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Abstract

In this paper we present lower and upper bounds for the deterministic simulation
of a Parallel Random Access Machine (PRAM) with n processors and m variables
on a Distributed Memory Machine (DMM) with p < n processors. The bounds are
expressed as a function of the redundancy r of the scheme (i.e., the number of copies
used to represent each PRAM variable in the DMM), and become tight for any m

polynomial in n and r = © (1).



1 Introduction

An (n,m)-PRAM consists of n processors that have direct access to m shared variables. The
important feature of this model, which makes it very attractive for the design of parallel
algorithms, is that in a PRAM step, executed in unit time, any set of n variables can be
read or written in parallel by the processors. For large values of m and n, however, this
assumption represents a serious obstacle to any realistic implementation. In practice, one
has to simulate the PRAM on a more feasible machine, where the shared variables are
distributed among memory modules local to the processors. In such a machine, the modules
become a bottleneck, since only one item per module can be accessed in unit time.

In this paper we study the complexity of simulating an (n,m)-PRAM on a p-DMM, which
consists of p < n processors, each provided with a local memory module, communicating
through a complete interconnection. In a DMM step, each processor can issue an access
request for an arbitrary module, but only one request per module is served. Although this
model is still unfeasible, in that it idealizes interprocessor communication, it provides a good
framework to assess the difficulty of memory distribution in a topology-independent setting.

This paper deals with deterministic PRAM simulations. In order to avoid trivial worst-
case scenarios, in which a few modules are overloaded with requests, it is necessary to
replicate each variable into a number of copies stored in distinct modules, so that, during
the simulation of a PRAM step, contention at the modules can be reduced by carefully
choosing the copies that have to be accessed. The number of copies used for each variable
is called the redundancy of the simulation scheme. We say that an (n,m)-PRAM can be
simulated on a p-DMM with slowdown s, if any T > 1 PRAM steps can be simulated in

O (T's) DMM steps, in the worst case.

1.1 Previous Work

In the last decade, a large number of randomized and deterministic PRAM simulation
schemes have been developed in the literature. All randomized schemes are based on the
use of universal classes of hash functions to allocate the variables to the modules. The dis-

tribution properties of these functions yield very efficient simulations in the probabilistic



sense. For instance, using a few copies per variable, work-efficient simulations exhibiting
triply logarithmic slowdown can be achieved with high probability [3].

In contrast, the development of fast deterministic PRAM simulations appears to be much
harder. The pioneering work of Mehlhorn and Vishkin [10] introduced the idea of represent-
ing each variable by several copies, so that a read operation needs to access only one (the
most convenient) copy. For m = O (n"), they present a scheme that uses r copies per vari-
able and allows a set of n reads to be satisfied in time O (rnl_l/’") on an n-DMM. However,
the execution of write operations, where all the copies of the variables must be accessed, is
penalized and requires O (rn) time in the worst case.

Later, Upfal and Wigderson [17] proposed a more balanced protocol requiring that, in
order to read or write a variable, only a majority of its copies be accessed. They also
represent the allocation of the copies to the modules (Memory Organization Scheme or,
for short, MOS) by means of a bipartite graph G = (V,U), where V is the set of PRAM
variables, U is the set of DMM modules, and r edges connect each variable to the modules
storing its r copies. For m polynomial in n and r = © (logn), the authors show that there
exist suitably expanding graphs that guarantee a worst-case O (logn (log log n)2) slowdown
on an n-DMM. Using a more complex access strategy, Alt et al. [1] improved the bound to
O (logn). In all these schemes, the existence of the underlying MOS graphs is only proved
by counting arguments, but no efficient constructions are known. Several authors devised
similar, nonconstructive schemes for bounded-degree network machines [9, 4, 5, 6].

Recently, Pietracaprina and Preparata gave the first constructive deterministic schemes
for the n-DMM that exhibit sublinear slowdown for both read and write operations. In [12],
two PRAM simulations with m = O (n?) and m = O (n3) variables are given, respectively
with O (nl/Q) and O (n2/3) slowdown and redundancy r = 3 and r = 5. In [13], an
O (n1/3) slowdown is achieved with m = O (n3/2) and 7 = 3. Constructive schemes with
nearly optimal slowdown have been recently developed for the mesh topology in [16, 15].

