
A Progressive Visual Analytics Tool for
Incremental Experimental Evaluation

Fabio Giachelle Gianmaria Silvello
fabio.giachelle@unipd.it gianmaria.silvello@unipd.it

0000-0001-5015-5498 0000-0003-4970-4554
Department of Information Engineering

University of Padua, Italy

ABSTRACT
This paper presents a visual tool – AVIATOR – that integrates the
progressive visual analytics paradigm in the IR evaluation process.
This tool serves to speed-up and facilitate the performance assess-
ment of retrieval models enabling a result analysis through visual
facilities. AVIATOR goes one step beyond the common “compute–
wait–visualize” analytics paradigm, introducing a continuous eval-
uation mechanism that minimizes human and computational re-
source consumption.

KEYWORDS
visual analytics; experimental evaluation; incremental indexing

1 MOTIVATIONS
The development of a new retrieval model is a demanding activ-
ity that goes beyond the definition and the implementation of the
model itself. A retrievalmodel can be conceived as part of an ecosys-
tem where each component interacts with the others to produce
the final document ranking for the user. As shown in [4], the ef-
fectiveness of a model highly depends on the pipeline components
it interacts with (e.g., stoplist and stemmer). To determine which
configuration is best in order to get the most out of a model is a
demanding activity. In fact, it requires the inspection of several
component pipelines and a comparison to baselines through mul-
tiple test collections and evaluation measures.

The typical evaluation process comprises the following phases:
corpus preprocessing (e.g., tokenization, stopword removal, stem-
ming) and indexing phase, the retrieval phase and the evaluation
phase itself. If something is modified in the preprocessing phase,
the whole collection has to be re-indexed before testing the re-
trieval model and conducting the evaluation again. Unfortunately,
indexing a collection may require hours, if not days, depending on
the hardware and on the collection size. To assess the best con-
figuration of components over multiple collections on the basis of
a grid search requires great human effort and computational re-
sources.

We propose an “all-in-one visual analytics tool for the evalua-
tion of IR systems” (AVIATOR) to speed up this evaluation process.
The idea behind the tool is to improve test retrieval models, calcu-
late approximate measures, explore the results and make baseline

Copyright © 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
IIR 2019, September 16–18, 2019, Padova, Italy

comparisons during the indexing phase. AVIATOR allows the user
to issue queries to a system while the indexing phase is still run-
ning and to explore partial evaluation results in an intuitive way
thanks to visual analytics advances. In particular, leveraging on
the progressive visual analytics paradigm “enable(s) an analyst to
inspect partial results of an algorithm as they become available and
interact with the algorithm to prioritize subspaces of interest” [8].

Visual analytics and IR experimental evaluation have interacted
before producing visual tools to design and ease failure analysis [2],
what-if analysis [3], to explore pooling strategies [7] and to enable
interactive grid exploration over a large combinatorial space of sys-
tems [1]. Nevertheless, they followed the “compute-wait-visualize”
paradigm of visual analytics. AVIATOR moves a step beyond (par-
tially) removing the “wait” phase. To the best of our knowledge,
our paper is the first to focus on progressive visual analytics em-
ployed in IR to enable the dynamic and incremental evaluation of
IR systems.

A video showing the main functionalities of the system is avail-
able at the URL: https://www.gigasolution.it/v/Aviator.mp4.

Outline. A general overview of AVIATOR is presented in Sec-
tion 2. AVIATOR comprises of a back-end component that deals
with the incremental indexing and retrieval (Section 3) and of a
front-end component that enables the interactive exploration of
the partial experimental results (Section 4).

2 SYSTEM OVERVIEW
AVIATOR embodies five phases: preprocessing, incremental index-
ing, retrieval, evaluation and visual analysis.

