
Computational Frameworks

Streaming

1

Dealing with volume and velocity

Monitoring huge and rapidly changing streams of data:

• Scenarios: (sensor) network traffic, transaction logs, online
trading, auctions, analyzing physical (e.g., meteorological,
astronomical) events.

• Data analysis must happen on the fly and the input data are
to be processed as a continuous stream (no random access to
data)

Example application:

• Stream: packets routed through a router.

• Task: Gather traffic statistics (e.g., average number of
connections/second to same IP address)

• Analysis must occur on the fly using limited memory (cannot
store the data stream for offline processing)

2

The streaming model

• Sequential machine with ”small” working memory. Input
provided as a continuous (one-way) stream.

• Objective of Algorithm Design: Solve data analysis
problems by inspecting the data stream in a single (or very
few) passes, using working memory substantially smaller than
input size (e.g., O(1) or O(poly(log n)) for a stream of size n).

• The use of substantially sublinear working space calls for the
design of summary data structures (a.k.a. sketches)

3

Streaming (Recap)

The Model

• Input stream Σ = x1, x2, . . . xn accessed/processed sequentially

• Metric 1: Size s of the working memory (aim: s � n)

• Metric 2: Number p of sequential passes over Σ (aim: p = 1)

• Metric 3: Processing time per item T (aim: T = O(1))

Algorithm Design Techniques

• Approximate solutions (exact ones may require linear space)

• Mantain lossy summary of Σ via a synopsis data structure
(e.g., random sample, hash-based sketch)

4

Typical data analysis tasks

• Number of distinct data items in the stream

• Frequent items

• Useful statistics: frequency moments the stream, quantiles,
histograms, etc

• Optimization and graph problems: clustering, triangle
counting

Many problems require extensive space to obtain exact solution:
need to resort to space/accuracy-tradeoffs.

• Analysis uses precision parameters: e.g., ε, δ ∈ (0, 1).

• Prove that the computed solution is within an error ε off the
true answer with probability at least 1− δ

• Working space and running time is a (non decreasing)
function of 1/ε and 1/δ.

5

Sampling/Polling

• Mantaining a random, uniform m-sample S of the data seen
so far is not an immediate task: which stream items do we
retain? Assume Σ = x1, x2, . . . xn (n = |Σ| unknown).

• Reservoir Sampling
• Add x1, x2, . . . , xm to S (w.l.o.g., n� m)
• For t > m, with prob. m/t, evict random x ∈ S and add xt .

Theorem

Let Σ = x1, x2 . . ., and let t ≥ m. At any time t, S is a uniform
m-sample of x1, x2, . . . , xt .

Remark: We do not need to know n. Whenever the stream ends,
we get an m-sample of Σ.

6

Sampling/Polling (cont’d)

Proof
We show that for 1 ≤ i ≤ t, Pr(xi ∈ S) = m/t by induction on
t ≥ m:

• Base case t = m is trivial
• For t > m, consider any item xi , i < t when xt is examined:

• Pr(xi ∈ S |xt not added) = m/(t − 1) (by inductive hp)
• Pr(xi ∈ S |xt added)) = (m/(t − 1))(1− 1/m) (inductive hp

and random eviction)
• Using total probabilities and Bayes’ rule, after step t:

Pr(xi ∈ S) =
(

1− m

t

) m

t − 1
+

m

t

[
m

t − 1

(
1− 1

m

)]
=

m

t

• The proof follows, since the algoritm also ensures that

Pr(xt ∈ S) =
m

t

7

Sampling-based applications: Frequent Items

• Problem: Given a stream Σ of n items and a frequency
threshold ϕ ∈ (0, 1), return all and only items in Σ that
appear at least ϕ · n times.

• Any straightforward (sequential) strategy requires space at
least linear inthe number of distinct elements in Σ (could be
arbitrarily close to n)

• We can save space if we give up exactness!

• ε-Approximate Frequent Items (ε-AFI): Besides Σ and ϕ, let
0 < ε < ϕ. We must return:

• All items of frequency at least ϕ · n
• No item of frequency smaller than (ϕ− ε) · n

• That is, we seek algorithms with no false negatives but
tolerate some high-frequency false positives

8

Randomized Algorithm for ε-AFI

• Randomized algorithm: Given a precision parameter
δ ∈ (0, 1), returns an ε-AFI set with probability 1− δ

• Sticky Sampling: compute empirical frequencies based on a
sample of the data stream

• The sampling rate depends on n = |Σ|, ϕ, ε, and δ

• Assume that n is known (we will discuss how to deal with
unkown n later) and let t ≡ t(ϕ, ε, δ) be a value (to be fixed
by the analysis).

• Sticky Sampling maintains a set of pairs S = {(x , fe(x))}
where x ∈ Σ and fe(x) ≤ f (x) is an (under)estimate of x ’s
true frequency.

9

Sticky Sampling (n known)

1 S = ∅
2 Examine the next element x of the Data Stream:

2a if (x , fe(x)) ∈ S then fe(x) = fe(x) + 1

2b if (x , fe(x)) 6∈ S then add {(x , fe(x) = 1)} to S with
probability t/n (start tracking x if sampled, t to be determined
by the analysis!)

3 Return all pairs in S with fe(x) ≥ (ϕ− ε)n

Remark

Since fe(x) ≤ f (x), Sticky Sampling returns no low-frequency false
positives (i.e., items x with f (x) < (ϕ− ε)n)

10

Sticky Sampling (n known) (cont’d)

We now prove that with probability 1− δ, Sticky Sampling returns all
true positives.

