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FISHER VS BAYES

Let us consider the model: y=G(x)+v

Fisher approach: x, which admits a true deterministic value, 1s

estimated using only the experimental data
¢.g. Maximum Likelihood: x = argmax P, ( y|x)

Bayes approach: x 1s random and we estimate one realization
using not only the experimental data (posteriori information),
but also the a priori information (indipendent of the data)



Fisher approach to parametric estimation

R
Datay

FISHERIAN
ESTIMATOR

(Maximum likelihood)

ADVANTAGES

x (+=SD)
I

Estimate of model
parameter x

e require optimization algorithms (e.g. conjugate gradient/Newton) often not so

computational expensive

DRAWBACKS

e They are minimum variance estimators only using linear models and Gaussian

measurement errors

* They often return non realistic confidence intervals
(e.g. containing negative values due to Gaussian approximations of the estimates)



Bayes approach to parametric estimation (1/7)

The starting point 1s that we have some information on x, indipendent of the

data (i.e. “before seeing the data”=a priori), and these expectations are
summarized in the a priori probability density function

Dx(x)

Such expectations are then modified after seeing the data y, hence one
speaks of a posteriori probability density function (=conditional on y)

px|y(x |y)

This 1s the key function obtained by Bayes.
From it, one can obtain point estimates and confidence intervals.



Bayes approach to parametric estimation (2/7)
Why using Bayesian priors

To onclude all the available information in the estimation
process

To extend the complexity of the model

— Priors on all the unknown parameters

To improve the parameter estimates

— Use of population or individual information

To analyze sparse data set/high measurement noise

— “Weak” Likelihood, “strong” prior



How to obtain the prior?

Literature

Previous experiments

Population studies




Bayes approach to parametric estimation (3/7)

Examples of Bayesian estimators

From p,. (x|y) one can obtain different estimators.
The most used are:

Posterior mean (minimum variance error)
X = E[x‘y] = fxpx‘y (x | y)dx
Maximum a posteriori (MAP)

X = arg max Py, (x‘y)



Bayes approach to parametric estimation (4/7)
Use of the posterior: example with scalar x

POINT ESTIMATE Day(X]y)

B
»

Here MAP (Maximum a Posteriori) estimate coincides with minima variance
estimate

CONFIDENCE INTERVALS

v

95% CI (mean = 2SD if x|y is Gaussian)



Bayes approach to parametric estimation (5/7)

We can estimate x from the posterior p,,(x|y).
But how can we obtain it?

Bayes rule:

p,.(y[x)p,(x)
p,(»)

p,,(x[y)=

To determine p,,(x|y) we need:

e the prior density of x, p.(x)
* the likelihood y, p,,(y|x), computable from the model G(x)
and from the statistics of the error v (y=G(x)+v)



Bayes approach to parametric estimation (6/7)

PARTICULAR CASE: x e vindependent Gaussian,
linear G (G(x)=Gx)

G [ — eXp(—%(x—M)TE;I(p—u)) Prior density
[(2n)M det(Zx)]

| 1 T . .
P |- P exp(-g[y-cx] S [y-Gx]) Likelihood

The posterior 1s also Gaussian and we have:

= B[] =argmin]y -G [y el (x-a) 2 (-

Posterior information = data A priori information



Bayes approach to parametric estimation (7/7)

p,.(y|x)p.(x)

p,,(x]y)=

M p,(»)
BAYESIAN
——
m——
ESTIMATOR A
Prior: a priori probability Posterior: a pdstefidri probability
density function density function
of model parameters of model parameters
ADVANTAGES

 Return all the distribution of the estimates (from which e.g. minimum variance

estimates and realistic confidence intervals can be obtained)

DRAWBACKS

« Computation of Bayesian point estimates and relative confidence may require
solutions of computationally intractable integrals



Bayes approach: computational difficulties (1/2)
Integration plays a fundamental role 1n Bayesian estimation

e determination of the normalization factor

p,(yx)p (x)

pw(ﬂ)’): @//> fpy|x(y|x)px(x)dx

e distribution synthesis f g(x)p, (x| y)dx

Esempi:
T
x=[x1 X, .. xd]

g(x) = x, : minimum variance estimate of x;

ACH?
lif pe A4
E4)=
x(p ) {0 otherwise
g(x)=x(x € 4): probability that x assumes values in 4



Bayes approach: computational difficulties (2/2)

* Vector x may assume values in high-dimensional spaces and its
prior distribution can be non Gaussian

* Nonlinear models may be needed

 Data set size may be poor and the signal to noise ratio can be small

!