In the preprocessing phase the document corpusD is partitioned
into n bundles B = [B1,B2, . . . ,Bn], where Bi , with i ∈ [1,n − 1],
has size k =

⌊ |D |
n

⌋
and Bn has size |D | −k(n − 1). The bundles are

populated by uniformly sampling D such that Bi ∩ Bj = ∅,∀i, j ∈
[1,n]. This sampling strategy is described in [5], where it is also
shown that biased sub-collections exhibit similar behavior with
uniform samples in terms of precision.

As shown in Figure 1, in the incremental indexing phase, we
adopt two parallel system threads each one implementing an inde-
pendent instance of the same Information Retrieval System (IRS).
These threads are referred to as dynamic and stable core, respec-
tively. The dynamic core indexes the first corpus bundle and then
releases the partial index to the stable core. The stable core enables
the user to run the retrieval phase on the partial index, while the
dynamic core proceeds to index the second bundle. When the sec-
ond bundle has been indexed, an interrupt is issued to the stable
core and the user decides if s/he wants to update the index and

2

https://orcid.org/0000-0001-5015-5498
https://orcid.org/0000-0003-4970-4554

F. Giachelle, G. Silvello

run a new retrieval phase or to continue with the index already at
hand.

In the retrieval phase the partial index is queried by the user.
Currently, AVIATOR is based on batch retrieval on shared test col-
lections. Hence, in each retrieval phase at least 50 queries are is-
sued and a TREC-like run is returned for evaluation. The user can
select several standard retrieval models or can use a custom one
loaded into the system. This phase can be considered as dynamic
since the user can keep querying the partial index by changing the
retrieval model or its parameters.

The runs produced in the retrieval phase undergo continuous
evaluation as they are being produced. Once the evaluation phase
is performed, the results are visualized by the visual analytics com-
ponent that enables the user to conduct an in-depth and intuitive
analysis.

3 BACK-END COMPONENT
Theback-end component implements the first four phases described
above. AVIATOR is a client-server application built on top of an
IR system of choice. In the current implementation, AVIATOR is
based on Apache Solr 1 which in turn exploits the widely-used
Apache Lucene search engine. In the back-end, AVIATOR acts as a
wrapper on the IR system, controlling every stage of the IR process
(indexing, retrieval and evaluation) via HTTP through a REpresen-
tational State Transfer (REST)ful Web service.

AVIATOR’s demo version is based on the Disk 4&5 of the TREC
TIPSTER collection 2 and on the 50 topics (no. 351 − 400) of the
TREC7 ad-hoc track [10]. For testing purposes AVIATOR was de-
signed to work with 64 different IR system pipelines including
four different stoplists (indri, lucene, terrier, nostop), four stem-
mers (Hunspell, Krovetz, Porter, nostem), and four IR models
(BM25, boolean3, Dirichlet LM, TF-IDF).

The incremental index is designed to work on 10 corpus bundles
(10%, 20%, . . ., 100% of the corpus). This implies that, at the time of
writing, the AVIATOR demo version works on 160 (4× 4× 10) dif-
ferent indexes that if statically stored in the memory would occupy
up to 230 GB.

The system run obtained over a partial index is an approxima-
tion of the “true” run obtained on the complete index. In Figure
2 we show the average nDCG was shown in relation to the sys-
tem performance difference between partial and full index. As ex-
pected, the precision of the measure grows with the index size and
the approximate effectiveness is consistent across all the 64 tested
systems. For instance, with index size 60% for most of the systems
the nDCG estimation is 40% lower than the true value obtained
with the full index. Figure 3 shows that, on the TREC7, the sys-
tem rankings obtained on partial indexes are highly correlated to
the ranking obtained on the full one. The correlation is based on
Kendall’s τ [6] and, following a common rule of thumb [9], two
rankings were found to be highly correlated, with τ > 0.8. Thus,
in comparing all the 64 IR systems on the 20% of the full index (B2)
our systems ranking is quite close to the one obtained with the full
index.The correlation increases rather rapidly andwhen half of the
1http://lucene.apache.org/solr/
2https://trec.nist.gov/data/qa/T8_QAdata/disks4_5.html
3Thebooleanmodel, implemented in Apache Solr, uses a simplematching coefficient
to rank documents

collection is indexed, AVIATOR generates a reliable estimation of
average system performances.

