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This is a collection of basics and basic examples of probabilistic analysis of discrete
random variables, very much biased towards what we will need in the course on Random-
ized Algorithms. Even if you know some of the problems, it is important to understand
the methods used for the analysis.

There are many exercises, some easy and some difficult, and what of the two criteria
applies may very much depend on the solver. Moreover, beware of the fact that some of
the exercises are ill-posed (let it be intentional or because I made a mistake) – that is, the
problem statement has to be corrected or made more precise. It is part of the exercise to
do so.

Perhaps you won’t do all the exercises, but those you do, do them carefully and prepare
a clean written solution. Writing is part of a scientist’s life (and of a Ph.D. student’s, in
particular), and I recommend to train this skill on a small scale.

Finally, my experience is that besides doing exercises the best training for under-
standing some material is to design your own exercises. More than once, by doing so I
discovered new results, some of which even led to publications. So go ahead and surprise
(and tease) your colleagues and me with exercises (of which you know the solutions) or
open problems! This is very much in the tradition of great mathematicians. For example,
when discovering a new result, Fermat would not publish the proof, but challenge his col-
leagues instead. We know that the challenge lasted for quite some time in some instances
(and think about it – that’s what he is famous for).

1 Notation

Briefly browse through this list. I hope this notational prologue doesn’t scare you off; it
will probably not contain any big surprises. If so, make sure you learn something about
the respective entities!

Doing your exercises, you are not expected to stick to these notations (after all, the
parallel course may deviate in details), but make sure that you for yourself agree on some
reasonable consistent notation. Actually, on the blackboard, I will use IN forN, ZZ for Z,
IR forR etc.
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N �� f�� �� � � �g . . . natural numbers

N� �� f�� �� �� � � �g . . . nonnegative integers

Z �� f� � � ������� �� �� �� � � �g . . . integers

fi��jg �� fn � Z j i � n � jg� i� j � Z

R . . . real numbers

R
�

�� fx � R j x � �gg . . . positive real numbers

R
�

� �� fx � R j x � �gg . . . nonnegative real numbers

For n� k � N�,

Hn ��

nX
i��

�
i

� � �
�

�
�

�
�

� � � �� �
n

. . .nth Harmonic number

n� ��

nY
i��

i �
�
� if n � �,

n � �n� �	� if n � �.
. . .n factorial

�
n

k
�

��

Qk��
i�� �n� i	

k�

. . . binomial coefficient
nk ��

k��Y
i��

�n� i	 . . . falling powers

For a set A and k � Z,


A . . . cardinality of set A

�A . . . set of subsets of A (power set)

Ak . . . set of sequences over A of length k

Ak . . . set of sequences of length k of distinct elements over A�
A

k
�

. . . set of subsets of A of cardinality k

Note that for a finite set A, n � 
A, and k � N�,


�A � �n� 
�Ak	 � nk� 
�Ak	 � nk� and 

�
A

k
�

�
�
n

k
�

�

Here is an important real number, and our notation for logarithms.

e ��

�X
i��

�
i�

� lim
n��

�
� �

�
n

�n
� ��������

or the real number such that

R
e
�

dt
t � �

logb . . . logarithm base b, b � R�

ln �� log
e

. . . natural logarithm

lg �� log� . . . binary logarithm
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For a statement S that can be true or false,


S� ��

�
� if S is true,

� if S is false.
. . . indicator function for statement S

And two extra entries:

min�max . . . minimum and maximum of a set of real numbers�

min � ����max� �� ��

Sn . . . set (group) of permutations of f���ng, n � N

2 Discrete Probability

I assume that you have some preknowledge in probability theory, but let us recapitulate
the small subset of it which we will need for our purposes. We will employ very concrete
probability theory (as opposed to abstract probability theory); we simply use it as a tool.
When writing this I borrowed much from chapter 8 in [2], a book to be recommended not
only for that chapter.

We restrict ourselves to discrete probability spaces, and we will omit ‘discrete’ from
now on. Roughly speaking, such a probability space consists of a (possibly infinite) set
of things that can happen, each of which gets assigned a probability that it happens. This
mapping is called probability distribution, since it distributes the value 1 among the things
that can happen.

Definition 2.1 (Probability Space) A probability space is a pair ���Pr	 where � is
a set and Pr is a mapping �� R

�
� such that

X
���

Pr��	 � � �

Every subset A of � is called an event, and the mapping Pr is extended to events by
setting

Pr�A	 ��
X

��A
Pr��	 �

The elements in � are the elementary events. If � is finite and Pr��	 � �
��

for
all � � �, then Pr is called uniform distribution on �. We use �� for the set of
elementary events with positive probability,

�� �� f� � � j Pr��	 � �g �
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Rolling dice. Consider the six sides of a die denoted by

D �
n

1 � 2 � 3 � 4 � 5 � 6
o
�

D models the top side of the die as it lands on the table in an experiment. We consider fair
dice, i.e. Pr�d	 � �

�

for all d � D. The pair �D�Pr	 is a probability space with uniform
distribution.

For example, Deven � f 2 � 4 � 6 g is the event of having an even number of spots
on the top side; Pr�Deven	 � �� �

�
� �
�

.
Rolling a pair of fair dice is modeled by the set

DD �� D� �
n

1 1 � 1 2 � 1 3 � � � � � 6 5 � 6 6

o

of 36 elementary events with the uniform distribution. Note that the two dice are assumed
to be distinguishable, say one as the first die, and the other as the second. For the event

DD� �
n

1 1 � 2 2 � 3 3 � 4 4 � 5 5 � 6 6

o

we have Pr�DD�	 � � � �
��

� �
�

, and we say that the probability of having the same
number of spots on both dice is �

�

. The event, DD
��

, of having a distinct number of spots on

the dice is the event complementary to Pr�DD�	; hence, Pr
�
DD
��

�
� � � Pr�DD�	 �

	
�

.
The event DD

��

partitions into the event DD
�

of having more spots on the second die than
on the first, and DD

�

� DD
��

nDD
�

. DD
�

and DD
�

have the same cardinality because of the
bijection dd� 	� d�d. Hence,

Pr�DD
�

	 � Pr�DD
�

	 �

Pr
�
DD
��

�
�

�

�
��

�

Flipping coins. Another classical probability space is that of a coin falling on one of
its two sides, which results in head or tail with some given probability. Let us use C �

f
H �
T g for the set of elementary events, and let Pr�
H 	 � p and Pr�
T 	 � � � p for
some p � R, � � p � �. If p � �

�

, then we call the coin fair; otherwise, it is called biased.
What if we want to model the experiment of repeatedly flipping a coin until we end up
seeing head for the first time? Then

C � � f
H��z	
e�

�
T
H� �z 	
e�

�
T
T
H� �z 	
e�

� � � �g � f
T
T
T � � �� �z 	
e�

g

where we introduced some convenient shorthands for the elementary events. Here Pr�ei	 �

p��� p	i, for i � N�, and Pr�e�	 � �. At this point accept this as a definition and check
that indeed

P�
i�� p�� � p	i � �. Let C �
� � fei j i eveng, the event of waiting an even
number of tails until we succeed to see a head. Let C�� � fei j i oddg. We have

Pr�C �
�	 �

�X
i��

p��� p	�i � p
�X

i��
�

��� p	�
�i

�

p

�� ��� p	�
�

�
�� p

�
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Since C �
� is – apart from a zero probability elementary event – the event complementary

to C �
�, we have

Pr�C �
�	 � �� �
�� p

�
�� p

�� p
�

Definition 2.2 (Random variable) Given a probability space ���Pr	, a random
variable is a real-valued functiona defined on the elementary events of a probabil-
ity space, i.e.

X � �� R �

If A is an event, then

� 	� 
� � A�

is the indicator variable for event A.

aThe fact that a random variable has to be real-valued is a restriction we apply here. In general, the
image of a random variable may be just any set.

For the probability space of a single rolling die, we could consider the random variable X

that maps the top side to the number of spots we see on this side

X � 1 	� �� 2 	� �� 3 	� �� 4 	� �� 5 	� �� 6 	� � �

or we could map to the number of spots on the invisible side sitting on the table

X � � 1 	� �� 2 	� �� 3 	� �� 4 	� �� 5 	� �� 6 	� � �

The mapping

Y � 1 	� �� 2 	� �� 3 	� �� 4 	� �� 5 	� �� 6 	� �

is the indicator variable for the event of seeing an even number of spots (previously de-
noted by Deven).

Note that X and X � depend on each other in the following sense. Suppose we know

X�d	 for some d � D, without knowing d itself, then we know also X ��d	, because

X�d	 �X ��d	 � � for all d � D. We write this as

X �X � � �

for short, omitting the ‘�d	’. Similarly, X depends on Y , although not as explicitly as

X depends on X �. Namely, Y � � tells us something about X: Y �d	 � � � X�d	 �

f�� �� �g, which we abbreviate as

Y � �� X � f�� �� �g �

In contrast to this consider two random variables X� and X� on the space of two rolling
dice. X� maps to the number of spots on the first die and X� to the number of spots on the
second die. If X���	 � �, say, we cannot give a better prediction for the value of X���	.

5

The same is true for any value possibly attained by X�. So X� and X� have completely
independent behavior.

For a last example in this context, let Z be the indicator variable for the event that the
number of spots on the first die is at most the number of spots on the second die; we could
write this as Z �� 
X� � X��. Now, Z��	 � � for some � � DD still allows all possible
outcomes of X���	. However, X� depends on Z in the sense that Z � � makes it more
(and most) likely that X� � �. That is, knowledge of Z allows a better prediction of X�

(again, without seeing the underlying event).
Next we will formally capture this intuitive notion of independence.

Definition 2.3 (Independence) LetX and Y be random variables defined on a com-
mon probability space. We say that X and Y are independent random variables if

Pr�X � x 
 Y � y	 � Pr�X � x	 � Pr�Y � y	

for all x� y � R. A collection Xi, � � i � n of random variables on a common
probability space is called mutually independent if

Pr�Xi� � xi� 
Xi� � xi� 
 � � � 
Xik � xik	 �

Pr�Xi� � xi�	 � Pr�Xi� � xi�	 � � � � � Pr�Xik � xik	

for all k � f���ng, all � � i� � i� � � � � � ik � n and all �xi� � xi� � � � � � xik	 � Rk.

