
Year 2020-2021
Estimation and filtering

Bayesian estimation
using stochastic simulation:

theory e applications

Prof. Gianluigi Pillonetto

SUMMARY

• Fisherian vs Bayesian estimation

• Bayesian estimation using Monte Carlo methods

• Bayesian estimation using Markov chain Monte Carlo

• On-line Bayesian estimation (particle filters)

STATE-SPACE MODEL

xk = f xk−1,vk−1()
yk = h xk ,wk()

v,w independent noises

xk ∈ R
n

Note:
Markov process

p(xk | xk−1,xk−2 ,...) = p(xk | xk−1)

p(x0) assegnata (nel libro x1 = x0 , misure da k =1) givengiven

STATE-SPACE MODEL

xk = f xk−1,vk−1()
yk = h xk ,wk()

v,w independent noises

xk ∈ R
n

Note:
Markov process

p(xk | xk−1,xk−2 ,...) = p(xk | xk−1)

p(x0) assegnata (nel libro x1 = x0 , misure da k =1) givengiven

STATE-SPACE MODEL

xk = f xk−1,vk−1()
yk = h xk ,wk()

v,w independent noises

How to obtain the estimate
of xk based on y1:k?

FILTERED POSTERIORS

p(xk | y1:k) densita' filtrata

p(x0:k | y1:k) densita' congiunta filtrata

xk ∈ R
n

Note:
Markov process

p(xk | xk−1,xk−2 ,...) = p(xk | xk−1)

p(x0) assegnata (nel libro x1 = x0 , misure da k =1) givengiven

STATE-SPACE MODEL

xk = f xk−1,vk−1()
yk = h xk ,wk()

v,w independent noises

How to obtain the estimate
of xk based on y1:k?

joint filtered density

filtered density

PROPAGATION OF THE
JOINT FILTERED DENSITY

p(x0:k | y1:k) =
p(y1:k | x0:k)p(x0:k)

p(y1:k | x0:k)p(x0:k)dx0:k∫

STATE-SPACE MODEL

xk = f xk−1,vk−1()
yk = h xk ,wk()

v,w independent noises

p(x0:k | y1:k) =
p(y1:k | x0:k)p(x0:k)

p(y1:k | x0:k)p(x0:k)dx0:k∫

Update

p(x0:k+1 | y1:k+1) = p(x0:k | y1:k)
p(yk+1 | xk+1)p(xk+1 | xk)

p(yk+1 | y1:k)

STATE-SPACE MODEL

xk = f xk−1,vk−1()
yk = h xk ,wk()

v,w independent noises

PROPAGATION OF THE
JOINT FILTERED DENSITY

p(x0:k+1 | y1:k+1) = p(x0:k | y1:k)
p(yk+1 | xk+1)p(xk+1 | xk)

p(yk+1 | y1:k)

PROOF

Update

p(x0:k+1 | y1:k+1)p(yk+1 | y1:k)p(y1:k) = p(yk+1 | x0:k+1, y1:k)p(xk+1 | x0:k , y1:k)p(x0:k | y1:k)p(y1:k)

PROPAGATION OF THE
JOINT FILTERED DENSITY

p(x0:k+1 | y1:k+1)p(yk+1 | y1:k)p(y1:k) = p(yk+1 | x0:k+1, y1:k)p(xk+1 | x0:k , y1:k)p(x0:k | y1:k)p(y1:k)

p(yk+1 | xk+1) p(xk+1 | xk)

p(x0:k+1 | y1:k+1) = p(x0:k | y1:k)
p(yk+1 | xk+1)p(xk+1 | xk)

p(yk+1 | y1:k)

PROOF

Update

PROPAGATION OF THE
JOINT FILTERED DENSITY

STATE SPACE MODEL

p(xk | y1:k−1) = p(xk | xk−1)p(xk−1 | y1:k−1)dxk−1∫

Time update (Chapman-Kolmogorov)

xk = f xk−1,vk−1()
yk = h xk ,wk()

PROPAGATION OF THE
FILTERED DENSITY

v,w independent noises

p(xk ,xk−1 | y1:k−1) = p(xk | xk−1, y1:k−1)p(xk−1 | y1:k−1)

PROOF

p(xk | xk−1)

then integrated over xk-1

STATE SPACE MODEL

p(xk | y1:k−1) = p(xk | xk−1)p(xk−1 | y1:k−1)dxk−1∫

Time update (Chapman-Kolmogorov)

xk = f xk−1,vk−1()
yk = h xk ,wk()

PROPAGATION OF THE
FILTERED DENSITY

v,w independent noises

p(xk | y1:k) =
p(yk | xk)p(xk | y1:k−1)

p(yk | y1:k−1)

Measurements update

p(yk | y1:k−1) = p(yk | xk)p(xk | y1:k−1)dxk∫

STATE SPACE MODEL

p(xk | y1:k−1) = p(xk | xk−1)p(xk−1 | y1:k−1)dxk−1∫

Time update (Chapman-Kolmogorov)

xk = f xk−1,vk−1()
yk = h xk ,wk()

PROPAGATION OF THE
FILTERED DENSITY

v,w independent noises

p(xk | y1:k) =
p(yk | xk)p(xk | y1:k−1)

p(yk | y1:k−1)

Measurements update

p(yk | y1:k−1) = p(yk | xk)p(xk | y1:k−1)dxk∫

PROOF: p(yk | xk , y1:k−1) = p(yk | xk)

STATE SPACE MODEL

p(xk | y1:k−1) = p(xk | xk−1)p(xk−1 | y1:k−1)dxk−1∫

Time update (Chapman-Kolmogorov)

xk = f xk−1,vk−1()
yk = h xk ,wk()

PROPAGATION OF THE
FILTERED DENSITY

v,w independent noises

THE LINEAR GAUSSIAN CASE
xk = Fxk−1 + vk−1
yk = Hxk +wk

v and w Gaussian and independent noises

KALMAN FILTER

p(xk−1 | y1:k−1) = N (xk−1; x̂k−1|k−1,Pk−1|k−1)

Time update

Measurements update

xk = Fxk−1 + vk−1
yk = Hxk +wk

p(xk | y1:k−1) = N (xk−1; x̂k|k−1,Pk|k−1)

p(xk | y1:k) = N (xk ; x̂k|k ,Pk|k)

v and w Gaussian and independent noises

THE LINEAR GAUSSIAN CASE

x̂k|k−1 = Fx̂k−1|k−1
Pk|k−1 = FPk−1|k−1F '+Q

x̂k|k = x̂k|k−1 + Kk (yk −Hx̂k|k−1)

Pk|k = Pk|k−1 − KkHPk|k−1
Kk = Pk|k−1H '(HPk|k−1H '+ R)

−1

Var(vk) =Q, Var(wk) = R

KALMAN FILTER

p(xk−1 | y1:k−1) = N (xk−1; x̂k−1|k−1,Pk−1|k−1)

Time update

Measurements update

xk = Fxk−1 + vk−1
yk = Hxk +wk

p(xk | y1:k−1) = N (xk−1; x̂k|k−1,Pk|k−1)

p(xk | y1:k) = N (xk ; x̂k|k ,Pk|k)

v and w Gaussian and independent noises

THE LINEAR GAUSSIAN CASE

LIMITATIONS OF GAUSSIAN MODELS:
LOAD DISTURBANCES AFFECTING A MOTOR

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
L2−opt: output data and estimate

True
Estimate

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
L2−opt: input estimate

True
Estimate

(J=model for dt)

t txt+1 =
0.7 0
0.08 1

!

"
#

$

%
&xt +

11.8
0.6

!

"
#

$

%
& ut + dt()

zt = 0 1() xt + et

0 50 100 150 200
−6

−4

−2

0

2

4

6

L2−nom: output data and estimate

True
Estimate

0 50 100 150 200
−6

−4

−2

0

2

4

6

L2−opt: output data and estimate

True
Estimate

(V=model for et)

xt+1 =
0.7 0
0.08 1

!

"
#

$

%
&xt +

11.8
0.6

!

"
#

$

%
& ut + dt()

zt = 0 1() xt + et

LIMITATIONS OF GAUSSIAN MODELS:
OUTLIERS CORRUPTING THE OUTPUTS

NON LINEAR CASE
xk = f (xk−1)+ vk−1
yk = h(xk)+wk

v and w independent noises

EXTENDED KALMAN FILTER

p(xk−1 | y1:k−1) ≈ N (xk−1; x̂k−1|k−1,Pk−1|k−1)

Time update

Measurements update

p(xk | y1:k−1) ≈ N (xk−1; x̂k|k−1,Pk|k−1)

p(xk | y1:k) ≈ N (xk ; x̂k|k ,Pk|k)

NON LINEAR CASE
xk = f (xk−1)+ vk−1
yk = h(xk)+wk

v and w independent noises

Time update

Measurements update

p(xk | y1:k−1) ≈ N (xk−1; x̂k|k−1,Pk|k−1)

p(xk | y1:k) ≈ N (xk ; x̂k|k ,Pk|k)

x̂k|k−1 = f (x̂k−1|k−1)

Pk|k−1 = FkPk−1|k−1Fk '+Q

x̂k|k = x̂k|k−1 + Kk (yk − h(x̂k|k−1))

Pk|k = Pk|k−1 − KkHkPk|k−1
Kk = Pk|k−1Hk '(HkPk|k−1Hk '+ R)

−1

Var(vk) =Q, Var(wk) = R

Fk =
df (x̂k−1|k−1)
dx

Hk =
dh(x̂k|k−1)
dx

EXTENDED KALMAN FILTER

p(xk−1 | y1:k−1) ≈ N (xk−1; x̂k−1|k−1,Pk−1|k−1)

NON LINEAR CASE
xk = f (xk−1)+ vk−1
yk = h(xk)+wk

v and w independent noises

xk = xk−1 + vk−1
yk1 = xk − a +wk1
yk 2 = xk −b +wk 2

EXAMPLE

Localization of an object on a plane
with coordinate xk at instant k

p(x1) poco informativo

Var(w11) =Var(w12) =1

a=[-5 0], b=[0 5]
y11 = y12 = 6

xk = xk−1 + vk−1
yk1 = xk − a +wk1
yk 2 = xk −b +wk 2

EXAMPLE

Localization of an object on a plane
with coordinate xk at instant k

givenlittle informative

p(x1 | y1)

p(x1) poco informativo

Var(w11) =Var(w12) =1

a=[-5 0], b=[0 5]
y11 = y12 = 6

xk = xk−1 + vk−1
yk1 = xk − a +wk1
yk 2 = xk −b +wk 2

EXAMPLE

Localization of an object on a plane
with coordinate xk at instant k

givenpoorly informative

The Gaussian approximation EKF
relies on does not appear reasonable

p(x1 | y1)

p(x1) poco informativo

Var(w11) =Var(w12) =1

a=[-5 0], b=[0 5]
y11 = y12 = 6

xk = xk−1 + vk−1
yk1 = xk − a +wk1
yk 2 = xk −b +wk 2

EXAMPLE

Localization of an object on a plane
with coordinate xk at instant k

givenpoorly informative

MCMC approach?
Not well suited to an on-line context

p(x1 | y1)

p(x1) poco informativo

Var(w11) =Var(w12) =1

a=[-5 0], b=[0 5]
y11 = y12 = 6

xk = xk−1 + vk−1
yk1 = xk − a +wk1
yk 2 = xk −b +wk 2

EXAMPLE

Localization of an object on a plane
with coordinate xk at instant k

givenpoorly informative

IMPORTANCE SAMPLING

Eπ [f (x)]= f (x)π (x)dx∫

 = f (x)π (x) q(x)
q(x)

dx∫ (q(x) > 0)