Figure 4 illustrates a topic based analysis of the nDCG where
relative difference between the 64 runs are calculated on partial
indexes and the final runs are calculated on the full index. We can
see that with a 10% index (bundle 1), half of the topics have an
nDCG presenting a 80% difference with the true nDCG value. Nev-
ertheless, as can be seen, nDCG approximation improves steadily
as the index grows. With half of the collection indexed (bundle 5)
the nDCG approximation for half of the topics shows less than a
40% difference from the final value.

4 FRONT-END COMPONENT
The front-end component is a Web application designed on the ba-
sis of the Model-View-Controller design pattern. Its development
leverages on HTML5, D3 4 and JQuery 5 JavaScript libraries.

Figure 5 shows the configuration page of AVIATOR. The user
can select amongst different corpora, topic sets and pool files. The
current version of AVIATOR is based on the TIPSTER collection
and TREC7 ad-hoc topics and pool file. For demo purposes the par-
tial indexes have been precomputed. The interaction with the sys-
tem can therefore be artificially sped up to avoid the actual waiting
time between one index version and the next. Moreover, the user
can select the stoplist and the stemmer to be used for building the
index and a retrieval model. In turn, the retrieval model can be
changed afterwards and other models can be added to the evalua-
tion and analytics phase.

Figure 6 shows the main analytics interface for the topic based
analysis. In the top of the screen, the main settings related to the
collection and index are reported, as a reference for the user. Be-
low, the two tabs can be used to conduct a topic based or an overall
analysis. In the top-right corner, the user can see the percentage of
the corpus and the number of documents currently indexed. The
main interaction interface shows a scatter plot with the Average
Precision values of the retrieval model selected in the configura-
tion phase. Just above the scatter plot, the two tabs can be used to
add new retrieval models and to change the evaluation measure, as
shown in Figure 7 (all measures returned by trec_eval are avail-
able).

Figure 8 illustrates the scatter plot. Four different retrieval mod-
els can be compared through a pop-up window that can be trig-
gered with a mouse over the points of the plot. The pop-up re-
ports the retrieval model, the measure value and the topic being
inspected. The user can zoom over a specific part of the scatter
plot to better inspect the results.

Figure 9 illustrates how the user is notified when a new version
of the index is ready. The user can decide whether or not to work
on a new version of the index. When a new version of the index is
loaded all the visualizations are updated accordingly and the user
settings are maintained from one version to the next.

Figure 10 shows the interface enabling the inspection of overall
results (averaged over all topics) of the tested retrieval models. In
this case too, a mouse over the plot bars triggers a pop-up window,
providing detailed information on the inspected system.

4https://d3js.org
5https://jquery.com

3

http://lucene.apache.org/solr/
https://trec.nist.gov/data/qa/T8_QAdata/disks4_5.html
https://d3js.org
https://jquery.com

A Progressive Visual Analytics Tool for
Incremental Experimental Evaluation

DIAGRAMS, IMAGES, SCREEN SHOTS

Document
Corpus

10%

20%

Dynamic
core

Stable
core

Dynamic
core

Dynamic
core

Dynamic
core

Stable
core

Stable
core

Stable
core

Request

Response

30%

Response

Response

0%

Indexed
percentage

Dynamic
core

Stable
core 100%

Response

Sync

Sync

Sync

Sync

Figure 1: Incremental indexing: the interaction between the
stable and dynamic cores.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Index size

10%

20%

30%

40%

50%

60%

70%

80%

90%

nD
C

G
 re

la
tiv

e
di

ffe
re

nc
e

nDCG percentage difference partial vs full index

Figure 2: Average nDCG relative difference between partial
indexes at different levels of cut-off and the full index. Each
line shows one of the 64 tested IR systems.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Index size

0.7

0.75

0.8

0.85

0.9

0.95

1

Ke
nd

al
l's

Kendall's correlation between Bi and B10

Figure 3: Kendall’s τ correlation between the system rank-
ings (based on nDCG) obtained over increasingly more com-
plete index bundles (Bi , i ∈ [1, 10]) and the complete index
bundle (B10).

