Three non Conventional Paradigms of Parallel
Computation*

Fabrizio Luccio', Linda Pagli' and Geppino Pucci?

! Dipartimento di Informatica, Universita di Pisa, Pisa, Italy
2 Dipartimento di Elettronica e Informatica, Universita di Padova, Padova, Italy

Abstract. We consider three paradigms of computation where the ben-
efits of a parallel solution are greater than usual. Paradigm 1 works on a
time-varying input data set, whose size increases with time. In paradigm
2 the data set is fixed, but the processors may fail at any time with
a given constant probability. In paradigm 3, the execution of a single
operation may require more than one processor, for security or reliabil-
ity reasons. We discuss the organization of PRAM algorithms for these
paradigms, and prove new bounds on parallel speed-up.

1 Introduction

The theory of parallel algorithms has a well known body, developed on the
PRAM model [5]. Some folklore principles are at the base of this theory, in
particular the ones that express upper and lower bounds on the processing time.
Let IT be a problem of size N, and let T%(N) be the time required by the best
known sequential algorithm A® to solve IT. Any parallel algorithm AP that solves
IT with a number P of PRAM processors requires time T?(P, N) such that:

T5(N)

TP(P,N) >
(PN) >

(1)

Relation (1) expresses a renowned lower bound on parallel speed-up. The quan-
tity W(P,N) = TP(P,N) - P is called the work of AP. If the operations of a
parallel algorithm with P’ processors are rescheduled into another algorithm
with P < P’ processors, we have:

W(P',N

W) | ropr,), @)

P <
T"(P,N) € ——

that expresses Brent’s principle on scaling.

Non conventional studies on parallel speed-up have been reported for example
in [2], [11] and [7]. In particular, it has been shown that the above relations do
not hold for specific classes of problems, if expressed in absolute terms [2], or in
asymptotic terms [7]. This paper is aimed to provide a critical contribution to
this area. In particular, we consider three algorithmic paradigms where the power

* This work has been supported by MURST of Italy under a research grant.

of parallel computation is exploited to the extent that inequalities (1) and (2)
may be violated, and discuss the organization and analysis of algorithms for
these paradigms. We have:

Paradigm 1. The input data set varies dynamically. The problem size N is
defined as a non decreasing function of time. Intuitively an algorithm performs
better than usual for increasing P, because the the processing time decreases
and the problem size to be considered is smaller.

Paradigm 2. The processors can fail with constant probability. Again a parallel
computation may become much faster with increasing P, because the number
of non faulty processors decreases with time.

Paradigm 3. A single operation may require k > 1 processors to be executed.
This situation may occur for security or reliability reasons. Trivially, the problem
cannot be solved with less than k processors.

2 Computing with time-increasing data (Paradigm 1)

Let IT be a problem of size N = n + f(n,t), where f(n,t) is a non decreasing
function of the initial size n and time ¢, f(n,0) = 0. An algorithm A for IT
terminates when all the data currently arrived have been treated, that is, the
paradigm applies when a condition of consistency is required on a current set of
data before an answer can be supplied.

The variability of NV occurs for on-line problems, where it is assumed that an
action has to be taken for each new datum before another datum arrives; and for
real-time problems, where the time required by any of the above actions is upper
bounded by a constant [9]. We study the impact of the variability of N on the
design and complexity of algorithms, without imposing the above limitations.
New data can be accumulated without being treated immediately, and the time
needed to treat them is an arbitrary function of ¢. Moreover, our approach does
not fall in the theory of queueing systems because the data arrival times are
known deterministically and no fixed queueing discipline is imposed for their
future use.

