
The Complexity of Deterministic PRAMSimulation on Distributed Memory Machines1
Andrea PietracaprinaDipartimento di MatematicaPura e ApplicataUniversit�a di PadovaI35131 Padova, Italy

Geppino PucciDipartimento di Elettronicae InformaticaUniversit�a di PadovaI35131 Padova, Italy
CONTACT AUTHOR:Geppino PucciDipartimento di Elettronica e InformaticaUniversit�a di PadovaVia Gradenigo 6/AI35131-Padova, ItalyE-mail: geppo@artemide.dei.unipd.itPhone: +39 49 8287726Fax: +39 49 8287699

1A preliminary version of this work was presented at the 2nd European Symposium on Algorithms, Papen-dal NL, September 1994 [14]. This research was supported in part by MURST of Italy and by the ESPRITIII Basic Research Programme of the EC under contract No. 9072 (Project GEPPCOM).1

AbstractIn this paper we present lower and upper bounds for the deterministic simulationof a Parallel Random Access Machine (PRAM) with n processors and m variableson a Distributed Memory Machine (DMM) with p � n processors. The bounds areexpressed as a function of the redundancy r of the scheme (i.e., the number of copiesused to represent each PRAM variable in the DMM), and become tight for any mpolynomial in n and r = �(1).

2

1 IntroductionAn (n;m)-PRAM consists of n processors that have direct access to m shared variables. Theimportant feature of this model, which makes it very attractive for the design of parallelalgorithms, is that in a PRAM step, executed in unit time, any set of n variables can beread or written in parallel by the processors. For large values of m and n, however, thisassumption represents a serious obstacle to any realistic implementation. In practice, onehas to simulate the PRAM on a more feasible machine, where the shared variables aredistributed among memory modules local to the processors. In such a machine, the modulesbecome a bottleneck, since only one item per module can be accessed in unit time.In this paper we study the complexity of simulating an (n;m)-PRAM on a p-DMM, whichconsists of p � n processors, each provided with a local memory module, communicatingthrough a complete interconnection. In a DMM step, each processor can issue an accessrequest for an arbitrary module, but only one request per module is served. Although thismodel is still unfeasible, in that it idealizes interprocessor communication, it provides a goodframework to assess the di�culty of memory distribution in a topology-independent setting.This paper deals with deterministic PRAM simulations. In order to avoid trivial worst-case scenarios, in which a few modules are overloaded with requests, it is necessary toreplicate each variable into a number of copies stored in distinct modules, so that, duringthe simulation of a PRAM step, contention at the modules can be reduced by carefullychoosing the copies that have to be accessed. The number of copies used for each variableis called the redundancy of the simulation scheme. We say that an (n;m)-PRAM can besimulated on a p-DMM with slowdown s, if any T � 1 PRAM steps can be simulated inO (Ts) DMM steps, in the worst case.1.1 Previous WorkIn the last decade, a large number of randomized and deterministic PRAM simulationschemes have been developed in the literature. All randomized schemes are based on theuse of universal classes of hash functions to allocate the variables to the modules. The dis-tribution properties of these functions yield very e�cient simulations in the probabilistic3

sense. For instance, using a few copies per variable, work-e�cient simulations exhibitingtriply logarithmic slowdown can be achieved with high probability [3].In contrast, the development of fast deterministic PRAM simulations appears to be muchharder. The pioneering work of Mehlhorn and Vishkin [10] introduced the idea of represent-ing each variable by several copies, so that a read operation needs to access only one (themost convenient) copy. For m = O (nr), they present a scheme that uses r copies per vari-able and allows a set of n reads to be satis�ed in time O �rn1�1=r� on an n-DMM. However,the execution of write operations, where all the copies of the variables must be accessed, ispenalized and requires O (rn) time in the worst case.Later, Upfal and Wigderson [17] proposed a more balanced protocol requiring that, inorder to read or write a variable, only a majority of its copies be accessed. They alsorepresent the allocation of the copies to the modules (Memory Organization Scheme or,for short, MOS) by means of a bipartite graph G = (V;U), where V is the set of PRAMvariables, U is the set of DMM modules, and r edges connect each variable to the modulesstoring its r copies. For m polynomial in n and r = �(logn), the authors show that thereexist suitably expanding graphs that guarantee a worst-case O �log n (log log n)2� slowdownon an n-DMM. Using a more complex access strategy, Alt et al. [1] improved the bound toO (log n). In all these schemes, the existence of the underlying MOS graphs is only provedby counting arguments, but no e�cient constructions are known. Several authors devisedsimilar, nonconstructive schemes for bounded-degree network machines [9, 4, 5, 6].Recently, Pietracaprina and Preparata gave the �rst constructive deterministic schemesfor the n-DMM that exhibit sublinear slowdown for both read and write operations. In [12],two PRAM simulations with m = O �n2� and m = O �n3� variables are given, respectivelywith O �n1=2� and O �n2=3� slowdown and redundancy r = 3 and r = 5. In [13], anO �n1=3� slowdown is achieved with m = O �n3=2� and r = 3. Constructive schemes withnearly optimal slowdown have been recently developed for the mesh topology in [16, 15].The �rst signi�cant lower bound for PRAM simulations on the DMM appeared in [17].The authors tailor their argument to the n-DMM and obtain a bound which is independent ofthe redundancy of the simulation scheme. However, by a simple modi�cation of their proof,4