Posterior may be complex,
far from Gaussianity,
hence difficult to integrate



DETERMINISTIC APPROACHES TO THE PROBLEM (1/4)

e Classical numerical methods

Use quadrature rules which approximate the integral using sums of
areas of polygons

flx)
Dimension 1: the integration interval A fl\
is divided in pieces of lenght £ \ f
One obtains polygons which approximate N
the function (e.g. lines, Lagrange polynomials)
and then we obtain the area X, -~ >
-+—/h—

Limits: even if they can provide very accurate results, they are numerical
procedures which can be used only in low-dimensional spaces, in practice 2- or
3-dimensional (due to the “curse of dimensionality”)



DETERMINISTIC APPROACHES TO THE PROBLEM (2/4)
Curse of dimensionality
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10% of coverage 1% of coverage

The number of points has to exponentially increase
to maintain a certain coverage accuracy



DETERMINISTIC APPROACHES TO THE PROBLEM (3/4)

» Asymptotic Laplace approximation

The posterior 7z(x) is approximated by a Gaussian distribution by computing
its maximum and its Hessian around the maximum of the log-posterior

X = argmax_ log(zt(x))

logn(x)zlogn(£)+%(x—)%)Tx[a;k;?ﬂ X x(x—&)
X 0X
] ) T (emk)
T|x)= e’ =N|(x,2
( ) \/det(27t2) ( )
5 -1
s__ 0" logm 2
ox’ ox




DETERMINISTIC APPROACHES TO THE PROBLEM (4/4)

7(x)=N(5,3)

"""""" True
2 1 -1
d”logu .
Z _ - Tg x \\
ox o0x > Approximated . _

Limits: results are often not so reliable and it is hard to evaluate the goodness
of the approximation
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CONVERGENCE OF RANDOM
VARIABLES (1/2)

Consider a sequence of random variables £,
on a sample space €2 with generic element ®




CONVERGENCE OF RANDOM
VARIABLES (2/2)

almost surely

lim _f =f
if

Pr(a): lim_ (a)) = f(a))) =1




STOCHASTIC APPROACHES:
MONTE CARLO SIMULATION

Let us use 7(x) to denote the posterior:

we are interested in Eﬂ(g) = fg(x)n(x)dx

We have x/, x2, ..., x* realizattions i.i.d. from 7
Let use define the following Monte Carlo
approximation of the integral:

()= D)



CONVERGENCE OF A
MONTE CARLO ESTIMATOR (1/2)

Strong law of large numbers holds:

almost surely

im,. LS E o

hl)=g(x@)




CONVERGENCE OF A
MONTE CARLO ESTIMATOR (2/2)

One has:
Elefe))-£.[¢
o Sele) |- el e e

* difference from the true integral value has standard deviation going to
zero as n-//? (indipendent of dimension of x)

 good approximation of the integral requires generation of a large
number of realizations/samples from

Question: 1s it easy to draw independent samples from nt?



MONTE CARLO SIMULATION:
COMPUTATIONAL DIFFICULTIES

Obtaining independent realizations from 7 is in general simple if
we consider univariate distributions

* One obtains samples from uniform random variables over [0,m] using
recursive methods by computer

x.,, = (ax, +c)mod(m) a,cEN P

X, = generator seed

 Then one uses the inversion method:

;F(a){n(x)dx

If x has generic but invertible probability distribution F,
and u 1s drawn from an uniform random variable over [0,1],
F-(u) is a sample drawn from .