Many problems in Applied Physics work on variable data which obey to
relations similar to the one given above for N, often in differential or integral
form. For example the vacuum is made in a chamber while an imperfect valve
lets a certain amount of air to enter again. The process terminates when a given
condition is met (e.g., the pressure reaches a given value); at this point the valve
is tapped and a different experiment can be initiated. In the theory of computing,
interesting problems in Paradigm 1 are the ones that admit a sequential data-
accumulative algorithm A?® (shortly d-algorithm). A* is built for time-increasing
data, but its time complexity T¢(N) is the same, in order of magnitude, of
the best algorithm working on the N data as if they were all available at time
t = 0. One such problem admits an optimal parallel solution with P processors if
there is a parallel algorithm AP (pd-algorithm) working on time-increasing data,

whose complexity is T?(P,N) = O (%) For simplicity, we restrict our study
to problems of the class P admitting a d-algorithm and a pd-algorithm, such

that, for ¢ and ¢, constant:

N =n+ knt, (3)
t=T°(N) =c(n+knt)* a >1, (4)
knt,)®
t, =TP(P,N) = w, with P constant or P =n’,§ < a. (5)
n
L kcll/a
a=1
a>1
t
Figure 1
Figure 1 shows the plot of (4). For a@ = 1 the algorithm terminates iff n < #=
while the working time may become arbitrarily large for n approaching #

For a > 1 the behaviour is less favourable, because the amount of new data

increases rapidly with ¢. For P = constant, function (5) has a plot in n,t, like

1/ o
the one of figure 1, with L = %
with L = % For P = n®, relation (5) becomes t, = ¢,(1 + kt,)?,

.For P =n’,0 < a, the plot is the same,

that is ¢, is constant for proper values of ¢, k and «a (this is consistent with
the fact that the parallel algorithm is optimal and the sequential algorithm has
complexity n®). Note that relations (3) and (4) have been formulated under the
hypothesis that the new knt data are loaded into memory without increasing
the time complexity of the algorithm. It can be easily shown that this can be
attained for a > 1 as posed in (4).

The lower bound (1) on parallel speed-up does not apply to the problems
solvable in Paradigm 1, where the benefits of a parallel solution may be stronger
and more intrigued than usual. In general we can prove that:

Proposition 1. For problems obeying relation (3), (4) and (5) we have % >

é. Furthermore, for a = 1 the ratio % tends to oo for n tending to i

Proposition 1 violates relation (1) for ¢ = ¢, or for @ = 1 and n close to -

For complexity functions different from (5), Proposition 1 must be reformulated
(e.g., P = oo » = Cplogn, see below).

Another bound that does not apply in the framework of Paradigm 1 is the
one expressed in Brent’s principle (2). For brevity we restrict our discussion to
the subfamily of pd-algorithms obeying relation (5) with o = 1. Let A’ be the
fastest known such algorithm with P’ processors. A’ requires time

c(n+ knt!)
t, = L— L0 B £ (6)

For P < P’ consider a new algorithm A obtained from A’ by rescheduling the
operations of A’. Algorithm A requires time ¢, > ¢}, hence N = n + knt, >
n + knt, = N'. However, to build A on N data, we have to reschedule A’ on
the same amount N of data, which in turn requires that A’ be executed for
a proper initial value n" such that N" = n" + kn"t]) = N = n + knt,, with
o= c'p(n”+kn”t;
P P

) . We have:

e (n + kntp)
ty = t—os—" 7 . (7)

Let X' denote the total number of operations performed by A’ on N”, and
let W"(P',N") = t, - P' be the corresponding work. Algorithm A is obtained by
rescheduling the X" operations of A’. As in the derivation of Brent’s principle
we obtain:

X” n W” (PI) N”) n " : Pl + P
tpg?-“tpgﬁ-"tp:ﬂ'tp, with m = P . (8)
From relations (7) and (8), we easily derive a new formulation of Brent’s princi-
ple:

Proposition 2. A pd-algorithm obeying relation (5) with a = 1, constant c;,,
and P' processors, can be rescheduled for P < P' processors and n initial data

in time TP(P,N) < 52" P,Tfp.

P ke with m =

Note that P, P’ are in general functions of the problem size. Hence, when A’ is
rescheduled on n" data, we have to enter P’ = P'(n'") in the bound Proposition 2.
CI n
proposition can be interpreted as the time needed by the original algorithm A’
working on 7n initial data. This time can be made arbitrarily large for proper
values of n, while ¢ stays limited, thereby making relation (2) non significant.
Proposition 2 can be extended to different complexity functions with foreseeable

results. An example is shown in the next section.

Let us now consider a census problem with time-varying data, solved under
Paradigm 1. The computation is completed when all data currently arrived have
been processed, independently of other data that may arrive at later times.

