Year 2020-2021 Estimation and filtering

Bayesian estimation using stochastic simulation: theory e applications

Prof. Gianluigi Pillonetto

SUMMARY

- Fisherian vs Bayesian estimation
- Bayesian estimation using Monte Carlo methods
- Bayesian estimation using Markov chain Monte Carlo
- On-line Bayesian estimation (particle filters)

FISHER VS BAYES

Let us consider the model: y=G(x)+v

Fisher approach: x, which admits a true deterministic value, is estimated using only the experimental data e.g. Maximum Likelihood: $\hat{x} = \arg \max p_{y|x}(y|x)$

Bayes approach: x is random and we estimate one realization using not only the experimental data (posteriori information), but also the a priori information (indipendent of the data)

Fisher approach to parametric estimation

ADVANTAGES

• require optimization algorithms (e.g. conjugate gradient/Newton) often not so computational expensive

DRAWBACKS

- They are minimum variance estimators only using linear models and Gaussian measurement errors
- They often return non realistic confidence intervals (e.g. containing negative values due to Gaussian approximations of the estimates)

Bayes approach to parametric estimation (1/7)

The starting point is that we have some information on x, indipendent of the data (i.e. "before seeing the data"=*a priori*), and these expectations are summarized in the *a priori* probability density function

$p_x(x)$

Such expectations are then modified after seeing the data y, hence one speaks of a posteriori probability density function (=conditional on y)

$p_{x|y}(x|y)$

This is the key function obtained by Bayes. From it, one can obtain point estimates and confidence intervals.

Bayes approach to parametric estimation (2/7) Why using Bayesian priors

- To onclude all the available information in the estimation process
- To extend the complexity of the model
 - Priors on all the unknown parameters
- To improve the parameter estimates
 - Use of population or individual information
- To analyze sparse data set/high measurement noise
 - "Weak" Likelihood, "strong" prior

How to obtain the prior?

Literature

Previous experiments

Experts

Population studies

Bayes approach to parametric estimation (3/7)

Examples of Bayesian estimators

From $p_{x|y}(x|y)$ one can obtain different estimators. The most used are:

Posterior mean (minimum variance error)

 $\hat{x} = E\left[x \mid y\right] = \int x p_{x \mid y} \left(x \mid y\right) dx$

Maximum a posteriori (MAP)

 $\hat{x} = \arg\max p_{x|y}(x|y)$

Here MAP (Maximum a Posteriori) estimate coincides with minima variance estimate

95% CI (mean \pm 2SD if x|y is Gaussian)

Bayes approach to parametric estimation (5/7)

We can estimate x from the posterior $p_{x|y}(x|y)$. But how can we obtain it?

To determine $p_{x|y}(x|y)$ we need:

- the prior density of x, $p_x(x)$
- the likelihood *y*, $p_{y|x}(y|x)$, computable from the model G(x) and from the statistics of the error v (y=G(x)+v)

Bayes approach to parametric estimation (6/7) PARTICULAR CASE: $x \in v$ independent Gaussian, linear G(G(x)=Gx)

$$p_{x}(x) = \frac{1}{\left[(2\pi)^{M} \det(\Sigma_{x})\right]^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{T}\Sigma_{x}^{-1}(p-\mu)\right) \quad \text{Prior density}$$

$$p_{y|x}(y \mid x) = \frac{1}{\left[(2\pi)^{N} \det(\Sigma_{y})\right]^{1/2}} \exp\left(-\frac{1}{2}\left[y-Gx\right]^{T}\Sigma_{y}^{-1}\left[y-Gx\right]\right) \quad \text{Likelihood}$$

The posterior is also Gaussian and we have:

$$\hat{x}_{MAP} = E[x|y] = \arg\min_{x} [y - Gx]^T \Sigma_v^{-1} [y - Gx] + (x - \mu)^T \Sigma_x^{-1} (x - \mu)$$
Posterior information = data A priori information

Bayes approach to parametric estimation (7/7)

ADVANTAGES

• Return all the distribution of the estimates (from which e.g. minimum variance estimates and realistic confidence intervals can be obtained)

DRAWBACKS

• Computation of Bayesian point estimates and relative confidence may require solutions of computationally intractable integrals

Bayes approach: computational difficulties (1/2)

Integration plays a fundamental role in Bayesian estimation

• determination of the normalization factor

$$p_{x|y}(x \mid y) = \frac{p_{yx}(y \mid x)p_{x}(x)}{p_{y}(y)} \int p_{y|x}(y \mid x)p_{x}(x)dx$$

• distribution synthesis $\int g(x)p_{x|y}(x|y)dx$

Esempi:

$$x = \begin{bmatrix} x_1 & x_2 & \dots & x_d \end{bmatrix}^T$$

g(x) = x_i: minimum variance estimate of x_i

 $A \subset \mathfrak{R}^{d}$ $\chi (p \in A) = \begin{cases} 1 \text{ if } p \in A \\ 0 \text{ otherwise} \end{cases}$ $g(x) = \chi (x \in A): \text{ probability that } x \text{ assumes values in } A$