IMPORTANCE SAMPLING

Proposal density called
importance function

Eπ [f (x)]= f (x)π (x)dx∫

 = f (x)π (x) q(x)
q(x)

dx∫ (q(x) > 0)

IMPORTANCE SAMPLING

Eπ [f (x)]= f (x)π (x)dx∫

 = f (x)π (x) q(x)
q(x)

dx∫ (q(x) > 0)

 = f (x) π (x)
q(x)

q(x)dx∫

 = Eq[
π (x)
q(x)

f (x)]

 ≈ 1
Ns

π (xi)
q(xi)

f (xi)
i=1

Ns

∑ xi ∼ q

IMPORTANCE SAMPLING

Eπ [f (x)]= f (x)π (x)dx∫

 = f (x)π (x) q(x)
q(x)

dx∫ (q(x) > 0)

 = f (x) π (x)
q(x)

q(x)dx∫

 = Eq[
π (x)
q(x)

f (x)]

 ≈ 1
Ns

π (xi)
q(xi)

f (xi)
i=1

Ns

∑ xi ∼ q
unnormalized weights

IMPORTANCE SAMPLING

Eπ [f (x)]= f (x)π (x)dx∫

 = f (x)π (x) q(x)
q(x)

dx∫ (q(x) > 0)

 = f (x) π (x)
q(x)

q(x)dx∫

 = Eq[
π (x)
q(x)

f (x)]

 ≈ 1
Ns

π (xi)
q(xi)

f (xi)
i=1

Ns

∑ xi ∼ q

Normalized weights

wi = π (x
i)

q(xi)
/ π (xi)

q(xi)i=1

Ns

∑

(vale ancora Eπ [f (x)] ≈ wi f (xi)
i=1

Ns

∑ , xi ∼ q)

unnormalized weights

(it still holds that

IMPORTANCE SAMPLING

Eπ [f (x)]= f (x)π (x)dx∫

 = f (x)π (x) q(x)
q(x)

dx∫ (q(x) > 0)

 = f (x) π (x)
q(x)

q(x)dx∫

 = Eq[
π (x)
q(x)

f (x)]

 ≈ 1
Ns

π (xi)
q(xi)

f (xi)
i=1

Ns

∑ xi ∼ q

π (x) ≈ wiδ(x − xi)
i=1

Ns

∑ Particle representation of
p based on (xi,wi)

IMPORTANCE SAMPLING

Target density
and i.i.d. samples
(not obtainable)

π

IMPORTANCE SAMPLING

Proposal density
and i.i.d. samples

π

π q

Target density
and i.i.d. samples
(not obtainable)

IMPORTANCE SAMPLING

π (x) ≈ wiδ(x − xi)
i=1

Ns

∑

Importance weights wi

and target approximation

(xi ,wi)

π

π q

q

π

Proposal density
and i.i.d. samples

Target density
and i.i.d. samples
(not obtainable)

SEQUENTIAL IMPORTANCE SAMPLING

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Rewriting in state space
what we have seen before

probability measure (random)

SEQUENTIAL IMPORTANCE SAMPLING

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

 Abbiamo campioni da

 p(x0:k−1 | y1:k−1)

e vogliamo approssimare

 p(x0:k | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

We have samples from

and we want to approximate

SEQUENTIAL IMPORTANCE SAMPLING

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

SEQUENTIAL IMPORTANCE SAMPLING

Qui e nel seguito usiamo l'uguaglianza
 p(A,B |C) = p(A | B,C)p(B |C)
 e l'ipotesi

 q(x0:k−1 | y1:k) = q(x0:k−1 | y1:k−1)

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

Here and in what follows we use the equality

and the assumption

SEQUENTIAL IMPORTANCE SAMPLING

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

SEQUENTIAL IMPORTANCE SAMPLING

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)

p(x0:k | y1:k) =
p(yk | x0:k , y1:k−1)p(x0:k | y1:k−1)

p(yk | y1:k−1)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

SEQUENTIAL IMPORTANCE SAMPLING

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)

p(x0:k | y1:k) =
p(yk | x0:k , y1:k−1)p(x0:k | y1:k−1)

p(yk | y1:k−1)

p(yk ,x0:k | y1:k−1)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

SEQUENTIAL IMPORTANCE SAMPLING

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)

p(x0:k | y1:k) =
p(yk | x0:k , y1:k−1)p(x0:k | y1:k−1)

p(yk | y1:k−1)

p(yk ,x0:k | y1:k−1) = p(x0:k | y1:k)p(yk | y1:k−1)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

SEQUENTIAL IMPORTANCE SAMPLING

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)

p(x0:k | y1:k) =
p(yk | x0:k , y1:k−1)p(x0:k | y1:k−1)

p(yk | y1:k−1)

 =
p(yk | x0:k , y1:k−1)p(xk | x0:k−1, y1:k−1)

p(yk | y1:k−1)
p(x0:k−1 | y1:k−1)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

SEQUENTIAL IMPORTANCE SAMPLING

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)

p(x0:k | y1:k) =
p(yk | x0:k , y1:k−1)p(x0:k | y1:k−1)

p(yk | y1:k−1)

 =
p(yk | x0:k , y1:k−1)p(xk | x0:k−1, y1:k−1)

p(yk | y1:k−1)
p(x0:k−1 | y1:k−1)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

SEQUENTIAL IMPORTANCE SAMPLING

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)

p(x0:k | y1:k) =
p(yk | x0:k , y1:k−1)p(x0:k | y1:k−1)

p(yk | y1:k−1)

 =
p(yk | x0:k , y1:k−1)p(xk | x0:k−1, y1:k−1)

p(yk | y1:k−1)
p(x0:k−1 | y1:k−1)

 =
p(yk | xk)p(xk | xk−1)

p(yk | y1:k−1)
p(x0:k−1 | y1:k−1)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

SEQUENTIAL IMPORTANCE SAMPLING

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)

p(x0:k | y1:k) =
p(yk | x0:k , y1:k−1)p(x0:k | y1:k−1)

p(yk | y1:k−1)

 =
p(yk | x0:k , y1:k−1)p(xk | x0:k−1, y1:k−1)

p(yk | y1:k−1)
p(x0:k−1 | y1:k−1)

 =
p(yk | xk)p(xk | xk−1)

p(yk | y1:k−1)
p(x0:k−1 | y1:k−1)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

SEQUENTIAL IMPORTANCE SAMPLING

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)

p(x0:k | y1:k) =
p(yk | x0:k , y1:k−1)p(x0:k | y1:k−1)

p(yk | y1:k−1)

 =
p(yk | x0:k , y1:k−1)p(xk | x0:k−1, y1:k−1)

p(yk | y1:k−1)
p(x0:k−1 | y1:k−1)

 =
p(yk | xk)p(xk | xk−1)

p(yk | y1:k−1)
p(x0:k−1 | y1:k−1)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

SEQUENTIAL IMPORTANCE SAMPLING

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)

p(x0:k | y1:k) =
p(yk | x0:k , y1:k−1)p(x0:k | y1:k−1)

p(yk | y1:k−1)

 =
p(yk | x0:k , y1:k−1)p(xk | x0:k−1, y1:k−1)

p(yk | y1:k−1)
p(x0:k−1 | y1:k−1)

 =
p(yk | xk)p(xk | xk−1)

p(yk | y1:k−1)
p(x0:k−1 | y1:k−1)

 ∝ p(yk | xk)p(xk | xk−1)p(x0:k−1 | y1:k−1)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

SEQUENTIAL IMPORTANCE SAMPLING

q(x0:k | y1:k) = q(xk | x0:k−1, y1:k)q(x0:k−1 | y1:k−1)
 Ora combiniamo

p(x0:k | y1:k)∝ p(yk | xk)p(xk | xk−1)p(x0:k−1 | y1:k−1)
 e

 wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

x0:k
i ,wk

i{ } misura di probabilita' (aleatoria)

p(x0:k | y1:k) ≈ wk
iδ(x0:k − x0:k

i)
i=1

n

∑ , wk
i ∝
p(x0:k

i | y1:k)
q(x0:k

i | y1:k)

Recursive version

probability measure (random)

Rewriting in state space
what we have seen before

By combining our previous results:

SEQUENTIAL IMPORTANCE SAMPLING

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

We obtain:

SEQUENTIAL IMPORTANCE SAMPLING

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

wk−1
i

We obtain:

SEQUENTIAL IMPORTANCE SAMPLING

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

 =wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | x0:k−1
i , y1:k)

We obtain:

SEQUENTIAL IMPORTANCE SAMPLING

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

 =wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | x0:k−1
i , y1:k)

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

=wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | xk−1
i , yk)

q(xk
i | x0:k−1

i , y1:k) = q(xk
i | xk−1

i , yk)
Markovian proposal

assumption

We obtain:

SEQUENTIAL IMPORTANCE SAMPLING

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

 =wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | x0:k−1
i , y1:k)

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

=wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | xk−1
i , yk)

q(xk
i | x0:k−1

i , y1:k) = p(xk
i | xk−1

i)

We obtain:

Markovian proposal
assumption

SEQUENTIAL IMPORTANCE SAMPLING

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

 =wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | x0:k−1
i , y1:k)

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

=wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | xk−1
i , yk)

q(xk
i | x0:k−1

i , y1:k) = p(xk
i | xk−1

i)

We obtain:

Markovian proposal
assumption

SEQUENTIAL IMPORTANCE SAMPLING

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

 =wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | x0:k−1
i , y1:k)

q(xk
i | x0:k−1

i , y1:k) = p(xk
i | xk−1

i)

wk
i ∝wk−1

i p(yk | xk
i)

We obtain:

Markovian proposal
assumption

SEQUENTIAL IMPORTANCE SAMPLING

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

 =wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | x0:k−1
i , y1:k)

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

=wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | xk−1
i , yk)

q(xk
i | x0:k−1

i , y1:k) = q(xk
i | xk−1

i , yk)

We obtain:

Markovian proposal
assumption

SEQUENTIAL IMPORTANCE SAMPLING

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

 =wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | x0:k−1
i , y1:k)