Again, we have used some jargon: ‘X � x’ short for the event f� � � j X��	 � xg,
‘X � x 
 Y � y’ short for f� � � j X��	 � x 
 Y ��	 � yg etc.

It is important to realize that mutual independence is different from pairwise indepen-
dence. For an example, consider the probability space of a pair of fair coins,

C� � f
T
T �
T
H �
H
T �
H
H g

with uniform distribution. Now we define three indicator variables

H� �� 
first coin shows
H � �

H� �� 
 second coin shows 
H � � and

H� �� 
 exactly one coin shows
H � �

All three variables attain both � and � with probability �
�

. We can verify that the variables
are pairwise independent, but

Pr�first coin shows 
H 
 second coin shows 
H 
 exactly one coin shows 
H 	 � �

and not �



as required for mutual independence.

Definition 2.4 (Expectation) Let X be a random real-valued variable. The expec-
tation (expected value, mean) of X is defined as

E�X	 ��

X
x�X����

x � Pr�X � x	 (1)

provided this infinite sum exists.
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For the example of rolling dice we have

E�X	 �

�X
i��

i
�

�
�

��
�

�
�

�
� ��� (2)

or for the random variable X�

E
�
X�

�
�

�X
i��

i�
�

�
�

� � � � � � �� � �� � ��

�

�
��

�
� ��������

Note that this was just another shorthand. We used X� for the random variable

� 	� �X��		� �

Observe that in our example � E�X		� � 
�



�� ��
�

� E�X�	. Also, if X and Y are
random variables, then we cannot expect E�XY 	 � E�X	 E�Y 	. Here XY stands for
the random variable � 	� X��	Y ��	.

Consider X and X � as defined for a single die. Then

E�XX �	 �
�� � � �� � � �� � � �� � � �� � � �� �

�

�
��

�
� �������

which is obviously not equal to E�X	 E�X �	 � 
�



� �����.
However, when it comes to linear functions of random variables, we have the follow-

ing lemma, which is absolutely central for our investigations!

Lemma 2.1 (Linearity of Expectation) Let X and Y be random variables defined
on a common probability space and let c � R. Then

E�cX	 � cE�X	 and E�X � Y 	 � E�X	 � E�Y 	 �

provided E�X	 and E�Y 	 exist.

Here is one typical route along which we will use the linearity of expectation. Recall
the experiment of repeatedly flipping a coin until we see head for the first time, assuming
that the coin flips are independent and head appears with probability p, � � p � �. What
is the expectation for the number, X , of tails we see? Denote by Xi, i � N, the indicator
variable that we see a tail in the ith round without having seen a head before. We have

X �
P�

i��Xi. Pr�Xi � �	 � ��� p	i, since this is a conjunction of i independent trials
with success probability ��� p	. Hence,

E�Xi	 � �� Pr�Xi � �	 � �� Pr�Xi � �	 � Pr�Xi � �	 � ��� p	i �

and1

E�X	 � E
� �X

i��
Xi

�
�

�X
i��

E�Xi	 �

�X
i��

��� p	i �

�

�� ��� p	
� � �

�� p
p

�

1Here we have to say “provided all expectations and sums involved exist!”
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Note that the Xi’s are not independent: Xj � � � Xi � � for all i � j, and so

Pr�Xi � � 
Xj � �	 � ��� p	j �� ��� p	i�j.
I know that there is a direct way of deriving this expectation, since we know the

probabilities Pr�X � i	, i � N�. But in many instances we will appreciate that it is
possible to determine the expectation without knowing the distribution.

The lemma on the linearity of expectation made no request for independence, while
this is required for a similar statement about the product of random variables.

Lemma 2.2 (Product of Independent Random Variables) Let X and Y be two in-
dependent random variables defined on a common probability space. Then

E�XY 	 � E�X	 E�Y 	 �

provided E�X	 and E�Y 	 exist.

Here is a small ‘triviality’ which is the core of the so-called probabilistic method, where
one proves the existence of certain objects by analyzing random objects.

Lemma 2.3 (Existence from Expectation) Let X be a random variable on a prob-
ability space ���Pr	 for which the expectation E�X	 exists. Then there exist elemen-
tary events �� and �� with

X���	 � E�X	 and X���	 � E�X	 �

Here is another simple fact which we will employ for deriving estimates for the probability
that a random variable exceeds a certain value – so-called tail estimates.

Lemma 2.4 (Markov’s Inequality) Let X be a nonnegative random variable (i.e.

X��	 � R�
� ) for which E�X	 exists. Then, for all � � R� ,

Pr�X � �E�X		 � �
�

�

Equality holds iff X���	 � f�� �E�X	g.

Proof Let t � R� .

E�X	 �

X
x�X����

x � Pr�X � x	

�

X
x�X����� x�t

x��z	
��

�Pr�X � x	 �

X
x�X����� x�t

x��z	
�t

�Pr�X � x	

� t � X
x�X����� x�t

Pr�X � x	

� t � Pr�X � t	

That is,

Pr�X � t	 � E�X	
t

� for all t � R� .
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Moreover, the inequality is strict iff there exists an x � X���	 with � � x � t, or
there exists an x � X���	 with x � t. It follows that both inequalities are identities iff

x � X���	 implies x � f�� tg.
Now set t � �E�X	 to conclude the statement of the lemma.

We close this section with a short discussion of conditional probabilities and expecta-
tions.

Suppose somebody, call him Mr. McChance, offers you the following deal. First, you
get ��� swiss francs. Then you have to roll two dice. If the second die shows a larger
number of spots than the first one, you have to return that number (of spots on the second)
of francs to friendly Mr. McChance; otherwise you have to return ��� francs to him. That
may look quite attractive, at first glance, since the expected number of spots on the top
face of the second rolling die is ���. And we even have some chance of paying ��� only.
But then you play the game several times, and it looks like you are loosing. You are
getting worried, and decide upon a thorough investigation of the game.

In order to analyze our expected gain or loss in the game, we have to distinguish two
cases: The event DD

�

of the first die showing at least as many spots as the second, and the
complementary event

DD
�

� f 1 2 � 1 3 � 1 4 � 1 5 � 1 6 �

2 3 � 2 4 � 2 5 � 2 6 �

3 4 � 3 5 � 3 6 �

4 5 � 4 6 �

5 6 g

Here, of course, we see the pitfall of the procedure. Given the event, that we have to
pay the number of spots on the second die, this number tends to be large – there is no
configuration for that number to be 1, one for it to be 2, . . . , while there are 5 for it to
be 6. Within the space of the �� possible elementary events in DD

�

, assuming uniform
distribution among them, we expect to pay

�� �
��

� �� �
��

� �� �
��

� �� �
��

� �� �
��

�
��

��
� ������� �

So much for the bad news. But we may be lucky,DD
�

occurs (the chance for this to happen
is �� in �� cases), and we have to pay ��� francs. We weight the two cases according to
their probabilities to occur, and conclude that the expected number of francs we have to
pay back is

��
��

� ��
��

�
�

�
� ��
��

�
���

��
� �������� �

So, after all, we have an expected gain of roughly ��� Swiss francs in the game. We can
conclude that either (i) we made a mistake in our calculation, (ii) Mr. McChance brought
loaded dice with him, (iii) bad luck, (iv) etc.

The analysis we just performed employs conditional probabilities – an essential tool
in the analysis of randomized algorithms.
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Definition 2.5 (Conditional Probabilities) Let A and B be events in a probability
space with Pr�B	 � �. The conditional probability of A, given B, is defined to be

Pr�A jB	 ��

Pr�A �B	

Pr�B	

�

(In particular, let X and Y be random variables defined on a common probability
space. Then the conditional probability of the event X � x, given the event Y � y,
is

Pr�X � x jY � y	 �

Pr�X � x 
 Y � y	

Pr�Y � y	

for all x� y � R with Pr�Y � y	 � �.)
Let X be a random variable and B be an event in a common probability space,

Pr�B	 � �. Then X jB is the random variable obtained as the restriction of X to
the probability space �B�Pr�	 with

Pr� � � 	� Pr��	

Pr�B	
�

Conditional probabilities usually create some ‘notational confusion’, and let me just add
to this by asking you to verify the identity

Pr�X � x jY � y	 � Pr� ��X jY � y	 � x	 �

Anyways, a random variable has an expectation, and so has X jY � y.

E�X jY � y	 �

X
x��XjY�y���Y �y���

xPr��X jY � y	 � x	

�

X
x�X����

xPr�X � x jY � y	 �

provided the sum exists.
In the analysis of the game with McChance, we analyzed the random variable X for

the amount we have to pay back after the experiment. Let Y be the indicator variable for
the event DD

�

. Then E�X jY � �	 � ��� and we calculated E�X jY � �	 � ������� . The
justification for our final step in the derivation of E�X	 is given in the lemma below.

Lemma 2.5 (Laws of Total Probability and Expectation) Let X and Y be two
random variables on a common probability space ���Pr	. Then

Pr�X � x	 �

X
y�Y ����

Pr�X � x jY � y	 Pr�Y � y	 (3)

for x � R, and

E�X	 �

X
y�Y ����

E�X jY � y	Pr�Y � y	 � (4)

provided E�X	 exists.
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Proof X
y�Y ����

Pr�X � x jY � y	Pr�Y � y	

�

X
y�Y ����

Pr�X � x 
 Y � y	

Pr�Y � y	

Pr�Y � y	

�

X
y�Y ����

Pr�X � x 
 Y � y	

� Pr�X � x	

since every elementary event � � �� with X��	 � x is mapped by Y to a unique

y � Y ���	. X
y�Y ����

E�X jY � y	Pr�Y � y	

�

X
y�Y ����



� X

x�X����
xPr�X � x jY � y	

�
A Pr�Y � y	

�

X
x�X����

x

X
y�Y ����

Pr�X � x jY � y	Pr�Y � y	

�

X
x�X����

xPr�X � x	

� E�X	

In the game with McChance, we derived

E�X	 � E�X jY � �	� �z 	
����	

Pr�Y � �	� �z 	
�	���

� E�X jY � �	� �z 	
	��

Pr�Y � �	� �z 	
�����

�

Exercise 2.1 Let X be a nonnegative random variable and s� t � R��, s � t. What can
you say about E�X	 in terms of Pr�X � s	 and Pr�X � t	?