Bayes approach: computational difficulties (2/2)

- Vector *x* may assume values in high-dimensional spaces and its prior distribution can be non Gaussian
- Nonlinear models may be needed
- Data set size may be poor and the signal to noise ratio can be small

Posterior may be complex, far from Gaussianity, hence difficult to integrate

DETERMINISTIC APPROACHES TO THE PROBLEM (1/4)

• Classical numerical methods

Use quadrature rules which approximate the integral using sums of areas of polygons

Dimension 1: the integration interval is divided in pieces of lenght *h* One obtains polygons which approximate the function (e.g. lines, Lagrange polynomials) and then we obtain the area

Limits: even if they can provide very accurate results, they are numerical procedures which can be used only in low-dimensional spaces, in practice 2- or 3-dimensional (due to the "curse of dimensionality")

DETERMINISTIC APPROACHES TO THE PROBLEM (2/4) Curse of dimensionality

10% of coverage

1% of coverage

The number of points has to exponentially increase to maintain a certain coverage accuracy

DETERMINISTIC APPROACHES TO THE PROBLEM (3/4)

• Asymptotic Laplace approximation

The posterior $\pi(x)$ is approximated by a Gaussian distribution by computing its maximum and its Hessian around the maximum of the log-posterior

$$\hat{x} = \arg \max_{x} \log(\pi(x))$$
$$\log \pi(x) \approx \log \pi(\hat{x}) + \frac{1}{2}(x - \hat{x})^{T} \times \left[\frac{\partial^{2} \log \pi}{\partial x^{T} \partial x} | \hat{x} \right] \times (x - \hat{x})$$

$$\pi(x) \approx \frac{1}{\sqrt{\det(2\pi\Sigma)}} e^{-\frac{1}{2}(x-\hat{x})^T \Sigma^{-1}(x-\hat{x})} \doteq N(\hat{x}, \Sigma)$$
$$\Sigma = -\left[\frac{\partial^2 \log \pi}{\partial x^T \partial x} |\hat{x}\right]^{-1}$$

DETERMINISTIC APPROACHES TO THE PROBLEM (4/4)

Limits: results are often not so reliable and it is hard to evaluate the goodness of the approximation

SUMMARY

- Fisherian vs Bayesian estimation
- Bayesian estimation using Monte Carlo methods
- Bayesian estimation using Markov chain Monte Carlo
- On-line Bayesian estimation (particle filters)

CONVERGENCE OF RANDOM VARIABLES (1/2)

Consider a sequence of random variables f_n on a sample space Ω with generic element ω

CONVERGENCE OF RANDOM VARIABLES (2/2)

STOCHASTIC APPROACHES: MONTE CARLO SIMULATION

Let us use $\pi(x)$ to denote the posterior: we are interested in $E_{\pi}(g) \doteq \int g(x) \pi(x) dx$

We have $x^1, x^2, ..., x^n$ realizations i.i.d. from π Let use define the following Monte Carlo approximation of the integral:

$$E_{\pi}(g) \approx \frac{1}{n} \sum_{i=1}^{n} g(x_i)$$

CONVERGENCE OF A MONTE CARLO ESTIMATOR (1/2)

Strong law of large numbers holds:

CONVERGENCE OF A MONTE CARLO ESTIMATOR (2/2)

One has:

$$E\left[g\left(x_{i}\right)\right] = E_{\pi}\left[g\right]$$

$$\operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n}g\left(x_{i}\right)\right) = \frac{1}{n}\int\left(g\left(x\right) - E_{\pi}\left(g\right)\right)^{2}\pi\left(x\right)dx \doteq \frac{\sigma^{2}}{n}$$

- difference from the true integral value has standard deviation going to zero as $n^{-1/2}$ (indipendent of dimension of *x*)
- good approximation of the integral requires generation of a large number of realizations/samples from π

Question: is it easy to draw independent samples from π ?

MONTE CARLO SIMULATION: COMPUTATIONAL DIFFICULTIES

Obtaining independent realizations from π is in general simple if we consider univariate distributions

• One obtains samples from uniform random variables over [0,m] using recursive methods by computer

 $x_{i+1} = (ax_i + c) \mod(m)$ $a, c \in \mathbb{N}$ $x_0 = \text{generator seed}$

• Then one uses the inversion method:

$$F(a) = \int_{-\infty}^{a} \pi(x) dx$$

If x has generic but invertible probability distribution F, and u is drawn from an uniform random variable over [0,1], $F^{-1}(u)$ is a sample drawn from π . In fact:

$$\Pr\left(x := F^{-1}(u) \le a\right) = \Pr\left(u \le F(a)\right) = F(a)$$

MONTE CARLO SIMULATION: COMPUTATIONAL DIFFICULTIES

Drawing independent samples from π è is in general a very hard problem if one considers multivariate and non standard probability density functions