The first significant lower bound for PRAM simulations on the DMM appeared in [17].
The authors tailor their argument to the n-DMM and obtain a bound which is independent of

the redundancy of the simulation scheme. However, by a simple modification of their proof,



it can be shown that any simulation with redundancy r and m polynomial in n requires

1
log log (m/n) r’\n
slowdown on an n-DMM. Lower bounds have been also developed for networks of bounded

degree in [1, 7, 4, 5]. However, the techniques used to prove such bounds are of a slightly

different nature, since bandwidth issues have to be taken into account.

1.2 New Results

The goal of this paper is to study the complexity of deterministic (n, m)-PRAM simulation
on a p-DMM, with p < n, as a function of the redundancy . We improve upon the result of
[17] by providing a tighter lower bound and showing that there exist suitable schemes that
achieve optimal slowdown when r is fixed independently of n, m and p. In Section 2, we

prove the following

Result 1 Let m >n, p<n,r>1 and p = [r/2] + 1. Any algorithm which simulates an

(n,m)-PRAM on an p-DMM with redundancy r, has worst-case slowdown at least

n ) log(m/n ) m\ ¥
Q (; (mln {410g£go(g(7£1/)n) , \/1_9} + min {:i, <ﬁ> })) .
Note that for p = n and r = o (log (m/n) /loglog (m/n)), this bound improves quadratically
upon (1). Moreover, its proof reveals that the majority protocol captures the best trade-
off between the complexity of read and write operations, as suggested by intuition. As a
by-product, the bound also shows that the explicit schemes of [12] are optimal.

Result 1 shows that work-efficient deterministic simulations are impossible unless m =
©(n) or p = O(1), therefore answering a long-standing open question in the PRAM simula-
tion literature. Although the lower bound is proved under the somewhat restrictive assump-
tion that each variable is replicated in a fixed number of copies whose locations do not vary
with time (in fact, all the existing deterministic simulation schemes satisfy this assumption),
in Section 2.1, we show that work-efficient deterministic simulations are still impossible even

under very general assumptions.



In Section 3.1, we propose a scheme to simulate an (n,m)-PRAM on a n-DMM. The
scheme relies on suitably expanding MOS’s, whose existence is proved within the section.

We hayve:

Result 2 Let m = n'T¢, with arbitrary e > 0. For r = Q((1 +¢€)log(1 +€)), there is a

scheme to simulate an (n,m)-PRAM on an n-DMM with redundancy r and slowdown

n 1
O <r10g2r+lognlogr+r <ﬁ>” (logr—i— —)) ,
r €

where p = |r/2] + 1.

The simulation slowdown comes very close to the lower bound. In particular, using sublog-
arithmic redundancy, we obtain a slight improvement on the scheme of [17].
In Section 3.2, we modify the access protocol of the scheme to run on a p-DMM, for any

p < n, obtaining the following result:

Result 3 Let m = n'*¢, with arbitrary € > 0, and let p < n. For r = Q((1 + €)log(1 + ¢)),

there is a scheme to simulate an (n,m)-PRAM on an p-DMM with redundancy r and slow-

" 1
O (mim{n,ﬁ (rlogrlogn+log2n+7‘ (E)u <log7‘+ _>>}> ‘
p T €

where p = |r/2] + 1.

down

Compared to the lower bound, the above slowdown becomes optimal for any p < n, when
m is polynomial in n and r is a constant. An important property of this second scheme is
that it can be implemented with no loss of efficiency on a suitable bounded-degree network.

Therefore, Result 3 also holds for such sparser (and feasible) interconnection.

2 Lower Bound

A number of literature papers contain lower bounds on the slowdown of deterministic PRAM
simulations on the DMM [17] or on bounded-degree networks [1, 7, 4, 5]. All such bounds
are expressed in terms of the parameters n and m, and implicitly optimize on the value of

the redundancy. Since all deterministic simulation schemes developed until now use a fixed



number r of copies per variable, we think useful to estimate the best possible slowdown
achievable as a function of r. Specifically, we present a general lower bound on the slowdown
of any deterministic simulation of an (n,m)-PRAM on a p-DMM, as a function of n, m, p
and the redundancy r. The lower bound is proved by refining the standard approach of [17]

and adopted thereafter. Our argument relies upon the following assumptions:

1. For each variable, the number and location of the copies do not vary with time. More-
over, without loss of generality, we assume that copies of the same variable are stored

in distinct modules (which requires p > r).