• Let {yi : f (yi) ≥ ϕn, 1 ≤ i ≤ k}. Clearly, k ≤ 1/ϕ.

• Consider complementary event. By the union bound,
Pr (∃false negative) ≤

∑k
i=1 Pr (fe(yi) < (ϕ− ε)n)

• If fe(yi) < (ϕ− ε)n, then the first εn occurrences of yi were not
sampled! This happens with prob. (1− t/n)εn < e−tε

• Pr (∃false negative) ≤ ke−tε ≤ (1/ϕ)e−tε

• Choose t = ln(1/(δϕ))/ε to get desired probability bound

• Space: E [|S |] ≤ n × (t/n) = t (each stream item creates new
entry in S with probability ≤ t/n). Space independent of n and
constant for constant φ, ε, δ!

11

Dealing with unknown n

Let t = ln(1/(δϕ))/ε be defined as before. We apply the same algorithm,
with sampling rate adjusted dynamically to size of the stream seen so far
to make sure that sampling probability is at least t/n:

• First 2t items are sampled with prob. 1

• For i = 1, 2, . . ., next batch of 2i t items sampled with prob. 2−i

• At the beginning of each batch the sample S has to be recalibrated
to reflect the new sampling rate as follows. For each (x , fe(x)) ∈ S :

• Let tx = #tails before head of unbiased coin
• If fe(x)− tx > 0 then fe(x) = fe(x)− tx
• If fe(x)− tx ≤ 0 then delete (x , fe(x)) from S

12

Dealing with unknown n (cont’d)

Remark

After the frequency adjustment, S is the same that would be obtained by
applying the current sampling rate from the beginning

13

Dealing with unknown n (cont’d)

Lemma

Let |Σ| = n. At any time during the algorithm the sampling
probability is at least t/n.

Proof.

Trivial when sampling with probability 1. For i ≥ 1, when we start
sampling with probability 2−i , we have seen at least
2t + (

∑i−1
j=1 2j)t = 2i t stream items. Therefore n ≥ 2i t, whence

2−i ≥ t/n. Analogously, 2−i ≤ 2t/n

Remark

Since we sample with at least as frequently as in the case when n
is known, algorithms correctly solves ε-AFI with prob. ≥ 1− δ.
Also, E [S] ≤ n × (2t/n) ≤ 2t!

14

Sketches
A sketch is a space-efficient data structure that can be used to
provide (usually randomized) estimates of (statistical)
characteristics of a data stream.

Frequency Moments

Let Σ = x1, x2, . . . , xn be drawn from a universe U of size u. Let fu
be the frequency of u ∈ U in Σ: fu = |{j : xj = u, 1 ≤ j ≤ n}|).
For k ≥ 0, the k-th frequency moment Fk of Σ is

Fk =
∑
u∈U

f ku

• F0 is the number of distinct items in Σ (letting 00 = 0)

• F1 = n

• F2 is the Gini index of Σ (provides info on data skew)

Computing F1 using small space is easy (O(log n)-bit counter).
What about k 6= 1?

15

Streaming algorithm for computing F0

• Σ = x1, x2, . . . ∈ U? (|Σ| unknown). Observe that F0 ≤ |U|.

• To compute F0 exactly: F0 = O(|U|) counters

• Probabilistic Counting: approximate F0 using exponentially smaller
space (log |U| bits) with probabilistic guarantees.

Probabilistic Counter

• Array C of log |U| bits

• Hash Function h : U → [0..|U|− 1]. (Assume that h is fully random)

• Function t(i): given i ∈ [0..|U| − 1] returns number of trailing
zeroes in binary representation of i . (i = 12 = (1100)2 → t(i) = 2)

• All elements of C are initialized to zero. Upon seeing xi , set
C [t(h(xi)] = 1. When Σ ends, let R be the largest index of C with
C [R] = 1. Return F̃0 = 2R .

16

Probabilistic guarantees (sketch, see [DF08])

• Intuition: If h is fully random, there will be on average |U|/2j

values mapped to values vith at least j trailing zeroes (|U|/2j

are the integers in [0..|U| − 1] with at least j trailing zeroes in
their binary representation).

• In order to set the j-th most significant bit of C with constant
probability, the stream must contain Ω(2j) distinct items!

Lemma

If Zj = # distinct items x ∈ Σ with t(h(x)) ≥ j , then
E [Zj] = F0/2j and Var [Zj] < E [Zj].

Proof.

Zj can be seen as the sum of F0 i.i.d. Bernoulli variables Wx , one
for each distinct item x ∈ Σ, whose value is 1 if t(h(x)) ≥ j . We
have that Pr(Wx = 1) = (F0/2j)/F0 = 1/2j . Then E [Zj] = F0/2j

and Var [Zj] = E [Zj](1− 1/2j) < E [Zj].

17

Probabilistic guarantees (cont’d)

Theorem

Let 2R be the returned value. Than, for any c > 2,

Pr(F0/c ≤ 2R ≤ cF0) ≥ 1− 2/c

Proof idea: Straightforward combination of previous Lemma +
Markov and Chebyshev’s inequalities (see [DF08])

Exercise: High Probability Guarantees

Devise a simple technique to obtain the same guarantees of the
Theorem with high probability 1− 1/|U|k . The space requirement
should increase from log2 |U| bits to O

(
log2 |U|

)
bits.

Hint: Keep several independent replicas of the counter and . . .

18

References

For references to seminal work on streaming see:

C. Demetrescu and I. Finocchi. Chapter 8: Algorithms for Data
Streams. In Handbook of Applied Algorithms, Wiley-IEEE Press,
2008. (pdf provided in Moodle)

19