- Sample/resample methods
- Ratio of uniform method
-
- Rejection sampling

Rejection sampling (acceptance/rejection method)

1) One first obtains samples from a density $\lambda(x)$ different from that of interest assuming that there exists a scalar *M* such that:

2) Then one obtains a sample from a uniform u in [0,1] and accepts the realization x from λ if =(...)

$$u \le \frac{\pi(x)}{M\lambda(x)}$$

Accepted realizations are i.i.d. samples from π

Rejection sampling: observations

- Two-step method: use of an auxiliary density and then a correction method
- Choice of λ is crucial. It must be:
 - easy to simulate
 - easy to evaluate pointwise
 - such that it leads to a small probability of rejecting the sample (similar to π)

Rejection sampling: limitations (1/2)

Probability of accepting the sample from λ :

$$\int \Pr\left(u \le \frac{\pi(x)}{M\lambda(x)} \mid x\right) \lambda(x) dx =$$
$$\int \frac{\pi(x)}{M\lambda(x)} \lambda(x) dx = \frac{1}{M}$$

In practice $M\lambda$ has to be a nice cover of π but its choice is difficult in high-dimension

Rejection sampling: limitations (2/2)

CURSE OF DIMENSIONALITY

Rejection sampling: proof of correctness

Recall that we proved that, if A is the event `the sample from λ is accepted`, then $Pr(A)=M^{-1}$

$$\Pr(x|A) = \frac{\Pr(x \cap A)}{\Pr(A)} = M\Pr(x \cap A)$$

Infinitesimal probability of generating and accepting *x* using rejection sampling

$$\Pr(x \cap A) = \lambda(x) dx \Pr\left(U \le \frac{\pi(x)}{M\lambda(x)}\right) = \frac{\lambda(x) dx \pi(x)}{M\lambda(x)}$$

Hence, we can conclude that

$$\Pr(x|A) = M \frac{\lambda(x) dx \pi(x)}{M \lambda(x)} = \pi(x) dx$$

GENERALIZATION OF MONTE CARLO SIMULATION

The target is
$$E_{\pi}(g) \doteq \int g(x) \pi(x) dx$$

We try to extend the use of this estimator

$$E_{\pi}(g) \approx \frac{1}{n} \sum_{i=1}^{n} g(x_i)$$

To the case where $x^1, x^2, ..., x^n$ are non independent realizations from π

Advantages

This concept is the basis of the simulation technique called Markov chain Monte Carlo (MCMC)

SUMMARY

- Fisherian vs Bayesian estimation
- Bayesian estimation using Monte Carlo methods
- Bayesian estimation using Markov chain Monte Carlo
- On-line Bayesian estimation (particle filters)

MARKOV CHAINS

Let us consider a collection of random vectors of dimension d

$$\left\{X_{t}, t = 0, 1, 2, ...\right\}$$

We say it is a Markovian collection if, considering

$$\begin{split} X_t \Big| X_{t-1} &= x_{t-1}, X_{t-2} = x_{t-2}, \dots, X_0 = x_0 \\ & \text{it holds that} \\ \Pr \Big(X_t \in A \Big| X_{t-1} = x_{t-1}, X_{t-2} = x_{t-2}, \dots, X_0 = x_0 \Big) = \Pr \Big(X_t \in A \Big| X_{t-1} = x_{t-1} \Big) \\ \forall \ A \in \mathbf{B}, \forall t, \forall x \end{split}$$

B=sigma-algebra

A

STATIONARY MARKOV CHAINS

The chain is stationary if the conditional probability distributions do not vary over time

$$\Pr\left(X_{1} \in A \middle| X_{0} = x\right) = \Pr\left(X_{t} \in A \middle| X_{t-1} = x\right) \doteq P(A, x)$$
$$\forall A \in B, \forall t, \forall x$$
TRANSTION KERNEL OF A STATIONARY MARKOV CHAIN (1/3)

The transition kernel of the chain is that function k(a,x) s.t.:

$$P(A, x) = \int_{A} k(a, x) da$$
$$k(., .) = p_{X_{t+1}|X_t}(.|.)$$

TRANSTION KERNEL OF A STATIONARY MARKOV CHAIN (2/3)

 π_0 (initial probability density) and k(.,.) completely define the probability laws of the chain

Example $p_{x_0, x_1, x_2}(x_0, x_1, x_2) = p_{x_0}(x_0) p_{x_1 \mid x_0}(x_1 \mid x_0) p_{x_2 \mid x_1, x_0}(x_2 \mid x_1, x_0)$ $= \pi_0(x_0) k(x_1, x_0) k(x_2, x_1)$

For any n-uple of vectors from the chain, the joint probability density can be computed

TRANSTION KERNEL OF A STATIONARY MARKOV CHAIN (3/3)