Exercise 2.2 Let X�� X�� � � � � Xn be f�� �g-valued random variables defined on a com-
mon probability space. Show that they are mutually independent iff

Pr
�


i�I
�Xi � �	

�
�

Y
i�I

Pr�Xi � �	

for all I � f���ng.
Exercise 2.3 Poisson Distribution

� � R�. An N�-valued random variable X is said to have the Poisson distribution with
parameter �, if Pr�X � i	 � �i

i�
e�� for all i � N�. Show that this is indeed a probability

distribution and determine its expectation. Moreover, show that if X and Y have the
Poisson distribution with parameters � and �, respectively, then X � Y is a random
variable with Poisson distribution.
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3 Left-to-Right Minima in a Permutation

n � N. Consider a random permutation �a�� a�� � � � � an	 from the uniform distribution on

Sn. We read the permutation from left to right, and we count how often the minimum of
the numbers seen so far changes. That is, we investigate the random variable

X �� 
fi � f���ng j ai � minfa�� a�� � � � � ai��gg �

X , or related distributions, occur frequently in algorithms. But, perhaps even more im-
portant, we will encounter (or recall) some simple methods.

Backwards analysis. In order to analyze the expectation of X , we let Xi, � � i � n,
be the indicator variable for the event that position i holds a left-to-right minimum;

Xi �� 
ai � minfa�� a�� � � � � ai��g� �

Clearly, X �
Pn

i��Xi. So knowing the expectations of the Xi’s, or equivalently, the
probabilities

Pr�ai � minfa�� a�� � � � � ai��g	 � Pr�ai � minfa�� a�� � � � � aig	

will suffice.
Let us generate the random permutation from left to right, i.e. we choose ai uniformly

at random from f���ng n fa�� a�� � � � � ai��g, for i � �� �� � � � � n. (Check here that indeed
every permutation is generated with probability �

n�

in this way.) It seems difficult to an-
alyze what the probability of ai � minfa�� a�� � � � � aig is; after all, that heavily depends
on the numbers chosen so far. Here comes a simple twist to our assistance: Although the
problem statement suggests that we generate the permutation from left to right, we should
do it in the other direction, ‘backwards’, so to say. That is, we choose ai uniformly at
random from f���ng n fai��� ai��� � � � � ang, for i � n� n� �� � � � � �. Now, independently
of the choices in fai��� ai��� � � � � ang,

Pr�ai � min�f���ng n fai��� ai��� � � � � ang		 � �
i

�

We can conclude that

E�X	 � E
�
nX

i��
Xi

�
�

nX
i��

E�Xi	 �

nX
i��

Pr�Xi � �	 �

nX
i��

�
i

� Hn �

The nth Harmonic number. More than once we will encounter Hn, the nth Harmonic
number, in our analyses. So it is worthwhile to know some of its properties. Hn looks
like a discrete analogue of

R n
�

dt
t
� lnn. In fact, an appropriate picture of the graph of the

function �
t

will show you that

ln�n� �	 � Hn � � � lnn � for n � ��

Hn � lnn converges to a constant � as n goes to infinity. � � ���������� is called Euler’s
constant, and – as far as I know – it is not known whether this number is rational or
irrational.
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Higher moments. Our backwards analysis shows that the Xi’s are pairwise indepen-
dent. Hence, we can calculate E�X�	 �

Pn
i��

Pn
j�� E�XiXj	. On one hand, for i �� j,

E�XiXj	 � E�Xi	 E�Xj	 �
�
ij

. On the other hand, we have E�X�
i 	 �

�
i
� �
i�
���
i
� �
i�
	.

Hence,

E
�
X�

�
� �Hn	

� �Hn �
nX

i��
�

i�
�

(The sum

P�
i��

�
i�

converges to2 ���	 � ��
�

.) Therefore,

var�X	 �� E
�

�X � E�X		�
�

� E
�
X�

�
� E�X	� � Hn �

nX
i��

�
i�

�

Now, employing Markov’s Inequality, we may conclude that

Pr
�
jX � E�X	j � �

q
Hn

�
� Pr

�
jX � E�X	j � �

q
var�X	

�

� Pr
�

�X � E�X		� � �� var�X	
�

� �
��

for � � R� , since

p
Hn �

q
var�X	. This application of Markov’s Inequality to �X �

E�X		� via the variance is called Chebyshev’s Inequality.

Double check. It is always worthwhile to check a result on small numbers or examples.
The fact that we have exact results instead of asymptotic bounds, allows us to do so. So
here are the permutations in S� with left-to-right minima underlined, and the numbers of
such minima.

permutation X

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

So for n � �, we have E�X	 � �����������

�

� ��
�

which, indeed, equals �� �
�
� �
�
� H�.

Moreover, E�X�	 � ������
����

�

� ��
�

, which we have to compare with�
��

�
��

�
��

�
�

�
� �

�
�

�
�

�
�

�
��� � ��� ��� �� �

��

�
���

��
�

��
�

�

Just to avoid any misunderstanding: Such checking of small examples (numbers) does not
add anything to the correctness of a result or a proof, but it may falsify a result – which is
extremely helpful. In this spirit, a good proof should be written in a way, that it is indeed
easy to falsify, if it is not correct!

2� the Riemann zeta function.

13

Analysis by counting. Perhaps you are not convinced by the backwards argument above.
So let us do the proof by brute force counting. Let � � i � n. How many permutations
have a left-to-right minimum at position i? We can generate such a permutation by first
choosing any n � i numbers in f���ng for positions i � � to n, and place them in these
positions in �n � i	� ways; gives

�
n
n�i

�
�n � i	�. Then we have to choose the smallest

among the remaining numbers for position i; gives one option only. Finally, we can place
the remaining i � � numbers in �i � �	� ways in positions � to i � �; gives us �i � �	�

possibilities. We have counted�
n

n� i
�

�n� i	�� �� �i� �	� �
n�

i
�

There are n� permutations altogether, so if we choose a random one uniformly among
those, with probability n��i

n�

� �
i

position i will contain a left-to-right minimum.
Given � � i� � i� � � � � � ik � n, we can calculate that

Pr�Xi� � � 
Xi� � � 
 � � � 
Xik � �	 �

�

i�i� � � � ik

which shows mutual independence of the variables Xi (consult exercise in previous chap-
ter). This gives us access to the expectation E

�
�X

�

.

Even higher moments. Note that3

�X �

X
A��f���ng


Xi � � for all i � A� �

You may have to think about this. After clarifying the identity, you may be annoyed, since
we managed to write something simple in a complicated way. However, we know that

Pr�Xi � � for all i � A	 �

�Q
i�A i

and, due to the blessing of linearity of expectation, we conclude for n � �

E
�

�X
�

�

X
A��f���ng

�Q
i�A i

�

X
A��f���n��g

�Q
i�A i

�



� �
n
� X

A��f���n��g

�Q
i�A i

�
A

That is, if we set fn � E
�

�X
�

for permutations of length n, then fn � fn�� � �
n
fn�� for

n � �, and f� � �. We can easily verify that fn � n � �. Following our previous advice
we look at S� and calculate

E
�

�X
�

�
�� �� � �� �� � �� ��

�

�
��

�
� � �

3Recall that �S� is the indicator function for a statement S that can be true or false.
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And, again, we get a tail estimate by applying Markov’s Inequality, now to �X .

Pr�X � �� � �	 lg�n� �		 � Pr
�

�X � ������ lg�n���
�

� Pr
�

�X � �n� �	���
�

� Pr
�

�X � �n� �	� E
�

�X
��

� �n� �	��

for all � � R� .
I have to admit that there is a more direct way of obtaining E

�
�X

�

. Namely,

E
�

�Xi
�

� �� � �
i

� �� �
�

�� �
i

�
�

i � �
i

which leads to

E
�

�X
�

� E
�

�
P
n
i��
Xi
�

� E
�
nY

i��
�Xi

�
�

nY
i��

E
�

�Xi
�

�

nY
i��

i � �
i

� n� � �

Note that here it was important that the Xi’s are mutually independent! Now, of course,
this derivation raises the question why we should restrict ourselves to a base of �. Recall
that we derived a tail estimate via this exponential moment, and perhaps a base different
from � allows a better estimate.

Yet another analysis of E�X	. What is the probability that the number n is a left-to-
right minimum in the random permutation �a�� a�� � � � � an	? This is the case iff a� � n,
which happens with probability �

n

. Adding n to a permutation of f���n� �g will not
change the number of left-to-right minima, unless n is first, when the number of such
minima is increased by �. So if we denote by fn the expected number of left-to-right
minima in a random permutation in Sn, n � N, then f� � � and fn � fn�� � �

n

, which
immediately shows fn � Hn. A closer look at the analysis reveals that we obtained the
result here on a path different from our previous analysis. Namely, we looked at indicator
variables Yi for the event that the number i occurs as left-to-right minimum. It is easy to
derive E�Yi	 �

�
i

, since Yi � � iff i is first among f���ig.

A game. Here is a randomized game, or a stochastic process, if you like. You start with
a number n � N. If n � �, nothing happens. If n � �, a number i is chosen uniformly
at random from f���n� �g, and we continue with this number i as with n before. What
is the expected number of steps it takes to finish the process?

Let Zn, n � N, be the random variable for the number of steps when the process is
started with the number n. Z� � �. If n � �, we partition the games according to the
first number chosen – this invokes conditional expectations. Namely, let F be the random
variable for this first number chosen, then

E�Zn	 � E�Zn jF � �	 � Pr�F � �	
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� E�Zn jF � �	 � Pr�F � �	

� � � �

� E�Zn jF � n� �	 � Pr�F � n� �	

Since

E�Zn jF � i	 � � � E�Zi	 and Pr�F � i	 �

�
n� �

� � � i � n� ��

we have

E�Zn	 �
n��X

i��
�� � E�Zi		

�
n� �

� � �

�
n� �

n��X
i��

E�Zi	 � for n � �.

Let us use zn short for E�Zn	. Then z� � � and zn � � � �
n��

Pn��
i�� zi, or equivalently

�n� �	zn � �n� �	 � �z� � z� � � � �� zn�� � zn��	� for n � �.

Now we can subtract this identity with n� � substituted for n

�n� �	zn�� � �n� �	 � �z� � z� � � � �� zn��	� for n � �.

which gives, for n � �,

�n� �	zn � �n� �	zn�� � � � zn��

�n� �	zn � � � �n� �	zn��

zn �

�
n� �

� zn��

The Harmonic number is back again! Since z� � � and z� � �, we have derived zn �

Hn��, i.e.

