
Three non Conventional Paradigms of ParallelComputation?Fabrizio Luccio1, Linda Pagli1 and Geppino Pucci21 Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy2 Dipartimento di Elettronica e Informatica, Universit�a di Padova, Padova, ItalyAbstract. We consider three paradigms of computation where the ben-e�ts of a parallel solution are greater than usual. Paradigm 1 works on atime-varying input data set, whose size increases with time. In paradigm2 the data set is �xed, but the processors may fail at any time witha given constant probability. In paradigm 3, the execution of a singleoperation may require more than one processor, for security or reliabil-ity reasons. We discuss the organization of PRAM algorithms for theseparadigms, and prove new bounds on parallel speed-up.1 IntroductionThe theory of parallel algorithms has a well known body, developed on thePRAM model [5]. Some folklore principles are at the base of this theory, inparticular the ones that express upper and lower bounds on the processing time.Let � be a problem of size N , and let T s(N) be the time required by the bestknown sequential algorithm As to solve� . Any parallel algorithm Ap that solves� with a number P of PRAM processors requires time T p(P;N) such that:T p(P;N) � T s(N)P : (1)Relation (1) expresses a renowned lower bound on parallel speed-up. The quan-tity W (P;N) = T p(P;N) � P is called the work of Ap. If the operations of aparallel algorithm with P 0 processors are rescheduled into another algorithmwith P < P 0 processors, we have:T p(P;N) � W (P 0; N)P + T p(P 0; N); (2)that expresses Brent's principle on scaling.Non conventional studies on parallel speed-up have been reported for examplein [2], [11] and [7]. In particular, it has been shown that the above relations donot hold for speci�c classes of problems, if expressed in absolute terms [2], or inasymptotic terms [7]. This paper is aimed to provide a critical contribution tothis area. In particular, we consider three algorithmic paradigms where the power? This work has been supported by MURST of Italy under a research grant.

of parallel computation is exploited to the extent that inequalities (1) and (2)may be violated, and discuss the organization and analysis of algorithms forthese paradigms. We have:Paradigm 1. The input data set varies dynamically. The problem size N isde�ned as a non decreasing function of time. Intuitively an algorithm performsbetter than usual for increasing P , because the the processing time decreasesand the problem size to be considered is smaller.Paradigm 2. The processors can fail with constant probability. Again a parallelcomputation may become much faster with increasing P , because the numberof non faulty processors decreases with time.Paradigm 3. A single operation may require k > 1 processors to be executed.This situation may occur for security or reliability reasons. Trivially, the problemcannot be solved with less than k processors.2 Computing with time-increasing data (Paradigm 1)Let � be a problem of size N = n + f(n; t), where f(n; t) is a non decreasingfunction of the initial size n and time t, f(n; 0) = 0. An algorithm A for �terminates when all the data currently arrived have been treated, that is, theparadigm applies when a condition of consistency is required on a current set ofdata before an answer can be supplied.The variability of N occurs for on-line problems, where it is assumed that anaction has to be taken for each new datum before another datum arrives; and forreal-time problems, where the time required by any of the above actions is upperbounded by a constant [9]. We study the impact of the variability of N on thedesign and complexity of algorithms, without imposing the above limitations.New data can be accumulated without being treated immediately, and the timeneeded to treat them is an arbitrary function of t. Moreover, our approach doesnot fall in the theory of queueing systems because the data arrival times areknown deterministically and no �xed queueing discipline is imposed for theirfuture use.Many problems in Applied Physics work on variable data which obey torelations similar to the one given above for N , often in di�erential or integralform. For example the vacuum is made in a chamber while an imperfect valvelets a certain amount of air to enter again. The process terminates when a givencondition is met (e.g., the pressure reaches a given value); at this point the valveis tapped and a di�erent experiment can be initiated. In the theory of computing,interesting problems in Paradigm 1 are the ones that admit a sequential data-accumulative algorithm As (shortly d-algorithm). As is built for time-increasingdata, but its time complexity T s(N) is the same, in order of magnitude, ofthe best algorithm working on the N data as if they were all available at timet = 0. One such problem admits an optimal parallel solution with P processors ifthere is a parallel algorithm Ap (pd-algorithm) working on time-increasing data,whose complexity is T p(P;N) = O �T s(N)P �. For simplicity, we restrict our studyto problems of the class P admitting a d-algorithm and a pd-algorithm, such

that, for c and cp constant: N = n+ knt; (3)t = T s(N) = c(n+ knt)�; � � 1; (4)tp = T p(P;N) = cp(n+ kntp)�P ; with P constant or P = n�; � � �. (5)
Figure 1