Assume X_{t-1} has probability density π_{t-1} If π_t is the probability density of X_t , one has:

$$\pi_t(a) = \int k(a, x) \pi_{t-1}(x) dx$$

INVARIANT DENSITY OF A STATIONARY MARKOV CHAIN

 π is an invariant probability density for the chain if:

 $\pi(a) = \int k(a, x) \pi(x) dx$

IRREDUCIBLE MARKOV CHAINS (1/2)

Let π be an invariant density for the chain: the chain is irreducible if for any x and A in **B**, with $\int_{A} \pi(x) dx > 0$, there exists t > 0 s.t. $\Pr(X_t \in A | X_0 = x) > 0$

IRREDUCIBLE MARKOV CHAINS (2/2)

Irreducibility = possibility of visiting all the interesting regions of π starting from any x

STRONG LAW OF LARGE NUMBERS FOR MARKOV CHAINS

Let $\{X_t\}$ be an irreducible Markov chain having π as invariant density. One has:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=0}^{n} g(X_t)^{q.c.} = E_{\pi}(g)$$

for any initial state (except a set of probability zero)

MARKOV CHAIN MONTE CARLO

- Builds an irreducible Markov chain with invariant density equal to the posterior
- Uses Monte Carlo integration to obtain the quantities of interest

The first step of the algorithm can be obtained by using the Metropolis-Hastings algorithm

METROPOLIS-HASTINGS ALGORITHM (1/2)

Current chain state: $X_t = x$

- We propose a new sample $c \sim q(.|x)$ where q(.|.) is the proposal density of the chain
- with a certain probability α(c,x) we accept the candidate c,
 i.e. X_{t+1}=c
- otherwise $X_{t+1} = x$

ALGORITMO DI METROPOLIS-HASTINGS (2/2)

If the acceptance probability is:

$$\alpha(c,x) = \min\left(1, \frac{\pi(c)q(x|c)}{\pi(x)q(c|x)}\right)$$

 π becomes the invariant density of the generated Markov chain

Preliminary lemma

$$\alpha(c,x) = \min\left(1, \frac{\pi(c)q(x|c)}{\pi(x)q(c|x)}\right)$$

$$\blacksquare$$

$$\pi(X_t)q(X_{t+1}|X_t)\alpha(X_{t+1}, X_t) = \pi(X_{t+1})q(X_t|X_{t+1})\alpha(X_t, X_{t+1})$$

Preliminary lemma

$$\alpha(c,x) = \min\left(1, \frac{\pi(c)q(x|c)}{\pi(x)q(c|x)}\right)$$

$$\blacksquare$$

$$\pi(X_t)q(X_{t+1}|X_t)\alpha(X_{t+1}, X_t) = \pi(X_{t+1})q(X_t|X_{t+1})\alpha(X_t, X_{t+1})$$

Proof

Let us show that the equality holds for any possible couple (X_t, X_{t+1})

Preliminary lemma

Proof

Let us divide all the possible couples (X_t, X_{t+1}) into two groups

Preliminary lemma

Proof

Group 1:
$$\frac{\pi(X_{t+1})q(X_t|X_{t+1})}{\pi(X_t)q(X_{t+1}|X_t)} \leq 1$$

Preliminary lemma

Proof

Group 1:
$$\frac{\pi(X_{t+1})q(X_t|X_{t+1})}{\pi(X_t)q(X_{t+1}|X_t)} \leq 1$$

This implies $\alpha(X_{t+1}, X_t) = \frac{\pi(X_{t+1})q(X_t|X_{t+1})}{\pi(X_t)q(X_{t+1}|X_t)}$ e $\alpha(X_t, X_{t+1}) = 1$

and the equality immediately follows

Preliminary lemma

$$\alpha(c,x) = \min\left(1, \frac{\pi(c)q(x|c)}{\pi(x)q(c|x)}\right)$$

$$\blacksquare$$

$$\pi(X_t)q(X_{t+1}|X_t)\alpha(X_{t+1}, X_t) = \pi(X_{t+1})q(X_t|X_{t+1})\alpha(X_t, X_{t+1})$$

Proof

Group 2:
$$\frac{\pi(X_t)q(X_{t+1}|X_t)}{\pi(X_{t+1})q(X_t|X_{t+1})} < 1$$

Preliminary lemma

$$\alpha(c,x) = \min\left(1, \frac{\pi(c)q(x|c)}{\pi(x)q(c|x)}\right)$$

$$\blacksquare$$

$$\pi(X_t)q(X_{t+1}|X_t)\alpha(X_{t+1}, X_t) = \pi(X_{t+1})q(X_t|X_{t+1})\alpha(X_t, X_{t+1})$$