In fact:

Pr(x = F‘l(u) =< a) = Pr(u = F(a)) = F'(a)



MONTE CARLO SIMULATION:
COMPUTATIONAL DIFFICULTIES

Drawing independent samples from = ¢ is in general a very hard
problem if one considers multivariate and non standard
probability density functions

Sample/resample methods

Ratio of uniform method

Rejection sampling



Rejection sampling
(acceptance/rejection method)

1) One first obtains samples from a density A(x) different from that of
interest assuming that there exists a scalar M such that:

A Mﬂ/

MA(x)=a(x)
" AN

2) Then one obtains a sample from a uniform « in [0,1] and accpets the
realization x from A if
7 (x)

u <

- MA(x)

Accepted realizations are
1.1.d. samples from &



Rejection sampling:
observations

» Two-step method: use of an auxiliary density and then a correction method

* Choice of A 1s crucial.
It must be:

- easy to simulate

- easy to evaluate pointwise

- such that it leads to a small probability of rejecting the sample (similar to 7)



Rejection sampling:
limitations (1/2)

Probability of accepting the sample from A:

[ Pr[u < AZ(L)(C))C) | x)?t(x)dx -
[ () () =

MA(x)

In practice M/ has to be a nice cover of 7
but 1ts choice is difficult in high-dimension



Rejection sampling:
limitations (2/2)

CURSE OF DIMENSIONALITY

Support of 4

o]

Support of 7




Rejection sampling:
proof of correctness

Recall that we proved that, if A is the event
“the sample from A 1s accepted’,
then Pr(A)=M-!

Infinitesimal probability of
Pr(x|A) = PrlA) = MPr(xNA) generating and accepting x

using rejection sampling

T (x) > _ A(x)dxm(x)

Pr(xNA) = A (x)dx Pr(U < MA(x) M2 ()

Hence, we can conclude that

A (x)dxm(x)

Pr(xld) = M=o S

= 1(x)dx




GENERALIZATION OF
MONTE CARLO SIMULATION

The target 1s Eﬂ(g)ﬁfg(x)n(x)dx

We try to extend the use of this estimator

()= Da(x)

To the case where x/, x¢,..., x" are

non independent realizations from 7



Advantages

Support of 7

Suppose we have been able to generate
a sample from 7 : I can try to generate
the next one close to it

This concept is the basis of the simulation technique called
Markov chain Monte Carlo (MCMC)
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MARKOV CHAINS

Let us consider a collection of random vectors of dimension d

{X,.1=012,.}

We say it i1s a Markovian collection if, considering

X

t

X =x ,X .=x ,..,X

-1 e TN 0 =%

it holds that
Pr(X, € A|X  =x_.X  =x ... X, =x,)=Pr(X, €4]X _ =x_)
Y A€ B,V Vx

B=sigma-algebra



STATIONARY MARKOYV CHAINS

The chain is stationary if the conditional
probability distributions do not vary over time

Pr(X, € 4|X, =x)=Pr(X, € 4|X,, =x)= P(4,x)
YV AE€B,Vt,Vx



TRANSTION KERNEL OF A
STATIONARY MARKOV CHAIN (1/3)

The transition kernel of the
chain 1s that function k(a,x) s.t.:

P(A,x) = {k(a,x)da

()= 1)



TRANSTION KERNEL OF A
STATIONARY MARKOV CHAIN (2/3)

77, (initial probability density) and
k(.,.) completely define the
probability laws of the chain

Example
I (x0’x1’x2) =P, (x())pxl‘xo (xl ‘XO)pxz‘xl,xo (xz
TT, (xo)k(xl,xo)k(XZ,xl)

For any n-uple of vectors from the chain , the joint
probability density can be computed

xl,xo)



TRANSTION KERNEL OF A
STATIONARY MARKOV CHAIN (3/3)

Assume X, ; has probability density 7 ;
If 7, is the probability density of X,, one has:

nt(a)=fk(a,x)nt_l(x)dx

K k( )
Xo~‘7-[0

4 ~ 7T,



INVARIANT DENSITY OF A
STATIONARY MARKOYV CHAIN

T 1s an invariant probability density
for the chain 1f:

Jr(a)=fk(a,x)n(x)dx

k(..)

k(..) . @— k(..
X ~x X~ X, -



IRREDUCIBLE MARKOYV CHAINS (1/2)

Let 7 be an invariant density for the chain:

the chain is irreducible if for any x and
A1n B, withfn(x)dx >0,
A

there exists £0 s.t.