6
-

n
t� = 1� > 1L = 1kc1=��������������� HHHHXXXFigure 1 shows the plot of (4). For � = 1 the algorithm terminates i� n < 1kc1=� ,while the working time may become arbitrarily large for n approaching 1kc1=� .For a > 1 the behaviour is less favourable, because the amount of new dataincreases rapidly with t. For P = constant, function (5) has a plot in n; tp likethe one of �gure 1, with L = (Pc=cp)1=�kc1=� . For P = n� ; � < �, the plot is the same,with L = p1=(���)cp1=(���)k�=(���) . For P = n�, relation (5) becomes tp = cp(1 + ktp)�,that is tp is constant for proper values of cp; k and � (this is consistent withthe fact that the parallel algorithm is optimal and the sequential algorithm hascomplexity n�). Note that relations (3) and (4) have been formulated under thehypothesis that the new knt data are loaded into memory without increasingthe time complexity of the algorithm. It can be easily shown that this can beattained for � � 1 as posed in (4).The lower bound (1) on parallel speed-up does not apply to the problemssolvable in Paradigm 1, where the bene�ts of a parallel solution may be strongerand more intrigued than usual. In general we can prove that:Proposition 1. For problems obeying relation (3), (4) and (5) we have T s(N)P �Tp(P;N) >ccp . Furthermore, for � = 1 the ratio T s(N)P �Tp(P;N) tends to 1 for n tending to 1ck .Proposition 1 violates relation (1) for c = cp, or for � = 1 and n close to 1ck .For complexity functions di�erent from (5), Proposition 1 must be reformulated(e.g., P = nlogn and tp = cp logn, see below).Another bound that does not apply in the framework of Paradigm 1 is theone expressed in Brent's principle (2). For brevity we restrict our discussion tothe subfamily of pd-algorithms obeying relation (5) with � = 1. Let A0 be thefastest known such algorithm with P 0 processors. A0 requires timet0p = c0p(n+ knt0p)P 0 : (6)

For P < P 0 consider a new algorithm A obtained from A0 by rescheduling theoperations of A0. Algorithm A requires time tp � t0p, hence N = n + kntp �n + knt0p = N 0. However, to build A on N data, we have to reschedule A0 onthe same amount N of data, which in turn requires that A0 be executed fora proper initial value n00 such that N 00 = n00 + kn00t00p = N = n + kntp, witht00p = c0p(n00+kn00t00p)P 0 . We have: t00p = c0p(n+ kntp)P 0 : (7)Let X 00 denote the total number of operations performed by A0 on N 00, andlet W 00(P 0; N 00) = t00p �P 0 be the corresponding work. Algorithm A is obtained byrescheduling the X 00 operations of A0. As in the derivation of Brent's principlewe obtain:tp � X 00P + t00p � W 00(P 0; N 00)P + t00p = �t00p ; with � = P 0 + PP : (8)From relations (7) and (8), we easily derive a new formulation of Brent's princi-ple:Proposition 2. A pd-algorithm obeying relation (5) with � = 1, constant c0p,and P 0 processors, can be rescheduled for P � P 0 processors and n initial datain time T p(P;N) � c0p�nP 0�kc0p�n , with � = P 0+PP .Note that P , P 0 are in general functions of the problem size. Hence, when A0 isrescheduled on n00 data, we have to enter P 0 = P 0(n00) in the bound Proposition 2.Since relation (6) can be rewritten as t0p = c0pnP 0�kc0pn , the upper bound of theproposition can be interpreted as the time needed by the original algorithm A0working on �n initial data. This time can be made arbitrarily large for propervalues of n, while t0p stays limited, thereby making relation (2) non signi�cant.Proposition 2 can be extended to di�erent complexity functions with foreseeableresults. An example is shown in the next section.Let us now consider a census problem with time-varying data, solved underParadigm 1. The computation is completed when all data currently arrived havebeen processed, independently of other data that may arrive at later times.Problem 1. (1) Given a set I of integers, of size N = n+ knt, compute the sumS of all the elements in I .Problem 1 occurs in an idealized banking operation, where the balance S of allmovements in an account must be computed before a withdraw is honored. Notethat the number of movements is given by an initial value n, plus an incrementproportional to time and n. When S has been found, the algorithm terminates,and a di�erent operation (e.g, a paying procedure) is initiated. For n < 1kc thisproblem can be solved with a sequential linear time d-algorithm consisting ofa scan, according to relation (4) with � = 1. As well known, it can be solvedin parallel on the initial n data with P = nlogn processors in time O(logn). Fortime-varying data we have:

Proposition 3. Problem 1 admits a pd-algorithm with P = nlogn and tp �cp logn.The algorithm is as follows:1) subdivide the initial set of n data in P sections I1; : : : ; IP , of logn elementseach; each processor computes the sum in Ii sequentially in time c logn;2) during step 1, ckn logn new data arrive. Assuming that n � 1ck , we haveckn logn � logn, then, we still have to compute the sum of � nlog n + lognelements. This sum is computed in a binary tree fashion in time c logn;3) during step 2, ckn logn � logn new data arrive. We can compute the sumof these data, plus the result of step 2, in time c log logn. The computationis iterated on the log logn, log log logn; : : : ; 1 data arrived in the previoussteps.We have tp = c(log n+ logn+ log logn+ : : :) � cp logn.In the above algorithm, we have assumed an upper bound 1ck on n. Sincethis value coincides with the asymptote of the sequential case, we can makea fair estimate of the parallel speed-up. Proposition 1 can be reformulated forN = n + knt and P = nlogn , to state that the ratio tP tp tends to 1 for ntending to 1ck , hence, the above is a pd-algorithm. In fact, we have t = cn1�cknand tp � cp logn, hence tP tp � ccp(1�ckn) . Proposition 2 can also be adaptedto Problem 1, showing that Brent's principle can be violated in absolute andasymptotic terms.3 Computing with faulty processors (Paradigm 2)The new paradigm of parallel computation considered here is based on the as-sumption that the PRAM processors may fail. Upon occurrence of a failure,a processor stops permanently. Therefore, the algorithm must be organized insuch a way that, for any processor failure, all the pending operations can stillbe executed.To make a PRAM program robust, a common target is graceful degradation,that is, the computation is correctly carried to an end as long as at least oneprocessor survives [4, 6, 8]. For this purpose, the operations must be dynamicallyassigned to the processors still alive, with some unavoidable replication. The goalis then the minimization of the total number of operations performed, while nobound can be posed on the total running time.Our paradigm is completely di�erent. Assuming a known probability distri-bution of the processor failures, we are able to set an upper bound on the runningtime, with a given probability of successful termination. Indeed, bounding therunning time is a common requirement in algorithm design, and is crucial inreal-time systems (see section 2) and in other practical contexts. Our result isobtained at the expense of an increase of the total number of operations, due tothe need of their replication over the original fault intolerant algorithm (i.e., a