it can be shown that any simulation with redundancy r and m polynomial in n requires
 log (m=n)log log (m=n) + min(nr ;�mn � 1r)! (1)slowdown on an n-DMM. Lower bounds have been also developed for networks of boundeddegree in [1, 7, 4, 5]. However, the techniques used to prove such bounds are of a slightlydi�erent nature, since bandwidth issues have to be taken into account.1.2 New ResultsThe goal of this paper is to study the complexity of deterministic (n;m)-PRAM simulationon a p-DMM, with p � n, as a function of the redundancy r. We improve upon the result of[17] by providing a tighter lower bound and showing that there exist suitable schemes thatachieve optimal slowdown when r is �xed independently of n, m and p. In Section 2, weprove the followingResult 1 Let m > n, p � n, r � 1 and � = br=2c + 1. Any algorithm which simulates an(n;m)-PRAM on an p-DMM with redundancy r, has worst-case slowdown at least
 np min� log(m=n)log log(m=n) ;pp�+min(pr ;�mn � 1�)!! :Note that for p = n and r = o (log (m=n) = log log (m=n)), this bound improves quadraticallyupon (1). Moreover, its proof reveals that the majority protocol captures the best trade-o� between the complexity of read and write operations, as suggested by intuition. As aby-product, the bound also shows that the explicit schemes of [12] are optimal.Result 1 shows that work-e�cient deterministic simulations are impossible unless m =�(n) or p = O(1), therefore answering a long-standing open question in the PRAM simula-tion literature. Although the lower bound is proved under the somewhat restrictive assump-tion that each variable is replicated in a �xed number of copies whose locations do not varywith time (in fact, all the existing deterministic simulation schemes satisfy this assumption),in Section 2.1, we show that work-e�cient deterministic simulations are still impossible evenunder very general assumptions. 5

In Section 3.1, we propose a scheme to simulate an (n;m)-PRAM on a n-DMM. Thescheme relies on suitably expanding MOS's, whose existence is proved within the section.We have:Result 2 Let m = n1+�, with arbitrary � > 0. For r =
((1 + �) log(1 + �)), there is ascheme to simulate an (n;m)-PRAM on an n-DMM with redundancy r and slowdownO r log2 r + logn log r + r�nr� �� �log r + 1��! ;where � = br=2c+ 1.The simulation slowdown comes very close to the lower bound. In particular, using sublog-arithmic redundancy, we obtain a slight improvement on the scheme of [17].In Section 3.2, we modify the access protocol of the scheme to run on a p-DMM, for anyp � n, obtaining the following result:Result 3 Let m = n1+�, with arbitrary � > 0, and let p � n. For r =
((1 + �) log(1 + �)),there is a scheme to simulate an (n;m)-PRAM on an p-DMM with redundancy r and slow-down O min(n; np r log r logn+ log2 n+ r�nr� �� �log r + 1��!)! :where � = br=2c+ 1.Compared to the lower bound, the above slowdown becomes optimal for any p � n, whenm is polynomial in n and r is a constant. An important property of this second scheme isthat it can be implemented with no loss of e�ciency on a suitable bounded-degree network.Therefore, Result 3 also holds for such sparser (and feasible) interconnection.2 Lower BoundA number of literature papers contain lower bounds on the slowdown of deterministic PRAMsimulations on the DMM [17] or on bounded-degree networks [1, 7, 4, 5]. All such boundsare expressed in terms of the parameters n and m, and implicitly optimize on the value ofthe redundancy. Since all deterministic simulation schemes developed until now use a �xed6

