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SUMMARY

• Fisherian vs Bayesian estimation

• Bayesian estimation using Monte Carlo methods

• Bayesian estimation using Markov chain Monte Carlo

• On-line Bayesian estimation (particle filters)



FISHER VS BAYES

Let us consider the model: y=G(x)+v

Fisher approach: x, which admits a true deterministic value, is
estimated using only the experimental data
e.g. Maximum Likelihood: x̂ = argmax py x y x( )

Bayes approach: x is random and we estimate one realization
using not only the experimental data (posteriori information),
but also the a priori information (indipendent of the data)
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Fisher approach to parametric estimation

• They are minimum variance estimators only using linear models and Gaussian
measurement errors

• They often return non realistic confidence intervals                                                          
(e.g. containing negative values due to Gaussian approximations of the estimates) 

DRAWBACKS

ADVANTAGES
• require optimization algorithms (e.g. conjugate gradient/Newton) often not so 

computational expensive



Bayes approach to parametric estimation (1/7)

The starting point is that we have some information on x, indipendent of the 
data (i.e. “before seeing the data”=a priori), and these expectations are  
summarized in the a priori probability density function

px(x)

Such expectations are then modified after seeing the data y, hence one 
speaks of a posteriori probability density function (=conditional on y)

px|y(x|y)

This is the key function obtained by Bayes.
From it, one can obtain point estimates and confidence intervals.



Why using Bayesian priors
• To onclude all the available information in the estimation 

process

• To extend the complexity of the model
– Priors on all the unknown parameters

• To improve the parameter estimates
– Use of population or individual information

• To analyze sparse data set/high measurement noise
– “Weak” Likelihood, “strong” prior

Bayes approach to parametric estimation (2/7)



How to obtain the prior?

Literature

Experts

Previous experiments

Population studies



Examples of Bayesian estimators

From px|y(x|y) one can obtain different estimators. 
The most used are:

Posterior mean (minimum variance error)

Maximum a posteriori (MAP)

x̂ = E x y!
"

#
$= xpx|y x | y( )dx∫  

x̂ = argmax p
x y
x y( )

Bayes approach to parametric estimation (3/7)



px|y(x|y)POINT ESTIMATE

Here MAP (Maximum a Posteriori) estimate coincides with minima variance 
estimate

px|y(x|y)

CONFIDENCE INTERVALS

xL xH

95% CI (mean ± 2SD if x|y is Gaussian)

Use of the posterior: example with scalar x
Bayes approach to parametric estimation (4/7)



We can estimate x from the posterior px|y(x|y).
But how can we obtain it?

 px|y (x | y) =
pyx (y | x)px (x)

py (y)

Bayes rule:

To determine px|y(x|y) we need:

• the prior density of x, px(x)
• the likelihood y, py|x(y|x), computable from the model G(x)

and from the statistics of the error n  (y=G(x)+v)

Bayes approach to parametric estimation (5/7)
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PARTICULAR CASE: x e v independent Gaussian, 
linear G (G(x)=Gx)

x̂MAP = E x y
!
"
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Posterior information = data A priori information

The posterior is also Gaussian and we have:

Bayes approach to parametric estimation (6/7)

Prior density

Likelihood



Prior: a priori probability
density function

of model parameters

BAYESIAN
ESTIMATOR

Posterior: a posteriori probability
density function

of model parameters
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• Return all the distribution of the estimates (from which e.g. minimum variance 
estimates and realistic confidence intervals can be obtained)

ADVANTAGES

DRAWBACKS

• Computation of Bayesian point estimates and relative confidence may require 
solutions of computationally intractable integrals

 px|y (x | y) =
pyx (y | x)px (x)

py (y)

Bayes approach to parametric estimation (7/7)



Bayes approach: computational difficulties (1/2)

Integration plays a fundamental role in Bayesian estimation

• determination of the normalization factor

py|x (y | x)px (x)dx∫

                         g(x)px|y (x | y)dx∫  

Esempi:  

x = x1  x2  ... xd!" #$
T

g x( ) = xi :  stima a minima varianza d'errore di  xi

A⊂ℜd

χ p ∈ A( ) = 1 se p ∈ A
0 altrimenti

(
)
*

g x( ) = χ x ∈ A( ) : probabilità che x assuma valori  in A

• distribution synthesis

 px|y (x | y) =
pyx (y | x)px (x)

py (y)

minimum variance estimate of xi

probability that x assumes values in A
otherwise

if



• Vector x may assume values in high-dimensional spaces and its
prior distribution can be non Gaussian 