2. Simulations are on-line, that is, the simulation of a step starts only after the simulation

of the previous step is completed.
We first need two technical lemmas based on a well known combinatorial argument.

Lemma 1 Given m > n PRAM variables, each with at most p > 1 updated copies distributed

among p DMM modules (p < n), there exists a set of n variables requiring

1
Q ﬁ-min £,<m)p
D p\n
DMM steps to be read.

Proof: 1Tt is sufficient to show that there exist n variables whose updated copies are all
concentrated into at most max {2p,p (n/m)l/p} modules. Let ¢ be the maximum value for
which no set of ¢ modules stores all the updated copies of n variables. If { < 2p we are done.
Let ¢t > 2p. Consider a matrix with (¥) rows indexed by all subsets of ¢ modules, and m
columns indexed by the variables. Entry (i, 7) of this matrix is 1 if the j-th variable has all
its updated copies stored in modules of the i-th subset, 0 otherwise. Each row accounts for

at most n — 1 1’s. Each column accounts for at least (1;’:5) I’s. Thus,

p p—p

which implies that ¢ = O (p (n/m)l/p). O



Lemma 2 Consider m > n PRAM variables, each represented by r copies distributed among
p < n DMM modules, and let p = |r/2| + 1. There exists a set of n variables ®, and a set

of modules S such that each variable in ® has at least p copies stored in modules of S, and

S| =0 <max {T,p (%)_D :

Proof: Let t be the maximum value for which no set of ¢ modules stores u copies of each of
n variables. If t < r we are done. Let ¢ > r. Consider a matrix with (¥) rows indexed by all
subsets of ¢ modules, and m columns indexed by the variables. Entry (7,7) of this matrix is
1 if the j-th variable has at least u copies stored in modules of the i-th subset, 0 otherwise.

Each row accounts for at most n — 1 1’s. Each column accounts for exactly >y _, (;)(}_,)

P “(r\(p—7
([or=nZ ()6

which implies that ¢ = O (p (n/m)l/“). O

1’s. Therefore, it must be

Theorem 1 Letm >n,p<n,r >1andpu=|r/2]+1. For any algorithm which simulates
an (n,m)-PRAM on a p-DMM with redundancy r, there ezxists a sequence of T = © (m/n)

PRAM steps requiring simulation time

1
@ (72 (win (il i {2, (2)71)).

Proof: We first determine a sequence of © (m/n) hard writes that update a constant fraction
of all the variables. Either these writes are expensive to simulate, since they update many
copies of most of the variables, or we are able to determine © (m/n) hard reads that access
variables with few updated copies, therefore establishing the stipulated bound.

The hard writes are determined as follows. Let V be the set of m PRAM variables. By
repeatedly applying Lemma 2, we can find k& = [m/2n] subsets ®; C V, 1 < i < k, of

variables, with the following properties:

L. |®;] =mn, for 1 <i<Fk;



2. ¢;N®; =0 forl<i#j<k;

3. For each ®@;, with 1 <7 <k, there exists a set of modules S; with

1S;| = O (max {T,p (%)}) :

such that each variable in ®; has at least u copies stored in modules of S;.

Observe that each ®; is chosen from the set V' — U;;llq)j containing at least m/2 variables.

Consider K PRAM write steps, where the i-th step writes the variables in ®;. After the
simulation of these steps, partition the set Ufﬂ(I)i into three sets V1, Vs and V3 as follows.
A variable v € U¥_, ®; is in V; if it has less than (1 — 1) /A updated copies (the actual value
of A will be determined later); v is in V if it has at least (u — 1) /A and at most u — 1
updated copies; v is in V3 otherwise. Clearly, one of these three sets has cardinality © (m).

We distinguish among the following three cases.