number r of copies per variable, we think useful to estimate the best possible slowdownachievable as a function of r. Speci�cally, we present a general lower bound on the slowdownof any deterministic simulation of an (n;m)-PRAM on a p-DMM, as a function of n, m, pand the redundancy r. The lower bound is proved by re�ning the standard approach of [17]and adopted thereafter. Our argument relies upon the following assumptions:1. For each variable, the number and location of the copies do not vary with time. More-over, without loss of generality, we assume that copies of the same variable are storedin distinct modules (which requires p � r).2. Simulations are on-line, that is, the simulation of a step starts only after the simulationof the previous step is completed.We �rst need two technical lemmas based on a well known combinatorial argument.Lemma 1 Given m � n PRAM variables, each with at most � � 1 updated copies distributedamong p DMM modules (p � n), there exists a set of n variables requiring
 np �min(p�;�mn � 1�)!DMM steps to be read.Proof: It is su�cient to show that there exist n variables whose updated copies are allconcentrated into at most maxn2�; p (n=m)1=�o modules. Let t be the maximum value forwhich no set of t modules stores all the updated copies of n variables. If t < 2� we are done.Let t � 2�. Consider a matrix with �pt� rows indexed by all subsets of t modules, and mcolumns indexed by the variables. Entry (i; j) of this matrix is 1 if the j-th variable has allits updated copies stored in modules of the i-th subset, 0 otherwise. Each row accounts forat most n� 1 1's. Each column accounts for at least �p��t��� 1's. Thus, pt!(n� 1) � m p� �t� �! ;which implies that t = O �p (n=m)1=��. 27

Lemma 2 Consider m � n PRAM variables, each represented by r copies distributed amongp � n DMM modules, and let � = br=2c + 1. There exists a set of n variables �, and a setof modules S such that each variable in � has at least � copies stored in modules of S, andjSj = O max(r; p� nm� 1�)! :Proof: Let t be the maximum value for which no set of t modules stores � copies of each ofn variables. If t < r we are done. Let t � r. Consider a matrix with �pt� rows indexed by allsubsets of t modules, and m columns indexed by the variables. Entry (i; j) of this matrix is1 if the j-th variable has at least � copies stored in modules of the i-th subset, 0 otherwise.Each row accounts for at most n � 1 1's. Each column accounts for exactly Pry=� �ry��p�rt�y�1's. Therefore, it must be pt!(n� 1) � m rXy=� ry! p� rt� y!;which implies that t = O �p (n=m)1=��. 2Theorem 1 Let m > n, p � n, r � 1 and � = br=2c+1. For any algorithm which simulatesan (n;m)-PRAM on a p-DMM with redundancy r, there exists a sequence of T = �(m=n)PRAM steps requiring simulation time
 T � np min� log(m=n)log log(m=n) ;pp�+min(pr ;�mn � 1�)!! :Proof: We �rst determine a sequence of � (m=n) hard writes that update a constant fractionof all the variables. Either these writes are expensive to simulate, since they update manycopies of most of the variables, or we are able to determine � (m=n) hard reads that accessvariables with few updated copies, therefore establishing the stipulated bound.The hard writes are determined as follows. Let V be the set of m PRAM variables. Byrepeatedly applying Lemma 2, we can �nd k = dm=2ne subsets �i � V , 1 � i � k, ofvariables, with the following properties:1. j�ij = n, for 1 � i � k; 8

2. �i \ �j = ; for 1 � i 6= j � k;3. For each �i, with 1 � i � k, there exists a set of modules Si withjSij = O max(r; p� nm� 1�)! ;such that each variable in �i has at least � copies stored in modules of Si.Observe that each �i is chosen from the set V � [i�1j=1�j containing at least m=2 variables.Consider k PRAM write steps, where the i-th step writes the variables in �i. After thesimulation of these steps, partition the set [ki=1�i into three sets V1; V2 and V3 as follows.A variable v 2 [ki=1�i is in V1 if it has less than (�� 1) =� updated copies (the actual valueof � will be determined later); v is in V2 if it has at least (�� 1) =� and at most � � 1updated copies; v is in V3 otherwise. Clearly, one of these three sets has cardinality � (m).We distinguish among the following three cases.Case 1: jV1j = �(m). By repeatedly applying Lemma 1 we determine � (m=n) PRAMsteps that read a constant fraction of the variables in V1 each requiring simulation time
 np min(p��� 1 ;�mn � ���1)!Thus, the overall time needed to simulate the T = �(m=n) write and read steps is
 T � np min(p��� 1 ;�mn � ���1)! : (2)Case 2: jV2j = �(m). Since at least
 (m(�� 1)=�) copies have been updated during thesimulation of the write steps, the overall time required by these steps is
 ((m=p)(�� 1)=�) =
 ((m=n)(n=p)(� � 1)=�). Moreover, by repeatedly applying Lemma 1, we can determine� (m=n) PRAM steps that read a constant fraction of variables in V2, each step requiringsimulation time
 np min(p�� 1 ;�mn � 1��1)! :
9