• Nonlinear models may be needed

• Data set size may be poor and the signal to noise ratio can be small

Posterior may be complex, 
far from Gaussianity, 

hence difficult to integrate

Bayes approach: computational difficulties (2/2)



DETERMINISTIC APPROACHES TO THE PROBLEM (1/4)

• Classical numerical methods

Use quadrature rules which approximate the integral using sums of 
areas of polygons 

Limits: even if they can provide very accurate results, they are numerical
procedures which can be used only in low-dimensional spaces, in practice 2- or 
3-dimensional (due to the “curse of dimensionality”)

Dimension 1: the integration interval 
is divided in pieces of lenght h

One obtains polygons which approximate 
the function (e.g. lines, Lagrange polynomials)

and then we obtain the area



10% of coverage 1% of coverage

Curse of dimensionality

The number of points has to exponentially increase 
to maintain a certain coverage accuracy 

DETERMINISTIC APPROACHES TO THE PROBLEM (2/4)



• Asymptotic Laplace approximation

The posterior p(x) is approximated by a Gaussian distribution by computing
its maximum and its Hessian around the maximum of the log-posterior

 x̂ = argmax x log π x( )( )
logπ x( ) ≈ logπ x̂( )+ 12 x − x̂( )
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DETERMINISTIC APPROACHES TO THE PROBLEM (3/4)



Limits: results are often not so reliable and it is hard to evaluate the goodness 
of the approximation 

True

Approximated

π x( ) ≈ N x̂,Σ( )
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DETERMINISTIC APPROACHES TO THE PROBLEM (4/4)



SUMMARY

• Fisherian vs Bayesian estimation

• Bayesian estimation using Monte Carlo methods

• Bayesian estimation using Markov chain Monte Carlo

• On-line Bayesian estimation (particle filters)



CONVERGENCE OF RANDOM
VARIABLES (1/2)

Ω

R

f1 ω( )

f2 ω( )...

Consider a sequence of random variables fn
on a sample space W with generic element w



Pr ω: limn→∞
fn ω( ) = f ω( )( ) =1

if

limn→∞
fn =
q.c.

f  

W

...
f1 ω( )

f2 ω( )
f ω( )

R

CONVERGENCE OF RANDOM
VARIABLES (2/2)

almost surely



STOCHASTIC APPROACHES:
MONTE CARLO SIMULATION

we are interested in Eπ g( ) ! g x( )π x( )dx∫

We have x1, x2 ,…, xn realizattions i.i.d. from p
Let use define the following Monte Carlo 

approximation of the integral:

Eπ g( ) ≈ 1
n

g xi( )
i=1

n

∑  

Let us use p(x) to denote the posterior:



CONVERGENCE OF A
MONTE CARLO ESTIMATOR (1/2)
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1
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Strong law of large numbers holds:
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• difference from the true integral value has standard deviation going to 
zero as n-1/2 (indipendent of dimension of x)

• good approximation of the integral requires generation of a large 
number of realizations/samples from p 

E g xi( )!
"

#
$= Eπ g!" #$

var 1
n

g xi( )
i=1

n

∑
"

#
$$

%

&
''=
1
n

g x( )− Eπ g( )( )∫
2
π x( )dx ! σ

2

n

One has:

Question: is it easy to draw independent samples from p?

CONVERGENCE OF A
MONTE CARLO ESTIMATOR (2/2)



MONTE CARLO SIMULATION:
COMPUTATIONAL DIFFICULTIES

Obtaining independent realizations from p is in general simple if 
we consider univariate distributions

• Then one uses the inversion method:

If x has generic but invertible probability distribution F,
and u is drawn from an uniform random variable over [0,1], 

F-1(u) is a sample drawn from p. 
In fact:

Pr x := F −1 u( ) ≤ a( ) = Pr u ≤ F a( )( ) = F (a)

Definiamo: F a( ) = π x( )dx
−∞

a

∫

• One obtains samples from uniform random variables over [0,m] using 
recursive methods by computer

xi+1 = (axi + c)mod(m)          a,c ∈ !
x0 = seme del generatore

0 m
generator seed



• Sample/resample methods  

• Ratio of uniform method

• ….