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

=wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | xk−1
i , yk)

q(xk
i | x0:k−1

i , y1:k) = q(xk
i | xk−1

i , yk)

p(xk | y1:k) ≈ wk
iδ(xk − xk

i)
i=1

Ns

∑

Particle representation
and propagation

of the filtered density

SIS (PARTICLE FILTER)

wk
i ∝wk−1

i p(yk | xk
i)p(xk

i | xk−1
i)

q(xk
i | xk−1

i , yk)

We obtain:

Markovian proposal
assumption

SEQUENTIAL IMPORTANCE SAMPLING

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

 =wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | x0:k−1
i , y1:k)

wk
i ∝
p(yk | xk

i)p(xk
i | xk−1

i)p(x0:k−1
i | y1:k−1)

q(xk
i | x0:k−1

i , y1:k)q(x0:k−1
i | y1:k−1)

=wk−1
i p(yk | xk

i)p(xk
i | xk−1

i)
q(xk

i | xk−1
i , yk)

q(xk
i | x0:k−1

i , y1:k) = q(xk
i | xk−1

i , yk)

SIS (PARTICLE FILTER)

178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

[14]. This sequential MC (SMC) approach is known variously
as bootstrap filtering [17], the condensation algorithm [29],
particle filtering [6], interacting particle approximations [10],
[11], and survival of the fittest [24]. It is a technique for imple-
menting a recursive Bayesian filter by MC simulations. The key
idea is to represent the required posterior density function by a
set of random samples with associated weights and to compute
estimates based on these samples and weights. As the number
of samples becomes very large, this MC characterization
becomes an equivalent representation to the usual functional
description of the posterior pdf, and the SIS filter approaches
the optimal Bayesian estimate.
In order to develop the details of the algorithm, let

denote a random measure that characterizes the
posterior pdf , where , is a set
of support points with associated weights ,
and , is the set of all states up to time
. The weights are normalized such that . Then, the
posterior density at can be approximated as

(40)

We therefore have a discrete weighted approximation to the
true posterior, . The weights are chosen using the
principle of importance sampling [3], [12]. This principle relies
on the following. Suppose is a probability density
fromwhich it is difficult to draw samples but for which can
be evaluated [as well as up to proportionality]. In addition,
let , be samples that are easily gener-
ated from a proposal called an importance density. Then, a
weighted approximation to the density is given by

(41)

where

(42)

is the normalized weight of the th particle.
Therefore, if the samples were drawn from an impor-

tance density , then the weights in (40) are defined
by (42) to be

(43)

Returning to the sequential case, at each iteration, one
could have samples constituting an approximation to

and want to approximate
with a new set of samples. If the importance density is chosen
to factorize such that

(44)

then one can obtain samples by augmenting
each of the existing samples with
the new state , . To derive the weight
update equation, is first expressed in terms of

, , and . Note that (4) can
be derived by integrating (45)

(45)

(46)
By substituting (44) and (46) into (43), the weight update

equation can then be shown to be

(47)

Furthermore, if , , , then
the importance density becomes only dependent on and
. This is particularly useful in the common case when only

a filtered estimate of is required at each time step.
From this point on, we will assume such a case, except when
explicitly stated otherwise. In such scenarios, only need be
stored; therefore, one can discard the path and history of
observations . The modified weight is then

(48)

and the posterior filtered density can be approxi-
mated as

(49)

where the weights are defined in (48). It can be shown that as
, the approximation (49) approaches the true posterior

density .
The SIS algorithm thus consists of recursive propagation of

the weights and support points as each measurement is received
sequentially. A pseudo-code description of this algorithm is
given by algorithm 1.

Algorithm 1: SIS Particle Filter
SIS

FOR
— Draw ,
— Assign the particle a weight, ,
according to (48)

END FOR

1) Degeneracy Problem: A common problem with the SIS
particle filter is the degeneracy phenomenon, where after a few
iterations, all but one particle will have negligible weight. It has

wk
i ∝wk−1

i p(yk | xk
i)p(xk

i | xk−1
i)

q(xk
i | xk−1

i , yk)

yk

yk

We obtain:

Markovian proposal
assumption

p(xk | y1:k) ≈ wk
iδ(xk − xk

i)
i=1

Ns

∑

Particle representation
and propagation

of the filtered density

wk
i ∝wk−1

i p(yk | xk
i)p(xk

i | xk−1
i)

q(xk
i | xk−1

i , yk)

SIS IN ACTION

w
Time 19

w

Time 10

w

Time 1

p(xk | y1:k) ≈ wk
iδ(xk − xk

i)
i=1

Ns

∑

178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

[14]. This sequential MC (SMC) approach is known variously
as bootstrap filtering [17], the condensation algorithm [29],
particle filtering [6], interacting particle approximations [10],
[11], and survival of the fittest [24]. It is a technique for imple-
menting a recursive Bayesian filter by MC simulations. The key
idea is to represent the required posterior density function by a
set of random samples with associated weights and to compute
estimates based on these samples and weights. As the number
of samples becomes very large, this MC characterization
becomes an equivalent representation to the usual functional
description of the posterior pdf, and the SIS filter approaches
the optimal Bayesian estimate.
In order to develop the details of the algorithm, let

denote a random measure that characterizes the
posterior pdf , where , is a set
of support points with associated weights ,
and , is the set of all states up to time
. The weights are normalized such that . Then, the
posterior density at can be approximated as

(40)

We therefore have a discrete weighted approximation to the
true posterior, . The weights are chosen using the
principle of importance sampling [3], [12]. This principle relies
on the following. Suppose is a probability density
fromwhich it is difficult to draw samples but for which can
be evaluated [as well as up to proportionality]. In addition,
let , be samples that are easily gener-
ated from a proposal called an importance density. Then, a
weighted approximation to the density is given by

(41)

where

(42)

is the normalized weight of the th particle.
Therefore, if the samples were drawn from an impor-

tance density , then the weights in (40) are defined
by (42) to be

(43)

Returning to the sequential case, at each iteration, one
could have samples constituting an approximation to

and want to approximate
with a new set of samples. If the importance density is chosen
to factorize such that

(44)

then one can obtain samples by augmenting
each of the existing samples with
the new state , . To derive the weight
update equation, is first expressed in terms of

, , and . Note that (4) can
be derived by integrating (45)

(45)

(46)
By substituting (44) and (46) into (43), the weight update

equation can then be shown to be

(47)

Furthermore, if , , , then
the importance density becomes only dependent on and
. This is particularly useful in the common case when only

a filtered estimate of is required at each time step.
From this point on, we will assume such a case, except when
explicitly stated otherwise. In such scenarios, only need be
stored; therefore, one can discard the path and history of
observations . The modified weight is then

(48)

and the posterior filtered density can be approxi-
mated as

(49)

where the weights are defined in (48). It can be shown that as
, the approximation (49) approaches the true posterior

density .
The SIS algorithm thus consists of recursive propagation of

the weights and support points as each measurement is received
sequentially. A pseudo-code description of this algorithm is
given by algorithm 1.

Algorithm 1: SIS Particle Filter
SIS

FOR
— Draw ,
— Assign the particle a weight, ,
according to (48)

END FOR

1) Degeneracy Problem: A common problem with the SIS
particle filter is the degeneracy phenomenon, where after a few
iterations, all but one particle will have negligible weight. It has

wk
i ∝wk−1

i p(yk | xk
i)p(xk

i | xk−1
i)

q(xk
i | xk−1

i , yk)

yk

yk

w
Time 19

w

Time 10

w

Time 1

w

Time 19

w

Time 10

w

Time 1

p(xk | y1:k) ≈ wk
iδ(xk − xk

i)
i=1

Ns

∑

178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

[14]. This sequential MC (SMC) approach is known variously
as bootstrap filtering [17], the condensation algorithm [29],
particle filtering [6], interacting particle approximations [10],
[11], and survival of the fittest [24]. It is a technique for imple-
menting a recursive Bayesian filter by MC simulations. The key
idea is to represent the required posterior density function by a
set of random samples with associated weights and to compute
estimates based on these samples and weights. As the number
of samples becomes very large, this MC characterization
becomes an equivalent representation to the usual functional
description of the posterior pdf, and the SIS filter approaches
the optimal Bayesian estimate.
In order to develop the details of the algorithm, let

denote a random measure that characterizes the
posterior pdf , where , is a set
of support points with associated weights ,
and , is the set of all states up to time
. The weights are normalized such that . Then, the
posterior density at can be approximated as

(40)

We therefore have a discrete weighted approximation to the
true posterior, . The weights are chosen using the
principle of importance sampling [3], [12]. This principle relies
on the following. Suppose is a probability density
fromwhich it is difficult to draw samples but for which can
be evaluated [as well as up to proportionality]. In addition,
let , be samples that are easily gener-
ated from a proposal called an importance density. Then, a
weighted approximation to the density is given by

(41)

where

(42)

is the normalized weight of the th particle.
Therefore, if the samples were drawn from an impor-

tance density , then the weights in (40) are defined
by (42) to be

(43)

Returning to the sequential case, at each iteration, one
could have samples constituting an approximation to

and want to approximate
with a new set of samples. If the importance density is chosen
to factorize such that

(44)

then one can obtain samples by augmenting
each of the existing samples with
the new state , . To derive the weight
update equation, is first expressed in terms of

, , and . Note that (4) can
be derived by integrating (45)

(45)

(46)
By substituting (44) and (46) into (43), the weight update

equation can then be shown to be

(47)

Furthermore, if , , , then
the importance density becomes only dependent on and
. This is particularly useful in the common case when only

a filtered estimate of is required at each time step.
From this point on, we will assume such a case, except when
explicitly stated otherwise. In such scenarios, only need be
stored; therefore, one can discard the path and history of
observations . The modified weight is then

(48)

and the posterior filtered density can be approxi-
mated as

(49)

where the weights are defined in (48). It can be shown that as
, the approximation (49) approaches the true posterior

density .
The SIS algorithm thus consists of recursive propagation of

the weights and support points as each measurement is received
sequentially. A pseudo-code description of this algorithm is
given by algorithm 1.