Thus, the overall time needed to simulate the T = �(m=n) write and read steps is
 T � np �� 1� +min(p�� 1 ;�mn � 1��1)!! : (3)Case 3: jV3j = �(m). At least
 (m�) copies are updated during the simulation of thewrite steps, hence, as before, the overall time required by these steps is
 ((m=n)(n=p)�).Moreover, there must be ` = �(m=n) sets �i1 ;�i2 ; : : : ;�i` , with j�ij\V3j = �(n), 1 � j � `.Since each variable in �ij \ V3 has � updated copies, then one of these copies must belongto a module in Sij . Therefore, the ij-th write step requires
 njSij j! =
 min(nr ; np �mn � 1�)!simulation time, for 1 � j � `. Therefore, the overall time needed to simulate the T =�(m=n) write steps is
 T � np �+min(pr ;�mn � 1�)!! : (4)The theorem follows by choosing� = max(1; (�� 1)� log log (m=n)log (m=n) ; �� 1pp) ;for some �xed constant � > 1, and computing the minimum among (2), (3) and (4). 2Theorem 1 implies that for any nonconstant p and any n = o(m) it is not possible to devisea deterministic algorithm that simulates an (n;m)-PRAM step on a p-DMM work-e�cientlyin O(n=p) time, which is the case, instead, for randomized simulations [3]. However, thetheorem has been proved under the somewhat restrictive assumptions listed at the beginningof this section, so it is not inconceivable that deterministic work-e�cient simulations mightbe attainable in a more general setting. In fact, the following subsection shows that this isnot the case.
10

2.1 Work-E�cient Deterministic Simulations are ImpossibleA general lower bound on deterministic simulations can be obtained by adapting the proofin [17] to hold for any value of p � n and to satisfy the very weak assumptions formulatedin [4]. Namely,1. The number and location of the copies of each variable may vary with time;2. The simulation of an instruction may start only after the simulation of all previous readoperations has been completed. (This implies that the execution of consecutive writesis not constrained to follow the order in which they appear in the PRAM program.)For a variable v 2 V , let rtv denote the number of DMM processors storing updated copiesof v at time t of the simulation. De�ne rt =Pv2V rtv=m as the average redundancy at time t.Thus, at time t at least m=2 variables have less than 2rt updated copies each, and Lemma 1can be applied to �nd a set of n variables requiringg(r) =
 np min(prt ;�m2n� 12rt)!to be read. Also, an average redundancy rt implies that a total of mrt copies have beenwritten, which takes
 �(m=n)(n=p)rt� time.Consider a (n;m)-PRAM program that �rst initializes all the variables and then lets anadversary choose a set of �(m=n) hard reads. If at some point during the simulation theaverage redundancy is r, then the writes must have taken
 ((m=n)(n=p)r) time. Otherwise,the adversary can make each hard read require g(r) time. Therefore, the total simulationtime is
 mn np r +min(pr ;�m2n� 12r)!! :By minimizing the above formula over all possible values of r we obtain:Theorem 2 For any algorithm which simulates an (n;m)-PRAM on a p-DMM, with p � nand m > 2n, there exists a sequence of T = �(m=n) PRAM steps requiring simulation time
�T � np min�pp; log(m=n)log log(m=n)�� :11

Observe that the minimum in the above formula is O(1) only if m = O(n) or p = O(1).3 Upper BoundSuppose we want to simulate an (n;m)-PRAM on a p-DMM, with m polynomial in n andp � n. In this section, we provide a protocol to simulate a PRAM step where the processorsread/write n distinct variables. The case of concurrent accesses to the same variable can behandled by appending a preprocessing phase to the protocol, where a representative is electedfor each subset of processors requiring access to the same variable. The representatives willthen perform the simulation algorithm and, in case of read operations, distribute the accesseddata to the appropriate processors. Both preprocessing and data distribution phases can beaccomplished through standard sorting and pre�x operations without increasing the overallslowdown by more than a constant factor.In Subsection 3.1, we describe the access protocol for the case p = n. In Subsection 3.2,we modify the protocol to run on a p-DMM, for any p � n, also showing how it can beimplemented on a speci�c p-processor bounded-degree network with no loss in e�ciency.3.1 The Case p = nOur simulation scheme follows the ideas pioneered in [17], where each variable is replicatedinto r copies, distributed among the DMM modules according to a suitable Memory Orga-nization Scheme. The MOS is modeled by a bipartite graph G = (V;U), where V denotesthe set of m PRAM variables and U the set of n DMM processors. The graph is r-regular,meaning that each node in V has degree r, each node in U has degree mr=n, and the r edgesadjacent to a variable v reach the processors storing its copies, with exactly mr=n copiesassigned to each module. We assume that given a variable v, a processor can determine thelocation of any copy of v in O(1) time.Every copy is stored together with a time-stamp, which is updated every time the copy iswritten. In order to read or write a variable, at least a majority � = br=2c + 1 of its copieshave to be accessed (for read operations, the value stored in the copy with the most recenttime-stamp is returned). Note that this is su�cient to guarantee consistency, since a read12