• Rejection sampling

Drawing independent samples from p è is in general a very hard 
problem if one considers multivariate and non standard 

probability density functions

MONTE CARLO SIMULATION:
COMPUTATIONAL DIFFICULTIES



Rejection sampling
(acceptance/rejection method)

Mλ x( ) ≥ π x( )

1) One first obtains samples from a density l(x) different from that of 
interest assuming that there exists a scalar M such that:

Accepted realizations are 
i.i.d. samples from p

p

Ml

2) Then one obtains a sample from a uniform u in [0,1] and accpets the 
realization x from l if

u ≤
π x( )
Mλ x( )



Rejection sampling:
observations

• Two-step method: use of an auxiliary density and then a correction method

• Choice of l is crucial. 
It must be:

- easy to simulate
- easy to evaluate pointwise

- such that it leads to a small probability of rejecting the sample (similar to p)



Rejection sampling:
limitations (1/2)

Probability of accepting the sample from l:

Pr u ≤
π x( )
Mλ x( )

| x
!

"

#
#

$

%

&
&
λ x( )∫ dx =

π x( )
Mλ x( )

λ x( )∫ dx = 1
M

In practice Ml has to be a nice cover of p
but its choice is difficult in high-dimension



Rejection sampling:
limitations (2/2)

Support of p

Support of l

CURSE OF DIMENSIONALITY



Rejection sampling:
proof of correctness

Recall that we proved that, if A is the event 
`the sample from l is accepted`, 

then Pr(A)=M-1

Deep prediction networks
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The challenge for next generation system identification is to build new flexible models and estimators able to simulate complex systems.
This task is especially difficult in the nonlinear setting. In fact, in many real applications the performance of long-term predictors may
be severely affected by stability problems arising due to the output feedback. For this purpose, also the use of deep networks, which are
having much success to solve classification problems, has not led so far to any significant cross-fertilization with system identification. This
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1 Introduction

The infinitesimal probability of generating and accepting x
from the rejection sampling scheme is

Pr(x|A) =
Pr(x\A)

Pr(A)
= MPr(x\A)

One has

Pr(x\A) = l (x)dx Pr
⇣

U  p(x)
Ml (x)

⌘
=

l (x)dxp(x)
Ml (x)

So

Pr(x|A) = M
l (x)dxp(x)

Ml (x)
= p(x)dx

In many dynamical systems the relationship between the
input and the output is described by a nonlinear function.
Its estimation thus requires the introduction of a nonlin-
ear model and the problem to infer it from the available
measurements is called nonlinear system identification in
the literature. This area is complex and the literature sur-
rounding it turns out to be extremely vast. The main reason
underlying such richness is that several input-output pa-
rameterizations have been introduced, each with different
proposed estimation approaches. As explained e.g. in the
survey [22], different parametrizations may describe vari-
ous degrees of system prior knowledge, hence defining grey
box models with different shades of grey.

1 This paper was not presented at any IFAC meeting. Correspond-
ing author Gianluigi Pillonetto Ph. +390498277607.

In this paper we are concerned with black-box identification
of the nonlinear input-output map. As in supervised learning
[8], we are given some data in form of couples {xt ,yt} and
the aim is to reconstruct the functional relationship under-
lying them. In our dynamic context, yt is the system output
measured at instant t, xt contains past input-output samples
up to t � 1 and a NARX model is postulated of dimension
related to the size of xt . Its identification provides the one-
step ahead predictor which returns, for any possible future
input location x, the estimated output ŷ [11,23]. We will
just assume that such map is smooth and will reconstruct
it in a nonparametric fashion. Hence, we will search for it
in a very-high (possibly infinite-dimensional) space, then
introducing regularization to control model complexity. Im-
portant approaches use kernels to encode in an implicit way
smoothness information [21,5,6]. Relevant for the system
identification scenario is the fact that they can also encode
fading memory concepts, i.e. past inputs and outputs are
expected to be less influent on yt as the time lag increases
[16,17], or regularized Volterra models [7,20,3,4]. Com-
plexity is then controlled by continuous tuning of a few
hyperparameters whose values establish the sensitivity of
the estimated output to inputs variations.
Many recent works document how kernel-based techniques
may return highly performing one-step-ahead predictors
[15]. However, this does not ensure a good simulation of
complex systems. This task is much more difficult than
one-step-ahead prediction since regressors have to be de-
fined using previously estimated outputs ŷt . One important
problem perceived in the system identification community
is that stability of the one-step ahead predictor does not
imply system stability and, hence, reliable long term pre-
dictions [12]. Such issues can be often encountered in real
applications due to the presence of output feedback.