E�Zn	 � Hn��� for n � N�

New or old? We have seen that, for n � �, E�Zn	 equals the expected number of left-
to-right minima in a random permutation in Sn��. This may be purely incidental; e.g. the
underlying distributions may be completely different, so we cannot carry over the higher
moments we have derived for left-to-right minima.

Here is how the two distributions relate to each other. Note that our game requires
a random source that generates the random numbers as required. Suppose we had some
access to random permutations, how could we use that for the game? At the beginning
of the game starting with n we request a random permutation �a�� a�� � � � � an��	 in Sn��.
Then, we let a� be the first random number needed in the game. Clearly, a� is a random
number uniform in f���n� �g. When we need the next number, i.e. a random number in

f���a�g (unless a� � �), then we first try a�, if that is not smaller than a�, we try a� and so
on. The next useful number is the next left-to-right minimum in the permutation! And if
we proceed like this, the number of left-to-right minima will be the number of steps our
game will take.
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If we play the game as described above, we see that the two distributions – steps
in the game and left-to-right minima – are the same. But do we really get the random
numbers according to the right distribution? To this end, imagine that you generate
the distribution on the fly from left to right by choosing ai uniformly at random from

f���ng n fa�� a�� � � � � ai��g. The numbers exceeding the current left-to-right minimum
will be ignored (for the game), and the first number smaller than the current left-to-right
minimum will indeed be uniform among all such numbers.

So, after all, all we have derived for X can now be reused for Zn��.

Random paths in transitive tournaments. The transitive tournament Tn, n � N, is
the directed graph with vertex set V � V �Tn	 � f���ng and edge set

E � E�Tn	 � f�i� j	 � V � j n � i � j � �g �

Every sequence of numbers n � i� � i� � � � � � ik � � describes a possible path from n

to � of length k. Suppose we follow such a path in a random manner by always choosing
at a vertex an outgoing edge uniformly at random from all outgoing edges. It is easy to
see that we generate the same distribution on paths as in the game considered above; it’s
just a different point of view.

1/3

1/3

1/3

11/2

1/2

4 3 2 1

Exercise 3.1 Harmony in the Exponent
Find good upper and lower bounds for e

Hn , n � N.

Exercise 3.2 Sum of Harmonic Numbers
What can you say about

nX
i��

Hi and

nX
i��

iHi� n � N ?

Exercise 3.3 Almost Riemann Zeta
What can you say about

nX
i��

�

i�i � �	
� n � N ?
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Exercise 3.4 A Product
What can you say about

nY
i��

�
� �

�
i

�
� n � N ?

Exercise 3.5 Qualities of Inequalities
Consider the random variable X for the number of left-to-right minima in a random
permutation in Sn. For n � ����, compare the tail estimates Pr�X � ��	 we get (i) via
Markov’s Inequality applied to X , (ii) via Chebyshev’s Inequality (i.e. Markov’s applied
to �X � E�X		�), and (iii) via Markov’s Inequality applied to �X .

Exercise 3.6 Paranoia
Here is an algorithm for computing the minimum of n distinct numbers, n � N. First we
permute the numbers at random (uniform). Then we perform the following steps on this
permutation �a�� a�� � � � � an	.

m���

for i� � to n do

if ai � m then

m� ai�

for j � � to i do

if aj � m then output “Something wrong!”�

output “m is the minimum”�

So the algorithm compares a next element with the previous minimum. If we have en-
countered a smaller element, we check it against all previous numbers – not trusting the
transitivity of the � relation. What is the expected number of comparisons (“ai � m” or
“aj � m”) of the algorithm? What is the maximum and what is the minimum number of
comparisons necessary?

Exercise 3.7 Left-to-right Minima and Maxima

n � N. Consider a random permutation �a�� a�� � � � � an	 of f���ng. How often does the
minimum or maximum change from left to right? More precisely, let

Mi �� �minfa�� a�� � � � � aig�maxfa�� a�� � � � � aig	 � for � � i � n.

What is the expected cardinality of fi � f���ng j Mi �� Mi��g?

Exercise 3.8 An Even Higher Moment
Consider X , the random variable for the number of left-to-right minima in a permutation
uniform from Sn. We have determined E
�

�X
�

. What is E
�

�X
�

? Use the expectation for

a tail estimate. Is it better than the one obtained via E
�

�X
�

?
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Exercise 3.9 A Low Moment
Consider X , the random variable for the number of left-to-right minima in a permuta-
tion uniform from Sn. What is E

�
��X

�

? Use the expectation for a tail estimate for

Pr�X � t	.

Exercise 3.10 Simultaneous Left-to-Right Minima

n � N. Consider two random permutations �a�� a�� � � � � an	 and �b�� b�� � � � � bn	, indepen-
dently drawn from the uniform distribution of Sn. What is the expected number of indices

i, such that both ai and bi are left-to-right minima?

Exercise 3.11 Change of Smallest Distance

n � N. We are given n points in the plane, all distances between the points distinct. Now
we consider a random permutation �p�� p�� � � � � pn	 of the points and count how often the
smallest distance between two points in fp�� p�� � � � � pig changes, for i � �� �� � � � � n?
What is the expected number of such changes? What can you say, if some of the pairs of
points have the same distance?

Exercise 3.12 Embracing Zero
You start with a pair �n�m	 of natural numbers. If n � m � � you are done. Otherwise,
choose a random number uniform in

fi � Z j � n � i � m� i �� �g �

If i is negative, move to the pair ��i�m	; if i is positive, move to �n� i	. What is the
expected number of steps until you are done?

Exercise 3.13 Survival of the First King

n � N. Consider a random permutation �a�� a�� � � � � an	 of f���ng. What is the expecta-
tion for minfi � f���ng j ai � a�g?

Exercise 3.14 Selection of a Leader

n � N. n people are sitting around a table, and each of them gets a random number in

f���ng, all distinct. Now everybody looks at her number i and checks the distance cwi to
the first number x � i in clockwise direction; e.g. if the immediate clockwise neighbor
has a smaller number, then cwi � �; if i � �, then cwi � n. What is the expectation for
the sum

Pn
i�� cwi? What are upper and lower bounds for this sum?

Exercise 3.15 Amongst Light Bulbs

n � N. You are sitting on a circle with n light bulbs, all initially dark. Now these light
bulbs are lit up, one at a time in random order. However, you realize such a new light bulb
to lit up only if all light bulbs along the circle (in clockwise or counterclockwise direction)
between you and this light bulb are still dark. So you definitely see the first and second,
but there is a chance that you miss the third. What is the expected number of light bulbs
you see being lit up?
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Exercise 3.16 A Light Bulb Amongst Light Bulbs

n � N. There are n light bulbs on a circle, all initially dark, and you are one of them.
Now these light bulbs are lit up, one at a time in random order. However, you realize
such a new light bulb to lit up only if all light bulbs along the circle (in clockwise or
counterclockwise direction) between you and this light bulb are still dark, and only as
long you yourself are still dark. So you see the first one, unless its yourself. What is the
expected number of light bulbs you see being lit up?

Exercise 3.17 Accumulating Left-to-Right Minima
Given a random permutation of f���ng, n � N, we add up the numbers which appear
as left-to-right minima. What is the expected sum? What if you add up the left-to-right
maxima?

Exercise 3.18 Probability of Getting All Primes
Suppose we consider the game described in this section, and we start the game with

n � ��. What is the probability that the sequence of numbers chosen in the course of the
game is ���� �� �� �� �� �	?

Exercise 3.19 Somewhat Slower Game
Here is a slight variation to the game from this section. You start with a number n � N.
If n � �, nothing happens. If n � �, a random number i uniform from f���ng is chosen,
and we continue with this number i as with n before. So the difference is that we can now
choose the number n as well! What is the expected number of steps it takes to finish the
process?

Exercise 3.20 An Even Slower Game
You start with a natural number n, n � �. If n � �, nothing happens. If n � �, two
distinct random numbers fa� bg uniform from

�f���ng
�

�

are chosen, and we continue with
the number maxfa� bg as with n before. What is the expected number of steps it takes to
finish the process?

Exercise 3.21 High Expectations?
Consider an N-valued random variable with Pr�X � i	 � �

i�i���

for all i � N. Show
that this is indeed a probability distribution, and determine the expectations of X , and of
the random variables Y �� �

X

and Z �� � � �
X

.

4 Independent Sets

An independent set in an undirected graph G � �V�E	, (V � f���ng and E �
�
V

�
�

), is a

subset I of V with E �
�
I

�
�

� �. Finding the maximum cardinality of an independent set
is NP-hard, and actually it is hard to approximate this number, unless P � NP .

Here we consider several ways of taking random independent sets. (m denotes the
number of edges of G.)
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Taking random subsets of a given size. How many vertices can we choose, so that we
can expect less than one edge among those vertices? Fix some natural number r � n. If
we choose a set R of r vertices at random (every set in

�
V
r

�

with the same probability),
then the probability for an edge fi� jg to have both endpoints in R is�

n��
r��

�
�
n
r

� �

r�r � �	

n�n� �	
�

For the random variable X �� 
�
�
R

�
�
� E	 we compute

E�X	 � m � r�r � �	

n�n� �	
�

mr�
n�

�

This quantity is less than one if r is chosen to be at most n	
p
m. That is, there must exist

an independent set of bn	pmc.
Now suppose you are actually trying to find a large independent set in a given graph.

If we choose r � bn	p�mc, then E�X	 � �	�. By Markov’s Inequality,

Pr�X � �	 � Pr�X � �E�X		 � �
�

�

Therefore

Pr�X � �	 � Pr�X � �	 � �� Pr�X � �	 � �� �
�

�
�

�
�

That is, a random set of bn	p�mc vertices is an independent set with probability at least

�
�

.
Suppose you have a graph and you repeat the experiment several times with r � ���

and you don’t get an independent set. Once you are close: there is only one edge e

among your set M of 100 vertices chosen. What would you do? Of course, you wouldn’t
reject M completely. Instead, you can remove one of the endpoints of e and you have an
independent set of size ��. We will see how this idea provides independent sets of much
larger size in general!