will always access at least one of the most recently written copies of a variable. Therefore,we say that a variable is accessed if at least � of its copies are accessed.Accesses to the copies of the variables requested in a PRAM step are governed by a simpleprotocol, which prescribes that the processors continuously send requests to the modules untilenough copies per variable are reached. The e�ciency of the scheme relies on the existence ofa suitable MOS which makes the access protocol converge rapidly. The protocol is patternedafter the one in [17], but performs a reduced number of bookkeeping operations, which iscrucial to obtain optimality when r = O(1).When p = n, each DMM processor simulates a distinct PRAM processor and is thereforein charge of a single variable. We partition the DMM processors into n=r clusters of rprocessors each. Let P ij denote the jth processor of cluster i, where 1 � j � r and 1 � i �n=r. Let also vij denote the variable requested by P ij and vij(1); vij(2); : : : ; vij(r) its copies.The protocol consists of r+1 stages, numbered from 1 to r+1. In Stage s, for 1 � s � r,the clusters try to access variables v1s ; v2s ; : : : ; vn=rs in parallel, with Cluster i in charge of vis.More speci�cally, at the beginning of the stage, each P is , 1 � i � n=r sends the name of itsvariable vis and the operation to be performed to the other processors in the cluster. P ij isnow in charge of the copy vis(j) and determines its location. Then, a number of iterations areexecuted in which the processors repeatedly try to access the copies they are assigned untilthey succeed or the stage terminates. These iterations are grouped into log r batches, wherethe kth batch consists of �k iterations, 1 � k � log r. At the end of each batch, Clusteri counts the number of copies of vis accessed so far and, if these are at least �, it declaresthe variable successfully accessed and stops further accesses to its copies. The �k's will bespeci�ed in the analysis to guarantee that at the end of the stage at most n=r2 variables(among v1s ; v2s ; : : : ; vn=rs) remain unaccessed. Therefore, at the end of Stage r, there will be atotal of ` � n=r unaccessed variables. In Stage r + 1, these variables are distributed amongthe �rst ` clusters, one per cluster. Then, log2(n=r) batches of iterations are performed.The kth batch consists of �k iterations, 1 � k � log2(n=r), followed by counting as in theprevious stages. The �k's are chosen to guarantee that this stage complete all accesses (notethat the �rst log r values of the �k's are the same as those used in Stages 1 to r).The protocol's pseudocode is reported in Figure 1. The core of a stage is represented by13

begin mainfor s := 1 to r do f Stage s gaccess(s; r);f Stage r + 1 glet ` � n=r be the number of unaccessed variables;rank the ` unaccessed variables and send the ith such variableto P i1, 1 � i � `, specifying the operation to be performed;access(1; n=r);end mainprocedure access(s; x)for all i 2 f1; : : : ; n=rg do in parallelP is broadcasts vis to all processors in its cluster,specifying the operation to be performed;for k := 1 to log2 x do f Batch k gfor all i 2 f1; : : : ; n=rg do in parallelif vis is unaccessed thenfor all j 2 f1; : : : ; rg do in parallelfor h := 1 to �k doif vis(j) is not accessed yet thenP ij sends a request for vis(j) to the appropriate module;feach module serves one incoming request, if anygthe processors in Cluster i count the number ai of accessed copies of vis;if ai � � then vis is marked accessedend access Figure 1: Access protocol for p = nprocedure access. Namely, access(s; x) deals with n=r variables held by P is , 1 � i � n=rand successfully completes the accesses for all but at most a fraction x of such variables. Thecorrectness of this procedure, as well as that of the entire protocol, depends on the choice ofthe �k's, which are determined in terms of the expansion capabilities of the MOS.De�nition 1 Let G = (V;U) be an r-regular, bipartite graph, and let � = br=2c + 1. For� > 0 and 0 < � < 1, G is said to have (�; �)-expansion if for any subset S � V , jSj � jU j=r,and any choice of � outgoing edges for each node in S, the set �� (S) � U reached by thechosen edges has size j�� (S) j > �rjSj1�� :14