Since relation (6) can be rewritten as ¢, = , the upper bound of the

Problem 1. (1) Given a set I of integers, of size N = n + knt, compute the sum
S of all the elements in I.

Problem 1 occurs in an idealized banking operation, where the balance S of all
movements in an account must be computed before a withdraw is honored. Note
that the number of movements is given by an initial value n, plus an increment
proportional to time and n. When S has been found, the algorithm terminates,
and a different operation (e.g, a paying procedure) is initiated. For n < ﬁ this
problem can be solved with a sequential linear time d-algorithm consisting of
a scan, according to relation (4) with a = 1. As well known, it can be solved
in parallel on the initial n data with P = % processors in time O(logn). For
time-varying data we have:

Proposition 3. Problem 1 admits a pd-algorithm with P = logn and t, <
cplogn.

The algorithm is as follows:

1) subdivide the initial set of n data in P sections Iy,...,Ip, of logn elements
each; each processor computes the sum in I; sequentially in time clogn;

2) during step 1, cknlogn new data arrive. Assuming that n < ﬁ, we have
cknlogn < logn, then, we still have to compute the sum of < logn + logn
elements. This sum is computed in a binary tree fashion in time clogn;

3) during step 2, cknlogn < logn new data arrive. We can compute the sum
of these data, plus the result of step 2, in time cloglogn. The computation
is iterated on the loglogn, logloglogn,...,1 data arrived in the previous
steps.

We have t, = c(logn + logn + loglogn + ...) < ¢, logn.

In the above algorithm, we have assumed an upper bound % on n. Since
this value coincides with the asymptote of the sequential case, we can make
a fair estimate of the parallel speed-up. Proposition 1 can be reformulated for

N =n+ knt and P = 1oZn= to state that the ratio # tends to oc for n
P
tending to i, hence, the above is a pd-algorithm. In fact, we have t = =/

and t, < ¢plogn, hence ﬁ > m Proposition 2 can also be adapted
P P

to Problem 1, showing that Brent’s principle can be violated in absolute and

asymptotic terms.

3 Computing with faulty processors (Paradigm 2)

The new paradigm of parallel computation considered here is based on the as-
sumption that the PRAM processors may fail. Upon occurrence of a failure,
a processor stops permanently. Therefore, the algorithm must be organized in
such a way that, for any processor failure, all the pending operations can still
be executed.

To make a PRAM program robust, a common target is graceful degradation,
that is, the computation is correctly carried to an end as long as at least one
processor survives [4, 6, 8]. For this purpose, the operations must be dynamically
assigned to the processors still alive, with some unavoidable replication. The goal
is then the minimization of the total number of operations performed, while no
bound can be posed on the total running time.

Our paradigm is completely different. Assuming a known probability distri-
bution of the processor failures, we are able to set an upper bound on the running
time, with a given probability of successful termination. Indeed, bounding the
running time is a common requirement in algorithm design, and is crucial in
real-time systems (see section 2) and in other practical contexts. Our result is
obtained at the expense of an increase of the total number of operations, due to
the need of their replication over the original fault intolerant algorithm (i.e., a

standard algorithm designed for non failing processors). As anticipated in section
1, the bounds on parallel speed-up must be revised. In particular, the scaling
bound of relation (2) is modified in an intrigued and nontrivial way.

Our paradigm is as follows. Starting from any fault intolerant PRAM algo-
rithm, we increase the total number of processors, and allocate a subset S of
processors to each operation O with a schedule decided off-line. The operation
O is executed concurrently by all the processors in S which are still alive (this
requires a COMMON CRCW-PRAM variant). The cardinality of S is chosen to
guarantee that the operation is completed with a given probability.

Let p be the probability that an arbitrary processor E; completes the ¢-th
step of its program, given that it has completed all the previous steps (shortly,
E; is alive when entering step t). We assume that p is a constant with respect
to t and is the same for all processors. Formally, for any processor index j and
time step i, define the event

Clj = “Processor E; completes the i-th step of its program”,

and, for any ¢ > 0 and any given j, let

t—1
Pr (cg| N 0;) =p. (9)
i=1

As an additional condition, we assume that distinct processors behave indepen-
dently, that is, for any choice of indices (4, j) and (h, k) with j # k, the events
CJ and CF are independent. Note that relation (9) captures the common as-
sumption on the exponential distribution of hardware failures in a model with
discrete time [10].