Proof

Group 2:
$$\frac{\pi(X_t)q(X_{t+1}|X_t)}{\pi(X_{t+1})q(X_t|X_{t+1})} < 1$$

This implies $\alpha(X_t, X_{t+1}) = \frac{\pi(X_t)q(X_{t+1}|X_t)}{\pi(X_{t+1})q(X_t|X_{t+1})}$ e $\alpha(X_{t+1}, X_t) = 1$

and the equality immediately follows

$$k\left(X_{t+1} \middle| X_{t}\right) = q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) + \delta\left(X_{t+1} = X_{t}\right) \left(1 - \int q\left(c \middle| X_{t}\right) \alpha\left(c, X_{t}\right) dc\right)$$

Kernel of the chain

$$k\left(X_{t+1} \middle| X_{t}\right) = q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) + \delta\left(X_{t+1} = X_{t}\right) \left(1 - \int q\left(c \middle| X_{t}\right) \alpha\left(c, X_{t}\right) dc\right)$$

Kernel of the Markov chain describing the infinitesimal probability of going from X_t to X_{t+1}

Kernel of the chain

$$k\left(X_{t+1} \middle| X_{t}\right) = q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) + \delta\left(X_{t+1} = X_{t}\right) \left(1 - \int q\left(c \middle| X_{t}\right) \alpha\left(c, X_{t}\right) dc\right)$$

Infinitesimal probability of proposing as candidate X_{t+1} if the current state is X_t

Kernel of the chain

$$k\left(X_{t+1} \middle| X_{t}\right) = q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) + \delta\left(X_{t+1} = X_{t}\right) \left(1 - \int q\left(c \middle| X_{t}\right) \alpha\left(c, X_{t}\right) dc\right)$$

Probability of accepting as candidate X_{t+1} if the current state is X_t

Kernel of the chain

$$k\left(X_{t+1} \middle| X_{t}\right) = q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) + \delta\left(X_{t+1} = X_{t}\right) \left(1 - \int q\left(c \middle| X_{t}\right) \alpha\left(c, X_{t}\right) dc\right)$$

Infinitesimal probability of going to X_{t+1} from X_t through the acceptance of the candidate

Kernel of the chain

$$k\left(X_{t+1} \middle| X_{t}\right) = q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) + \delta\left(X_{t+1} = X_{t}\right) \left(1 - \int q\left(c \middle| X_{t}\right) \alpha\left(c, X_{t}\right) dc\right)$$

Infinitesimal probability of going to X_{t+1} from X_t through the acceptance of the candidate Probability of accepting a sample (before generating it!) If the current state is X_t (generated by q with acceptance probability given by α)

Kernel of the chain

$$k\left(X_{t+1} \middle| X_{t}\right) = q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) + \delta\left(X_{t+1} = X_{t}\right) \left(1 - \int q\left(c \middle| X_{t}\right) \alpha\left(c, X_{t}\right) dc\right)$$

Infinitesimal probability of going to X_{t+1} from X_t through the acceptance of the candidate Probability of remaining at X_t

Kernel of the chain

$$k\left(X_{t+1} \middle| X_{t}\right) = q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) + \delta\left(X_{t+1} = X_{t}\right) \left(1 - \int q\left(c \middle| X_{t}\right) \alpha\left(c, X_{t}\right) dc\right)$$

Infinitesimal probability of going to X_{t+1} from X_t through the acceptance of the candidate And also Dirac delta area which is equal to the probability of going from X_t to X_{t+1} by refusing the candidate: contribution to $k(X_{t+1}|X_t)$ only if $X_{t+1}=X_t$

Kernel of the chain

$$k\left(X_{t+1} \middle| X_{t}\right) = q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) + \delta\left(X_{t+1} = X_{t}\right) \left(1 - \int q\left(c \middle| X_{t}\right) \alpha\left(c, X_{t}\right) dc\right)$$

Infinitesimal probability of going to X_{t+1} from X_t through the acceptance of the candidate Hence, the second contribution is the Dirac delta with that area and centred on X_t

Kernel of the chain

$$k\left(X_{t+1} \middle| X_{t}\right) = q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) + \delta\left(X_{t+1} = X_{t}\right) \left(1 - \int q\left(c \middle| X_{t}\right) \alpha\left(c, X_{t}\right) dc\right)$$

Infinitesimal probability of going to X_{t+1} from X_t through the acceptance of the candidate Hence, the second contribution is the Dirac delta with that area and centred on X_t

Symmetric term in X_{t+1} and X_t

$$k\left(X_{t+1} \middle| X_{t}\right) = q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) + \delta\left(X_{t+1} = X_{t}\right) \left(1 - \int q\left(c \middle| X_{t}\right) \alpha\left(c, X_{t}\right) dc\right)$$

Symmetric term in X_{t+1} and X_{t}
+ (lemma)
$$\pi\left(X_{t}\right) q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) = \pi\left(X_{t+1}\right) q\left(X_{t} \middle| X_{t+1}\right) \alpha\left(X_{t}, X_{t+1}\right)$$

$$k(X_{t+1}|X_{t}) = q(X_{t+1}|X_{t})\alpha(X_{t+1}, X_{t}) + \delta(X_{t+1} = X_{t})(1 - \int q(c|X_{t})\alpha(c, X_{t})dc)$$