We have:Lemma 3 If the MOS graph G has (�; �)-expansion, then for 1 � k � log2(n=r), choosing�k = 2� � nr2k�� (5)is su�cient to make the protocol work correctly.Proof: Let R be the set of n=r variables relative to the call access(s; x), with 1 � x � n=r.It su�ces to show that the above choice of the �k's guarantees that access(s; x) successfullycompletes the accesses for all but at most a fraction x of these variables. Let v 2 R. Duringthe execution of the procedure, we say that a copy of v is alive if it has not yet been accessedand that v itself is alive if at least a majority � of its copies are alive.We prove by induction that at the end of Batch k, k � 0, at most n=(r2k) variables in Rare still alive (for convenience, we consider the beginning of Batch 1 as the end of Batch 0).The basis of the induction is trivial. Let the property be true for some k � 0, and, for thesake of contradiction, suppose that at the end of Batch k+1 more than n=(r2k+1) variablesare alive. Then, the expansion property of the MOS guarantees that each iteration in thebatch accesses at least �r �n=(r2k+1)�1�� copies, for a total of�k�r� nr2k+1�1�� > n2kcopies accessed by the end of the batch. Such copies belong only to the variables alive atthe end of Batch k, which, by the inductive hypothesis, are at most n=(r2k) and thereforeaccount for no more than n=2k copies, yielding the desired contradiction. 2It remains to prove that MOS's with high expansion properties do exist.Lemma 4 Let m = n1+�, with arbitrary � > 0. There is a constant c such that for any r,with c(1+ �) log(1+ �) � r � n, a random r-regular bipartite graph G = (V;U) with jV j = mand jU j = n has (�; �)-expansion with � = �(1) and � = �=�, where � = br=2c + 1, withhigh probability. 15

Proof: G = (V;U) does not have (�; �)-expansion if there is a set S � V of at most n=r nodessuch that some choice of � outgoing edges for each node in S yields j�� (S) j � �rjSj1��. Ascustomary, we use the probabilistic method showing that there is a constant �, 0 < � < 1,such that the fraction of r-regular bipartite graphs G that do not have (�; �=�)-expansionis very small. Let us associate the r-regular bipartite graphs with the permutations of theintegers 1; 2; : : : ;mr. The fraction of bad graphs is at most Pn=rs=1 f(s), wheref(s) = ms! n�rs1��! r�!s [�rs1��(mr=n)]�s[mr]�s ;with [K]t = K � (K � 1) � : : : � (K � t+ 1). Note that[�rs1��(mr=n)]�s[mr]�s � �rs1��n !�s :Using Stirling's bounds on binomial coe�cients and tedious but simple arithmetic manipu-lations, we obtain f(s) < � sn���(1+�)��r (�r)���r e2r!s :By suitably choosing constants c and �, for r � c(1 + �) log(1 + �), the term within bracketsin the right hand side of the above relation is an increasing function of s and, for s � n=r,� sn���(1+�)��r (�r)���r e2r � r1+�����re2r � 2�r:If r � log2 n, we have n=rXs=1 f(s) � n=rXs=1 2�rs � 2n:If instead r � log2 n, we haven=rXs=1 f(s) � log2 n�1Xs=1 f(s) + n=rXs=log2 n 2�rs:
16

Again, a suitable choice of the constants c and � yieldslog2 n�1Xs=1 f(s) � log2 n�1Xs=1 "� nlog2 n�1+� ��r log2 nn ����r e2r#s < log2 n�1Xs=1 1ns :Therefore, n=rXs=1 f(s) � log2 n�1Xs=1 1ns + n=rXs=log2 n 2�rs � 3n;and the thesis follows. 2We are ready to prove the main result of this section.Theorem 3 Let m = n1+�, with arbitrary � > 0. For a �xed constant c > 0 and any valuer � c(1 + �) log(1 + �), there is a scheme to simulate an (n;m)-PRAM on an n-DMM withredundancy r and slowdownO r log2 r + logn log r + r�nr� �� �log r + 1��! ;where � = br=2c+ 1.Proof: Consider the access protocol of Figure 1, and assume that the distribution of thevariables among the DMM processors is governed by an r-regular MOS with (�(1); �=�)-expansion. By Lemma 4, a random r-regular graph will exhibit such expansion with highprobability. Let us evaluate the running time of the protocol. Since broadcast and countingwithin a cluster take time O(log r), an execution of access(s; x) is completed in timeO0@log2 xXk=1 (�k + log r)1A :The redistribution of the unaccessed variables in Stage r+1 can be accomplished via a pre�xoperation in O(log n) time. Therefore, the overall running time of the protocol isO0@r log2 rXk=1 (�k + log r) + log n+ log2 n=rXk=1 (�k + log r)1A= O r �nr� �� log r + log2 r!+ log n+ �nr� �� r� + log n log r! ;17