Consider any fault intolerant PRAM algorithm A running in time 7" and per-
forming a total number X of operations. At each step t, the algorithm performs
the operations OF, 1 < k < X, Z;‘FZI X; = X. We will allocate a cluster S§ of
processors to each operation OF, so that the operation is executed with at least
a fixed constant probability p. For p to be constant, the size of S} must increase
with ¢, because the probability that a processor in S¥ is still alive decreases with
t.

The value of p clearly influences the overall probability that the new fault
tolerant algorithm A is completed successfully. Let C 5 be the event “algorithm
A is completed successfully”. For 1 <t < T,1 < k < Xy, define the event:

I* = “No processor in S completes OF”.

We have Pr(I}) < 1 — p, therefore

T X

Pr(CA)zl—Pr<U UIf) >1-X(1-p) (10)

t=1k=1

We require that Pr(Cz) > r, for fixed r. Then it suffices that p satisfies the
relation:
1-X1-p) >r. (11)

We are now ready to determine the size sf of the clusters SF. For this purpose,
define the event:

V¥ = “at least one of the processors in S is alive after the first ¢ steps”.

By unfolding relation (9), we have that the probability that an arbitrary proces-
sor completes the first ¢ steps of its program is pf, therefore:

st
Pr(y)=1-Pr| () [)Ch —1-(1-p)".
h=1j=1

We require that, for any ¢ and k, Pr(Y;*) > p. Then it suffices that s} be such
k
that 1 — (1 — p*)* > p, whence

log, (1 — p)
ks oer” H 12
*t = og, (1 - p) (12)

Note that the right hand side of relation (12) is independent of k. Hence all the
sk, 1 < k < X;, can be set to the same value s;. It follows that the number of
processors s required to complete algorithm A with probability at least r is

s =max {Xs;,1 <t <T}. (13)

The above results can be applied to the solution of any problem in Paradigm
2. As an example, let us apply the paradigm to solve Problem 1 of section 2
with constant data size N, as a framework for any census problem. The problem
can be solved on a P-processor PRAM, 1 < P < N, by a uniform family
of fault intolerant parallel algorithms {Ap}, whose computation is organized
in two phases. In the first phase, the initial set of data is subdivided into P
disjoint sections, one for each processor, and the sum in each section is computed
sequentially in time {%] —-1< %. In the second phase, the processors perform
a tree-like computation on the P partial results in time [log P] — 1 < log P.
The overall time requirement of Ap is % + log P, while the total number of
operations, including the ones of idling processors, is X = N + P.

If the processors may fail, each algorithm Ap must be transformed into a
corresponding fault tolerant algorithm Ap. Recall that Ap and Ap require the
same time, since the operations of Ap are the same as in Ap. However, each op-
eration Of is executed in Ap in parallel by all the processors still alive in cluster
Sk. In the framework of Paradigm 2, Ap requires a number s(P) of processors
given in relation (13). Through relations (11) and (12), we have that s(P) de-
pends on the required probability r of successful completion. As customary in
randomized algorithms, we set r > 1 — %, for a given constant ¢, independently
of the value of P.

From relation (11) we have 1 — X(1—p) =1 - (N+P)(1—-p) > 1 — =,
whence

1

N¢(N + P)’ (14)

p>1-

From relation (12) we then derive the number of processors s} = s; for operation

OF namely:

_ log,(N°(N + P)).

(15)
log, 1=

St

Given that log, 1=

¢
st < (e+2)log, N (%) . To apply relation (13) we still have to determine the

values of X; for the two phases of the algorithm. We have X; = P, 1 <t < %

(first phase), and Xy py; = %, 1 <i < log P. Therefore:

> p' for any ¢t > 0, and recalling that P < N, we have

¢
(c+2)P (L) log, N, 1<t< ¥
s(P) < max (p) r

X i (16)
(c+2)P (%) (ﬁ) log, N,1<i<logP
From relation (16), we derive with easy calculations:

Proposition 4. For any p > %,c > 0 and P < N, Problem 1 with constant
data size N admits a family of fault tolerant algorithms with success probability

>1-— %, requiring time % + log P and a number of processors s(P) < (¢ +

2)P (%)N/P log, N.