Symmetric term in X_{t+1} and X_{t}
+ (lemma)

$$\pi(X_{t})q(X_{t+1}|X_{t})\alpha(X_{t+1}, X_{t}) = \pi(X_{t+1})q(X_{t}|X_{t+1})\alpha(X_{t}, X_{t+1})$$

$$= \pi(X_{t})k(X_{t+1}|X_{t}) = \pi(X_{t+1})k(X_{t}|X_{t+1})$$

Kernel of the chain

$$k(X_{t+1}|X_{t}) = q(X_{t+1}|X_{t})\alpha(X_{t+1},X_{t}) + \delta(X_{t+1} = X_{t})(1 - \int q(c|X_{t})\alpha(c,X_{t})dc)$$

Symmetric term in X_{t+1} and X_{t}
+ (lemma)

$$\pi(X_{t})q(X_{t+1}|X_{t})\alpha(X_{t+1},X_{t}) = \pi(X_{t+1})q(X_{t}|X_{t+1})\alpha(X_{t},X_{t+1})$$

$$\prod_{i=1}^{n} \pi(X_{t})k(X_{t+1}|X_{t}) = \pi(X_{t+1})k(X_{t}|X_{t+1})$$

Immediately derives from the symmetry of the term $\delta(X_{t+1} = X_t)(1 - \int q(c|X_t)\alpha(c,X_t)dc)$ that defines the kernel of the chain

$$k(X_{t+1}|X_{t}) = q(X_{t+1}|X_{t})\alpha(X_{t+1},X_{t}) + \delta(X_{t+1} = X_{t})(1 - \int q(c|X_{t})\alpha(c,X_{t})dc)$$

Symmetric term in X_{t+1} and X_{t}
+ (lemma)
 $\pi(X_{t})q(X_{t+1}|X_{t})\alpha(X_{t+1},X_{t}) = \pi(X_{t+1})q(X_{t}|X_{t+1})\alpha(X_{t},X_{t+1})$
 $\pi(X_{t})k(X_{t+1}|X_{t}) = \pi(X_{t+1})k(X_{t}|X_{t+1})$
 $\int \pi(X_{t})k(X_{t+1}|X_{t})dX_{t} = \pi(X_{t+1})\int k(X_{t}|X_{t+1})dX_{t}$

$$k(X_{t+1}|X_{t}) = q(X_{t+1}|X_{t})\alpha(X_{t+1}, X_{t}) + \delta(X_{t+1} = X_{t})(1 - \int q(c|X_{t})\alpha(c, X_{t})dc)$$

Symmetric term in X_{t+1} and X_{t}
+ (lemma)
 $\pi(X_{t})q(X_{t+1}|X_{t})\alpha(X_{t+1}, X_{t}) = \pi(X_{t+1})q(X_{t}|X_{t+1})\alpha(X_{t}, X_{t+1})$
 $\pi(X_{t})k(X_{t+1}|X_{t}) = \pi(X_{t+1})k(X_{t}|X_{t+1})$
 $\int \pi(X_{t})k(X_{t+1}|X_{t})dX_{t} = \pi(X_{t+1})k(X_{t}|X_{t+1})dX_{t} = 1$

$$k(X_{t+1}|X_{t}) = q(X_{t+1}|X_{t})\alpha(X_{t+1},X_{t}) + \underbrace{\delta(X_{t+1} = X_{t})(1 - \int q(c|X_{t})\alpha(c,X_{t})dc)}_{\text{Symmetric term in } X_{t+1} \text{ and } X_{t}}$$

$$+ (\text{lemma})$$

$$\pi(X_{t})q(X_{t+1}|X_{t})\alpha(X_{t+1},X_{t}) = \pi(X_{t+1})q(X_{t}|X_{t+1})\alpha(X_{t},X_{t+1})$$

$$\downarrow$$

$$\int \pi(X_{t})k(X_{t+1}|X_{t})dX_{t} = \pi(X_{t+1})$$

Kernel of the chain

$$k(X_{t+1}|X_{t}) = q(X_{t+1}|X_{t})\alpha(X_{t+1},X_{t}) + \underbrace{\delta(X_{t+1} = X_{t})(1 - \int q(c|X_{t})\alpha(c,X_{t})dc)}_{\text{Symmetric term in } X_{t+1} \text{ and } X_{t}}$$

$$+ (\text{lemma})$$

$$\pi(X_{t})q(X_{t+1}|X_{t})\alpha(X_{t+1},X_{t}) = \pi(X_{t+1})q(X_{t}|X_{t+1})\alpha(X_{t},X_{t+1})$$

$$\downarrow$$

$$\int \pi(X_{t})k(X_{t+1}|X_{t})dX_{t} = \pi(X_{t+1})$$

Hence, π is indeed the invariant density

OBSERVATIONS (1/2)