Repairing small defects. Let us fix a real number p, � � p � �. We choose S � V by
taking every vertex into S with probability4 p. For each edge in F �

�
S

�
�
�E, we remove

one endpoint from S and we obtain an independent set of size at least 
S � 
F in this
way. Let X be the random variable for 
S and let Y be the random variable for 
F . We
obtain

E�X � Y 	 � E�X	� E�Y 	 � np�mp� �
and this expression is maximized by p � n	��m	. For that value it yields E�X � Y 	 �

n�	��m	 (note that we assume here m � n	�; otherwise p � �). This is much better than
our previous bound of np

m

.

4This is similar to taking a random subset of size pn.
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Random ordering. Let 
 be an ordering of the vertices of G. We define a set S� � V ,
by letting i � S� if and only if none of its neighbors precedes i in the order 
. Clearly,

S� is an independent set in G. What is its expected size, if 
 is chosen uniformly at
random from Sn? For i � V , let Xi be the indicator variable for the event that i is in S�.
If di denotes the number of neighbors of i in G, then the probability of i to lie in S� is

�	�di � �	. It follows that

E�
S�	 � E
�
nX

i��
Xi

�
�

nX
i��

E�Xi	 �

nX
i��

�
di � �

� (5)

This bound is probably not very transparent, so let us try to conclude a bound in terms of

m � 
E. To this end, observe that5�Pn
i���di � �	��

n

���
�

Pn
i���di � �	

n

�
�m� n

n

�

and so

E�
S�	 � n�

�m� n
�

If G consists of k cliques of size s, then m � k
�
s

�
�

, and n � ks. Hence, the bound gives

k�s�

ks�s� �	 � ks
� k �

which is obviously tight. (Indeed, bound (1) implies already Turán’s Theorem, see [1,
page 81].)

Note, that in an algorithmic setting, we could look at the vertices of G in the order
given by 
 and add a vertex to a set T , if none of its neighbors are in T yet. In this way
we get a set T� � S�, which may be much larger than S�. For example, if G is a complete
bipartite graph with independent sets of size s, n � �s, then E�
S�	 � n	�s � �	 �

�n	�n� �	 � �, while T� will always contain n	� vertices.

Exercise 4.1 A Quadratic Program
Let G � �f���ng� E	 be a graph. Show that the solution to the quadratic program

maximize

nX
i��

pi �
X

fi�jg�E
pipj

subject to � � pi � � for all � � i � n

equals the maximum cardinality of an independent set.

Exercise 4.2 Large Cuts
Let G � �V�E	 be a graph. A cut is a partition of V into two sets, i.e. C � fS� V nSg for
some S � V . The set of edges in the cut, E�C	, is defined by ffx� yg � E j 
�fx� yg �

S	 � �g. Show that there is always a cut C with E�C	 � 
E	�. Show that, if E �� �,
then there is exists always a cut of size strictly larger than 
E	�.

5Harmonic mean cannot exceed arithmetic mean.
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Exercise 4.3 Three-Colored Triangles
Let G � �V�E	 be a graph with t triangles. Show that it is always possible to color the
vertices with three colors, such that �t

�

triangles have their vertices colored with three
distinct colors. What can you say about a coloring with four colors (still, you want to
count the triangles that have no two vertices colored with the same color)? What can you
say about the number of triangles that are not monochromatic (not all vertices the same
color)?

Exercise 4.4 Higher Moments for Random Cuts
A random cut fS� V nSg in a graphG � �V�E	 is chosen by letting each vertex to be in S

with probability �	�, independently from the other vertices. Let X be the random variable
for the size of such a random cut in a graph with n vertices andm edges. Determine E�X	

and E�X�	, and apply Chebyshev’s Inequality for a tail estimate. What can you say about

E�X�	 or �X?

Exercise 4.5 Points at Given Minimum Distance
Let S be a set of n points in the plane, no two at distance smaller than one from each
other. Find a function f�n	 (as large as you can), such that such a set has always a subset

S � of size f�n	 with no two points at distance smaller than two from each other.

Exercise 4.6 No or One Neighbor

n � N. We are given a graph G � �f���ng� E	 and a permutation 
 � �v�� v�� � � � � vn	 in

Sn. Now consider the following procedure that generates a subset F� of the vertices of G.

F � ��

for i� � to n do

if vi has no or one neighbor in F then

F � F � fvig�

output F �

What can you say about the subgraph ofG induced by F? Give estimates for the expected
size of F�, 
 a random permutation, in terms of n and m � 
E.

Exercise 4.7 Triangle-Free Induced Subgraphs with Many Vertices
Find some function f�n� t	 (as large as you can) such that every graph with n vertices
and t triangles has a triangle-free induced subgraph with f�n� t	 vertices.

Exercise 4.8 Triangle-Free Subgraphs with Many Edges
Find some function f�n�m� t	 (as large as you can) such that every graph with n vertices,

m edges, and t triangles has a triangle-free subgraph (not necessarily induced!) with

f�n�m� t	 edges.

Exercise 4.9 Dominating Sets
A dominating set of an undirected graph G � �V�E	 is a subset D of V such that every
vertex v � V n U has at least one neighbor in U . Propose probabilistic methods for
generating small dominating sets. Analyze, what you can guarantee for r-regular graphs
(all vertices have same degree r) with n vertices.
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Exercise 4.10 Bob and Clarissa
Bob and Clarissa were challenged to find a graph with 10 vertices, many edges and only
few cycles. Clarissa has the best example so far, but then Bob sends Clarissa an SMS
message saying

Found graph, 10 vert’s, 24 edg’s, 8 triang’s, 16 quad’s, no other cyc’s.

At first, Clarissa is amazed, but then she concludes that this graph must have a subgraph
with 10 edges that has no cycles at all. Now she is amused. Why could she come to the
conclusion, and why is she amused?

5 Expected Height of Random Search Trees

A random search tree for a set S of n keys (say, natural numbers, pairwise distinct) is
recursively built as follows: If S is empty, then the tree is empty (i.e. it has no vertex at
all). Otherwise, we choose a random key w from S (each key in S with probability �

n

),
we create a root vertex which stores w, and two pointers to a left child (which is a random
search tree for S�w �� fk � S j k � wg), and a right child (which is a random search
tree for S�w �� fk � S j k � wg); if S�w or S�w is empty, then the respective child
does not exist. The following figure displays all search trees for three keys, each with its
probability to occur as a random search tree.

1−
6

1−
6

1−
6

1−
6

1−
3

A number of expected quantities are quite easy to derive for such a random search tree
(if you know how). For example the expected depth of the smallest key in the tree is Hn�

� (this closely related to the number of left-to-right minima in a random permutation);
in general, the expected depth of the k-smallest key (we call this the key of rank k) is

Hn�k�� �Hk � �. The expected sum of the depth of all n keys is ��n� �	Hn � �n.
Here we are interested in the expected maximum depth of such a tree, i.e. the height

of a random search tree for n keys. The following describes a proof of an upper bound
for this quantity – surprisingly enough (after having seen the proof), this bound is already
tight as for the constant in the leading term.

So, for � � i � n, let Y �i�
n be the random variable for the depth of the key of rank

i in a random search tree for n keys. Then Xn �� maxfY ���
n � Y ���
n � � � � � Y �n�

n g is the
random variable for the height of the tree with n keys. Analyzing the maximum of random
variables is usually quite difficult (even more so than higher moments). But we will find
a way around.

We can write

E�Xn	 � lg E
�

�Xn
�

� lg E
�

�max��i�n Y
�i�

n

�
� lg E



� X

��i�n� i is leaf
�Y

�i�
n

�
A � (6)

24



The first inequality uses Jensen’s inequality which states that f� E�X		 � E�f�X		 for
any convex function f (provided the expectations exist). We can now estimate a random
variable involving ‘max’ by the random variable Zn ��

P
��i�n� i is leaf �

Y
�i�
n involving a

sum. The conditional part ‘i is leaf’ causes no problems as we shall see; in fact, we put it
there to make life easier.

Obviously, E�Z�	 � � and E�Z�	 � �. There are two trees on two vertices, each one
appears with probability �

�

, which gives E�Z�	 � �; by checking the figure above for the
case of three keys, we obtain E�Z�	 � �. Enough of fiddling around with small values.
For n � �, we get

E�Zn	 �
�

n

X
��i�n

E�Zn j root has rank i	 �

where E�Zn j root has rank i	 � �� E�Zi��	 � E�Zn�i		. Setting zn �� E�Zn	, we
have z� � �, z� � � and, for n � �,

zn �
�

n

X
��j�n��

zj � (7)

Consequently, for n � �, nzn � �n� �	zn�� � �zn��, and so nzn � �n � �	zn�� or

zn

�n � �	�n� �	�n� �	
�

zn��

�n � �	�n� �	n
� � � � � z�

� � � � � �

�
��

�

That is, zn � �n����n����n���

��

for n � �.
If we plug that bound into (6), then we get an upper bound of � lgn � O��	 �

���������� lnn � O��	 for the expected height of a random search tree. Does this give
already the right constant? Well, contrary to what we announced before, this is not the
case – yet! But we still have the base � to play with.

We set Zn ��
P

��i�n� i is leaf C
Y

�i�
n , with C some real number greater than �. Similar

to (6), we have E�Xn	 � logC E�Zn	. The recursion for zn �� E�Zn	 is the same
as the one given in (7), except that � gets replaced by �C, which eventually leads to

nzn � �n � �C � �	zn�� for n � �. This yields

zn � �� �
�C � �

n

	zn�� � �� �
�C � �

n

	�� �
�C � �

n� �
	 � � � �� � �C � �
�

	z� �
Since z� � C � �� � �C��

�

	, and � � x � e
x for any real number x, this implies

zn � e
��C���
P
n
i��
���i� � e
��C����Hn��� � e
��C��� lnn � n�C�� � (8)

Invoking (6) (in its adopted version with ‘C’ instead of ‘�’), this gives a bound of

E�Xn	 �
�C � �

lnC

lnn �

This bound attains its extremal values if � lnC����	C � �, or, equivalently, if � e
C
	�C �

e. Note that for these values of C, we have �C��
lnC

� �C. Hence, we have shown
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Theorem 5.1 The expected height of a random search tree for n keys is bounded by c lnn,
where c � ����������� is the unique value greater than � which satisfies ��e

c
	c � e.

The constant in the leading term is already tight, as it was shown by Devroye; the proof
of this fact is considerably more involved than the upper bound proof we have just seen.
The upper bound has been shown before by Robson.