Preprint submitted to Automatica 16 February 2021
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Hence, we can conclude that



GENERALIZATION OF
MONTE CARLO SIMULATION

The target is Eπ g( ) ! g x( )π x( )dx∫

We try to extend the use of this estimator

Eπ g( ) ≈ 1
n

g xi( )
i=1

n

∑  

To the case where x1, x2 ,…, xn are 
non independent realizations from p 



Advantages

Support of p

Suppose we have been able to generate
a sample from p : I can try to generate 
the next one close to it 

This concept is the basis of the simulation technique called 
Markov chain Monte Carlo (MCMC)
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MARKOV CHAINS

Xt ,t = 0,1,2,..{ }  

Let us consider a collection of random vectors of dimension d 

We say it is a Markovian collection if, considering

Xt X t−1 = xt−1,Xt−2 = xt−2 ,...,X 0 = x0

it holds that

Pr Xt ∈ A Xt−1 = xt−1,Xt−2 = xt−2 ,...,X 0 = x0( ) = Pr Xt ∈ A Xt−1 = xt−1( )
∀ A∈ Β,∀t,∀α
B=sigma-algebra

x



STATIONARY MARKOV CHAINS

The chain is stationary if the conditional 
probability distributions do not vary over time

Pr X1 ∈ A X 0 = x( ) = Pr Xt ∈ A Xt−1 = x( ) ! P A,x( )
∀ A∈ Β,∀t,∀x



TRANSTION KERNEL OF A
STATIONARY MARKOV CHAIN (1/3)

P A,x( ) = k a,x( )da
A
∫

The transition kernel of the
chain is that function k(a,x) s.t.:

k .,.( ) = pXt+1 Xt . | .( )



p0  (initial probability density) and 
k(.,.) completely define the

probability laws of the chain

Esempio:

px0 ,x1,x2 x0 ,x1,x2( ) = px0 x0( ) px1 x0 x1 x0( ) px2 x1,x0 x2 x1,x0( )
                           = π0 x0( )k x1,x0( )k x2 ,x1( )

For any n-uple of vectors from the chain , the joint 
probability density can be computed

TRANSTION KERNEL OF A
STATIONARY MARKOV CHAIN (2/3)

Example



Assume Xt-1 has probability density pt-1
If pt is the probability density of Xt, one has:

π t a( ) = k a,x( )π t−1 x( )dx∫

…k(.,.)
k(.,.)

k(.,.)
k(.,.)

k(.,.)
X 0 ∼ π0

X1 ∼ π1 X 2 ∼ π 2
X 3 ∼ π3 X 4 ∼ π 4

TRANSTION KERNEL OF A
STATIONARY MARKOV CHAIN (3/3)



p is an invariant probability density 
for the chain if:

INVARIANT DENSITY OF A
STATIONARY MARKOV CHAIN

…k(.,.)
k(.,.)

k(.,.)
k(.,.)

k(.,.)
X 0 ∼ π

X1 ∼ π X 2 ∼ π
X 3 ∼ π X 4 ∼ π

π a( ) = k a,x( )π x( )dx∫



IRREDUCIBLE MARKOV CHAINS (1/2)

Let p be an invariant density for the chain:
the chain is irreducible if for any x and 

A in B, with                      , 

there exists t>0 s.t.  

Pr Xt ∈ A X 0 = x( ) > 0

π x( )dx
A
∫ > 0



Irreducibility = possibility
of visiting all the interesting

regions of p starting 
from any x

Support of p

x

A

?
Pt(A,x)

IRREDUCIBLE MARKOV CHAINS (2/2)



STRONG LAW OF LARGE NUMBERS
FOR MARKOV CHAINS

{ }  tXLet          be an irreducible Markov chain 
having p  as invariant density.

One has:

limn→∞

1
n

g X t( )
t=0

n

∑ =
q.c.