Case 1: |Vi| = ©(m). By repeatedly applying Lemma 1 we determine © (m/n) PRAM

steps that read a constant fraction of the variables in V;j each requiring simulation time

(G 20 (1))

Thus, the overall time needed to simulate the T' = © (m/n) write and read steps is

Q(T-gmin{up—jl,<%>ﬁ}>. 2)

Case 2: |V3| = ©(m). Since at least Q (m(u — 1)/X) copies have been updated during the
simulation of the write steps, the overall time required by these steps is Q ((m/p)(p — 1)/A) =
Q((m/n)(n/p)(p —1)/A). Moreover, by repeatedly applying Lemma 1, we can determine
© (m/n) PRAM steps that read a constant fraction of variables in V5, each step requiring

simulation time



Thus, the overall time needed to simulate the ' = © (m/n) write and read steps is

Q(T.%<“T—1+min{%,<%>ﬁ}>>. (3)

Case 3: |V3] = ©(m). At least Q (mu) copies are updated during the simulation of the
write steps, hence, as before, the overall time required by these steps is Q ((m/n)(n/p)u).
Moreover, there must be £ = © (m/n) sets ®;,, s, ..., Py, with |®; NV3| = O (n),1 < j < L.
Since each variable in ®;, N V3 has p updated copies, then one of these copies must belong

to a module in S;;. Therefore, the i;-th write step requires

() =0 (mfz2(2)))

simulation time, for 1 < j < /. Therefore, the overall time needed to simulate the T =

o3 (o2 G ))

The theorem follows by choosing

© (m/n) write steps is

loglog (m/n) p—1 }

A:max{l,(,u—l)a log (m/n) b

for some fixed constant o > 1, and computing the minimum among (2), (3) and (4). O

Theorem 1 implies that for any nonconstant p and any n = o(m) it is not possible to devise
a deterministic algorithm that simulates an (n, m)-PRAM step on a p-DMM work-efficiently
in O(n/p) time, which is the case, instead, for randomized simulations [3]. However, the
theorem has been proved under the somewhat restrictive assumptions listed at the beginning
of this section, so it is not inconceivable that deterministic work-efficient simulations might
be attainable in a more general setting. In fact, the following subsection shows that this is

not the case.

10



2.1 Work-Efficient Deterministic Simulations are Impossible

A general lower bound on deterministic simulations can be obtained by adapting the proof
in [17] to hold for any value of p < n and to satisfy the very weak assumptions formulated

in [4]. Namely,
1. The number and location of the copies of each variable may vary with time;

2. The simulation of an instruction may start only after the simulation of all previous read
operations has been completed. (This implies that the execution of consecutive writes

is not constrained to follow the order in which they appear in the PRAM program.)

For a variable v € V, let r! denote the number of DMM processors storing updated copies
of v at time ¢ of the simulation. Define r! = 3", .y, ! /m as the average redundancy at time ¢.
Thus, at time ¢ at least m /2 variables have less than 2r! updated copies each, and Lemma 1

can be applied to find a set of n variables requiring

w00 el 2)7)

to be read. Also, an average redundancy r’ implies that a total of mr! copies have been
written, which takes Q ((m/n)(n/p)rt) time.

Consider a (n,m)-PRAM program that first initializes all the variables and then lets an
adversary choose a set of ©(m/n) hard reads. If at some point during the simulation the
average redundancy is r, then the writes must have taken Q ((m/n)(n/p)r) time. Otherwise,

the adversary can make each hard read require g(r) time. Therefore, the total simulation

o3 (comef2(3))))

By minimizing the above formula over all possible values of r we obtain:

time is

Theorem 2 For any algorithm which simulates an (n,m)-PRAM on a p-DMM, with p <n

and m > 2n, there exists a sequence of T = © (m/n) PRAM steps requiring simulation time

(7 oo gt}

11



Observe that the minimum in the above formula is O(1) only if m = O(n) or p = O(1).

3 Upper Bound

Suppose we want to simulate an (n,m)-PRAM on a p-DMM, with m polynomial in n and
p < n. In this section, we provide a protocol to simulate a PRAM step where the processors
read/write n distinct variables. The case of concurrent accesses to the same variable can be
handled by appending a preprocessing phase to the protocol, where a representative is elected
for each subset of processors requiring access to the same variable. The representatives will
then perform the simulation algorithm and, in case of read operations, distribute the accessed
data to the appropriate processors. Both preprocessing and data distribution phases can be
accomplished through standard sorting and prefix operations without increasing the overall
slowdown by more than a constant factor.

In Subsection 3.1, we describe the access protocol for the case p = n. In Subsection 3.2,
we modify the protocol to run on a p-DMM, for any p < n, also showing how it can be

implemented on a specific p-processor bounded-degree network with no loss in efficiency.