Pr(X, € 4| X, = x]>0



IRREDUCIBLE MARKOYV CHAINS (2/2)

Supportof ©t

Irreducibility = possibility
of visiting all the interesting
regions of 7 starting
from any x




STRONG LAW OF LARGE NUMBERS
FOR MARKOYV CHAINS

Let {X t } be an irreducible Markov chain
having 7 as invariant density.
One has:

1imn%%§g(xt)q:£ﬂ(g)
t=0

for any initial state
(except a set of probability zero)



MARKOV CHAIN MONTE CARLO

e Builds an irreducible Markov chain with
invariant density equal to the posterior

e Uses Monte Carlo integration to obtain the
quantities of interest

The first step of the algorithm can be obtained by
using the Metropolis-Hastings algorithm



METROPOLIS-HASTINGS ALGORITHM (1/2)

Current chain state: X,=x

* We propose a new sample ¢ ~ q(.‘x)
where ¢(.|.) 1s the proposal density of the chain

 with a certain probability o.(c,x) we accept the candidate c,
i.e. AXZ¢_|_]:C

 otherwise X, ;=x



ALGORITMO DI METROPOLIS-HASTINGS (2/2)

If the acceptance probability is:

e S

4

7w becomes the invariant density
of the generated Markov chain



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Preliminary lemma

a<x>mn(1Z§§ZE\‘;)

t+1°

w(x,)alX.,

Xt)a(X X)) n(Xm)q(Xt

Xt+1 ) « (Xt ? Xt+l)



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Preliminary lemma

a<x>mn(1Z§§ZE\‘;)

-

w(x,)alX.,

X )a(X,,.X,)=m(X,,)q(X,

1277 ¢

Xt+1 ) « (Xt ? Xt+l)

Proof

Let us show that the equality holds
for any possible couple (X, X}, ;)



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Preliminary lemma

a<x>mn(1Z§§ZE\‘;)

-

w(x,)alX.,

X )a(X,,.X,)=m(X,,)q(X,

1277 ¢

Xt+1 ) « (Xt ? Xt+l)

Proof

Let us divide all the possible
couples (X, X.;)
into two groups



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Preliminary lemma

a<x>mn(1Z§§ZE\‘;)

E(Xt)q(Xm Xt)a(XHl’Xt) - E(Xml)q(Xt Xt+1)a(Xt’Xt+l)
Proof
Group 1: E(X”I)Q(Xt‘Xt”) <1

CATIEHES



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Preliminary lemma

a<x>mn(1Z§§ZE\‘;)

E(Xt)q(Xm Xt)a(XHl’Xt) - E(Xml)q(Xt Xt+1)a(Xt’Xt+l)
Proof
Group 1: E(X”I)Q(Xt‘Xt”) <1

(X, )q(x,.,|x,)

n(Xm)q(Xt Xm)
(X, )a(X.¥,)

and the equality immediately follows

This implies a(XHl’Xt): e a(Xt’XtH):l




METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Preliminary lemma

a<x>mn(1Z§§ZE\‘;)

E(Xt)q(Xm Xt)a(XHl’Xt) - E(Xml)q(Xt Xt+1)a(Xt’Xt+l)
Proof
Group 2: E(X’)Q(X’” ‘Xf) <1

(X)X }x.)



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Preliminary lemma

a<x>mn(1Z§§ZE\‘;)

E(Xt)q(Xm Xt)a(XHl’Xt) - E(XHI)Q(X Xt l)a(Xt’Xm)
Proof
Group 2: E(X)Q(X I‘X) <1

7(X,)a X [X.)
(X )a(X}x.0)

and the equality immediately follows

This implies O‘(XpXm): e a(Xt+1,Xt)=1




METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

k(X X, Je( X, X, )+8(X,, = X,)(1- [ a(e]x, )or(e. X, ) de)

t+1

X)=a(X.




METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain
K(X0 X, ) = a( X0, )X, )+ 0( X, = X,) 1= [ a(e| X, )a(e, X, ) de]

\ J
|

Kernel of the Markov chain
describing the infinitesimal
probability of going from
X; 10 Xy




METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

Xt);x(Xm,Xt)+6(Xm - X,)(1- fa(c[x,)er(e. X, )de)

k()(H1 Xt) =\q(Xt+1

|
Infinitesimal probability of

proposing as candidate X,
if the current state is X,




METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

Xt)‘a(Xt+l,Xt)+6(Xt+l - X,)(1- fa(c[x,)er(e. X, )de)

k(X ’
Y

t+1

X)=a(X.

Probability of
accepting as candidate X, ;
if the current state is X,



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

Xt)a(Xm,Xt)r 8(X,,=x,)(1- [ ale|X,)a(c, X, ) de]

k(x

t+1

X)=a(X.

Infinitesimal probability
of going to X,,; from X,
through the acceptance
of the candidate



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

Xt)a(Xm,Xt)r 5(X,, = Xt)(l—‘fq(c‘Xt)a(c,Xz)dc)’

! Y
Probability of accepting a
sample (before generating it!)
If the current state is X,
(generated by g with
acceptance probability
given by o)

k(x

t+1

X)=a(X.

Infinitesimal probability
of going to X,,; from X,
through the acceptance
of the candidate



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

X )a(X,.X,)+6(X,, =Xt)(l—fq(c‘Xt)a(c,Xt)dc)

)
Y \ ' )
Probability of

remaining at X,

k(x

t+1

X)=a(X.

Infinitesimal probability
of going to X,,; from X,
through the acceptance
of the candidate



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

k(x

t+1

X)=a(X.

|

Infinitesimal probability
of going to X,,; from X,
through the acceptance
of the candidate

Xt)a(Xm,Xt)r 8(X,,=x,)(1- [ ale|X,)a(c, X, ) de]

\ J
|

And also Dirac delta area
which is equal to the probability
of going from X, to X,,;

by refusing the candidate:
contribution to k(X ;| X,)

only if X,, ,=X,



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

k(X |x)) =\q(Xt+1 Xt)a(Xm,Xt)r 8(X,,=x,)(1- [ ale|X,)a(c, X, ) de]
v ‘ , ’
Infinitesimal probability Hence, the second contribution
of going to X, ; from X, is the Dirac delta with that area
through the acceptance and centred on X,

of the candidate



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

k(X |x)) =\q(Xt+1 Xt)a(Xm,Xt)r 8(X,,=x,)(1- [ ale|X,)a(c, X, ) de]
v ‘ , ’
Infinitesimal probability Hence, the second contribution
of going to X, ; from X, is the Dirac delta with that area
through the acceptance ‘ and centred on X, \
of the candidate Y

Symmetric term in X,,; and X,



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

X, Je( X, X, )+8(X,, = X,)(1- [ a(e]x, )or(e. X, ) de)

k(X ‘ )

t+1

X)=a(X.

Symmetric term in X,,; and X,

~ (lemma)

(X, )alX.,

Xt)a(XHl’Xt\ - J[(XHI)Q(X

t

Xt )O{(Xt,Xm)

+1



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

k(X.|x,)=a(x,, Xt)a(Xt+l,Xt)+i5(Xt+l =Xt)(l—fq(c‘Xt)a(c,Xt)dc)’
Symmetric ten'n in X,,; and X,
T (lemma)
J[(Xt)q(XHl Xt)a(XHl’Xt\ =J[(Xt+l)q(Xt Xt+1)a(Xt’Xt+l)

4

7 (X, ) k(X X, )= (X, )& (X,

t+1

X.)



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

X, Je( X, X, )+8(X,, = X,)(1- [ a(e]x, )or(e. X, ) de)

k(X ‘ )

t+1

X)=a(X.

Symmetric term in X,,; and X,

~ (lemma)

(X, )alX.,

X )a(X,,.X,)=m(X,,)q(X,
4

Xt) - Jz(Xm)k(Xt

Xt )a(Xt’Xm)

+1

JZT(Xt)k(X

t+1

X.)

