laboratory
of the University of Newcastle-upon-Tyne, UK. In 1993, he was at the Inter-
national Computer Science Institute, Berkeley, USA, as a postdoctoral fellow.
Since 1993 he has been with the Department of Information Engineering of the
University of Padova, Italy, where he is currently a Professor of Computer Sci-
ence. His research interests include design and analysis of parallel algorithms,
theory of computation, probabilistic modeling, and algorithm engineering for
problems in computational sciences. On these subjects, he has authored over
50 papers in international journals and conferences. Prof. Pucci is a member
of ACM and IEEE.

16