Let us conclude by pointing out that knowing a good estimate for E
�
CXn

�

immedi-
ately gives a good tail estimate for Xn via Markov’s Inequality, namely

Pr�Xn � � lnn	 � Pr
�
CXn � C� lnn

�
� Pr

�
CXn �

C� lnn

E�CXn	
E

�
CXn

��
�

E
�
CXn

�
C� lnn

� n�C���� lnC �

�C � �� � lnC is minimized for C � �	�.

Theorem 5.2

Pr�Xn � � lnn	 � n����ln�������� �

in particular Pr�Xn � �e lnn	 � �
n

.

If we set � � c, where c is the constant in Theorem 5.1, then we obtain Pr�Xn � c lnn	 �

�, which we might have guessed before. However, you may want to reconsider the esti-
mate obtained in (8) to get a nontrivial (though still constant) bound for this probability.
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Part II
October 18, 2000

6 A Surprising Encounter (of the First Kind?)

(Random) permutations play an essential role in randomized algorithms, so let us take a
closer look and recapitulate some simple facts. Recall that a permutation of a set A is
simply a bijective mapping A� A. For example, the mapping

a �� b� b �� d� c �� a� d �� c

is a permutation of the set fa� b� c� dg. A convenient way of displaying such a permutation

� of a finite set A � fa�� a�� � � � � ang is the standard notation (or two row form)�
a� a� � � � an

��a�� ��a�� � � � ��an�
�

�

If there is some natural ordering on the elements in A, as it is the case for A � f���ng,
then we skip the first row (implicitly assumed to be present in that natural ordering), and
we obtain the linear notation

������ ����� � � � � ��n�� � f���ngn �

So, we often think of (and use) permutations as orderings, but we should not forget that
they are mappings, that can be composed, have inverses, . . . , form a group, etc.

A cycle in a permutation � � Sn is a sequence �i�� i�� � � � � ik��� of distinct elements
with ��ij� � ij�� mod k. Every element i � f���ng appears in a cycle, that is, the se-
quence �i� ��i�� ����i��� � � �� that terminates just before the second appearance of i. We
consider two cycles identical, if they can be obtained form each other by a cyclic shift.
Consequently, every element appears in a unique cycle, and the cycles partition f���ng.
For example, the permutation ��� �� �� �� �� has cycles ��� ��, ���, and ��� ��. A sequence
of all cycles of a permutation is called representation in cycle notation, where we put no
restriction on the order of cycles, nor where the individual cycles begin. In our example,
we could write ��� �������� �� or ������ ����� ��, among others. Here are all permutations
in S�, their cycles, and the number of cycles.

permutation cycle notation number of cycles

� � � ��������� �

� � � ����� �� �

� � � �� ����� �

� � � �� � �� �

� � � �� � �� �

� � � �� ����� �
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What is the expected number of cycles of a random permutation in Sn? The obvious
route would suggest to count the number of permutations in Sn with k cycles. In S�, we
get 2 permutations with 1 cycle, 3 with 2, and 1 with 3 – gives an expected number of

� � �
�
� � � �
�
� � � �
�

� ��
�

cycles. ‘��
�

’ sounds familiar, wasn’t that H�? And as we
think about it, the table above for S� has some similarities with the corresponding table,
where we counted the number of left-to-right minima. Indeed, there are 2 permutations
with 1 cycle, just like there were 2 permutations with 1 left-to-right minimum, etc. But,
a second more careful inspection reveals that the number of cycles of a permutations has
little to do with its number of left-to-right minima. ��� �� �� has three left-to-right minima,
and but it has two cycles.

If you insist, you may still check S�, and see that it is again the same pattern. So is
there a more subtle connection?

Here is how you can show that the number of permutations with k cycles equals the
number of permutations with k left-to-right minima. Let us go back to the cycle notation.
It leaves some freedom, which we do not only enjoy; it has the disadvantage, that it is
not immediately clear whether two permutations in cycle notation are the same. So it
is usually agreed upon that every cycle starts with its smallest element, and the cycles
are sorted according to their first elements – in ascending order. So ��� �� �� �� �� will be
represented as ��� �������� ��.

Why not descending as: ��� �������� ��? That is, we start with the cycle with the
largest smallest element, and so on. We are purists (at least for a moment) and discover
that the parenthesis may be omitted. When a new cycle starts, then it starts with an el-
ement smaller than all elements in the previous cycle, smaller than all elements so far
– a so-called left-to-right minimum! Here we go: ��� �� �� �� �� represents ��� �������� ��

(and thus ��� �� �� �� ��) in that we agree on starting a new cycle at each left-to-right min-
imum. This is the desired bijection from Sn to Sn (a permutation of Sn) which maps a
permutation with k cycles to a permutation with k left-to-right minima.

Hence, once more, nothing really new. The expected number of cycles of a random
permutation in Sn is Hn.

The number of permutations in Sn with k cycles, k� n � N�, is important enough to
have a dedicated notation:

h
n

k
i

, the Stirling cycle number (of the first kind); say “n cycle

k”. It can be recursively defined by�
	

	
�

� ���
n

	
�

� 	 for n � 	��
	

k
�

� 	 for k � 	� and�
n

k
�

� �n� ��
�
n� �

k

�
�

�
n� �

k � �
�

for n� k � 	 �

Note the similarity to the recurrence for binomial coefficients,�
n

k
�

�
�
n� �

k

�
�

�
n� �

k � �
�
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and how

Pn
i��

h
n

i
i
� n
 relates to

Pn
i��

�
n

i
�
� �n. You may even (and should) remember,

that the latter identity is just a special case of

Pn
i��

�
n

i
�
xi � ��� x�n. The counterpart for

Stirling numbers of the first kind reads

nX
i��

�
n

i
�

xi � x�x � �� � � � �x� n� ��� �z �

n factors

� for n � N� and x � R. (9)

More about cycles and other features of permutations and their expectations in [4].

Exercise 6.1 Prove the recurrence�
n

k
�

� �n� ��
�
n� �

k

�
�

�
n� �

k � �
�

�

Do it once reading

h
n

k
i

as the number of permutations in Sn with k cycles, and once
reading it as the number of permutations in Sn with k left-to-right minima.

Exercise 6.2 Determine�
n

�
�

�
�
n

�
�

�
�
n

n� �
�

� and

�
n

n
�

� n � N�

Exercise 6.3 Sums of Stirling Cycle Numbers
What can you say about

nX
i��

i
�
n

i
�

�

nX
i��

i�
�
n

i
�

� and

nX
i��

�i
�
n

i
�

?

Exercise 6.4 Recall the game we analyzed in the section on left-to-right minima. Relate
the probability, that such a game starting with n takes k rounds on one hand, to the
number of permutations with a given number of cycles on the other hand.

Exercise 6.5 n � N. For a random permutation � � Sn consider the cycle for which the
smallest number is the largest among all cycles in �. What is its expected length? What
can you say about the expected length of the longest cycle? What about the expected
length of the shortest cycle?

Exercise 6.6 n � N. Given i � f���ng, what is the expected length of the cycle contain-
ing i in a random permutation uniformly chosen from Sn? Given fi� jg �

�f���ng
�

�
, what

is the probability that i and j appear in the same cycle of a random permutation in Sn?

Exercise 6.7 We know that for n � N,

Pn
i������i

�
n

i
�
� 	. This can be interpreted as the

fact that a nonempty set has the same number of subsets of even cardinality as there are
subsets of odd cardinality. Is the corresponding fact true for permutations with an even
or odd number of cycles? That is, is it true that

nX
i��

����i
�
n

i
�

� 	 ?
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Exercise 6.8 Estimating the Stirling Cycle Numbers
For i� n � N�, i � n, show that �

n� �

i � �
�
� n

i


�Hn�
i �

Exercise 6.9 Increasing Subsequences6

Given a permutation �a�� a�� � � � � an� in Sn, we call a subsequence

�ai� � ai� � � � � � aik� �

k � N�, � � i� � i� � � � � � ik � n, an increasing subsequence, if
ai� � ai� � � � � � aik �

For example, �� � � � �� has the following increasing subsequences

��� ���� ���� ���� ���� ���� �� ��� �� ��� �� ��� �� ��� �� ��� �� � ��� �� � �� �

What can you say about the expected number of increasing subsequences of a ran-
dom permutation in Sn? What can you say about the length of the longest increasing
subsequence?

7 Coupon Collector
n � N. Given a set A of n distinct real numbers, the following procedure7 makes a

humble attempt to find the minimum number in A. The statement ‘a�random A�’ assigns
to a a random element uniformly chosen from A.

m���

forever do

a�random A�

if a � m then

m� a�

The procedure never knows when it succeeded in finding the minimum. But what is the
expected number of steps until m holds minA? What is the probability that m does not
hold minA after k iterations? How long will it take until a was assigned every value in A

at least once? What is the expected number of distinct values that a was assigned to within
the first k iterations? That’s enough to think about for one section (exercises excluded).

We simplify notation by assuming A � f���ng. Then the values assigned to a in the
first k rounds is a sequence in f���ngk.

6A bit out of context, but anyways.
7You may find this and previous procedures quite ridiculous in the sense that they pretend to be stupid.

However, they allow us to investigate basic methods for analyzing random processes, and, in fact, we will
see that identical or very similar structures appear in ‘real’ programs (– whatever that is).
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Waiting for the minimum. m is assigned the minimum when � is assigned to a for the
first time. In each iteration there is a probability of �

n

for that event, and � � �
n

for the
complementary event. The waiting time is perfectly modeled by the coin flipping example
with probability p � �

n

for head to appear. Let W be the random variable, such that round

W exhibits the first encounter of �. Then

Pr�W � i� � ��� p�i��p� i � N

and

E�W � �

�X
i��

i��� p�i��p � p

�

��� ��� p���
�

�
p

W is said to have the geometric distribution with parameter p. An alternative way of
deriving its expectation is as follows. Let I be the indicator variable for the first number
chosen to be �. Then

E�W � �

�z �� �

E�W jI � ��

pz �� �

Pr�I � ���

��E�W 	z �� �

E�W jI � 	�

��pz �� �

Pr�I � 	�

� ��� p� E�W � � �

which yields E�W � � �
p

as before. Here we used that the experiment underlying W is
‘memoryless’8 and so E�W jW 	� �� � � � E�W �.

Summing up, we expect to wait �
p

� n iterations until m holds the minimum of A.
The probability that we have not seen the minimum in the first k iterations is ��� p�k. In
particular, for k � n, this gives

�
�� �
n

�n
� �
e

.