- differently from the rejection sampling:
 - the chain always moves (if the sample is refused, the next state is equal to the previous one)
- in general, the algorithm is able to return correlated (but not independent) samples from π

OBSERVATIONS (2/2)

• the target density π can be known apart from a normalization factor

$$\alpha(c,x) = \min\left(1, \frac{\pi(c)q(x|c)}{\pi(x)q(c|x)}\right) \qquad \qquad \pi(x) \propto p_{y|x}(y|x)p_x(x)$$

• theoretically, the algorithm works for any *q*(.|.) (if the chain is irreducible), but in practice the choice of *q* is crucial
CHOICE OF *q(.*|.) (1/2)

q(.|.) must

- be easy to sample
- be simple to be evaluated pointwise
- able to quickly explore the support of π

CHOICE OF q(.|.) (2/2)

Often, it is useful to adopt random-walk proposals

$$q(c|x) = f(|c-x|) = q(x|c)$$

$$c = x_t + \varepsilon$$

$$\varepsilon \sim N(0, \Sigma) \begin{cases} q(c|x) = N(x, \Sigma) \end{cases}$$

- \varSigma provides information as how to move locally around the current point
- the acceptance probability becomes

$$\alpha(c,x) = \min\left(1, \frac{\pi(c)}{\pi(x)}\right)$$

Strategies to choose $\Sigma(1/2)$:

In high-dimension it is worth performing an explorative analysis of π

Example #1:

• Define a diagonal matrix Σ with small variances values

$$\Sigma_{start} = \begin{bmatrix} \sigma_1^2 & & & \\ & \sigma_2^2 & & \\ & & \cdots & \\ & & & \sigma_n^2 \end{bmatrix}$$

- generate Markov chains and monitor the results. Change the variances so as to obtain an acceptance rate around 30-40%
- generate the Markov chain using the matrix \varSigma obtained by the pilot analysis

Strategies to choose $\Sigma(2/2)$:

Example #2:

• Calculate the posterior maxima and obtain information on the a posteriori correlation of the components of *x*

$$\Sigma \propto \left[-\frac{\partial^2 \log \pi}{\partial x^T \partial x} | \hat{x} \right]^{-1}$$
$$\hat{x} = \arg \min_x - \log(\pi)$$

• the scale factor is chosen so as to obtain an acceptance rate around 30-40%

MCMC: SIMULATED EXAMPLE (1 of 4)

MCMC: SIMULATED EXAMPLE (2 of 4)

MCMC: SIMULATED EXAMPLE (3 of 4)

MCMC: SIMULATED EXAMPLE (4 of 4)

2000 independent samples

CHOICE OF *q(.|.):* BLOCK SCHEMES

Hard case:

- strong a posteriori correlation
- correlation much varies along the parameter space
- difficult to move simultaneously
 x₁ and x₂ with a suitable probability c
 accepting the generated sample

CHOICE OF *q(.|.):* BLOCK SCHEMES

One solution is to move separately x_1 and x_2 by defining two proposal densities q_1 and q_2

CHOICE OF *q(.|.):* BLOCK SCHEMES

CONVERGENCE DIAGNOSTICS (1/2)

Once an MCMC simulation starts, how many iterations do we need to perform?

• the chain kernel assumes a complex form

$$k\left(X_{t+1} \middle| X_{t}\right) = q\left(X_{t+1} \middle| X_{t}\right) \alpha\left(X_{t+1}, X_{t}\right) + \delta\left(X_{t+1} = X_{t}\right) \left(1 - \int q\left(c \middle| X_{t}\right) \alpha\left(c, X_{t}\right) dc\right)$$

and is thus complex to analyze convergence under a theoretical viewpoint

CONVERGENCE DIAGNOSTICS (2/2)

• in practice one obtains information on the Markov chain convergence by analyzing the statistical properties of the generated samples

3000

x 10⁻⁵

MINIMAL MODEL EQUATIONS

G(t) = glucose plasma concentrationI(t) = insulin plasma concentration

$$G(t) = -(S_{G} + X(t))G(t) + S_{G}G_{b} \qquad G(0) = G_{0}$$

$$\dot{X}(t) = -p_{2} \{X(t) - S_{I} [I(t) - I_{b}]\} \qquad X(0) = 0$$

- Ithe model contains 4 parameters that are not directly measurable and have to be estimated from glucose samples
- *I(t)* èis assumed perfectly known by linear interpolation of its noisy samples. The model thus turns out to be a priori identifiable.