Immediately derives from the symmetry of the term §(X,, = X t)(l— [ q(c‘X t)a(c,X t)dc)
that defines the kernel of the chain



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

k(X.|x,)=a(x,, Xt)a(Xt+l,Xt)+i5(Xt+l =Xt)(l—fq(c‘Xt)a(c,Xt)dc)’
Symmetric ten'n in X,,; and X,
T (lemma)
J[(Xt)q(XHl Xt)a(XHl’Xt\ =J[(Xt+l)q(Xt Xt+1)a(Xt’Xt+l)

4

X, )=m(X,, )k(X,

E(Xt)k(X

t+1 Xt+1)
f .7r()(}/ﬁ)k()(Z+1

Xt)dXt =m(X,) [ k(Xt X )dXt




METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

k(X.|x,)=a(x,, Xt)a(Xt+l,Xt)+i5(Xt+l =Xt)(l—fq(c‘Xt)a(c,Xt)dc)’
Symmetric ten'n in X,,; and X,
T (lemma)
J[(Xt)q(XHl Xt)a(XHl’Xt\ =J[(Xt+1)q(Xt Xt+1)a(Xt’Xt+l)

4
X,)=(X,,

dX .777 0()(

ﬂ(Xt)k(

t 1

-




METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

k(X.|x,)=a(x,, Xt)a(Xt+l,Xt)+i5(Xt+l =Xt)(l—fq(c‘Xt)a(c,Xt)dc)’
Symmetric ten'n in X,,; and X,
T (lemma)
J[(Xt)q(XHl Xt)a(XHl’Xt\ =J[(Xt+l)q(Xt Xt+1)a(Xt’Xt+l)

4
f J'L’(Xt)k(Xm

Xt)Xm =X,



METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

k(X.|x,)=a(x,, Xt)a(Xt+l,Xt)+i5(Xt+l =Xt)(l—fq(c‘Xt)a(c,Xt)dc)’
Symmetric ten'n in X,,; and X,
T (lemma)
J[(Xt)q(XHl Xt)a(XHl’Xt\ =J[(Xt+l)q(Xt Xt+1)a(Xt’Xt+l)

4
f J'L’(Xt)k(Xm

Hence, ©t 1s indeed the invariant density

Xt)Xm =X,



OBSERVATIONS (1/2)

« differently from the rejection sampling:

- the chain always moves
(if the sample 1s refused, the next state 1s equal to the previous one)

- 1n general, the algorithm is able to return correlated
(but not independent) samples from 7



OBSERVATIONS (2/2)

« the target density m can be known apart from a normalization factor

afe,x) - mm(l,”(c)q [ C)) 7(x) p (v |)p, ()

=()a(el)

e theoretically, the algorithm works for any g(.|.)
(if the chain 1s 1irreducible), but in practice
the choice of ¢ 1is crucial




CHOICE OF ¢(.) (1/2)

g(.|.) must

- be easy to sample

- be simple to be evaluated pointwise

- able to quickly explore the support of ©

a close to 0 on average

Support of @

a close to 1 on average

Support of @




CHOICE OF ¢(|.) (2/2)

Often, 1t is useful to adopt random-walk proposals

a(clx) =/ (le=x]) = a(x[e)

£~ N(ojz)f q(c‘x) B N(x,Z)

e 2’ provides information as how to move locally around
the current point

e the acceptance probability becomes

a(c,x)=mm[1,zgi;)




Strategies to choose 2'(1/2):

In high-dimension it is worth performing an
explorative analysis of «t

Example #1:
e Define a diagonal matrix 2 o)
with small variances values 5 022

start ~

 generate Markov chains and monitor the results.