Eπ g( )  

for any initial state
(except a set of probability zero)



MARKOV CHAIN MONTE CARLO

• Builds an irreducible Markov chain with 
invariant density equal to the posterior

• Uses Monte Carlo integration to obtain the 
quantities of interest 

The first step of the algorithm can be obtained by 
using the Metropolis-Hastings algorithm



METROPOLIS-HASTINGS ALGORITHM (1/2)

Current chain state: Xt=x

• We propose a new sample 
where q(.|.) is the proposal density of the chain

c ∼ q . x( )

• with a certain probability a(c,x) we accept the candidate c, 
i.e. Xt+1=c

• otherwise Xt+1=x



ALGORITMO DI METROPOLIS-HASTINGS (2/2)

If the acceptance probability is:

p becomes the invariant density 
of the generated Markov chain

α c,x( ) =min 1,
π c( )q x c( )
π x( )q c x( )
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METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

α c,x( ) =min 1,
π c( )q x c( )
π x( )q c x( )
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&
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π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )

Preliminary lemma



Proof

Let us show that the equality holds 
for any possible couple (Xt ,Xt+1)

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

α c,x( ) =min 1,
π c( )q x c( )
π x( )q c x( )
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π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )

Preliminary lemma



Let us divide all the possible 
couples (Xt ,Xt+1)
into two groups

Proof

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

α c,x( ) =min 1,
π c( )q x c( )
π x( )q c x( )
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π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )

Preliminary lemma



Group 1:
π Xt+1( )q X t X t+1( )
π Xt( )q X t+1 Xt( )

 <1 

Proof

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

α c,x( ) =min 1,
π c( )q x c( )
π x( )q c x( )
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&
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π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )

Preliminary lemma



 Questo implica α Xt+1,Xt( ) =
π Xt+1( )q X t X t+1( )
π Xt( )q X t+1 Xt( )

  e  α Xt ,Xt+1( ) =1 

                       e l'uguaglianza si verifica immediatamente

Group 1:
π Xt+1( )q X t X t+1( )
π Xt( )q X t+1 Xt( )

 <1 

Proof

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

α c,x( ) =min 1,
π c( )q x c( )
π x( )q c x( )

!

"

#
#

$

%

&
&

π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )

Preliminary lemma

This implies

And the equality immediately followsand the equality immediately follows



Group 2:
π Xt( )q X t+1 Xt( )
π Xt+1( )q X t X t+1( )

 <1 

Proof

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

α c,x( ) =min 1,
π c( )q x c( )
π x( )q c x( )
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π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )

Preliminary lemma



 Questo implica α Xt ,Xt+1( ) =
π Xt( )q X t+1 Xt( )
π Xt+1( )q X t X t+1( )

  e  α Xt+1,Xt( ) =1 

                       e l'uguaglianza si verifica immediatamente

Group 2:
π Xt( )q X t+1 Xt( )
π Xt+1( )q X t X t+1( )

 <1 

Proof

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

α c,x( ) =min 1,
π c( )q x c( )
π x( )q c x( )
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&
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π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )

Preliminary lemma

This implies

And the equality immediately followsand the equality immediately follows



k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain



k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

Kernel of the Markov chain
describing  the infinitesimal 
probability of going from  
Xt to Xt+1

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain



k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )
Infinitesimal probability of 
proposing as candidate Xt+1
if the current state is Xt 

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain



k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )
Probability of 
accepting as candidate Xt+1
if the current state is Xt 

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain



k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

Infinitesimal probability
of going to Xt+1 from Xt
through the acceptance 
of the candidate

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain



k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

Probability of accepting a 
sample (before generating it!)