where the �k's are as in Lemma 3. The theorem follows. 2Note that the protocol's running time di�ers from the lower bound proved in Theorem 1by a factor which is a superlinear function of the redundancy, and is therefore suboptimalfor nonconstant values of r. Note also that our general scheme attains the same slow-down as the one in [17] for r = �(log(m=n)). Indeed, a slightly smaller slowdown canbe achieved by choosing r = �(log(m=n)= log log log(m=n)), which yields a slowdown ofO �log(m=n)(log log(m=n))2= log log log(m=n)�. Finally, our scheme is optimal for constantvalues of the redundancy and m polynomial in n. In this case, it can be easily shownthat r > 3(� + 1) is su�cient to guarantee the existence of MOS graphs with the requiredexpansion. Thus,Corollary 1 For any m = n1+�, with constant � > 0, and any constant r � 3(� + 1) thereis a scheme to simulate an (n;m)-PRAM on an n-DMM with redundancy r and optimalslowdown ��n�=��, where � = br=2c + 1.3.2 The General CaseWhen the number of DMM processors is p < n, we would expect the simulation slowdownto increase by a factor n=p. Indeed, an optimal deterministic simulation of an n-DMM on ap-DMM is known when either p = O (1) or p =
�n��, with constant � < 1, hence, in thesecases, the simulation slowdown given in Theorem 3 goes up by a factor O (n=p) as expected.For all other values of p, however, no optimal deterministic simulation of an n-DMM on ap-DMM is known, therefore such scaling is not easy to obtain. In what follows, we presenta modi�ed access protocol that does scale for any p � n and for most values of r. Moreover,this new protocol can be ported to a suitable Bounded-Degree Network (BDN) with no lossof e�ciency. The lower bound proved in Theorem 1 shows that the protocol is optimal forboth DMMs and BDNs for any p � n and parameters m, n and r varying in the same rangesas those speci�ed in Corollary 1.Each processor of the p-DMM simulates n=p PRAM processors and is in charge of theirvariables. Each of the p memory modules is divided into n=p sectors, and the m = n1+�variables are distributed among the n sectors according to an r-regular MOS G = (V;U)18

with (�; �=�)-expansion, where � = br=2c + 1. (Note that a DMM module may now storeseveral copies of the same variable.)The high level structure of the modi�ed access protocol is identical to the one presentedfor the case p = n (see Fig. 1), the only di�erences arising in the implementation of procedureaccess. The p processors are still organized in p=r clusters of r processors each. Accessesto the modules are organized in a sequence of batches, each serving a suitable number ofrequests per sector. However, since n=p sectors are now stored into a single DMM module,accesses directed to sectors within the same memory module must be scheduled in such away that no collisions arise. A word description of the steps performed in access(s; x) isgiven below.1. Processor P is , 1 � i � p=r, broadcasts its n=p variables to the other processors of thecluster, so that P ij will request the j-th copy of each of such variables. This takes timeO((n=p) + log r).2. For k batches, 1 � k � log x:(a) All the requests are sorted by sectors and ranked, and �k copy requests per sectorare selected. This step takes O((n=p) log n) time (recall that sorting of p keys canbe done in time O(log p) on a O(p)-node BDN [8] and therefore on a p-DMM.The extension to n > p keys is obtained by invoking the techniques of Baudetand Stevenson [2]);(b) The selected requests are compacted in contiguous processors, n=p per processor.Then, requests destined to the same module are ranked. The rank of each requestis referred to as its access time ta, 1 � ta � (n=p)�k. This step takes O((n=p) +log n) time;(c) Note that requests destined to the same module u are now stored in nu consecutiveprocessors, 0 � nu � �k. Using the access times computed in the previous steps,it is easy to perform the actual accesses to the modules in time O((n=p)�k);(d) By reversing the previous steps the accessed data return to their originating clus-ters, within the same time bounds. At the clusters, counting is performed in timeO((n=p) + log r).Overall, access(s; x) takes time O0@np log2 xXk=1 (�k + logn)1A :
19

The running time of the entire protocol can be derived by observing that the variable redis-tribution at the beginning of Stage r+1 can be performed in O((n=p) + log n) time, and byplugging in the values of the �k's given in Lemma 3. By truncating above the running timeat n (which can be achieved by a trivial sequential protocol) we obtain:Theorem 4 Let m = n1+�, with arbitrary � > 0, and let p � n. For a �xed constantsc > 0 and any value r such that r � c(1 + �) log(1 + �), there is a scheme to simulate an(n;m)-PRAM on an p-DMM with redundancy r and slowdownO min(n; np r log r logn+ log2 n+ r�nr� �� �log r + 1��!)! ;where � = br=2c+ 1.The theorem implies that the protocol's running time is a factor n=p higher than the protocolof Figure 1 for any r = O(log(m=n)= log log n). Moreover, the protocol is optimal for anyp � n, m polynomial in n and constant r.Corollary 2 For any m = n1+�, with constant � > 0, any p � n and any constant r �3(� + 1), there is a scheme to simulate an (n;m)-PRAM on an p-DMM with redundancy rand optimal slowdown ��n1+�=�=p�, where � = br=2c+ 1.It is important to remark that the above protocol can be implemented on a BDN withinthe same time bound. Speci�cally, Peleg and Upfal [11] present an algorithm for a suitable p-processor BDN that performs (n; k1; k2)-routing, where each processor sends (resp., receives)k1 (resp., k2) packets and the total number of packets is n, in time O((n=p) log p+ k1 + k2).By augmenting their network with the sorting network of [8], we can perform all the tasksprescribed in the implementation of access within the stipulated time bound. This impliesthat both Theorem 4 and Corollary 2 also hold for a BDN.4 ConclusionsThe e�cient simulation of shared memory in distributed systems is a central problem forparallel computation. Our paper improves the understanding of the deterministic complexity20