Algorithm 1: SIS Particle Filter
SIS

FOR
— Draw ,
— Assign the particle a weight, ,
according to (48)

END FOR

1) Degeneracy Problem: A common problem with the SIS
particle filter is the degeneracy phenomenon, where after a few
iterations, all but one particle will have negligible weight. It has

wk
i ∝wk−1

i p(yk | xk
i)p(xk

i | xk−1
i)

q(xk
i | xk−1

i , yk)

yk

yk

SIS IN ACTION

w
Time 19

w

Time 10

w

Time 1

w

Time 19

w

Time 10

w

Time 1

w

Time 19

w

Time 10

w

Time 1

p(xk | y1:k) ≈ wk
iδ(xk − xk

i)
i=1

Ns

∑

178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

[14]. This sequential MC (SMC) approach is known variously
as bootstrap filtering [17], the condensation algorithm [29],
particle filtering [6], interacting particle approximations [10],
[11], and survival of the fittest [24]. It is a technique for imple-
menting a recursive Bayesian filter by MC simulations. The key
idea is to represent the required posterior density function by a
set of random samples with associated weights and to compute
estimates based on these samples and weights. As the number
of samples becomes very large, this MC characterization
becomes an equivalent representation to the usual functional
description of the posterior pdf, and the SIS filter approaches
the optimal Bayesian estimate.
In order to develop the details of the algorithm, let

denote a random measure that characterizes the
posterior pdf , where , is a set
of support points with associated weights ,
and , is the set of all states up to time
. The weights are normalized such that . Then, the
posterior density at can be approximated as

(40)

We therefore have a discrete weighted approximation to the
true posterior, . The weights are chosen using the
principle of importance sampling [3], [12]. This principle relies
on the following. Suppose is a probability density
fromwhich it is difficult to draw samples but for which can
be evaluated [as well as up to proportionality]. In addition,
let , be samples that are easily gener-
ated from a proposal called an importance density. Then, a
weighted approximation to the density is given by

(41)

where

(42)

is the normalized weight of the th particle.
Therefore, if the samples were drawn from an impor-

tance density , then the weights in (40) are defined
by (42) to be

(43)

Returning to the sequential case, at each iteration, one
could have samples constituting an approximation to

and want to approximate
with a new set of samples. If the importance density is chosen
to factorize such that

(44)

then one can obtain samples by augmenting
each of the existing samples with
the new state , . To derive the weight
update equation, is first expressed in terms of

, , and . Note that (4) can
be derived by integrating (45)

(45)

(46)
By substituting (44) and (46) into (43), the weight update

equation can then be shown to be

(47)

Furthermore, if , , , then
the importance density becomes only dependent on and
. This is particularly useful in the common case when only

a filtered estimate of is required at each time step.
From this point on, we will assume such a case, except when
explicitly stated otherwise. In such scenarios, only need be
stored; therefore, one can discard the path and history of
observations . The modified weight is then

(48)

and the posterior filtered density can be approxi-
mated as

(49)

where the weights are defined in (48). It can be shown that as
, the approximation (49) approaches the true posterior

density .
The SIS algorithm thus consists of recursive propagation of

the weights and support points as each measurement is received
sequentially. A pseudo-code description of this algorithm is
given by algorithm 1.

Algorithm 1: SIS Particle Filter
SIS

FOR
— Draw ,
— Assign the particle a weight, ,
according to (48)

END FOR

1) Degeneracy Problem: A common problem with the SIS
particle filter is the degeneracy phenomenon, where after a few
iterations, all but one particle will have negligible weight. It has

wk
i ∝wk−1

i p(yk | xk
i)p(xk

i | xk−1
i)

q(xk
i | xk−1

i , yk)

yk

yk

SIS IN ACTION

SIS LIMITATIONS: DEGENERACY

w

Time 19

w

Time 10

w

Time 1

p(xk | y1:k) ≈ wk
iδ(xk − xk

i)
i=1

Ns

∑

178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

[14]. This sequential MC (SMC) approach is known variously
as bootstrap filtering [17], the condensation algorithm [29],
particle filtering [6], interacting particle approximations [10],
[11], and survival of the fittest [24]. It is a technique for imple-
menting a recursive Bayesian filter by MC simulations. The key
idea is to represent the required posterior density function by a
set of random samples with associated weights and to compute
estimates based on these samples and weights. As the number
of samples becomes very large, this MC characterization
becomes an equivalent representation to the usual functional
description of the posterior pdf, and the SIS filter approaches
the optimal Bayesian estimate.
In order to develop the details of the algorithm, let

denote a random measure that characterizes the
posterior pdf , where , is a set
of support points with associated weights ,
and , is the set of all states up to time
. The weights are normalized such that . Then, the
posterior density at can be approximated as

(40)

We therefore have a discrete weighted approximation to the
true posterior, . The weights are chosen using the
principle of importance sampling [3], [12]. This principle relies
on the following. Suppose is a probability density
fromwhich it is difficult to draw samples but for which can
be evaluated [as well as up to proportionality]. In addition,
let , be samples that are easily gener-
ated from a proposal called an importance density. Then, a
weighted approximation to the density is given by

(41)

where

(42)

is the normalized weight of the th particle.
Therefore, if the samples were drawn from an impor-

tance density , then the weights in (40) are defined
by (42) to be

(43)

Returning to the sequential case, at each iteration, one
could have samples constituting an approximation to

and want to approximate
with a new set of samples. If the importance density is chosen
to factorize such that

(44)

then one can obtain samples by augmenting
each of the existing samples with
the new state , . To derive the weight
update equation, is first expressed in terms of

, , and . Note that (4) can
be derived by integrating (45)

(45)

(46)
By substituting (44) and (46) into (43), the weight update

equation can then be shown to be

(47)

Furthermore, if , , , then
the importance density becomes only dependent on and
. This is particularly useful in the common case when only

a filtered estimate of is required at each time step.
From this point on, we will assume such a case, except when
explicitly stated otherwise. In such scenarios, only need be
stored; therefore, one can discard the path and history of
observations . The modified weight is then

(48)

and the posterior filtered density can be approxi-
mated as

(49)

where the weights are defined in (48). It can be shown that as
, the approximation (49) approaches the true posterior

density .
The SIS algorithm thus consists of recursive propagation of

the weights and support points as each measurement is received
sequentially. A pseudo-code description of this algorithm is
given by algorithm 1.

Algorithm 1: SIS Particle Filter
SIS

FOR
— Draw ,
— Assign the particle a weight, ,
according to (48)

END FOR

1) Degeneracy Problem: A common problem with the SIS
particle filter is the degeneracy phenomenon, where after a few
iterations, all but one particle will have negligible weight. It has

wk
i ∝wk−1

i p(yk | xk
i)p(xk

i | xk−1
i)

q(xk
i | xk−1

i , yk)

yk

yk

w

Time 19

w

Time 10

w

Time 1

w

Time 19

w

Time 10

w

Time 1

p(xk | y1:k) ≈ wk
iδ(xk − xk

i)
i=1

Ns

∑

178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

[14]. This sequential MC (SMC) approach is known variously
as bootstrap filtering [17], the condensation algorithm [29],
particle filtering [6], interacting particle approximations [10],
[11], and survival of the fittest [24]. It is a technique for imple-
menting a recursive Bayesian filter by MC simulations. The key
idea is to represent the required posterior density function by a
set of random samples with associated weights and to compute
estimates based on these samples and weights. As the number
of samples becomes very large, this MC characterization
becomes an equivalent representation to the usual functional
description of the posterior pdf, and the SIS filter approaches
the optimal Bayesian estimate.
In order to develop the details of the algorithm, let

denote a random measure that characterizes the
posterior pdf , where , is a set
of support points with associated weights ,
and , is the set of all states up to time
. The weights are normalized such that . Then, the
posterior density at can be approximated as

(40)

We therefore have a discrete weighted approximation to the
true posterior, . The weights are chosen using the
principle of importance sampling [3], [12]. This principle relies
on the following. Suppose is a probability density
fromwhich it is difficult to draw samples but for which can
be evaluated [as well as up to proportionality]. In addition,
let , be samples that are easily gener-
ated from a proposal called an importance density. Then, a
weighted approximation to the density is given by

(41)

where

(42)

is the normalized weight of the th particle.
Therefore, if the samples were drawn from an impor-

tance density , then the weights in (40) are defined
by (42) to be

(43)

Returning to the sequential case, at each iteration, one
could have samples constituting an approximation to

and want to approximate
with a new set of samples. If the importance density is chosen
to factorize such that

(44)

then one can obtain samples by augmenting
each of the existing samples with
the new state , . To derive the weight
update equation, is first expressed in terms of

, , and . Note that (4) can
be derived by integrating (45)

(45)

(46)
By substituting (44) and (46) into (43), the weight update

equation can then be shown to be

(47)

Furthermore, if , , , then
the importance density becomes only dependent on and
. This is particularly useful in the common case when only

a filtered estimate of is required at each time step.
From this point on, we will assume such a case, except when
explicitly stated otherwise. In such scenarios, only need be
stored; therefore, one can discard the path and history of
observations . The modified weight is then

(48)

and the posterior filtered density can be approxi-
mated as

(49)

where the weights are defined in (48). It can be shown that as
, the approximation (49) approaches the true posterior

density .
The SIS algorithm thus consists of recursive propagation of

the weights and support points as each measurement is received
sequentially. A pseudo-code description of this algorithm is
given by algorithm 1.

Algorithm 1: SIS Particle Filter
SIS

FOR
— Draw ,
— Assign the particle a weight, ,
according to (48)

END FOR

1) Degeneracy Problem: A common problem with the SIS
particle filter is the degeneracy phenomenon, where after a few
iterations, all but one particle will have negligible weight. It has

wk
i ∝wk−1

i p(yk | xk
i)p(xk

i | xk−1
i)

q(xk
i | xk−1

i , yk)

yk

yk

SIS LIMITATIONS: DEGENERACY

w

Time 19

w

Time 10

w

Time 1

w

Time 19

w

Time 10

w

Time 1

w

Time 19

w

Time 10

w

Time 1

p(xk | y1:k) ≈ wk
iδ(xk − xk

i)
i=1

Ns

∑

178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

[14]. This sequential MC (SMC) approach is known variously
as bootstrap filtering [17], the condensation algorithm [29],
particle filtering [6], interacting particle approximations [10],
[11], and survival of the fittest [24]. It is a technique for imple-
menting a recursive Bayesian filter by MC simulations. The key
idea is to represent the required posterior density function by a
set of random samples with associated weights and to compute
estimates based on these samples and weights. As the number
of samples becomes very large, this MC characterization
becomes an equivalent representation to the usual functional
description of the posterior pdf, and the SIS filter approaches
the optimal Bayesian estimate.
In order to develop the details of the algorithm, let

denote a random measure that characterizes the
posterior pdf , where , is a set
of support points with associated weights ,
and , is the set of all states up to time
. The weights are normalized such that . Then, the
posterior density at can be approximated as

(40)

We therefore have a discrete weighted approximation to the
true posterior, . The weights are chosen using the
principle of importance sampling [3], [12]. This principle relies
on the following. Suppose is a probability density
fromwhich it is difficult to draw samples but for which can
be evaluated [as well as up to proportionality]. In addition,
let , be samples that are easily gener-
ated from a proposal called an importance density. Then, a
weighted approximation to the density is given by

(41)

where

(42)

is the normalized weight of the th particle.
Therefore, if the samples were drawn from an impor-

tance density , then the weights in (40) are defined
by (42) to be

(43)

Returning to the sequential case, at each iteration, one
could have samples constituting an approximation to

and want to approximate
with a new set of samples. If the importance density is chosen
to factorize such that

(44)

then one can obtain samples by augmenting
each of the existing samples with
the new state , . To derive the weight
update equation, is first expressed in terms of

, , and . Note that (4) can
be derived by integrating (45)

(45)

(46)
By substituting (44) and (46) into (43), the weight update

equation can then be shown to be

(47)

Furthermore, if , , , then
the importance density becomes only dependent on and
. This is particularly useful in the common case when only

a filtered estimate of is required at each time step.
From this point on, we will assume such a case, except when
explicitly stated otherwise. In such scenarios, only need be
stored; therefore, one can discard the path and history of
observations . The modified weight is then

(48)

and the posterior filtered density can be approxi-
mated as

(49)

where the weights are defined in (48). It can be shown that as
, the approximation (49) approaches the true posterior

density .
The SIS algorithm thus consists of recursive propagation of

the weights and support points as each measurement is received
sequentially. A pseudo-code description of this algorithm is
given by algorithm 1.