1 2 3 4 5 6 7 8 9 10
Index Bundles

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
el

at
iv

e
di

ffe
re

nc
e

w
ith

 th
e

fu
ll

in
de

x
Boxplot distribution of topic-based relative differences between partial and full indexes

Figure 4: Boxplot distribution of topic-based nDCG relative
differences between partial and full indexes.

REFERENCES
[1] M. Angelini, V. Fazzini, N. Ferro, G. Santucci, and G. Silvello. 2018. CLAIRE: A

combinatorial visual analytics system for information retrieval evaluation. In-
formation Processing & Management in print (2018). https://doi.org/10.1016/j.
jvlc.2013.12.003

[2] M. Angelini, N. Ferro, G. Santucci, and G. Silvello. 2014. VIRTUE: A Visual Tool
for Information Retrieval Performance Evaluation and Failure Analysis. J. Vis.
Lang. Comput. 25, 4 (2014), 394–413. https://doi.org/10.1016/j.jvlc.2013.12.003

[3] M. Angelini, N. Ferro, G. Santucci, and G. Silvello. 2016. A Visual Analytics
Approach for What-If Analysis of Information Retrieval Systems. In Proc. 39th
Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval (SIGIR 2016). ACM Press, New York, USA.

[4] N. Ferro and G. Silvello. 2018. Toward an anatomy of IR system component
performances. Journal of the Association for Information Science and Technology
69, 2 (2018), 187–200. https://doi.org/10.1002/asi.23910

[5] D. Hawking and S. E. Robertson. 2003. On Collection Size and Retrieval Effec-
tiveness. Information Retrieval 6, 1 (2003), 99–105.

[6] M.G. Kendall. 1948. Rank correlation methods. Griffin, Oxford, England.
[7] A. Lipani, M. Lupu, and A. Hanbury. 2017. Visual Pool: A Tool to Visualize and

Interact with the Pooling Method. In Proc. 40th Annual International ACM SIGIR

4

https://doi.org/10.1016/j.jvlc.2013.12.003
https://doi.org/10.1016/j.jvlc.2013.12.003
https://doi.org/10.1016/j.jvlc.2013.12.003
https://doi.org/10.1002/asi.23910

F. Giachelle, G. Silvello

Figure 5: The AVIATOR configuration interface.

Figure 6: The AVIATOR inspection interface: topic per topic
visualization with a single model.

Conference on Research and Development in Information Retrieval (SIGIR 2017).
ACM Press, New York, USA.

[8] C. D. Stolper, A. Perer, and D. Gotz. 2014. Progressive Visual Analytics: User-
Driven Visual Exploration of In-Progress Analytics. IEEE Trans. Vis. Comput.
Graph. 20, 12 (2014), 1653–1662.

[9] E. Voorhees. 2001. Evaluation by Highly Relevant Documents. In Proc. 24th An-
nual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR 2001), D. H. Kraft, W. B. Croft, D. J. Harper, and J. Zobel
(Eds.). ACM Press, New York, USA, 74–82.

[10] E. M. Voorhees and D. Harman. 1998. The Text Retrieval Conferences (TRECS).
In TIPSTER TEXT PROGRAM PHASE III:. Morgan Kaufmann.

Figure 7: The AVIATOR inspection interface: evaluation
measure selection.

Figure 8:The AVIATOR inspection interface: in-depth result
analysis.

Figure 9: The AVIATOR inspection interface: index update.

Figure 10: The AVIATOR inspection interface: overall analy-
sis.

5