3.1 The Case p=n

Our simulation scheme follows the ideas pioneered in [17], where each variable is replicated
into r copies, distributed among the DMM modules according to a suitable Memory Orga-
nization Scheme. The MOS is modeled by a bipartite graph G = (V,U), where V denotes
the set of m PRAM variables and U the set of n DMM processors. The graph is r-regular,
meaning that each node in V' has degree r, each node in U has degree mr/n, and the r edges
adjacent to a variable v reach the processors storing its copies, with exactly mr/n copies
assigned to each module. We assume that given a variable v, a processor can determine the
location of any copy of v in O(1) time.

Every copy is stored together with a time-stamp, which is updated every time the copy is
written. In order to read or write a variable, at least a majority u = |r/2| 4+ 1 of its copies
have to be accessed (for read operations, the value stored in the copy with the most recent

time-stamp is returned). Note that this is sufficient to guarantee consistency, since a read

12



will always access at least one of the most recently written copies of a variable. Therefore,
we say that a variable is accessed if at least p of its copies are accessed.

Accesses to the copies of the variables requested in a PRAM step are governed by a simple
protocol, which prescribes that the processors continuously send requests to the modules until
enough copies per variable are reached. The efficiency of the scheme relies on the existence of
a suitable MOS which makes the access protocol converge rapidly. The protocol is patterned
after the one in [17], but performs a reduced number of bookkeeping operations, which is
crucial to obtain optimality when r = O(1).

When p = n, each DMM processor simulates a distinct PRAM processor and is therefore
in charge of a single variable. We partition the DMM processors into n/r clusters of r
processors each. Let P; denote the jth processor of cluster 4, where 1 < j <rand 1 <1i¢ <
n/r. Let also vé- denote the variable requested by P} and vé-(l), v§(2), e ,vé-(r) its copies.

The protocol consists of r + 1 stages, numbered from 1 to r+ 1. In Stage s, for 1 < s <,
the clusters try to access variables v}, v2, ... ,vgl/r in parallel, with Cluster ¢ in charge of vg.
More specifically, at the beginning of the stage, each P!, 1 < i < n/r sends the name of its
variable v. and the operation to be performed to the other processors in the cluster. P]? is
now in charge of the copy v’(j) and determines its location. Then, a number of iterations are
executed in which the processors repeatedly try to access the copies they are assigned until
they succeed or the stage terminates. These iterations are grouped into logr batches, where
the kth batch consists of @y iterations, 1 < k < logr. At the end of each batch, Cluster
i counts the number of copies of v! accessed so far and, if these are at least y, it declares
the variable successfully accessed and stops further accesses to its copies. The ®;’s will be
specified in the analysis to guarantee that at the end of the stage at most n/r? variables

) n/r)

(among v!,v2,... vs'") remain unaccessed. Therefore, at the end of Stage 7, there will be a
total of £ < n/r unaccessed variables. In Stage r + 1, these variables are distributed among
the first £ clusters, one per cluster. Then, log,(n/r) batches of iterations are performed.
The kth batch consists of @ iterations, 1 < k < logy(n/r), followed by counting as in the
previous stages. The ®;’s are chosen to guarantee that this stage complete all accesses (note
that the first log r values of the ®’s are the same as those used in Stages 1 to r).

The protocol’s pseudocode is reported in Figure 1. The core of a stage is represented by

13



begin MAIN
for s := 1 to r do { Stage s }
ACCESS(8,7);

{ Stage r +1}

let £ < n/r be the number of unaccessed variables;
rank the £ unaccessed variables and send the ith such variable
to Pi, 1 <4 <4, specifying the operation to be performed;
ACCESs(1,n/r);
end MAIN

procedure ACCESS(s, x)
for all € {1,...,n/r} do in parallel
P! broadcasts v% to all processors in its cluster,
specifying the operation to be performed;
for k :=1 to logy x do { Batch k }
for all € {1,...,n/r} do in parallel
if v! is unaccessed then
for all j € {1,...,r} do in parallel
for h:=1 to &, do
if v(j) is not accessed yet then
Pf sends a request for v (j) to the appropriate module;
{each module serves one incoming request, if any}
the processors in Cluster i count the number a; of accessed copies of v’;
if a; > 1 then v’ is marked accessed
end ACCESS

Figure 1: Access protocol for p =n

procedure ACCESS. Namely, ACCESS(s, ) deals with n/r variables held by P!, 1 <i < n/r
and successfully completes the accesses for all but at most a fraction z of such variables. The
correctness of this procedure, as well as that of the entire protocol, depends on the choice of

the ®,’s, which are determined in terms of the expansion capabilities of the MOS.