If the current state is Xt 
(generated by q with

acceptance probability 
given by a)

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

Infinitesimal probability
of going to Xt+1 from Xt
through the acceptance 
of the candidate



k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

Probability of 
remaining at Xt

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

Infinitesimal probability
of going to Xt+1 from Xt
through the acceptance 
of the candidate



k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

And also Dirac delta area 
which is equal to the probability 
of going from Xt to Xt+1
by refusing the candidate: 
contribution to k(Xt+1|Xt)
only if Xt+1=Xt

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

Infinitesimal probability
of going to Xt+1 from Xt
through the acceptance 
of the candidate



k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

Hence, the second contribution
is the Dirac delta with that area 
and centred on Xt 

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

Infinitesimal probability
of going to Xt+1 from Xt
through the acceptance 
of the candidate



k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

Symmetric term in Xt+1 and Xt

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

Hence, the second contribution
is the Dirac delta with that area 
and centred on Xt 

Infinitesimal probability
of going to Xt+1 from Xt
through the acceptance 
of the candidate



k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )
+ (lemma)

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

Symmetric term in Xt+1 and Xt



π Xt( )k X t+1 Xt( ) = π Xt+1( )k X t X t+1( )

k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )
+ (lemma)

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Kernel of the chain

Symmetric term in Xt+1 and Xt



π Xt( )k X t+1 Xt( ) = π Xt+1( )k X t X t+1( )

k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )

Kernel of the chain

+ (lemma)

Immediately derives from the symmetry of the term
that defines the kernel of the chain

δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS

Symmetric term in Xt+1 and Xt



π Xt( )k X t+1 Xt( ) = π Xt+1( )k X t X t+1( )
π Xt( )k X t+1 Xt( )d∫ Xt = π Xt+1( ) k X t X t+1( )∫ dX t

k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )
+ (lemma)

Symmetric term in Xt+1 and Xt

Kernel of the chain

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS



π Xt( )k X t+1 Xt( ) = π Xt+1( )k X t X t+1( )
π Xt( )k X t+1 Xt( )d∫ Xt = π Xt+1( ) k X t X t+1( )∫ dX t =1

k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )
+ (lemma)

Symmetric term in Xt+1 and Xt

Kernel of the chain

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS



π Xt( )k X t+1 Xt( )d∫ Xt = π Xt+1( )

k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )
+ (lemma)

Symmetric term in Xt+1 and Xt

Kernel of the chain

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS



π Xt( )k X t+1 Xt( )d∫ Xt = π Xt+1( )

k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )

π Xt( )q X t+1 Xt( )α Xt+1,Xt( ) = π Xt+1( )q X t X t+1( )α Xt ,Xt+1( )
+ (lemma)

Hence, p is indeed the invariant density 

Symmetric term in Xt+1 and Xt

Kernel of the chain

METROPOLIS-HASTINGS ALGORITHM:
PROOF OF CORRECTNESS



OBSERVATIONS (1/2)

• differently from the rejection sampling:

- the chain always moves
(if the sample is refused, the next state is equal to the previous one)

- in general, the algorithm is able to return correlated 
(but not independent) samples from p



• the target density p can be known apart from a normalization factor

• theoretically, the algorithm works for any q(.|.)
(if the chain is irreducible), but in practice 
the choice of q is crucial

π x( )∝ py x (y x)px (x)α c,x( ) =min 1,
π c( )q x c( )
π x( )q c x( )
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OBSERVATIONS (2/2)



CHOICE OF q(.|.) (1/2)

q(.|.) must

- be easy to sample

- be simple to be evaluated pointwise

- able to quickly explore the support of p      

Support of p Support of p

START
START

a close to 0 on average a close to 1 on average



Often, it is useful to adopt random-walk proposals

q c x( ) = f c− x( ) = q x c( )

c = xt +ε

ε ∼ N 0,Σ( )
"
#
$

%$
    q c x( ) = N x,Σ( )

• S provides information as how to move locally around 
the current point

α c,x( ) =min 1,
π c( )
π x( )
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• the acceptance probability becomes

CHOICE OF q(.|.) (2/2)



Strategies to choose S (1/2):

2
1

2
2

2

       
               .....
                          

start

n

s

s

s

é ù
ê ú
ê úS = ê ú
ê ú
ê úë û

• Define a diagonal matrix S  
with small variances values

• generate Markov chains and monitor the results. 
Change the variances so as to obtain an acceptance rate 
around 30-40%

• generate the Markov chain using the matrix S obtained by 
the pilot analysis

In high-dimension it is worth performing an
explorative analysis of p

Example #1:



Σ∝ −
∂2 logπ
∂xT∂x

x̂
!