Algorithm 1: SIS Particle Filter
SIS

FOR
— Draw ,
— Assign the particle a weight, ,
according to (48)

END FOR

1) Degeneracy Problem: A common problem with the SIS
particle filter is the degeneracy phenomenon, where after a few
iterations, all but one particle will have negligible weight. It has

wk
i ∝wk−1

i p(yk | xk
i)p(xk

i | xk−1
i)

q(xk
i | xk−1

i , yk)

yk

yk

SIS LIMITATIONS: DEGENERACY

DEGENERACY: THEORY

q(x0:k
i | y1:k) = p(x0:k

i | y1:k)Best proposal:

E w(x0:k)!
"

#
$=1

Var w(x0:k)!
"

#
$= 0

Thinking of the weights as
random variables it is obtained using:

(normalized with Ns=1)

Note: conditional on xi
0:k-1 and y1:k the best proposal

(not usable in practice) is

p(xk | xk−1
i , yk)

DEGENERACY: THEORY

q(x0:k
i | y1:k) = p(x0:k

i | y1:k)Best proposal:

E w(x0:k)!
"

#
$=1

Var w(x0:k)!
"

#
$= 0

Thinking of the weights as
random variables it is obtained using:

(normalized with Ns=1)

q(x0:n | y1:n) = q(x0) q(xk | x0:k−1, y1:k)
k=1

n

∏

Theorem: for proposals (importance functions) of the type

Var w(x0:k)!
"

#
$ always increases as k increases

DEGENERACY: THEORY

q(x0:k
i | y1:k) = p(x0:k

i | y1:k)Best proposal:

E w(x0:k)!
"

#
$=1

Var w(x0:k)!
"

#
$= 0

Thinking of the weights as
random variables it is obtained using:

(normalized with Ns=1)

NON DEGENERACY MEASURE

true weight

wk
*i =

p(xk
i | y1:k−1)

q(xk
i | xk−1

i , yk)

Neff =
Ns

1+Var(wk
*i)

q(x0:n | y1:n) = q(x0) q(xk | x0:k−1, y1:k)
k=1

n

∏

Theorem: for proposals (importance functions) of the type

Var w(x0:k)!
"

#
$ always increases as k increases

DEGENERACY: THEORY

q(x0:k
i | y1:k) = p(x0:k

i | y1:k)Best proposal:

E w(x0:k)!
"

#
$=1

Var w(x0:k)!
"

#
$= 0

Thinking of the weights as
random variables it is obtained using:

(normalized with Ns=1)

Degeneration estimate using
normalized weights

Neff =
1

(wk
i)2

i=1

Ns

∑

NON DEGENERACY MEASURE

true weight

wk
*i =

p(xk
i | y1:k−1)

q(xk
i | xk−1

i , yk)

Neff =
Ns

1+Var(wk
*i)

q(x0:n | y1:n) = q(x0) q(xk | x0:k−1, y1:k)
k=1

n

∏

Theorem: for proposals (importance functions) of the type

Var w(x0:k)!
"

#
$ always increases as k increases

DEGENERACY: THEORY

q(x0:k
i | y1:k) = p(x0:k

i | y1:k)Best proposal:

E w(x0:k)!
"

#
$=1

Var w(x0:k)!
"

#
$= 0

Thinking of the weights as
random variables it is obtained using:

(normalized with Ns=1)

Starting point is a particle density with uniform weights

REGENERATION (RESAMPLING)

New data arrive and we propagate the pdf obtaining non uniform weights

REGENERATION (RESAMPLING)

Resampling of the particle density
leads to uniform weights and possible repetitions of x

REGENERATION (RESAMPLING)

Note that high-probability regions are emphasized
and unimportant regions are lost

REGENERATION (RESAMPLING)

Similar to MCMC philosophy: “to move around
regions found to have large probability” (Resample and Move)

REGENERATION (RESAMPLING)

The new density then evolves by adding the transition noise
(weights remain uniform)

REGENERATION (RESAMPLING)

New measurements update

REGENERATION (RESAMPLING)

Regeneration

REGENERATION (RESAMPLING)

We add transition noise

REGENERATION (RESAMPLING)

PARTICLE FILTER

180 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

weights are now reset to . It is possible to imple-
ment this resampling procedure in operations by sam-
pling ordered uniforms using an algorithm based on order
statistics [6], [37]. Note that other efficient (in terms of reduced
MC variation) resampling schemes, such as stratified sampling
and residual sampling [28], may be applied as alternatives to this
algorithm. Systematic resampling [25] is the scheme preferred
by the authors [since it is simple to implement, takes
time, and minimizes the MC variation], and its operation is de-
scribed in Algorithm 2, where is the uniform distribution
on the interval (inclusive of the limits). For each resam-
pled particle , this resampling algorithm also stores the index
of its parent, which is denoted by . This may appear unneces-
sary here (and is), but it proves useful in Section V-B2.
A generic particle filter is then as described by Algorithm 3.
Although the resampling step reduces the effects of the de-

generacy problem, it introduces other practical problems. First,
it limits the opportunity to parallelize since all the particles must
be combined. Second, the particles that have high weights
are statistically selected many times. This leads to a loss of di-
versity among the particles as the resultant sample will contain
many repeated points. This problem, which is known as sample
impoverishment, is severe in the case of small process noise.
In fact, for the case of very small process noise, all particles
will collapse to a single point within a few iterations.5 Third,
since the diversity of the paths of the particles is reduced, any
smoothed estimates based on the particles’ paths degenerate.6
Schemes exist to counteract this effect. One approach considers
the states for the particles to be predetermined by the forward
filter and then obtains the smoothed estimates by recalculating
the particles’ weights via a recursion from the final to the first
time step [16]. Another approach is to use MCMC [5].

Algorithm 2: Resampling Algorithm
, RESAMPLE

Initialize the CDF:
FOR
— Construct CDF:
END FOR
Start at the bottom of the CDF:
Draw a starting point:
FOR
— Move along the CDF:
— WHILE

— END WHILE
— Assign sample:
— Assign weight:
— Assign parent:
END FOR

5If the process noise is zero, then using a particle filter is not entirely ap-
propriate. Particle filtering is a method well suited to the estimation of dynamic
states. If static states, which can be regarded as parameters, need to be estimated
then alternative approaches are necessary [7], [27].
6Since the particles actually represent paths through the state space, by storing

the trajectory taken by each particle, fixed-lag and fixed-point smoothed esti-
mates of the state can be obtained [4].

Algorithm 3: Generic Particle Filter
PF ,

FOR
— Draw
— Assign the particle a weight, ,
according to (48)

END FOR
Calculate total weight: SUM
FOR
— Normalize:
END FOR
Calculate using (51)
IF
— Resample using algorithm 2:

RESAMPLE
END IF

There have been some systematic techniques proposed
recently to solve the problem of sample impoverishment. One
such technique is the resample-move algorithm [19], which is
not be described in detail in this paper. Although this technique
draws conceptually on the same technologies of importance
sampling-resampling and MCMC sampling, it avoids sample
impoverishment. It does this in a rigorous manner that ensures
the particles asymtotically approximate samples from the
posterior and, therefore, is the method of choice of the authors.
An alternative solution to the same problem is regularization
[31], which is discussed in Section V-B3. This approach
is frequently found to improve performance, despite a less
rigorous derivation and is included here in preference to the
resample-move algorithm since its use is so widespread.
4) Techniques for Circumventing theUse of a Suboptimal Im-

portance Density: It is often the case that a good importance
density is not available. For example, if the prior is
used as the importance density and is a much broader distribu-
tion than the likelihood , then only a few particles will
have a high weight. Methods exist for encouraging the particles
to be in the right place; the use of bridging densities [8] and
progressive correction [33] both introduce intermediate distri-
butions between the prior and likelihood. The particles are then
reweighted according to these intermediate distributions and re-
sampled. This “herds” the particles into the right part of the state
space.
Another approach known as partitioned sampling [29] is

useful if the likelihood is very peaked but can be factorized
into a number of broader distributions. Typically, this occurs
because each of the partitioned distributions are functions of
some (not all) of the states. By treating each of these partitioned
distributions in turn and resampling on the basis of each such
partitioned distribution, the particles are again herded toward
the peaked likelihood.

B. Other Related Particle Filters
The sequential importance sampling algorithm presented in

Section V-A forms the basis for most particle filters that have

180 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

weights are now reset to . It is possible to imple-
ment this resampling procedure in operations by sam-
pling ordered uniforms using an algorithm based on order
statistics [6], [37]. Note that other efficient (in terms of reduced
MC variation) resampling schemes, such as stratified sampling
and residual sampling [28], may be applied as alternatives to this
algorithm. Systematic resampling [25] is the scheme preferred
by the authors [since it is simple to implement, takes
time, and minimizes the MC variation], and its operation is de-
scribed in Algorithm 2, where is the uniform distribution
on the interval (inclusive of the limits). For each resam-
pled particle , this resampling algorithm also stores the index
of its parent, which is denoted by . This may appear unneces-
sary here (and is), but it proves useful in Section V-B2.
A generic particle filter is then as described by Algorithm 3.
Although the resampling step reduces the effects of the de-

generacy problem, it introduces other practical problems. First,
it limits the opportunity to parallelize since all the particles must
be combined. Second, the particles that have high weights
are statistically selected many times. This leads to a loss of di-
versity among the particles as the resultant sample will contain
many repeated points. This problem, which is known as sample
impoverishment, is severe in the case of small process noise.
In fact, for the case of very small process noise, all particles
will collapse to a single point within a few iterations.5 Third,
since the diversity of the paths of the particles is reduced, any
smoothed estimates based on the particles’ paths degenerate.6
Schemes exist to counteract this effect. One approach considers
the states for the particles to be predetermined by the forward
filter and then obtains the smoothed estimates by recalculating
the particles’ weights via a recursion from the final to the first
time step [16]. Another approach is to use MCMC [5].