Definition 1 Let G = (V,U) be an r-reqular, bipartite graph, and let p = |r/2] + 1. For
a>0and0 <6 <1, G is said to have («, 0)-expansion if for any subset S C V', |S| < |U|/r,
and any choice of u outgoing edges for each node in S, the set T (S) C U reached by the

chosen edges has size

T+ (S) | > ar|S|'0 .

14



We hayve:

Lemma 3 If the MOS graph G has («, §)-expansion, then for 1 < k <logy(n/r), choosing

we=2 (1) ®)

is sufficient to make the protocol work correctly.

Proof: Let R be the set of n/r variables relative to the call ACCESS(s,z), with 1 <z <n/r.
It suffices to show that the above choice of the ®’s guarantees that ACCESS(s, z) successfully
completes the accesses for all but at most a fraction z of these variables. Let v € R. During
the execution of the procedure, we say that a copy of v is alive if it has not yet been accessed
and that v itself is alive if at least a majority p of its copies are alive.

We prove by induction that at the end of Batch k, & > 0, at most n/(r2*) variables in R
are still alive (for convenience, we consider the beginning of Batch 1 as the end of Batch 0).
The basis of the induction is trivial. Let the property be true for some k& > 0, and, for the
sake of contradiction, suppose that at the end of Batch k + 1 more than n/(r2k+1) variables
are alive. Then, the expansion property of the MOS guarantees that each iteration in the

1-6
batch accesses at least ar (n/(r2k+1)) copies, for a total of

n 1-0 n
@ka’l" <W> > 2_k

copies accessed by the end of the batch. Such copies belong only to the variables alive at
the end of Batch k, which, by the inductive hypothesis, are at most n/(r2*) and therefore

account for no more than n/ 2 copies, yielding the desired contradiction. O

It remains to prove that MOS’s with high expansion properties do exist.

Lemma 4 Let m = nlte

, with arbitrary ¢ > 0. There is a constant ¢ such that for any r,
with c¢(1+¢€)log(l+¢€) < r <mn, a random r-regular bipartite graph G = (V,U) with |V| =m
and |U| = n has («, 0)-expansion with o = O(1) and 6 = €/u, where p = [r/2] + 1, with

high probability.

15



Proof: G = (V,U) does not have («a, d)-expansion if there is a set S C V of at most n/r nodes
such that some choice of i outgoing edges for each node in S yields |T* (S) | < ar|S|* 0. As
customary, we use the probabilistic method showing that there is a constant a, 0 < a < 1,
such that the fraction of r-regular bipartite graphs G that do not have (a, €/u)-expansion
is very small. Let us associate the r-regular bipartite graphs with the permutations of the

integers 1,2,...,mr. The fraction of bad graphs is at most fol (s), where

m n r\’ [ars' =0 (mr/n)] s
fls) = (s) (ozrsl5> (u) [ [m(r]us/ : '

with [K], = K- (K —1)-...- (K —t+1). Note that

[ars' =0 (mr/n)] s < (ozrsl_‘5>us'

[mr] . n

Using Stirling’s bounds on binomial coefficients and tedious but simple arithmetic manipu-

i(s) < <<%>#(1+6)ar — e2r>

By suitably choosing constants ¢ and «, for r > ¢(1 + €) log(1 + €), the term within brackets

lations, we obtain
S

in the right hand side of the above relation is an increasing function of s and, for s < n/r,

S ﬂ7(1+€)7
<_> (ar)u—ar e2r < Tl-l—eau—areQr < 9 T,
n >~ >~

If r > logy n, we have

n/r n/r 9
—7rs -
D fle) <y <~
s=1 s=1
If instead r < logy n, we have

n/r log, n—1 n/r
D)< D flo+ Yoo
s=1 s=1 s=logy n

16



Again, a suitable choice of the constants ¢ and « yields

logy, n—1 logy, n—1 14e p—ar s logyn—1
n arlogy n 9
5 <" () ()] L
s=1 s=1 10g2n n s=1 n’
Therefore,
n/r logy n—1 n/r 3
PR IO RS Dl D DR At
s=1 s=1 s=logy, n
and the thesis follows. O

We are ready to prove the main result of this section.