of this problem, by tightening both lower and upper bounds on the simulation slowdown.For shared memories of size polynomial in the number of processors and constant valuesof redundancy, we show that optimal slowdowns can be attained. However, there still isa gap between lower and upper bounds for nonconstant values of the redundancy. Thisgap is largely caused by bookkeeping operations that appear to be needed in the simulationprotocol and are di�cult to account for in the lower bound. An interesting open question iswhether this gap can be reduced or even closed.Regarding the upper bound, it must be remarked that the schemes presented in Section 3rely on MOS graphs for which no e�cient construction is known, although the existentialargument shows that a random graph would exhibit the required expansion property withhigh probability. Unfortunately, the explicit construction of highly expanding MOS graphsrepresents a long-standing open problem, and the limitations su�ered by our scheme aretypical of most simulation schemes in the literature. For speci�c values of memory size andredundancy, explicit memory organizations have been proposed in [12, 13]. It remains a chal-lenging open problem to extend these results to an entire range of values of the parameters.References[1] H. Alt, T. Hagerup, K. Mehlhorn, and F.P. Preparata. Deterministic simulation of ideal-ized parallel computers on more realistic ones. SIAM Journal on Computing, 16(5):808{835, 1987.[2] G. Baudet and D. Stevenson. Optimal sorting algorithms for parallel computers. IEEETrans. on Computers, C-27(1):84{87, January 1978.[3] A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Shared memory simulations withtriple-logarithmic delay. In Proc. of the 3rd European Symposium on Algorithms, pages46{59, 1995.[4] K. Herley and G. Bilardi. Deterministic simulations of PRAMs on bounded-degreenetworks. SIAM Journal on Computing, 23(2):276{292, April 1994.[5] K. Herley, A. Pietracaprina, and G. Pucci. Implementing shared memory on multi-dimensional meshes and on the fat-tree. In Proc. of the 3rd European Symposium onAlgorithms, pages 60{74, 1995.[6] K.T. Herley. Representing shared data on distributed-memory parallel computers.Math-ematical Systems Theory, 29:111{156, 1996.21

[7] A.R. Karlin and E. Upfal. Parallel hashing: An e�cient implementation of sharedmemory. Journal of the ACM, 35(4):876{892, October 1988.[8] F.T. Leighton. Tight bounds on the complexity of parallel sorting. IEEE Trans. onComputers, C-34(4):344{354, Apr. 1985.[9] F. Luccio, A. Pietracaprina, and G. Pucci. A new scheme for the deterministic simula-tion of PRAMs in VLSI. Algorithmica, 5(4):529{544, 1990.[10] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs byparallel machines with restricted granularity of parallel memories. Acta Informatica,21:339{374, 1984.[11] D. Peleg and E. Upfal. The token distribution problem. SIAM Journal on Computing,18(2):229{243, April 1989.[12] A. Pietracaprina and F.P. Preparata. An O(pn)-worst-case-time solution to the gran-ularity problem. In K.W. Wagner P. Enjalbert, A. Finkel, editor, Proc. 10th Symp.on Theoretical Aspects of Computer Science, LNCS 665, pages 110{119, W�urzburg,Germany, February 1993. Springer-Verlag.[13] A. Pietracaprina and F.P. Preparata. A practical constructive scheme for deterministicshared-memory access. In Proc. 5th ACM Symp. on Parallel Algorithms and Architec-tures, pages 100{109, Velen, Germany, July 1993.[14] A. Pietracaprina and G. Pucci. Tight bounds on deterministic PRAM emulations withconstant redundancy. In J.V. Leeuwen, editor, Proc. 2nd European Symposium onAlgorithms, LNCS 855, pages 391{400, Utrecht, NL, September 1994. Springer-Verlag.[15] A. Pietracaprina and G. Pucci. Improved deterministic PRAM simulation on the mesh.In Proc. 22nd Int. Colloquium on Automata, Languages and Programming, LNCS, pages372{383, Szeged, H, July 1995. Springer-Verlag.[16] A. Pietracaprina, G. Pucci, and J. Sibeyn. Constructive deterministic PRAM simulationon a mesh-connected computer. In Proc. 6th ACM Symp. on Parallel Algorithms andArchitectures, pages 248{256, Cape May, NJ, June 1994.[17] E. Upfal and A. Widgerson. How to share memory in a distributed system. Journal ofthe ACM, 34(1):116{127, 1987.

22