Note that the assumption p > % is plausible, since p is the probability that
a processor completes a single step. For example, for P = N, algorithm Ap
solves the problem in time log N with probability > 1 — A}C, with O(¢cN log N)
processors.

Proposition 4 puts into evidence an unexpected property of our paradigm. As
the number of processors P of the fault intolerant algorithm Ap increases, hence
the running time T of Ap and Ap decreases, the number of processors s(P)
of Ap may increase or decrease for proper values of p and N. Hence, the total
work s(P)T may decrease for increasing P, against all the bounds on parallel
speed-up. For example note that, for fixed p, we have s(ﬁ) = (cN?)
from (12) and (14), and s(N) = O(cN log N) from Proposition 4, that is s(N) =
os().

In fact, formula (1) should now express a < relation between s(P)T (P, N)
and s(1)T(1, N), which can hold in any direction for proper values of p and N
(note that the fault tolerant version A; of a sequential algorithm A;, requires
s(1) > 1 processors). Against a fair expectation from relation (1), we have that
s(P)T(P,N) < s(1)T(1,N) for P -+ N — oo and fixed p, thereby proving the
inherent power of the parallel solution.

Y

4 Computing in a secure environment (Paradigm 3)

The theory of computing relies on the assumption that computable problems can
be solved sequentially. There are situations, however, where the intrinsic power

of parallel computation may be necessary. A classical request is that an action
be performed by several distinct agents to certify the result reliably. A similar
request may be raised for security reasons. Different schemes of computation
thus arising are grouped in Paradigm 3.

For a given computation, consider a Data Dependency DAG (DDD) of V
vertices, where vertices correspond to a single operations and edges specify data
dependencies [1]. The set of vertices is partitioned into strata Sy, ..., Sp_1, such
that w is in S; if ¢ is the length of the longest path from a source to u (source
vertices are in Sp). The resulting structure is called SDDD. Let P > 1 processors
be available, and assume that each operation can be performed by any processor
in unit time. A scheduling of SDDD is an assignment of a processor ¢(u) and a
time t(u) to each vertex u such that:

1. q(u) # q(v) for t(u) = 1(v);
2. t(u) < t(v) foru € S;, v € S;, i <j.

If P > max{|S;|,0 < i < h — 1}, there is a straightforward scheduling with
t(u) = i for each u € S;;, 0 < i < h — 1. The duration of the scheduling
(i.e., the time required by the computation) is h and is obviously optimal. For

P < max{]S;],0 < i < h — 1}, each stratum S; can be divided into Pf}‘-‘ new

strata, and the above scheduling applied to the resulting SDDD. The duration
is then < % + h, distant from optimal within a factor of 2.

We now introduce our new paradigm. Let @ = {q1,...,qp} be the set of pro-
cessors, and {vy,...,vs} be an arbitrary stratum of SDDD. Any single operation

v; must be executed by a subset of processors, according to the following design
rules:

A1l: an integer n;, 0 < n; < P, is assigned to v;, with the intention that n;
arbitrary processors must be employed;

A2: a fixed subset Q; C @ is specified for v;;

B1: the processors assigned to v; may operate at different times;

B2: all the processors assigned to v; must operate at the same time.

We construct a scheduling of SDDD by scheduling the operations of each stra-
tum S = {vy,...,vs} independently of the other strata, under the following
combinations of the above rules. Let d be the number of parallel steps required
for S:

A1,B1 Easy. An optimal scheduling is trivially attained by a linear time as-
signment procedure. We have d = [Zi:l,s n; /P-‘ .

A1,B2 Difficult. The scheduling is equivalent to bin-packing, where the n;’s are
to be packed into bins of size P. Applying known bin-packing heuristics we
attain d < {2 >

A2,B1 Easy. The scheduling can be reformulated as a sequence of max-flow
problems on a bipartite graph built on the sets S and @, with edges [v;, g;]

for g; € Q;, augmented with a source and a sink vertex. However, this max-
flow problems are particularly easy, and can be collectively solved in time

i=1,s7i /P |, and d is within a constant factor from optimal.