Theorem 3 Let m = n'*¢, with arbitrary € > 0. For a fired constant ¢ > 0 and any value
r > (1l +€)log(l +€), there is a scheme to simulate an (n,m)-PRAM on an n-DMM with

redundancy r and slowdown

" 1
0 <r10g2r+lognlogr+r <ﬁ># (logr—i— —)) ,
r €

where p = |r/2] +1

Proof: Consider the access protocol of Figure 1, and assume that the distribution of the
variables among the DMM processors is governed by an r-regular MOS with (©(1),¢/u)-
expansion. By Lemma 4, a random r-regular graph will exhibit such expansion with high
probability. Let us evaluate the running time of the protocol. Since broadcast and counting

within a cluster take time O(logr), an execution of ACCESS(s,z) is completed in time

log,
O (Z (@k+logr)) .

k=1

The redistribution of the unaccessed variables in Stage r+ 1 can be accomplished via a prefix

operation in O(logn) time. Therefore, the overall running time of the protocol is

0gy logy /7
( Z (P + logr) +logn + Z @k—l—logr))
1 k=1

k=
( ( n logr+log2r>—i—logn—i—(E)#C—i-lognlogr),
r r) €
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where the ®;’s are as in Lemma 3. The theorem follows. O

Note that the protocol’s running time differs from the lower bound proved in Theorem 1
by a factor which is a superlinear function of the redundancy, and is therefore suboptimal
for nonconstant values of r. Note also that our general scheme attains the same slow-
down as the one in [17] for r = ©O(log(m/n)). Indeed, a slightly smaller slowdown can
be achieved by choosing r = ©(log(m/n)/logloglog(m/n)), which yields a slowdown of
O (log(m/n)(loglog(m/n))?/logloglog(m/n)). Finally, our scheme is optimal for constant
values of the redundancy and m polynomial in n. In this case, it can be easily shown
that » > 3(e + 1) is sufficient to guarantee the existence of MOS graphs with the required

expansion. Thus,

Corollary 1 For any m = n'*¢, with constant € > 0, and any constant r > 3(e + 1) there
is a scheme to simulate an (n,m)-PRAM on an n-DMM with redundancy r and optimal

slowdown © (ne/“), where p = |r/2] + 1.

3.2 The General Case

When the number of DMM processors is p < n, we would expect the simulation slowdown
to increase by a factor n/p. Indeed, an optimal deterministic simulation of an n-DMM on a
p-DMM is known when either p = O (1) or p = Q (nﬁ), with constant 8 < 1, hence, in these
cases, the simulation slowdown given in Theorem 3 goes up by a factor O (n/p) as expected.
For all other values of p, however, no optimal deterministic simulation of an n-DMM on a
p-DMM is known, therefore such scaling is not easy to obtain. In what follows, we present
a modified access protocol that does scale for any p < n and for most values of r. Moreover,
this new protocol can be ported to a suitable Bounded-Degree Network (BDN) with no loss
of efficiency. The lower bound proved in Theorem 1 shows that the protocol is optimal for
both DMMs and BDNs for any p < n and parameters m, n and r varying in the same ranges
as those specified in Corollary 1.

Each processor of the p-DMM simulates n/p PRAM processors and is in charge of their
variables. Each of the p memory modules is divided into n/p sectors, and the m = n'*¢

variables are distributed among the n sectors according to an r-regular MOS G = (V,U)
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with (o, €/p)-expansion, where p = [r/2] + 1. (Note that a DMM module may now store

several copies of the same variable.)

The high level structure of the modified access protocol is identical to the one presented

for the case p = n (see Fig. 1), the only differences arising in the implementation of procedure

ACCESS. The p processors are still organized in p/r clusters of r processors each. Accesses

to the modules are organized in a sequence of batches, each serving a suitable number of

requests per sector. However, since n/p sectors are now stored into a single DMM module,

accesses directed to sectors within the same memory module must be scheduled in such a

way that no collisions arise. A word description of the steps performed in ACCESS(s, ) is

given below.