Distinct values in k iterations. Fix k � N. Let X be the random variable for the
number of distinct values that have been assigned to a in the first k rounds. The right
set-up and linearity of expectation make this an easy problem. Let Xi, i � f���ng, be an
indicator variable for the event that i has never been assigned in the first k rounds. Then

X � n�X� �X� � � � � �Xn �

Pr�X� � �� � �� � p�k we had just derived, and, clearly, that’s the same for all Xi. It
follows that

E�X� � n� n
	

�� �
n


k
�

For k � n, we expect to see roughly n�� � �
e

� � 	������n distinct elements. But even for

k � bn ln�n�c�c, we expect to see only roughly n� c distinct elements. Here we made a
rough calculation 	

�� �
n


bn ln�n�c	c

 e
� ln�n�c	 �
c

n
�

8The fact happily ignored by the gambler in a casino, who bets on red, since there was a series of ten
blacks.
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Coupon collector. What is the expectation for the number Y of rounds until all numbers
have appeared at least once9? As in many situations before and to come, the right twist
will make this quite simple to analyze (and at this point you might want to think some
time about it before you see the solution).

Think . . .

Of course, you knew what to do10. Split the process into n phases, where phase i starts
after we have seen i�� distinct numbers, and stops when a new number different from all
previous ones is encountered. The number of rounds in phase i is denoted by the random
variable Yi, i � f���ng.

Y � Y� � Y� � � � �� Yn �

If you have absorbed its definition then you will agree that Y� � �, always. While waiting
for the ith new number, we have a success probability of pi 
� n�i��

n

in each round – until
it happens. That is, Yi has geometric distribution with parameter pi. Thus, E�Yi� � �

pi
�

n

n�i��

. We sum up these expectations for i � �� �� � � � � n to obtain

E�Y � �

nX
i��

n

n� i� �
� nHn �

Note that the Yi are mutually independent; the Xi in the previous analysis have not been,
though.

It is perhaps surprising, that the min-finding procedure is expected to succeed in n

rounds much before we expect to have seen all data.

Exercise 7.1 Prove that a random variable X with the geometric distribution satisfies

Pr�X � k � i jX � i� � Pr�X � k� for i� k � N�

which expresses the ‘memorylessness’ of the geometric distribution.

Exercise 7.2 For the random variable Y for the waiting time of the coupon collector,
determine E�X�� and apply Chebyshev’s Inequality.

Exercise 7.3 n � N. Let Wi, i � f���ng, be the number of iterations we have to wait
until the number i is first assigned to a in the procedure at the beginning of this section.
What is E�Wi�, i � f���ng and E

�
maxi�f���ngWi

�

?

Exercise 7.4 Draw a square (about �	cm � �	cm) on a piece of paper and place ��

random points in it. Do it now!

�������������������������

Now subdivide the square into 25 equal size subsquares, and count the number of empty
subsquares. What do you get, and what would be the expected number, if the points were
indeed random?

9The imaginative reader is invited to see here a coupon collector collecting coupons or such like.
10Lucky you, I didn’t until I saw the solution!
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Exercise 7.5 What is the expected number of distinct values that m gets assigned to in
our little procedure of the section?

Exercise 7.6 Your exercises. Remember, I asked you to invent your own exercises!

8 Chernoff Bounds

Sometimes a random variable X can be written as a sum

X � X� �X� � � � ��Xn

of mutually independent variables Xi. Examples we have met were the number of left-to-
right minima, the waiting time of the coupon collector, or the signed difference between
the number of heads and tails in a sequence of n coin flips. Here is a lemma for the latter
example with a fair coin.

Lemma 8.1 Let X �
Pn

i��Xi where the Xi’s are mutually independent f�����g-
valued random variables with Pr�Xi � ��� � Pr�Xi � ��� � �

�

. Then

Pr�X � �� � e
������n	 for any � � R� .

Proof 11 For t � R� and i � f���ng, E
�

e
tXi
�
� �
�
�et � e
�t� � e
t���. In order to justify

the inequality, we investigate the Taylor series of the terms12 involved.

�
�

�
e

t � e
�t� �

�
�

�X
i��

�
ti

i

�

��t�i
i


�

�

�
�

�X
i��

�
t�i

��i�


�

�X
i��

t�i
�i i


since �
��i	

� �
�i i


, strict for i � �

� e
t���

Mutual independence of the Xi’s allows the following estimate.

E
�

e
tX
�
� E

�
nY

i��
e

tXi
�

�

nY
i��

E
�

e
tXi
�
�

nY
i��

e
t��� � e
t�n�� �

It is time for Markov’s Inequality.

Pr�X � �� � Pr
�

e
tX � e
t�
�
�

E
�

e
tX
�

e
t�

� e
t�n���t� �

11Almost verbatim from [6].
12�et � e

�t� ��, also denoted as cosh�t�, hyperbolic cosine.
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for all t � R�. The parameter t can be chosen so that t�n
�

� t� is as small as possible. This
is attained for t � �

n

, which yields the statement of the lemma.
The lemma is perhaps more transparent in the form

Pr
�
X � �

p
n

�
� e
����� for any � � R� . (10)

For example, when we toss a fair coin n times, then the probability of the number of
heads exceeding the number of tails by

p
n or more is at most e���� � 	������ . If we push

the threshold to

p
�n lnn, then the probability of exceeding is at most �
n

. Because of the
symmetry of X about 	, we have

Pr
�
jXj � �

p
n

�
� �e��

��� for any � � R� . (11)

We show a typical employment of the lemma, so that we can appreciate its potentials.

Regular partitions of regular hypergraphs. A hypergraph G � �V�E�, E � �V

is r-regular, if all its vertices have degree r, i.e. each vertex is contained in exactly r

hyperedges – edges for short from now on. We want to partition the edge set E of an

r-regular hypergraph into Ered and Eblue so that both Gred � �V�Ered�, the red subgraph,
and Gblue � �V�Eblue�, the blue subgraph, are as regular as possible. Ideally, we want
them both to be r

�

-regular. That’s odd to ask for r odd, but even for r even that is not
always achievable: Try your luck with the ordinary graph of an odd cycle.

Theorem 8.1 r� n � N. Every r-regular hypergraph with n vertices can be partitioned
into a red and a blue subgraph so that all degrees appearing in both hypergraphs are in��



�

���
r

�
�

s
r ln��n�

�

�
��� ��

����r
�

�
s
r ln��n�

�

����
��

� �

Proof Assign random colors to the edges of the hypergraph G � �V�E�, both colors
with probability �

�

, and mutually independent for all the edges. In fact, we will use ��

and �� for red and blue, respectively. Denote by Xe the value assigned to edge e � E,
and for vertex v � V , let

X�v	 
�
X

e�v
Xe �

r�X�v�

�

is the degree in the red ���� subgraph, and r�X�v�

�

the degree in the blue ����

subgraph. If we can show that there is an assignment with

���X�v	
��� � q
�r ln��n� for all

v � V , we are done.
According to (11),

Pr
����X�v	
��� � �
p
r

�
� �e��

��� for each v � V ,

since each X�v	 is the sum of r of the variables Xe. Consequently,

Pr
� �

v�V
����X�v	
��� � �
p
r

��
� �ne��

��� �
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If this probability is less than 1, there remains a positive probability for the complementary
event �

v�V
����X�v	
��� � �
p
r

�
�

i.e. such an event exists! We choose � �
q
� ln��n� and the assertion of the theorem

follows.
The theorem demonstrates existence. As we increase � in the proof, a random coloring

will be good with increasing probability.

Estimating sums of binomial coefficients. Can’t we determine Pr�X � �� exactly (X

as in Lemma 8.1)? X is related to the binomial distribution with parameters n and �
�

and
it is easy to evaluate Pr�X � i� for i � N�. There are �n sequences of ��’s and ��’s,
each appears as �X�� X�� � � � � Xn� with probability �

�n

. There are

�
n

j
�

sequences with j

����’s (and thus n� j ����’s), which let X attain the value j� �n� j� � �j�n. Hence,

Pr�X � �j � n� � �
�n

�
n

j
�

and

Pr�X � �j � n� �

�
�n

nX
i�j

�
n

i
�

� for any j � N�. (12)

Now we know the answer exactly, but we have no clue of what it means. Our findings
are not useless, though. We can use them to estimate the sum of the first k binomial
coefficients by invoking Lemma 8.1.

kX
i��

�
n

i
�

�

nX
i�n�k

�
n

i
�

� �n Pr�X � ��n� k�� n� � �ne�
�n��k��

�n � (13)

for k � N�, k � n
�

. Thus, e.g. the sum up to k � n�
p
�n lnn

�

makes up for less than �
n

of

the whole sum of binomial coefficients. In contrast, we have

�
n
bn��c

�
� �� �np
n
�.

It is instructive to rephrase (13) as a property of the hypercube13, or of f	� �g-strings
and the Hamming distance14.

Chernoff bound technique. There is nothing like ‘the Chernoff Bound’. This term
refers to a technique for establishing good tail estimates for a random variable X that is
the sum of independent variables. In order to do so, one analyzes E

�
e
tX
�

, t � R and then
applies Markov’s Inequality, while setting t to the value that gives the strongest possible
result. Since

E
�

e
tX
�
� � �

tE�X�

�


�
t� E�X��

�


� � � �
13The graph with vertex set f�� �gn and edges between any two such sequences that differ in exactly one

position.
14The Hamming distance between two sequences (strings) in f�� �gn is the number of positions where

they differ.
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this expectation – parameterized by t – is called the moment generating function of X .
For collections of Chernoff bounds see [1, Appendix A], [5, Section 4.1] or [3].

Here is one more example of a Chernoff bound.

Lemma 8.2 Let X be the sum of a finite number of mutually independent f	� �g-
valued random variables such that � 
� E�X� is positive. Then

Pr�X � ��� ���� �
�
e
��

��� �����
��

� e
������ for any � � R� with � � �.

Before we proceed with the proof, let us briefly discuss the lemma. First note that it is a
bound for Pr�X � �� (rather than Pr�X � ��) – and beware, in general,

Pr�X � ��� ���� 	� Pr�X � �� � ���� �

Second, observe that the bound does not refer to the number of variables involved, nor at
their individual distributions.