MM PARAMETER ESTIMATION USING FISHER

$$y_{i} = h(t_{i}, x) + v_{i}$$

$$i=1,2,..,N$$
Glucose prediction
$$x = [S_{1}, p_{2}, S_{G}, G_{0}]$$
Gaussian error (CV%=2)
$$v \sim N(0, \Sigma_{v}) \qquad \Sigma_{v}(i,i) = \sigma_{i}^{2}$$

$$L(x) = \frac{1}{(2\pi)^{N/2} \det(\Sigma_{v})^{1/2}} e^{-\frac{1}{2} \sum_{i=1}^{N} \left(\frac{y_{i} - h(t_{i}, x)}{\sigma_{i}}\right)^{2}}$$

LIKELIHOOD

$x^{ML} = \arg\max_{p} L(p)$

MAXIMUM LIKELIHOOD ESTIMATE

DIFFICULTIES ENCOUNTERED BY THE FISHERIAN APPROACH (1/2)

THE $S_I = 0$ PROBLEM

In almost 40% of diabetic subjects the model returns an S_I estimate equal to zero

DIFFICULTIES ENCOUNTERED BY THE FISHERIAN APPROACH (2/2)

OTHER PROBLEMS

- S_I estimate may turn out very small and much uncertain (in particular in diabetic subjects)
- S_I pestimate may turn out much uncertain and not realistic, assuming very large value
- also p_2 estimate may turn out much uncertain

REPRODUCING FISHER DIFFICULTIES VIA COMPUTER SIMULATION

$$y_{i} = h(t_{i}, x) + v_{i}$$
We generate 1000 realizations
of the measurement error

$$x = [S_{1}, p_{2}, S_{G}, G_{0}]$$
We generate 1000 realizations
of the measurement error

$$v \sim N(0, \Sigma_{v})$$
and after each noise realization
we obtain the maximum likelihood
estimate of the MM parameters

$$S_{1} = 0.7e - 4min^{-1} / \mu Uml^{-1}$$

Likelihood shapes in 3 significant cases

Works well

 $S_I = 0$ and also p_2 is much uncertain

Large S_I , not realistic, and small p_2 with large uncertainty

Question: passing from Fisher....

can we overcome the identification problems?

Bayesian strategy: definition of the prior

2. The prior is then poorly informative regarding $S_G, p_2 \in G_0$ including just nonnegativity information

$$p_{S_{I},S_{G},p_{2},G_{0}} \propto p_{S_{I}}(S_{I})\chi(S_{G} \ge 0)\chi(p_{2} \ge 0)\chi(G_{0} \ge 0)$$

Bayesian strategy: definition of the MCMC scheme

 S_I and p_2 are often strongly correlated a posteriori. It is convenient to update them separately by defining two proposal densities:

$$\begin{split} \Sigma_{1} &= \begin{pmatrix} \sigma_{S_{I}}^{2} & 0 & 0 \\ 0 & \sigma_{G_{0}}^{2} & 0 \\ 0 & 0 & \sigma_{S_{G}}^{2} \end{pmatrix} \\ \gamma_{1} &= \begin{pmatrix} S_{I}^{new}, G_{0}^{new}, S_{G}^{new} \mid S_{I}^{old}, G_{0}^{old}, S_{G}^{old} \end{pmatrix} \\ = N & \left(\begin{bmatrix} S_{I}^{old} & G_{0}^{old} & S_{G}^{old} \end{bmatrix}, \Sigma_{1} \end{pmatrix} \\ &= N & \left(\begin{bmatrix} S_{I}^{old} & G_{0}^{old} & S_{G}^{old} \end{bmatrix}, \Sigma_{1} \end{pmatrix} \\ \end{split}$$

 p_2

COMPUTATIONAL COMPLEXITY

Related to the posterior evaluation at any MCMC iteration, i.e. to the cost of solving the differential equations of the model for any new proposed sample

$$G(t) = -(S_{G} + X(t))G(t) + S_{G}G_{b} \qquad G(0) = G_{0}$$

$$\dot{X}(t) = -p_{2} \{X(t) - S_{I} [I(t) - I_{b}]\} \qquad X(0) = 0$$

Define:

$$Z(t) = \int_0^t X(t) dt$$

= $\int_0^t \int_0^t S_I p_2 e^{-p_2(t-\tau)} \left(I(\tau) - I_b \right) d\tau dt = \int_0^t S_I \left(1 - e^{-p_2(t-\tau)} \right) \left(I(\tau) - I_b \right) d\tau$

One has:
$$G(t) = G_0 e^{-S_G t - Z(t)} + S_G G_b \int_0^t e^{-S_G (t - \tau) - Z(t) + Z(\tau)} d\tau$$

Glucose prediction in closed form

RESULTS

 S_{1} (10⁻⁴ min⁻¹ / μ U ml⁻¹)

BAYES S_I **POSTERIOR** $E[x|y] = \int xp_{x|y}(x|y)dx$

SUMMARY: 1000 SYNTHETIC SUBJECTS

CONCLUSIONI

- Mathematical description and identification of a physical system is often a complex task (introduction of nonlinearities complicates the estimation process, e.g. nonnegativity constraints)
- Fisher approaches sometimes are not suited to face such difficulties, differently from the Bayesian approaches which appear more powerful alternatives but also more difficult to implement
- MCMC is currently the most powerful approach to face the computational difficulties related to the use of a Bayesian estimator