"
#

$

%
&

−1

x̂ = argmin x− log π( )

• Calculate the posterior maxima
and obtain information on the a posteriori
correlation of the components of x

• the scale factor is chosen so as to obtain an acceptance rate
around 30-40%

Example #2:

Strategies to choose S (2/2):



MCMC: SIMULATED EXAMPLE (1 of 4)

Aim: to reconstruct in
sampled form a 

Gaussian distribution

π = N 0,A( )

A= 2    1
1    1
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q y x( ) ∼ N x,B( )

B = 2       0
0       2
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TARGET

PROPOSAL
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x [1:40]

y[
1:
40
]

S tart

first 100 iterations

MCMC: SIMULATED EXAMPLE (2 of 4)

Aim: to reconstruct
in sampled form a
Gaussian distribution of
zero mean and covariance 

A= 2    1
1    1
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-5 0 5 10 15 20 25
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20

x [1:100]

y[
1:
10
0]

S tart

first 300  iterationsAim: to reconstruct
in sampled form a
Gaussian distribution of
zero mean and covariance 

A= 2    1
1    1
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MCMC: SIMULATED EXAMPLE (3 of 4)



2000 MCMC samples
(iterations 101-2100)

2000 independent 
samples
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y[1
:21

00]
x[1:2100]

MCMC: SIMULATED EXAMPLE (4 of 4)



CHOICE OF q(.|.):
BLOCK SCHEMES

x1

x2

π x1,x2( )

Hard case:

• strong a posteriori correlation
• correlation much varies along 

the parameter space 

• difficult to move simultaneously
x1 and x2 with a suitable probability of

accepting the generated sample

x = x1  x2!" #$



x1

x2

π x1,x2( ) One solution is to move 
separately x1 and x2
by defining two proposal 
densities q1 and q2

CHOICE OF q(.|.):
BLOCK SCHEMES



c ∼ q1 . | Xt( )
Acceptance
/refuse of y

d ∼ q2 . | Xt
1( )

Acceptance
/refuse of y

Xt Xt
1 Xt+1

Singolo passo
        M/H

! "## $##
Singolo passo
        M/H

! "## $##

Iterazione complessiva
            di M/H

! "#### $####

CHOICE OF q(.|.):
BLOCK SCHEMES

Single step Single step

Overall step of M/H



CONVERGENCE DIAGNOSTICS (1/2)

• the chain kernel assumes a complex form

and is thus complex to analyze convergence under a theoretical viewpoint

Once an MCMC simulation starts, 

how many iterations do we need to perform?

k X t+1 Xt( ) = q X t+1 Xt( )α Xt+1,Xt( )+δ Xt+1 = Xt( ) 1− q c X t( )α c,Xt( )dc∫( )



• in practice one obtains information on the Markov chain convergence by analyzing
the statistical properties of the generated samples
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CONVERGENCE DIAGNOSTICS (2/2)



G(t) =  glucose plasma concentration
I(t)  =  insulin plasma concentration

G
.
( t )= −( SG + X ( t ))G( t )+ SGGb       G( 0 )=G0

X
.
( t )= −p2 { X ( t )− SI [ I( t )− Ib ]}   X ( 0 )= 0

• Ithe model contains 4 parameters that are not directly measurable and have
to be estimated from glucose samples 

• I(t) èis assumed perfectly known by linear interpolation of its noisy samples. 
The model thus turns out to be a priori identifiable.

MINIMAL MODEL EQUATIONS



yi = h( ti ,x )+ vi

x = [ SI , p2 ,SG ,G0 ]

v ∼ N( 0,Σ v )       Σ v( i ,i )=σ i
2

Glucose prediction

Gaussian error (CV%=2)

MM PARAMETER ESTIMATION USING FISHER

i=1,2,..,N

L(x) = 1
(2π )N/2 det(Σv )

1/2
e
−
1
2

yi−h(ti ,x )
σ i

!