Algorithm 2: Resampling Algorithm
, RESAMPLE

Initialize the CDF:
FOR
— Construct CDF:
END FOR
Start at the bottom of the CDF:
Draw a starting point:
FOR
— Move along the CDF:
— WHILE

— END WHILE
— Assign sample:
— Assign weight:
— Assign parent:
END FOR

5If the process noise is zero, then using a particle filter is not entirely ap-
propriate. Particle filtering is a method well suited to the estimation of dynamic
states. If static states, which can be regarded as parameters, need to be estimated
then alternative approaches are necessary [7], [27].
6Since the particles actually represent paths through the state space, by storing

the trajectory taken by each particle, fixed-lag and fixed-point smoothed esti-
mates of the state can be obtained [4].

Algorithm 3: Generic Particle Filter
PF ,

FOR
— Draw
— Assign the particle a weight, ,
according to (48)

END FOR
Calculate total weight: SUM
FOR
— Normalize:
END FOR
Calculate using (51)
IF
— Resample using algorithm 2:

RESAMPLE
END IF

There have been some systematic techniques proposed
recently to solve the problem of sample impoverishment. One
such technique is the resample-move algorithm [19], which is
not be described in detail in this paper. Although this technique
draws conceptually on the same technologies of importance
sampling-resampling and MCMC sampling, it avoids sample
impoverishment. It does this in a rigorous manner that ensures
the particles asymtotically approximate samples from the
posterior and, therefore, is the method of choice of the authors.
An alternative solution to the same problem is regularization
[31], which is discussed in Section V-B3. This approach
is frequently found to improve performance, despite a less
rigorous derivation and is included here in preference to the
resample-move algorithm since its use is so widespread.
4) Techniques for Circumventing theUse of a Suboptimal Im-

portance Density: It is often the case that a good importance
density is not available. For example, if the prior is
used as the importance density and is a much broader distribu-
tion than the likelihood , then only a few particles will
have a high weight. Methods exist for encouraging the particles
to be in the right place; the use of bridging densities [8] and
progressive correction [33] both introduce intermediate distri-
butions between the prior and likelihood. The particles are then
reweighted according to these intermediate distributions and re-
sampled. This “herds” the particles into the right part of the state
space.
Another approach known as partitioned sampling [29] is

useful if the likelihood is very peaked but can be factorized
into a number of broader distributions. Typically, this occurs
because each of the partitioned distributions are functions of
some (not all) of the states. By treating each of these partitioned
distributions in turn and resampling on the basis of each such
partitioned distribution, the particles are again herded toward
the peaked likelihood.

B. Other Related Particle Filters
The sequential importance sampling algorithm presented in

Section V-A forms the basis for most particle filters that have

178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

[14]. This sequential MC (SMC) approach is known variously
as bootstrap filtering [17], the condensation algorithm [29],
particle filtering [6], interacting particle approximations [10],
[11], and survival of the fittest [24]. It is a technique for imple-
menting a recursive Bayesian filter by MC simulations. The key
idea is to represent the required posterior density function by a
set of random samples with associated weights and to compute
estimates based on these samples and weights. As the number
of samples becomes very large, this MC characterization
becomes an equivalent representation to the usual functional
description of the posterior pdf, and the SIS filter approaches
the optimal Bayesian estimate.
In order to develop the details of the algorithm, let

denote a random measure that characterizes the
posterior pdf , where , is a set
of support points with associated weights ,
and , is the set of all states up to time
. The weights are normalized such that . Then, the
posterior density at can be approximated as

(40)

We therefore have a discrete weighted approximation to the
true posterior, . The weights are chosen using the
principle of importance sampling [3], [12]. This principle relies
on the following. Suppose is a probability density
fromwhich it is difficult to draw samples but for which can
be evaluated [as well as up to proportionality]. In addition,
let , be samples that are easily gener-
ated from a proposal called an importance density. Then, a
weighted approximation to the density is given by

(41)

where

(42)

is the normalized weight of the th particle.
Therefore, if the samples were drawn from an impor-

tance density , then the weights in (40) are defined
by (42) to be

(43)

Returning to the sequential case, at each iteration, one
could have samples constituting an approximation to

and want to approximate
with a new set of samples. If the importance density is chosen
to factorize such that

(44)

then one can obtain samples by augmenting
each of the existing samples with
the new state , . To derive the weight
update equation, is first expressed in terms of

, , and . Note that (4) can
be derived by integrating (45)

(45)

(46)
By substituting (44) and (46) into (43), the weight update

equation can then be shown to be

(47)

Furthermore, if , , , then
the importance density becomes only dependent on and
. This is particularly useful in the common case when only

a filtered estimate of is required at each time step.
From this point on, we will assume such a case, except when
explicitly stated otherwise. In such scenarios, only need be
stored; therefore, one can discard the path and history of
observations . The modified weight is then

(48)

and the posterior filtered density can be approxi-
mated as

(49)

where the weights are defined in (48). It can be shown that as
, the approximation (49) approaches the true posterior

density .
The SIS algorithm thus consists of recursive propagation of

the weights and support points as each measurement is received
sequentially. A pseudo-code description of this algorithm is
given by algorithm 1.

Algorithm 1: SIS Particle Filter
SIS

FOR
— Draw ,
— Assign the particle a weight, ,
according to (48)

END FOR

1) Degeneracy Problem: A common problem with the SIS
particle filter is the degeneracy phenomenon, where after a few
iterations, all but one particle will have negligible weight. It has

wk
i ∝wk−1

i p(yk | xk
i)p(xk

i | xk−1
i)

q(xk
i | xk−1

i , yk)

yk

yk

wk
i ∝wk−1

i p(yk | xk
i)p(xk

i | xk−1
i)

q(xk
i | xk−1

i , yk)

yk

yk

EXAMPLE

xk =
xk−1

2
+

25xk−1

1+ xk−1
2
+8cos(1.2k)+ vk , Q =10

yk =
xk

2

20
+wk , R =1

ARULAMPALAM et al.: TUTORIAL ON PARTICLE FILTERS 183

TABLE I
TABLE OF THE ALGORITHMS USED, THE SECTIONS OF THE ARTICLE,

AND FIGURES THAT RELATE TO THE ALGORITHMS, AND RMSE VALUES
(AVERAGED OVER 100 MC RUNS)

is carried out prior to the resampling and is therefore a func-
tion of both the and . This is done since the accuracy of
any estimate of a function of the distribution can only decrease
as a result of the resampling. If quantities such as the mean and
covariance of the samples are to be output, then these should be
calculated prior to resampling.
By following the above procedure, we generate an i.i.d.

random sample drawn from (73).
In terms of complexity, the RPF is comparable with SIR since

it only requires additional generations from the kernel
at each time step. The RPF has the theoretic disadvantage that
the samples are no longer guaranteed to asymtotically approx-
imate those from the posterior. In practical scenarios, the RPF
performance is better than the SIR in cases where sample im-
poverishment is severe, for example, when the process noise is
small.

VI. EXAMPLE

Here, we consider the following set of equations as an illus-
trative example:

(79)

(80)

or equivalently

(81)

(82)

where

(83)

and where and are zero mean Gaussian random
variables with variances and , respectively. We use

and . This example has been analyzed
before in many publications [5], [17], [25].
We consider the performance of the algorithms detailed in

Table I. In order to qualitatively gauge performance and dis-
cuss resulting issues, we consider one exemplar run. In order to
quantify performance, we use the traditional measure of per-
formance: the Root Mean Squared Error (RMSE). It should
be noted that this measure of performance is not exceptionally
meaningful for this multimodal problem. However, it has been
used extensively in the literature and is included here for that
reason and because it facilitates quantitative comparison.
For reference, the true states for the exemplar run are shown

in Fig. 1 and the measurements in Fig. 2.

Fig. 1. Figure of the true values of the state as a function of for the
exemplar run.

Fig. 2. Figure of the measurements of the states shown in Fig. 1 for the
same exemplar run.

The approximate grid-based method uses 50 states with cen-
ters equally spaced on . All the particle filters have 50
particles and employ resampling at every time step ().
The auxiliary particle filter uses . The regu-
larized particle filter uses the kernel and bandwidth described in
Section V-B3.
To visualize the densities inferred by the approximate grid-

based and particle filters, the total probability mass at any time
in each of 50 equally spaced regions on is shown as
images in Figs. 5–9. At any given time (and in any vertical slice
through the image), darker regions represent higher probability
than lighter regions. A graduated scale relating intensity to prob-
ability mass in a pixel is shown next to each image.

A. EKF
The EKFs local linearization and Gaussian approxima-

tion are not a sufficient description of the nonlinear and
non-Gaussian nature of the example. Once the EKF cannot
adequately approximate the bimodal nature of the underlying

ARULAMPALAM et al.: TUTORIAL ON PARTICLE FILTERS 183

TABLE I
TABLE OF THE ALGORITHMS USED, THE SECTIONS OF THE ARTICLE,

AND FIGURES THAT RELATE TO THE ALGORITHMS, AND RMSE VALUES
(AVERAGED OVER 100 MC RUNS)

is carried out prior to the resampling and is therefore a func-
tion of both the and . This is done since the accuracy of
any estimate of a function of the distribution can only decrease
as a result of the resampling. If quantities such as the mean and
covariance of the samples are to be output, then these should be
calculated prior to resampling.
By following the above procedure, we generate an i.i.d.

random sample drawn from (73).
In terms of complexity, the RPF is comparable with SIR since

it only requires additional generations from the kernel
at each time step. The RPF has the theoretic disadvantage that
the samples are no longer guaranteed to asymtotically approx-
imate those from the posterior. In practical scenarios, the RPF
performance is better than the SIR in cases where sample im-
poverishment is severe, for example, when the process noise is
small.

VI. EXAMPLE

Here, we consider the following set of equations as an illus-
trative example:

(79)

(80)

or equivalently

(81)

(82)

where

(83)

and where and are zero mean Gaussian random
variables with variances and , respectively. We use

and . This example has been analyzed
before in many publications [5], [17], [25].
We consider the performance of the algorithms detailed in

Table I. In order to qualitatively gauge performance and dis-
cuss resulting issues, we consider one exemplar run. In order to
quantify performance, we use the traditional measure of per-
formance: the Root Mean Squared Error (RMSE). It should
be noted that this measure of performance is not exceptionally
meaningful for this multimodal problem. However, it has been
used extensively in the literature and is included here for that
reason and because it facilitates quantitative comparison.
For reference, the true states for the exemplar run are shown

in Fig. 1 and the measurements in Fig. 2.

Fig. 1. Figure of the true values of the state as a function of for the
exemplar run.

Fig. 2. Figure of the measurements of the states shown in Fig. 1 for the
same exemplar run.

The approximate grid-based method uses 50 states with cen-
ters equally spaced on . All the particle filters have 50
particles and employ resampling at every time step ().
The auxiliary particle filter uses . The regu-
larized particle filter uses the kernel and bandwidth described in
Section V-B3.
To visualize the densities inferred by the approximate grid-

based and particle filters, the total probability mass at any time
in each of 50 equally spaced regions on is shown as
images in Figs. 5–9. At any given time (and in any vertical slice
through the image), darker regions represent higher probability
than lighter regions. A graduated scale relating intensity to prob-
ability mass in a pixel is shown next to each image.