Change the variances so as to obtain an acceptance rate
around 30-40%

« generate the Markov chain using the matrix 2 obtained by
the pilot analysis




Strategies to choose 2'(2/2):

Example #2:
. . 2 -1
 Calculate the posterior maxima S ol d”log 5
and obtain information on the a posteriori ox’ ox

correlation of the components of x . :
X =argmin_ - log(n)

» the scale factor 1s chosen so as to obtain an acceptance rate
around 30-40%




Aim: to reconstruct in
sampled form a
Gaussian distribution

a(

B=

2
0

MCMC: SIMULATED EXAMPLE (1 of 4)

0
2

TARGET
= N(O,A)

A=<

PROPOSAL
x) ~ N(x,B)

1

|

20 L

151

first 20 iterations

-
-
-
-
-
-
i
-

25



MCMC: SIMULATED EXAMPLE (2 of 4)

A1im: to reconstruct

in sampled form a
Gaussian distribution of
zero mean and covariance

20 L

151

10 |

e
first 100 iterations ..
Pt
»’.‘/”
¥
P
/"",
/’. """
———— ‘./
/’.‘
o
f—
0 5 10 15 20 25



MCMC: SIMULATED EXAMPLE (3 of 4)

20 |

151

Aim: to reconstruct
in sampled form a
Gaussian distribution of

zero mean and covariance

10 |

°
° ° ‘b\\
first 300 iterations N
P
/"””
o
l”’~~.’
/"’.,'
/" """
""" '.,’
z’.’
/"
a/"’
'y
l—.’ -,
0 5 10 15 20 25




y[101:2100]

2000 MCMC samples

MCMC: SIMULATED EXAMPLE (4 of 4)
2000 independent

(iterations 101-2100)

-2

x[101:2100]

y[1:2100]

samples

-

x[1:2100]




CHOICE OF ¢g(.|.):
BLOCK SCHEMES

Hard case:

e strong a posteriori correlation
» correlation much varies along
the parameter space

« difficult to move simultaneously
x; and x, with a suitable probability c
accepting the generated sample

X

Il
1

X xz]



CHOICE OF ¢g(.|.):
BLOCK SCHEMES

One solution is to move
separately x; and x,

by defining two proposal
densities g; and ¢,




CHOICE OF ¢g(.|.):
BLOCK SCHEMES

Xt c~ql(.|Xt) th

Acceptance
/refuse of y

rSingle step \
M/H

/\

d~q2(.|th) X

Acceptance
/refuse of y

f Single step \
M/H

~

Overall step of M/H

r+1




CONVERGENCE DIAGNOSTICS (1/2)

Once an MCMC simulation starts,

how many iterations do we need to perform?

* the chain kernel assumes a complex form

k(x

t+1

X)=a(X.,

X, )a( X, X,)+8(X,, = X,)(1- [ a(c|X, )er(c, X, )de]

and 1s thus complex to analyze convergence under a theoretical viewpoint



CONVERGENCE DIAGNOSTICS (2/2)

* in practice one obtains information on the Markov chain convergence by analyzing
the statistical properties of the generated samples

Good convergence Bad convergence

# di iterazione




MINIMAL MODEL EQUATIONS

G(t) = glucose plasma concentration
I(t) = insulin plasma concentration

G(t)=~(S_ +X(1))G(1)+S.G, G(0)=G,

X(t)=-p {X(t)=S [I(t)-1]}  X(0)=0

* [the model contains 4 parameters that are not directly measurable and have
to be estimated from glucose samples

 I(t) ¢is assumed perfectly known by linear interpolation of its noisy samples.
The model thus turns out to be a priori identifiable.




MM PARAMETER ESTIMATION USING FISHER

y,=h(t,x)+v, |
: Gaussian error (CV%=2)

1=1,2,..,N
/ v~N(0,2 ) X (ii)=0’
Glucose prediction

x=[5,.D,55G,/

(k0
PR e & LIKELIHOOD
Q)™ det(Zv)l/z

x"" = argmax | L( p) MAXIMUM LIKELIHOOD
ESTIMATE




DIFFICULTIES ENCOUNTERED BY
THE FISHERIAN APPROACH (1/2)

THE $;=0 PROBLEM

In almost 40% of diabetic subjects the model
returns an §; estimate equal to zero

3000

2000 Distribution of §; estimates

1000

0 0.5 1 1.5 2 25 3 35 4
S; (10*min’!/pU ml!)