Zi:l,s |Q;|, by a linear scan of the @);’s. We have d = max{k;,1 < i < P},
where k; is the number of occurrences of ¢; in Qq,...,Qs. Note that d is
clearly optimum.

A2,B2 Open. The scheduling of S reduces to an Open Shop Scheduling with
tasks of length 0 or 1 [3]. A (non evaluated) heuristic can be constructed as
an extension of the First Fit heuristic for bin-packing, with proper additional
constraints on the selection of the subsets of processors to be allocated in
each bin.

5 Conclusion and extensions

The main goal of this paper is to stimulate a discussion on parallel algorithm
design in non conventional situations, where the increase in the number of pro-
cessors may result in a drastic improvement of performance. We have restricted
our analysis to three computational paradigms. Variations and alternatives to
our schemes are possible and desirable. Referring to Paradigm 1, we may assume
that a problem has fixed data size, but variations of the data values occur with
time. An algorithm must now be capable of changing the effect of its previous
operations which involve a datum D, if D is later modified. A theory similar to
the one for d-algorithms can be developed.

Paradigm 1 is unsatisfactory if the data arrived after completion of the algo-
rithm cannot be ignored. Rather, the stream of data must be considered without
an end, as required for example in operating systems and data base mainte-
nance [7]. The time can be divided in slots of length T'. Each slot consists of
an updating phase, during which the data accumulated in the previous slot are
treated, followed by a free phase where other routines may be run. If £ and ¢, are
the sequential and parallel times to solve a problem, define the free time gain
G= Y;ftp. Unexpectedly G may assume any value between 1 and oo for certain
families of problems and for proper values of the parameters.

Several variations of Paradigm 2 are significant. In particular, we may con-
sider an on-line allocation strategy such that, at each time step, the subset of
processors assigned to each operation is chosen at random, or is taken determin-
istically from the set of processors that are still alive [8]. The analysis of these
cases, and the implications on the bounds of parallel speed-up, are challenging
open problems.

Finally, Paradigm 3 is centered on scheduling problems, which have been
approached independently on single SDDD strata. A global optimization strategy
on SDDD as a whole is likeley to yield better results.

References

[1] A. Aggarwal and A.K. Chandra. Communication Complexity of PRAMs. Proc.
15th Int. Colloquium on Automata, Languages and Programming (1988) 1-18.

[2] S.G. Akl, M. Cosnard and A.G. Ferreira. Data-movement-intensive problems: two
folk theorems in parallel computation revisited. Theoretical Computer Science 95
(1992) 323-337.

[3]

[4]

[5]

M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San Fran-
cisco, 1978.

P.C. Kanellakis and A.A. Shvartsman. Efficient parallel algorithms can be made
robust. In Proc. 8th Annual ACM Symp. on Principles of Distributed Computing
(1989) 211-222.

R.M. Karp and V. Ramachandran A survey of parallel algorithms for shared mem-
ory machines. In Handbook of Theoretical Computer Science North Holland, New
York NY (1990) 869-941.

Z.M. Kedem, K.V. Palem and P.G. Spirakis. Efficient robust parallel computations.
In Proc. 22nd Annual ACM Symp. on Theory of Computing (1990) 590-599.

F. Luccio and L. Pagli. The p-shovelers problem. (Computing with time-varying
data). SIGACT News 28, 2 (1992) 72-75

C. Martel, R. Subramonian, A. Park. Asynchronous PRAMs are (almost) as good
as synchronous prams. In Proc. 31st Symp. on Foundations of Computer Science
(1990) 590-599.

W. Paul. On line simulation of k£ + 1 tapes by k tapes requires nonlinear time.
Information and Control 53 (1982) 1-8.

[10] K.S. Trivedi. Probability and statistics with reliability, queueing, and computer

science applications. Prentice-Hall, Englewood Cliffs NJ (1982).

[11] U. Vishkin. Can parallel algorithms enhance serial implementation?. SIGACT

News 22, 4 (1991) 63.