"
##
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%
&&

2

i=1

N

∑

xML = argmax p L p( )

LIKELIHOOD

MAXIMUM LIKELIHOOD
ESTIMATE



0 0.5 1 1.5 2 2.5 3 3.5 4
0
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3000

SI (104min-1/µU ml-1 )

Distribution of SI  estimates

In almost 40% of diabetic subjects the model
returns an SI estimate equal to zero

THE SI=0 PROBLEM

DIFFICULTIES ENCOUNTERED BY 
THE FISHERIAN APPROACH (1/2)



• SI  estimate may turn out very small and much uncertain 
(in particular in diabetic subjects)

• SI  pestimate may turn out much uncertain and not realistic, 
assuming very large value

• also p2  estimate may turn out much uncertain 

OTHER PROBLEMS

DIFFICULTIES ENCOUNTERED BY 
THE FISHERIAN APPROACH (2/2)



and after each noise realization
we obtain the maximum likelihood

estimate of the MM parameters

REPRODUCING FISHER DIFFICULTIES
VIA COMPUTER SIMULATION

yi = h( ti ,x )+ vi

x = [ SI , p2 ,SG ,G0 ] v ∼ N(0,Σ v )
Let us fix these parameters 

to realistic values 
for a diabetic subject:

We generate 1000 realizations 
of the measurement error

SI = 0.7e−4min
−1 / µUml−1

p2 = 0.01min
−1



Likelihood shapes in 3 significant cases

p 2

SI

Works well

SI

p 2
p 2

SI=0 and also p2
is much uncertain

Large SI, not realistic,  and small 
p2 with large uncertainty



Question: passing from Fisher….

to Bayes

can we overcome the identification problems?

FISHERIAN
ESTIMATOR

(Maximum likelihood)
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Bayesian strategy:
definition of the prior
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Insulin sens it ivity  prior

Prior for

SI (104min-1/µU ml-1 )

IS1. Let us define a prior for SI based on the
many studies reported in the literature 

pSI SI( )∝
0                 se SI < 0
1                  se 0 ≤ SI ≤ 2e− 4

e
−
SI− 2e−4( )( )
1e−4       se SI > 2e− 4
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2. The prior is then poorly informative regarding SG, p2 e G0 including
just nonnegativity information

pSI ,SG ,p2 ,G0 ∝ pSI SI( )χ SG ≥ 0( )χ p2 ≥ 0( )χ G0 ≥ 0( )



Bayesian strategy:
definition of the MCMC scheme

IS

2p

SI and p2 are often strongly correlated
a posteriori. It is convenient to update 

them separately by defining 
two proposal densities:

Σ1 =

σ SI

2      0       0

 0     σG0

2      0

 0      0       σ SG

2
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COMPUTATIONAL COMPLEXITY

Related to the posterior evaluation at any MCMC iteration, i.e. to the cost of solving
the differential equations of the model for any new proposed sample

G
.
( t )= −( SG + X ( t ))G( t )+ SGGb       G( 0 )=G0

X
.
( t )= −p2 { X ( t )− SI [ I( t )− Ib ]}   X ( 0 )= 0

                                                     

          Z(t) = X (t)dt
0

t
∫

                  = SI p2e
− p2 (t−τ ) I (τ )− Ib( )dτ dt0

t
∫0

t
∫ = SI 1− e− p2 (t−τ )( ) I (τ )− Ib( )dτ0

t
∫

Define:

                             

G t( ) =G0e
−SGt−Z (t ) + SGGb e−SG (t−τ )−Z (t )+Z (τ ) dτ

0

t
∫

Glucose prediction in closed form

One has:



FISHER (ML)                     BAYES SI POSTERIOR

Use of a Bayesian 
estimator id key in the

last two situations

SI=13.7
(true=0.7)

SI=0.63
(true=0.7)

SI= 0.88
(true=0.7)

SI=0
(true=0.7)

RESULTS

Pillonetto G. , G. Sparacino and C. Cobelli
Numerical non identifiability regions of
the minimal model of glucose kinetics:
superiority of Bayesian estimation, 
Mathematical Biosciences, 2003

x̂ = argmax py p y p( ) E x y!
"

#
$= xp

x y
x y( )dx∫



SUMMARY: 1000 SYNTHETIC SUBJECTS

Fisher (ML)                                  Bayes (minimum variance)
SI<0 in 10% of the cases

Unrealistically large in another 10-20% dei casi

Always close to zero



• Mathematical description and identification of a physical 
system is often a complex task 

(introduction of nonlinearities complicates the estimation process, e.g. nonnegativity 
constraints)

• Fisher approaches sometimes are not suited to face such 
difficulties, differently from the Bayesian approaches which 
appear more powerful alternatives but also more difficult to 
implement 

• MCMC is currently the most powerful approach to face the 
computational difficulties related to the use of a Bayesian 
estimator

CONCLUSIONI


