2SAT

- Instance: A 2-CNF formula φ
- Problem: To decide if φ is satisfiable

Example: a 2CNF formula

$$
(\neg x \vee y) \wedge(\neg y \vee z) \wedge(x \vee \neg z) \wedge(z \vee y)
$$

2SAT is in P

Theorem: 2SAT is polynomial-time decidable.
Proof: We'll show how to solve this problem efficiently using path searches in graphs...

Searching in Graphs

Theorem: Given a graph $G=(V, E)$ and two vertices $s, t \in V$, finding if there is a path from s to \dagger in G is polynomialtime decidable.
Proof: Use some search algorithm (DFS/BFS). \quad -

Graph Construction

- Vertex for each variable and a negation of a variable
- Edge (α, β) iff there exists a clause equivalent to ($\neg \alpha \vee \beta$)

Graph Construction: Example

$(\neg x \vee y) \wedge(\neg y \vee z) \wedge(x \vee \neg z) \wedge(z \vee y)$

Observation

Claim: If the graph contains a path from α to β, it also contains a path from $\neg \beta$ to $\neg \alpha$.
Proof: If there's an edge (α, β), then there's also an edge $(\neg \beta, \neg \alpha)$.

Correctness

Claim:
a 2-CNF formula φ is unsatisfiable iff there exists a variable x, such that: 1. there is a path from x to $\neg x$ in the graph
2. there is a path from $\neg x$ to x in the graph

Correctness (1)

- Suppose there are paths $\times . . \neg x$ and $\neg x$.. x for some variable x, but there's also a satisfying assignment ρ.
- If $\rho(x)=T$ (similarly for $\rho(x)=F$):
$(\neg \alpha \vee \beta)$ is false!

Correctness (2)

- Suppose there are no such paths.
- Construct an assignment as follows:

1. pick an unassigned vertex and assign it T

2. assign T to all reachable vertices
3. assign F to their negations
4. Repeat until all vertices are assigned

Correctness (2)

Claim: The algorithm is well defined. Proof: If there were a path from x to both y and $\neg y$,
then there would have been a path from x to $\neg y$ and from $\neg y$ to $\neg x$.

Correctness

A formula is unsatisfiable iff there are no paths of the form $x . . \neg x$ and $\neg x$.. x.

2SAT is in P

We get the following efficient algorithm for 2SAT:

- For each variable x find if there is a path from x to $\neg x$ and vice-versa.
- Reject if any of these tests succeeded.
- Accept otherwise
\Rightarrow 2SAT \in. .