DIFFICULTIES ENCOUNTERED BY
THE FISHERIAN APPROACH (2/2)

OTHER PROBLEMS

* §; estimate may turn out very small and much uncertain
(in particular in diabetic subjects)

* §; pestimate may turn out much uncertain and not realistic,
assuming very large value

* also p, estimate may turn out much uncertain



REPRODUCING FISHER DIFFICULTIES
VIA COMPUTER SIMULATION

y.=h(t,x)+v, —
We generate 1000 realizations
of the measurement error

x=/S,.p,S..G ] v~N(0,3 )

Let us fix these parameters
to realistic values
for a diabetic subject:

S =0.7e- 4min~"/ uUml™

and after each noise realization
we obtain the maximum likelihood
estimate of the MM parameters

p,=0.01 min™'




Likelihood shapes in 3 significant cases

O o2

o
=" O oO1=

Works well

O OoO0o=

o1
O._oO9
O _O=
OO

O O

S;=0 and also p,
1S much uncertain

Q-t ID,DS
O Oa
O o=
L =

OO

O . O>2s

P2

Large S, not realistic, and small
p, with large uncertainty

O O1=

O OO




Question: passing from Fisher....

Datay

FISHERIAN x (+=S8D)

?N ESTIMATOR

s> | (Maximum likelihood)

Parameter
estimates
to Bayes
Datay
— )\
—— BAYESIAN _»
m— o e
ESTIMATOR A posteriori
distribution
A priori
information

can we overcome the identification problems?



Bayesian strategy:
definition of the prior

1. Let us define a prior for S; based on the Prior for §,
many studies reported in the literature e A

0 se S <0
Py (S,) =11 se0=<S =2e-4
_(S,-(ze—4))
e se S, >2e-4

S, (10*min-/uU ml!)

2. The prior is then poorly informative regarding S, p, ¢ G,including
just nonnegativity information

Ps s v *Ps (S]) X(SG > 0) x( p, = 0) X(GO > 0)



Bayesian strategy:
definition of the MCMC scheme

S;and p, are often strongly correlated
a posteriori. It is convenient to update
them separately by defining
two proposal densities:

o; 0 0
s=l0 o2 0 5, =(07)
0 0 oéc
new Gnew Snew Sold Gold Sold q (pnew | pold)
ql I >0 °~G | 7 Yo Mg ) 2 2 2

(
N([S;)ld ngd ngd],zl) =N(p§ld,22)



COMPUTATIONAL COMPLEXITY

Related to the posterior evaluation at any MCMC iteration, i.e. to the cost of solving
the differential equations of the model for any new proposed sample

G(t)=—(S.+X(1))G(t)+S.G, G(0)=G,
X()==p {X()=S,[I(t)=1,]}  X(0)=0
Define:

Z(t)= | O’X(z)dt

=['[8,pe " (1(x)-1,)drdt= [, (1 _ e‘pZ(H))(I(r) -1,)dt

- - t N\
One has: G(t) =Ge Set-2(1) +SGbeOe Se(U-D-Z(O+Z(T) g

Glucose prediction in closed form




FISHER (ML) BAYES S; POSTERIOR
)2=argmaxpy‘p (y‘p) E[x‘y]=fxpxy(x‘y)dx

s00

RESULTS

sS00 -

400

300 -

200

Use of a Bayesian
estimator id key in the
last two situations

S,=0.63
(true=0.7)

s500 -

o025
sS00 -

ooz
400

Pillonetto G. , G. Sparacino and C. Cobelli =
Numerical non identifiability regions of oo
the minimal model of glucose kinetics: 0. 0os
superiority of Bayesian estimation,

Mathematical Biosciences, 2003

o1s

S,;= 0.88
(true=0.7)

=00 -

200

100 |

= =
S, (10 min? £ g i)




SUMMARY: 1000 SYNTHETIC SUBJECTS

Unrealistically large in another 10-20% dei casi

S$;<0 in 10% of the cases Always close to zero

\ Fisher (ML)

Bayes (minimum yariance)
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CONCLUSIONI

« Mathematical description and identification of a physical

system 1s often a complex task

(introduction of nonlinearities complicates the estimation process, €.g. nonnegativity
constraints)

« Fisher approaches sometimes are not suited to face such
difficulties, differently from the Bayesian approaches which
appear more powerful alternatives but also more difficult to
implement

« MCMC is currently the most powerful approach to face the
computational difficulties related to the use of a Bayesian
estimator