A. EKF
The EKFs local linearization and Gaussian approxima-

tion are not a sufficient description of the nonlinear and
non-Gaussian nature of the example. Once the EKF cannot
adequately approximate the bimodal nature of the underlying

True xk yk

EXAMPLE

xk =
xk−1

2
+

25xk−1

1+ xk−1
2
+8cos(1.2k)+ vk , Q =10

yk =
xk

2

20
+wk , R =1

ARULAMPALAM et al.: TUTORIAL ON PARTICLE FILTERS 183

TABLE I
TABLE OF THE ALGORITHMS USED, THE SECTIONS OF THE ARTICLE,

AND FIGURES THAT RELATE TO THE ALGORITHMS, AND RMSE VALUES
(AVERAGED OVER 100 MC RUNS)

is carried out prior to the resampling and is therefore a func-
tion of both the and . This is done since the accuracy of
any estimate of a function of the distribution can only decrease
as a result of the resampling. If quantities such as the mean and
covariance of the samples are to be output, then these should be
calculated prior to resampling.
By following the above procedure, we generate an i.i.d.

random sample drawn from (73).
In terms of complexity, the RPF is comparable with SIR since

it only requires additional generations from the kernel
at each time step. The RPF has the theoretic disadvantage that
the samples are no longer guaranteed to asymtotically approx-
imate those from the posterior. In practical scenarios, the RPF
performance is better than the SIR in cases where sample im-
poverishment is severe, for example, when the process noise is
small.

VI. EXAMPLE

Here, we consider the following set of equations as an illus-
trative example:

(79)

(80)

or equivalently

(81)

(82)

where

(83)

and where and are zero mean Gaussian random
variables with variances and , respectively. We use

and . This example has been analyzed
before in many publications [5], [17], [25].
We consider the performance of the algorithms detailed in

Table I. In order to qualitatively gauge performance and dis-
cuss resulting issues, we consider one exemplar run. In order to
quantify performance, we use the traditional measure of per-
formance: the Root Mean Squared Error (RMSE). It should
be noted that this measure of performance is not exceptionally
meaningful for this multimodal problem. However, it has been
used extensively in the literature and is included here for that
reason and because it facilitates quantitative comparison.
For reference, the true states for the exemplar run are shown

in Fig. 1 and the measurements in Fig. 2.

Fig. 1. Figure of the true values of the state as a function of for the
exemplar run.

Fig. 2. Figure of the measurements of the states shown in Fig. 1 for the
same exemplar run.

The approximate grid-based method uses 50 states with cen-
ters equally spaced on . All the particle filters have 50
particles and employ resampling at every time step ().
The auxiliary particle filter uses . The regu-
larized particle filter uses the kernel and bandwidth described in
Section V-B3.
To visualize the densities inferred by the approximate grid-

based and particle filters, the total probability mass at any time
in each of 50 equally spaced regions on is shown as
images in Figs. 5–9. At any given time (and in any vertical slice
through the image), darker regions represent higher probability
than lighter regions. A graduated scale relating intensity to prob-
ability mass in a pixel is shown next to each image.

A. EKF
The EKFs local linearization and Gaussian approxima-

tion are not a sufficient description of the nonlinear and
non-Gaussian nature of the example. Once the EKF cannot
adequately approximate the bimodal nature of the underlying

True xk
184 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

Fig. 3. Evolution of the EKFs mean estimate of the state.

Fig. 4. Evolution of the upper and lower positions of the state as estimated
by the EKF (dotted) with the true state also shown (solid).

posterior, the Gaussian approximation fails—the EKF is prone
to either choosing the “wrong” mode or just sitting on the
average between the modes. As a result of this inability to
adequately approximate the density, the linearization approxi-
mation becomes poor.
This can be seen from Fig. 3. The mean of the filter is rarely

close to the true state. Were the density to be Gaussian, one
would expect the state to be within two standard deviations of
the mean approximately 95% of the time. From Fig. 4, it is ev-
ident that there are times when the distribution is sufficiently
broad to capture the true state in this region but that there are
also times when the filter becomes highly overconfident of a bi-
ased estimate of the state. The implication of this is that it is very
difficult to detect inconsistent EKF errors automatically online.
The RMSE measure indicates that the EKF is the least accu-

rate of the algorithms at approximating the posterior. The ap-
proximations made by the EKF are inappropriate in this ex-
ample.

Fig. 5. Image representing evolution of probability density for approximate
grid-based filter.

B. Approximate Grid-Based Filter
This example is low dimensional, and therefore, one would

expect that an approximate grid-based approach would perform
well. Fig. 5 shows this is indeed the case. The grid-based ap-
proximation is able to model the multimodality of the problem.
Using the approximate grid-based filter rather than an EKF

yields a marked reduction in RMS errors. A particle filter with
particles conducts operations per iteration, whereas

an approximate grid-based filter carries out operations
with cells. It is therefore surprising that the RMS errors for
the approximate grid are larger than those of the particle filter.
The authors suspect that this is an artifact of the grid being fixed;
the resolution of the algorithm is predefined, and the fixed posi-
tion of the grid points means that the grid points near 25 con-
tribute significantly to the error when the true state is far from
these values.

C. SIR Particle Filter
Using the prior distribution as the importance density is in

some sense regarded as a standard SIR particle filter and, there-
fore, is an appropriate particle filter algorithm with which to
begin. As can be seen from Fig. 6, the SIR particle filter gives
disappointing results with the low number of particles used here.
The speckled appearance of the figure is a result of sampling a
low number of particles from the (broad) prior. It is an artifact
resulting from the inadequate amount of sampling.
The RMSE metric shows a marginal improvement over the

approximate grid-based filter. To achieve smaller errors, one
could simply increase the number of particles, but here, we will
now investigate the effect of using the alternative particle filter
algorithms described up to this point.

D. Auxiliary Particle Filter
One way to reduce errors might be that the proposed par-

ticle positions are chosen badly. One might therefore think that
choosing the proposed particles in a more intelligent manner
would yield better results. An auxiliary particle filter would then

EKF estimates of xk

ARULAMPALAM et al.: TUTORIAL ON PARTICLE FILTERS 183

TABLE I
TABLE OF THE ALGORITHMS USED, THE SECTIONS OF THE ARTICLE,

AND FIGURES THAT RELATE TO THE ALGORITHMS, AND RMSE VALUES
(AVERAGED OVER 100 MC RUNS)

is carried out prior to the resampling and is therefore a func-
tion of both the and . This is done since the accuracy of
any estimate of a function of the distribution can only decrease
as a result of the resampling. If quantities such as the mean and
covariance of the samples are to be output, then these should be
calculated prior to resampling.
By following the above procedure, we generate an i.i.d.

random sample drawn from (73).
In terms of complexity, the RPF is comparable with SIR since

it only requires additional generations from the kernel
at each time step. The RPF has the theoretic disadvantage that
the samples are no longer guaranteed to asymtotically approx-
imate those from the posterior. In practical scenarios, the RPF
performance is better than the SIR in cases where sample im-
poverishment is severe, for example, when the process noise is
small.

VI. EXAMPLE

Here, we consider the following set of equations as an illus-
trative example:

(79)

(80)

or equivalently

(81)

(82)

where

(83)

and where and are zero mean Gaussian random
variables with variances and , respectively. We use

and . This example has been analyzed
before in many publications [5], [17], [25].
We consider the performance of the algorithms detailed in

Table I. In order to qualitatively gauge performance and dis-
cuss resulting issues, we consider one exemplar run. In order to
quantify performance, we use the traditional measure of per-
formance: the Root Mean Squared Error (RMSE). It should
be noted that this measure of performance is not exceptionally
meaningful for this multimodal problem. However, it has been
used extensively in the literature and is included here for that
reason and because it facilitates quantitative comparison.
For reference, the true states for the exemplar run are shown

in Fig. 1 and the measurements in Fig. 2.

Fig. 1. Figure of the true values of the state as a function of for the
exemplar run.

Fig. 2. Figure of the measurements of the states shown in Fig. 1 for the
same exemplar run.

The approximate grid-based method uses 50 states with cen-
ters equally spaced on . All the particle filters have 50
particles and employ resampling at every time step ().
The auxiliary particle filter uses . The regu-
larized particle filter uses the kernel and bandwidth described in
Section V-B3.
To visualize the densities inferred by the approximate grid-

based and particle filters, the total probability mass at any time
in each of 50 equally spaced regions on is shown as
images in Figs. 5–9. At any given time (and in any vertical slice
through the image), darker regions represent higher probability
than lighter regions. A graduated scale relating intensity to prob-
ability mass in a pixel is shown next to each image.

A. EKF
The EKFs local linearization and Gaussian approxima-

tion are not a sufficient description of the nonlinear and
non-Gaussian nature of the example. Once the EKF cannot
adequately approximate the bimodal nature of the underlying

ARULAMPALAM et al.: TUTORIAL ON PARTICLE FILTERS 185

Fig. 6. Image representing evolution of probability density for SIR particle
filter.

Fig. 7. Image representing evolution of probability density for auxiliary
particle filter.

seem to be an appropriate candidate replacement algorithm for
SIR. Here, we have as a sample from .
As shown by Fig. 7, for this example, the auxiliary particle

filter performs well. There is arguably less speckle in Fig. 7
than in Fig. 6, and the probability mass appears to be better
concentrated around the true state. However, one might think
this problem is not very well suited to an auxiliary particle filter
since the prior is often much broader than the likelihood. When
the prior is broad, those particles with a noise realization that
happens to have a high likelihood are resampled many times.
There is no guarantee that other samples from the prior will
also lie in the same region of the state space since only a single
point is being used to characterize the filtered density for each
particle.
The RMS errors are slightly reduced from those for SIR.

Fig. 8. Image representing evolution of probability density for regularized
particle filter.

E. Regularized Particle Filter
Using the regularized particle filter results in a smoothing of

the approximation to the posterior. This is apparent from Fig. 8.
The speckle is reduced and the peaks broadenedwhen compared
with the previous particle filters’ images.
The regularized particle filter gives very similar RMS errors

to the SIR particle filter. The regularization does not result in a
significant reduction in errors for this data set.

F. “Likelihood” Particle Filter
All the aforementioned particle filters share the prior as a pro-

posal density. For this example, much of the time, the likelihood
is far tighter than the prior. As a result, the posterior is closer
in similarity to the likelihood than to the prior. The importance
density is an approximation to the posterior. Therefore, using
a better approximation based on the likelihood, rather than the
prior, can be expected to improve performance.
Fig. 9 shows that the use of such an importance density (see

the Appendix for details) yields a reduction in speckle and that
the peaks of the density are closer on average to the true state
than for any of the other particle filters.
The RMS errors are similar to those for the Auxiliary particle

filter.