1. Processor P!, 1 < i < p/r, broadcasts its n/p variables to the other processors of the
cluster, so that P} will request the j-th copy of each of such variables. This takes time

O((n/p) + logr).

2. For k batches, 1 < k <logx:

(a)

All the requests are sorted by sectors and ranked, and @, copy requests per sector
are selected. This step takes O((n/p)logn) time (recall that sorting of p keys can
be done in time O(logp) on a O(p)-node BDN [8] and therefore on a p-DMM.
The extension to n > p keys is obtained by invoking the techniques of Baudet
and Stevenson [2]);

The selected requests are compacted in contiguous processors, n/p per processor.
Then, requests destined to the same module are ranked. The rank of each request
is referred to as its access time t,, 1 < t, < (n/p)®k. This step takes O((n/p) +
logn) time;

Note that requests destined to the same module v are now stored in n, consecutive
processors, 0 < n, < ®. Using the access times computed in the previous steps,
it is easy to perform the actual accesses to the modules in time O((n/p)®y);

By reversing the previous steps the accessed data return to their originating clus-
ters, within the same time bounds. At the clusters, counting is performed in time

O((n/p) + logr).

Overall, ACCESS(s, z) takes time
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The running time of the entire protocol can be derived by observing that the variable redis-
tribution at the beginning of Stage r 4+ 1 can be performed in O((n/p) + logn) time, and by
plugging in the values of the ®;’s given in Lemma 3. By truncating above the running time

at n (which can be achieved by a trivial sequential protocol) we obtain:

Theorem 4 Let m = n't¢, with arbitrary € > 0, and let p < n. For a fived constants
¢ > 0 and any value v such that v > ¢(1 + €)log(1l + €), there is a scheme to simulate an

(n,m)-PRAM on an p-DMM with redundancy r and slowdown

" 1
O (mim{n,ﬁ (rlogrlogn+log2n+r (E>u <logr+ —))}) ,
p T €

where p = |r/2] + 1.

The theorem implies that the protocol’s running time is a factor n/p higher than the protocol
of Figure 1 for any r = O(log(m/n)/loglogn). Moreover, the protocol is optimal for any

p < n, m polynomial in n and constant r.

I+e with constant € > 0, any p < n and any constant r >

Corollary 2 For any m = n
3(e+ 1), there is a scheme to simulate an (n,m)-PRAM on an p-DMM with redundancy r

and optimal slowdown © (n”e/"/p), where p = |r/2] + 1.

It is important to remark that the above protocol can be implemented on a BDN within
the same time bound. Specifically, Peleg and Upfal [11] present an algorithm for a suitable p-
processor BDN that performs (n, k1, k2)-routing, where each processor sends (resp., receives)
k1 (resp., ko) packets and the total number of packets is n, in time O((n/p)logp + k1 + k2).
By augmenting their network with the sorting network of [8], we can perform all the tasks
prescribed in the implementation of ACCESS within the stipulated time bound. This implies

that both Theorem 4 and Corollary 2 also hold for a BDN.

4 Conclusions

The efficient simulation of shared memory in distributed systems is a central problem for

parallel computation. Our paper improves the understanding of the deterministic complexity
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of this problem, by tightening both lower and upper bounds on the simulation slowdown.
For shared memories of size polynomial in the number of processors and constant values
of redundancy, we show that optimal slowdowns can be attained. However, there still is
a gap between lower and upper bounds for nonconstant values of the redundancy. This
gap is largely caused by bookkeeping operations that appear to be needed in the simulation
protocol and are difficult to account for in the lower bound. An interesting open question is
whether this gap can be reduced or even closed.

Regarding the upper bound, it must be remarked that the schemes presented in Section 3
rely on MOS graphs for which no efficient construction is known, although the existential
argument shows that a random graph would exhibit the required expansion property with
high probability. Unfortunately, the explicit construction of highly expanding MOS graphs
represents a long-standing open problem, and the limitations suffered by our scheme are
typical of most simulation schemes in the literature. For specific values of memory size and
redundancy, explicit memory organizations have been proposed in [12, 13]. It remains a chal-

lenging open problem to extend these results to an entire range of values of the parameters.
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