standard algorithm designed for non failing processors). As anticipated in section1, the bounds on parallel speed-up must be revised. In particular, the scalingbound of relation (2) is modi�ed in an intrigued and nontrivial way.Our paradigm is as follows. Starting from any fault intolerant PRAM algo-rithm, we increase the total number of processors, and allocate a subset S ofprocessors to each operation O with a schedule decided o�-line. The operationO is executed concurrently by all the processors in S which are still alive (thisrequires a COMMON CRCW-PRAM variant). The cardinality of S is chosen toguarantee that the operation is completed with a given probability.Let p be the probability that an arbitrary processor Ej completes the t-thstep of its program, given that it has completed all the previous steps (shortly,Ej is alive when entering step t). We assume that p is a constant with respectto t and is the same for all processors. Formally, for any processor index j andtime step i, de�ne the eventCji = \Processor Ej completes the i-th step of its program";and, for any t > 0 and any given j, letPr Cjt j t�1\i=1Cji! = p: (9)As an additional condition, we assume that distinct processors behave indepen-dently, that is, for any choice of indices (i; j) and (h; k) with j 6= k, the eventsCji and Ckh are independent. Note that relation (9) captures the common as-sumption on the exponential distribution of hardware failures in a model withdiscrete time [10].Consider any fault intolerant PRAM algorithm A running in time T and per-forming a total number X of operations. At each step t, the algorithm performsthe operations Okt , 1 � k � Xt, PTt=1Xt = X . We will allocate a cluster Skt ofprocessors to each operation Okt , so that the operation is executed with at leasta �xed constant probability �p. For �p to be constant, the size of Skt must increasewith t, because the probability that a processor in Skt is still alive decreases witht. The value of �p clearly in
uences the overall probability that the new faulttolerant algorithm �A is completed successfully. Let C �A be the event \algorithm�A is completed successfully". For 1 � t � T; 1 � k � Xt, de�ne the event:Ikt = \No processor in Skt completes Okt ":We have Pr(Ikt) � 1� �p, thereforePr(C �A) = 1� Pr T[t=1 Xt[k=1 Ikt ! � 1�X(1� �p) (10)We require that Pr(C �A) � r, for �xed r. Then it su�ces that �p satis�es therelation: 1�X(1� �p) � r: (11)

We are now ready to determine the size skt of the clusters Skt . For this purpose,de�ne the event:Y kt = \at least one of the processors in Skt is alive after the �rst t steps".By unfolding relation (9), we have that the probability that an arbitrary proces-sor completes the �rst t steps of its program is pt, therefore:Pr(Y kt) = 1� Pr0@ skt\h=1 t\j=1Cht 1A = 1� �1� pt�skt :We require that, for any t and k, Pr(Y kt) � �p. Then it su�ces that skt be suchthat 1� (1� pt)skt � �p, whenceskt � loge(1� �p)loge(1� pt) : (12)Note that the right hand side of relation (12) is independent of k. Hence all theskt , 1 � k � Xi, can be set to the same value st. It follows that the number ofprocessors s required to complete algorithm �A with probability at least r iss = max fXtst; 1 � t � Tg : (13)The above results can be applied to the solution of any problem in Paradigm2. As an example, let us apply the paradigm to solve Problem 1 of section 2with constant data size N , as a framework for any census problem. The problemcan be solved on a P -processor PRAM, 1 � P � N , by a uniform familyof fault intolerant parallel algorithms fAP g, whose computation is organizedin two phases. In the �rst phase, the initial set of data is subdivided into Pdisjoint sections, one for each processor, and the sum in each section is computedsequentially in time �NP �� 1 � NP . In the second phase, the processors performa tree-like computation on the P partial results in time dlogP e � 1 � logP .The overall time requirement of AP is NP + logP , while the total number ofoperations, including the ones of idling processors, is X = N + P .If the processors may fail, each algorithm AP must be transformed into acorresponding fault tolerant algorithm �AP . Recall that AP and �AP require thesame time, since the operations of �AP are the same as in AP . However, each op-eration Okt is executed in �AP in parallel by all the processors still alive in clusterSkt . In the framework of Paradigm 2, �AP requires a number s(P) of processorsgiven in relation (13). Through relations (11) and (12), we have that s(P) de-pends on the required probability r of successful completion. As customary inrandomized algorithms, we set r � 1� 1Nc , for a given constant c, independentlyof the value of P .From relation (11) we have 1 � X(1 � �p) = 1 � (N + P)(1 � �p) � 1 � 1Nc ,whence �p � 1� 1Nc(N + P) : (14)