Let us apply the lemma to the random variable X for the number of left-to-right min-
ima in a random permutation in Sn. This variable satisfies the assumptions of the lemma
with � � Hn. We choose � � �

�

and conclude that

Pr
	

X � �
�

Hn



� e
�Hn�� � �n� ������ �

The bound looks more impressive for variables with a larger expectation.

Proof of Lemma 8.2 Since the estimate is of the form Pr�X � �� rather than Pr�X � ��

we switch from X to �X in order to return to familiar terrain. That is, we will use
Markov’s Inequality as follows for t � R� .

Pr�X � ��� ���� � Pr��X � �� � ���� � Pr
�

e
�tX � e
t����	�� � E

�
e
�tX
�

e
t����	� (14)

Now let X �
Pn

i��Xi, n � N, where the Xi’s are independent f	� �g-valued random
variables, and let pi 
� Pr�Xi � ��, � � i � n. Therefore, � �

Pn
i�� pi. Now

E
�

e
�tX� � nY

i��
E

�
e
�tXi
�
�

nY
i��

�
� � pi�e
�t � ��
�
� e

��e�t��	 (15)

Next we plug the estimate from (15) into (14).

Pr�X � ��� ���� � e
��e�t���t����		 (16)

The bound is smallest for t � � ln��� �� when it gives a bound of

e
������	���ln����		��	

which can be rewritten as the first bound of the lemma. For the second simplified form
we use the inequality

��� �� ln��� �� � �� � ���� for � � R� 	 � � � ��
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We conclude with the statement of the counterpart of Lemma 8.2, without delivering
the proof. But beware, there are many more Chernoff bounds, and when you need one,
you might have to use the idea rather than fetching a nicely packed result from the shelf.

Lemma 8.3 Let X be the sum of a finite number of mutually independent f	� �g-
valued random variables such that � 
� E�X� is positive. Then

Pr�X � �� � ���� �
�
e
�

�� � �����
��

for any � � R�.

Exercise 8.1 A Regular Hypergraph

i� n � N. Consider the hypergraph G � �f���ng�
�f���ng

i

�
�. Show that G is r-regular for

some r. Which r? Find a good partition into a red and a blue subgraph, both as regular
as possible.

Exercise 8.2 n � N. Let Yi, i � f���ng, be the random variable for phase i in the coupon
collector analysis. Determine E

�
aYi

�

, for a � R.

Exercise 8.3 Chernoff Bound for Coupon Collector
Derive a Chernoff bound for the coupon collector exceeding a certain threshold �.

Exercise 8.4 Verify that Theorem 8.1 is still valid, if all vertices have degree at most r.

Exercise 8.5 Orthogonal Vectors

n � N and v � f�����gn. How many vectors in f�����gn are orthogonal to v?

Exercise 8.6 Close to Orthogonal Vectors

n � N and v � f�����gn. How many vectors in f�����gn are close to orthogonal to

v? We define close to orthogonal by requiring an angle in the interval

�
�

�
� 	� �
�
� 	

�

for

some given parameter 	 � R� .

Exercise 8.7 Orthogonal to Many Vectors

n � N. Show that for any set of n vectors in f�����gn, there exists a vector that is close
to orthogonal to all of them. How close? (See Exercise 8.6 for what we mean by ‘close to
orthogonal’.)

Exercise 8.8 k� n � N. What can you say about

kX
i��

�
n

i
�

?

Exercise 8.9 Commercial
Your exercise could be placed here – and you were reading it, and the many others who
have made it that far.
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A Glossary of Facts

This is a pretty much unorganized collection of useful facts, which is perhaps boring, so
you might want to skip it – but only if you know all of this!

Fact A.1

� � x � e
x for x � R, strict for x 	� 	.

It is useful for deriving upper bounds for products. For example,

�Y
i��

	
� �

�
i�



�

�Y
i��

e
��i� � e
P
�

i��
��i� � e
���� � ������� � (17)

and for n � N
nY

i��
	

� �
�

�i



�

nY
i��

e
����i	 � e
P
n

i��
����i	 � e
Hn�� � p
en� �z �

�������
p
n

(18)

Another appearance of the inequality is in estimates of the form15

	
� �

x
n


n
� e

�x�n	n � e
x� for n � N and x � R. (19)

15You are invited to digest the special case n � �! And x � �.

38



Fact A.2

�
�� x

� e
x for x � R, x � �, strict for x 	� 	.

It delivers lower bounds for products of numbers close to �. For example, for n � N

nY
i��

	
� �

�
�i



�

nY
i��

e
����i��	 � e
P
n

i��
����i��	 (20)

� e
H�n���Hn���� � �n� �

e
p
en

�

�
e

p
e� �z �

�������
p
n � (21)

Fact A.3

x � ��� x� ln��� x� � �
�

x� for x � R��, x � �, strict for x 	� 	.

Okay, that’s a bit special. You are excused, if you don’t know that one if I wake you up at
4am.

Fact A.4

e
x �

�X
i��

xi
i


for x � R.

That we knew! But what happens if �i
�� appears in the denominator?

�X
i��

xi
�i
��

�

�X
i��

�
xi��

i

��

�
� �X

i��
xi��

i

��

� e
�

p
x for x � R� . (22)

Fact A.5

�
�� x

�

�X
i��

xi for x � R, �� � x � �.

Take the first derivative on both sides:

�

��� x��
�

�X
i��

i xi�� for x � R, �� � x � �. (23)

Fact A.6 (Harmonic vs. Geometric vs. Arithmetic Mean) n � N. For any

�a�� a�� � � � � an� � R�n
nPn

i��
�
ai

� n
vuut nY

i��
ai �

Pn
i�� ai

n

�
both inequalities strict, unless all ai the same.

39

A typical usage is the immediate implication

nX
i��

�
ai

� n�Pn
i�� ai

(24)

Fact A.7 (Cauchy-Schwartz Inequality) n � N. For any �a�� a�� � � � � an� � Rn,

�b�� b�� � � � � bn� � Rn,

�
nX

i��
a�i

��
nX

i��
b�i

�
�

�
nX

i��
aibi

��
�

strict, unless there exists a � � R with ai � �bi for all i � f���ng.
By setting all bi � � we obtain as a special case

Pn
i�� ai

n

�
sPn

i�� a
�
i

n

for any �a�� a�� � � � � an� � Rn (25)

with equality iff all ai are the same (arithmetic vs. quadratic mean).

Fact A.8 (Stirling’s Formula)

n
 �
p
��n

	
n

e


n �
� �O�n���

�
� n � N �

As a variation on the theme

�
�n

n
�

�
��n�


�n
��
�

�
p
�n

�
�n

e

��n
�� �O�n����

��n
�
n

e

��n
�� �O�n����

�

�p
�n

��n
�
� �O�n���

�
� (26)

This gives us access to a better estimate for the product from (18) and (20).

nY
i��

	
� �

�
�i



�

nY
i��

�i� �
�i

�
��n� ��


��n n
��

(27)

�

�
�n

n
�
�n � �

��n

�
�n � �p

�n
�
� �O�n���

�

(28)

�

�p
���z�

�������
p
n

�
� �O�n���

�

(29)

Fact A.9 (Symmetry and Factorial Expansion of Binomial Coefficients) For

i� n � N�, i � n, �
n

i
�

�
�
n

n� i
�

�

n


i
�n� i�

�
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Fact A.10 For i� n � N, 	 � i � n,

	
n

i

i
�

�
n

i
�

� ni
i


�
	
en

i

i

�

The rightmost inequality is a consequence of

n
 �
	
n

e


n

for n � N�, strict for n 	� 	. (30)

Fact A.11 (Binomial Theorem) For any n � N� and x� y � R,

�x � y�n �

nX
i��

�
n

i
�

xiyn�i �

For x � y � � we get

nX
i��

�
n

i
�

� �n (31)

as special case. Or, for x � �� and y � �,

nX
i��

����i
�
n

i
�

� 	 � (32)

Whenever you see an expression of the form xn � n yxn��, remember the Binomial The-
orem and estimate

xn � n yxn�� � �x � y�n for x� y � R� , n � N, strict for n 	� �. (33)
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B More Exercises

Exercise B.1 Generating a Group
Let G be a finite group of order n with neutral element e. For A � G, hAi denotes the
subgroup of G generated by A. Consider the following procedure.

A� feg�
forever do

a�random G�

if a 	� hAi then

A� A 
 fag�

Find estimates for the expected time it takes until A generates G. (Take a look at specific
groups as well, e.g. �Z��

d, �Z��
d, d � N, or the cyclic groups Zn, n � N.)

Exercise B.2 Independence and Conditional Probabilities
Prove or disprove each of the following three statements.

(1) Random variables X and Y on probability space ���Pr� are independent iff

Pr�X � x jY � y� � Pr�X � x�

for all x � R and all y � Y ����.

(2) n � N. Random f	� �g-valued random variables X�� X�� � � � � Xn, none of them
constant, are mutually independent iff

Pr
�

�Xj � � j �
i�Jnfjg

�Xi � ��
�

A � Pr�Xj � ��

for all J � f���ng and all j � J .

(3) n � N. Random f	� �g-valued random variables X�� X�� � � � � Xn, none of them
constant, are mutually independent iff for all nonempty J � f���ng there exists j � J

such that

Pr
�

�Xj � � j �
i�Jnfjg

�Xi � ��
�

A � Pr�Xj � �� �

Exercise B.3 Tail Estimate for Paranoia
Derive tail estimates for the number of comparisons in the procedure of Exercise 3.6 (try
also a Chernoff bound).

Exercise B.4 Slow Minimum
Here is another one of those ‘stupid’ algorithms that find the minimum of a finite nonempty
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set A of n reals.

function FindMin�A�

a�random A�

if �A � � then

return a�

else

x� FindMin�A n fag��

if a � x then

x� FindMin�A��

return x�

Make sure that you understand what the procedure does, and that, indeed, it computes the
minimum of A. Note that the procedure invokes a recursive call with the same parameters
– a feature that is not acceptable for a deterministic procedure (at least, if termination is
desired).

Analyze the expected running time of the procedure. For that purpose count the num-
ber of comparisons ‘a � x’ performed.

Exercise B.5 Recursion
Consider the function f�n� k� for integers k and n, 	 � k � n, recursively defined by

f�k� k� � 	 for k � N� and

f�n� k� � f�n� �� k� � � �

�
n� k

f�n� k � �� � for 	 � k � n.

Find a closed form for f�n� k�.
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