From relation (12) we then derive the number of processors skt = st for operationOkt , namely: st = loge(Nc(N + P))loge 11�pt : (15)Given that loge 11�pt � pt for any t > 0, and recalling that P � N , we havest � (c + 2) logeN � 1p�t. To apply relation (13) we still have to determine thevalues of Xt for the two phases of the algorithm. We have Xt = P , 1 � t � NP(�rst phase), and XN=P+i = P2i , 1 � i � logP . Therefore:s(P) � max8><>: (c+ 2)P � 1p�t logeN; 1 � t � NP(c+ 2)P � 1p�NP � 12p�i logeN; 1 � i � logP 9>=>; (16)From relation (16), we derive with easy calculations:Proposition 4. For any p > 12 ; c > 0 and P � N , Problem 1 with constantdata size N admits a family of fault tolerant algorithms with success probability� 1 � 1Nc , requiring time NP + logP and a number of processors s(P) � (c +2)P � 1p�N=P logeN .Note that the assumption p > 12 is plausible, since p is the probability thata processor completes a single step. For example, for P = N , algorithm �APsolves the problem in time logN with probability � 1� 1Nc , with O(cN logN)processors.Proposition 4 puts into evidence an unexpected property of our paradigm. Asthe number of processors P of the fault intolerant algorithm AP increases, hencethe running time T of AP and �AP decreases, the number of processors s(P)of �AP may increase or decrease for proper values of p and N . Hence, the totalwork s(P)T may decrease for increasing P , against all the bounds on parallelspeed-up. For example note that, for �xed p, we have s(Nlog1=pN) =
(cN2),from (12) and (14), and s(N) = O(cN logN) from Proposition 4, that is s(N) =o(s(NlogN)).In fact, formula (1) should now express a � relation between s(P)T (P;N)and s(1)T (1; N), which can hold in any direction for proper values of p and N(note that the fault tolerant version �A1 of a sequential algorithm A1, requiress(1) > 1 processors). Against a fair expectation from relation (1), we have thats(P)T (P;N) � s(1)T (1; N) for P ! N ! 1 and �xed p, thereby proving theinherent power of the parallel solution.4 Computing in a secure environment (Paradigm 3)The theory of computing relies on the assumption that computable problems canbe solved sequentially. There are situations, however, where the intrinsic power

of parallel computation may be necessary. A classical request is that an actionbe performed by several distinct agents to certify the result reliably. A similarrequest may be raised for security reasons. Di�erent schemes of computationthus arising are grouped in Paradigm 3.For a given computation, consider a Data Dependency DAG (DDD) of Vvertices, where vertices correspond to a single operations and edges specify datadependencies [1]. The set of vertices is partitioned into strata S0; : : : ; Sh�1, suchthat u is in Si if i is the length of the longest path from a source to u (sourcevertices are in S0). The resulting structure is called SDDD. Let P � 1 processorsbe available, and assume that each operation can be performed by any processorin unit time. A scheduling of SDDD is an assignment of a processor q(u) and atime t(u) to each vertex u such that:1. q(u) 6= q(v) for t(u) = t(v);2. t(u) < t(v) for u 2 Si, v 2 Sj , i < j.If P � maxfjSij; 0 � i � h � 1g, there is a straightforward scheduling witht(u) = i for each u 2 Si, 0 � i � h � 1. The duration of the scheduling(i.e., the time required by the computation) is h and is obviously optimal. ForP < maxfjSij; 0 � i � h � 1g, each stratum Si can be divided into l jSijP m newstrata, and the above scheduling applied to the resulting SDDD. The durationis then � VP + h, distant from optimal within a factor of 2.We now introduce our new paradigm. Let Q = fq1; : : : ; qP g be the set of pro-cessors, and fv1; : : : ; vsg be an arbitrary stratum of SDDD. Any single operationvi must be executed by a subset of processors, according to the following designrules:A1: an integer ni, 0 < ni � P , is assigned to vi, with the intention that niarbitrary processors must be employed;A2: a �xed subset Qi � Q is speci�ed for vi;B1: the processors assigned to vi may operate at di�erent times;B2: all the processors assigned to vi must operate at the same time.We construct a scheduling of SDDD by scheduling the operations of each stra-tum S = fv1; : : : ; vsg independently of the other strata, under the followingcombinations of the above rules. Let d be the number of parallel steps requiredfor S:A1,B1 Easy. An optimal scheduling is trivially attained by a linear time as-signment procedure. We have d = lPi=1;s ni /P m.A1,B2 Di�cult. The scheduling is equivalent to bin-packing, where the ni's areto be packed into bins of size P . Applying known bin-packing heuristics weattain d < l2Pi=1;s ni /P m, and d is within a constant factor from optimal.A2,B1 Easy. The scheduling can be reformulated as a sequence of max-
owproblems on a bipartite graph built on the sets S and Q, with edges [vi; qj]for qj 2 Qi, augmented with a source and a sink vertex. However, this max-
ow problems are particularly easy, and can be collectively solved in time

Pi=1;s jQij, by a linear scan of the Qi's. We have d = maxfki; 1 � i � Pg,where ki is the number of occurrences of qi in Q1; : : : ; Qs. Note that d isclearly optimum.A2,B2 Open. The scheduling of S reduces to an Open Shop Scheduling withtasks of length 0 or 1 [3]. A (non evaluated) heuristic can be constructed asan extension of the First Fit heuristic for bin-packing, with proper additionalconstraints on the selection of the subsets of processors to be allocated ineach bin.5 Conclusion and extensionsThe main goal of this paper is to stimulate a discussion on parallel algorithmdesign in non conventional situations, where the increase in the number of pro-cessors may result in a drastic improvement of performance. We have restrictedour analysis to three computational paradigms. Variations and alternatives toour schemes are possible and desirable. Referring to Paradigm 1, we may assumethat a problem has �xed data size, but variations of the data values occur withtime. An algorithm must now be capable of changing the e�ect of its previousoperations which involve a datum D, if D is later modi�ed. A theory similar tothe one for d-algorithms can be developed.Paradigm 1 is unsatisfactory if the data arrived after completion of the algo-rithm cannot be ignored. Rather, the stream of data must be considered withoutan end, as required for example in operating systems and data base mainte-nance [7]. The time can be divided in slots of length T . Each slot consists ofan updating phase, during which the data accumulated in the previous slot aretreated, followed by a free phase where other routines may be run. If t and tp arethe sequential and parallel times to solve a problem, de�ne the free time gainG = T�tpT�t . Unexpectedly G may assume any value between 1 and 1 for certainfamilies of problems and for proper values of the parameters.Several variations of Paradigm 2 are signi�cant. In particular, we may con-sider an on-line allocation strategy such that, at each time step, the subset ofprocessors assigned to each operation is chosen at random, or is taken determin-istically from the set of processors that are still alive [8]. The analysis of thesecases, and the implications on the bounds of parallel speed-up, are challengingopen problems.Finally, Paradigm 3 is centered on scheduling problems, which have beenapproached independently on single SDDD strata. A global optimization strategyon SDDD as a whole is likeley to yield better results.References[1] A. Aggarwal and A.K. Chandra. Communication Complexity of PRAMs. Proc.15th Int. Colloquium on Automata, Languages and Programming (1988) 1-18.[2] S.G. Akl, M. Cosnard and A.G. Ferreira. Data-movement-intensive problems: twofolk theorems in parallel computation revisited. Theoretical Computer Science 95(1992) 323-337.

[3] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San Fran-cisco, 1978.[4] P.C. Kanellakis and A.A. Shvartsman. E�cient parallel algorithms can be maderobust. In Proc. 8th Annual ACM Symp. on Principles of Distributed Computing(1989) 211-222.[5] R.M. Karp and V. Ramachandran A survey of parallel algorithms for shared mem-ory machines. In Handbook of Theoretical Computer Science North Holland, NewYork NY (1990) 869-941.[6] Z.M. Kedem, K.V. Palem and P.G. Spirakis. E�cient robust parallel computations.In Proc. 22nd Annual ACM Symp. on Theory of Computing (1990) 590-599.[7] F. Luccio and L. Pagli. The p-shovelers problem. (Computing with time-varyingdata). SIGACT News 23, 2 (1992) 72-75[8] C. Martel, R. Subramonian, A. Park. Asynchronous PRAMs are (almost) as goodas synchronous prams. In Proc. 31st Symp. on Foundations of Computer Science(1990) 590-599.[9] W. Paul. On line simulation of k + 1 tapes by k tapes requires nonlinear time.Information and Control 53 (1982) 1-8.[10] K.S. Trivedi. Probability and statistics with reliability, queueing, and computerscience applications. Prentice-Hall, Englewood Cli�s NJ (1982).[11] U. Vishkin. Can parallel algorithms enhance serial implementation?. SIGACTNews 22, 4 (1991) 63.