G. Crucial Step in the Application of a Particle Filter
The RMS errors indicate that in highly nonlinear environ-

ments, a nonlinear filter such as an approximate grid-based filter
or particle filter offers an improvement in performance over an
EKF. This improvement results from approximating the density
rather than the models.
When using a particle filter, one can often expect and fre-

quently achieve an improvement in performance by using far
more particles or alternatively by employing regularization or
using an auxiliary particle filter. For this example, a slight im-
provement in RMS errors is possible by using an importance
density other than . The authors assert that an im-
portance density tuned to a particular problem will yield an ap-
propriate trade off between the number of particles and the com-

184 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

Fig. 3. Evolution of the EKFs mean estimate of the state.

Fig. 4. Evolution of the upper and lower positions of the state as estimated
by the EKF (dotted) with the true state also shown (solid).

posterior, the Gaussian approximation fails—the EKF is prone
to either choosing the “wrong” mode or just sitting on the
average between the modes. As a result of this inability to
adequately approximate the density, the linearization approxi-
mation becomes poor.
This can be seen from Fig. 3. The mean of the filter is rarely

close to the true state. Were the density to be Gaussian, one
would expect the state to be within two standard deviations of
the mean approximately 95% of the time. From Fig. 4, it is ev-
ident that there are times when the distribution is sufficiently
broad to capture the true state in this region but that there are
also times when the filter becomes highly overconfident of a bi-
ased estimate of the state. The implication of this is that it is very
difficult to detect inconsistent EKF errors automatically online.
The RMSE measure indicates that the EKF is the least accu-

rate of the algorithms at approximating the posterior. The ap-
proximations made by the EKF are inappropriate in this ex-
ample.

Fig. 5. Image representing evolution of probability density for approximate
grid-based filter.

B. Approximate Grid-Based Filter
This example is low dimensional, and therefore, one would

expect that an approximate grid-based approach would perform
well. Fig. 5 shows this is indeed the case. The grid-based ap-
proximation is able to model the multimodality of the problem.
Using the approximate grid-based filter rather than an EKF

yields a marked reduction in RMS errors. A particle filter with
particles conducts operations per iteration, whereas

an approximate grid-based filter carries out operations
with cells. It is therefore surprising that the RMS errors for
the approximate grid are larger than those of the particle filter.
The authors suspect that this is an artifact of the grid being fixed;
the resolution of the algorithm is predefined, and the fixed posi-
tion of the grid points means that the grid points near 25 con-
tribute significantly to the error when the true state is far from
these values.

C. SIR Particle Filter
Using the prior distribution as the importance density is in

some sense regarded as a standard SIR particle filter and, there-
fore, is an appropriate particle filter algorithm with which to
begin. As can be seen from Fig. 6, the SIR particle filter gives
disappointing results with the low number of particles used here.
The speckled appearance of the figure is a result of sampling a
low number of particles from the (broad) prior. It is an artifact
resulting from the inadequate amount of sampling.
The RMSE metric shows a marginal improvement over the

approximate grid-based filter. To achieve smaller errors, one
could simply increase the number of particles, but here, we will
now investigate the effect of using the alternative particle filter
algorithms described up to this point.

D. Auxiliary Particle Filter
One way to reduce errors might be that the proposed par-

ticle positions are chosen badly. One might therefore think that
choosing the proposed particles in a more intelligent manner
would yield better results. An auxiliary particle filter would then

184 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

Fig. 3. Evolution of the EKFs mean estimate of the state.

Fig. 4. Evolution of the upper and lower positions of the state as estimated
by the EKF (dotted) with the true state also shown (solid).

posterior, the Gaussian approximation fails—the EKF is prone
to either choosing the “wrong” mode or just sitting on the
average between the modes. As a result of this inability to
adequately approximate the density, the linearization approxi-
mation becomes poor.
This can be seen from Fig. 3. The mean of the filter is rarely

close to the true state. Were the density to be Gaussian, one
would expect the state to be within two standard deviations of
the mean approximately 95% of the time. From Fig. 4, it is ev-
ident that there are times when the distribution is sufficiently
broad to capture the true state in this region but that there are
also times when the filter becomes highly overconfident of a bi-
ased estimate of the state. The implication of this is that it is very
difficult to detect inconsistent EKF errors automatically online.
The RMSE measure indicates that the EKF is the least accu-

rate of the algorithms at approximating the posterior. The ap-
proximations made by the EKF are inappropriate in this ex-
ample.

Fig. 5. Image representing evolution of probability density for approximate
grid-based filter.

B. Approximate Grid-Based Filter
This example is low dimensional, and therefore, one would

expect that an approximate grid-based approach would perform
well. Fig. 5 shows this is indeed the case. The grid-based ap-
proximation is able to model the multimodality of the problem.
Using the approximate grid-based filter rather than an EKF

yields a marked reduction in RMS errors. A particle filter with
particles conducts operations per iteration, whereas

an approximate grid-based filter carries out operations
with cells. It is therefore surprising that the RMS errors for
the approximate grid are larger than those of the particle filter.
The authors suspect that this is an artifact of the grid being fixed;
the resolution of the algorithm is predefined, and the fixed posi-
tion of the grid points means that the grid points near 25 con-
tribute significantly to the error when the true state is far from
these values.

C. SIR Particle Filter
Using the prior distribution as the importance density is in

some sense regarded as a standard SIR particle filter and, there-
fore, is an appropriate particle filter algorithm with which to
begin. As can be seen from Fig. 6, the SIR particle filter gives
disappointing results with the low number of particles used here.
The speckled appearance of the figure is a result of sampling a
low number of particles from the (broad) prior. It is an artifact
resulting from the inadequate amount of sampling.
The RMSE metric shows a marginal improvement over the

approximate grid-based filter. To achieve smaller errors, one
could simply increase the number of particles, but here, we will
now investigate the effect of using the alternative particle filter
algorithms described up to this point.

D. Auxiliary Particle Filter
One way to reduce errors might be that the proposed par-

ticle positions are chosen badly. One might therefore think that
choosing the proposed particles in a more intelligent manner
would yield better results. An auxiliary particle filter would then

184 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

Fig. 3. Evolution of the EKFs mean estimate of the state.

Fig. 4. Evolution of the upper and lower positions of the state as estimated
by the EKF (dotted) with the true state also shown (solid).

posterior, the Gaussian approximation fails—the EKF is prone
to either choosing the “wrong” mode or just sitting on the
average between the modes. As a result of this inability to
adequately approximate the density, the linearization approxi-
mation becomes poor.
This can be seen from Fig. 3. The mean of the filter is rarely

close to the true state. Were the density to be Gaussian, one
would expect the state to be within two standard deviations of
the mean approximately 95% of the time. From Fig. 4, it is ev-
ident that there are times when the distribution is sufficiently
broad to capture the true state in this region but that there are
also times when the filter becomes highly overconfident of a bi-
ased estimate of the state. The implication of this is that it is very
difficult to detect inconsistent EKF errors automatically online.
The RMSE measure indicates that the EKF is the least accu-

rate of the algorithms at approximating the posterior. The ap-
proximations made by the EKF are inappropriate in this ex-
ample.

Fig. 5. Image representing evolution of probability density for approximate
grid-based filter.

B. Approximate Grid-Based Filter
This example is low dimensional, and therefore, one would

expect that an approximate grid-based approach would perform
well. Fig. 5 shows this is indeed the case. The grid-based ap-
proximation is able to model the multimodality of the problem.
Using the approximate grid-based filter rather than an EKF

yields a marked reduction in RMS errors. A particle filter with
particles conducts operations per iteration, whereas

an approximate grid-based filter carries out operations
with cells. It is therefore surprising that the RMS errors for
the approximate grid are larger than those of the particle filter.
The authors suspect that this is an artifact of the grid being fixed;
the resolution of the algorithm is predefined, and the fixed posi-
tion of the grid points means that the grid points near 25 con-
tribute significantly to the error when the true state is far from
these values.

C. SIR Particle Filter
Using the prior distribution as the importance density is in

some sense regarded as a standard SIR particle filter and, there-
fore, is an appropriate particle filter algorithm with which to
begin. As can be seen from Fig. 6, the SIR particle filter gives
disappointing results with the low number of particles used here.
The speckled appearance of the figure is a result of sampling a
low number of particles from the (broad) prior. It is an artifact
resulting from the inadequate amount of sampling.
The RMSE metric shows a marginal improvement over the

approximate grid-based filter. To achieve smaller errors, one
could simply increase the number of particles, but here, we will
now investigate the effect of using the alternative particle filter
algorithms described up to this point.

D. Auxiliary Particle Filter
One way to reduce errors might be that the proposed par-

ticle positions are chosen badly. One might therefore think that
choosing the proposed particles in a more intelligent manner
would yield better results. An auxiliary particle filter would then

EXAMPLE

xk =
xk−1

2
+

25xk−1

1+ xk−1
2
+8cos(1.2k)+ vk , Q =10

yk =
xk

2

20
+wk , R =1

True xk EKF estimates of xk

GAUSSIAN LIMITATIONS:
LOAD DISTURBANCES AND OUTLIERS

(J=model for dt)

t txt+1 =
0.7 0
0.08 1

!

"
#

$

%
&xt +

11.8
0.6

!

"
#

$

%
& ut + dt()

zt = 0 1() xt + et

We use a Laplacian density
to model dt and et

RESULTS

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
L2−opt: input estimate

True
Estimate

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
LASSO−CV: input estimate

True
Estimate

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
L2−opt: input estimate

True
Estimate

RESULTS

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
LASSO−CV: input estimate

True
Estimate

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
L2−opt: input estimate

True
Estimate

0 50 100 150 200
−6

−4

−2

0

2

4

6

L2−opt: output data and estimate

True
Estimate

RESULTS

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
LASSO−CV: input estimate

True
Estimate

0 50 100 150 200
−6

−4

−2

0

2

4

6

L1−nom: output data and estimate

True
Estimate

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
L2−opt: input estimate

True
Estimate

0 50 100 150 200
−6

−4

−2

0

2

4

6

L2−opt: output data and estimate

True
Estimate

RESULTS

EXAMPLE: LOCALIZATION

INITIALIZATION

EXAMPLE: LOCALIZATION

MEASUREMENT

EXAMPLE: LOCALIZATION

21
motion update WEIGHTS UPDATE

EXAMPLE: LOCALIZATION

22
measurement MEASUREMENT

EXAMPLE: LOCALIZATION

23
weight update WEIGHTS UPDATE

EXAMPLE: LOCALIZATION

24
resampling RESAMPLING

EXAMPLE: LOCALIZATION

25
motion update UPDATE FOR MOTION

EXAMPLE: LOCALIZATION

26
measurement MEASUREMENT

EXAMPLE: LOCALIZATION

27
weight update WEIGHTS UPDATE

EXAMPLE: LOCALIZATION

28
resampling RESAMPLING

EXAMPLE: LOCALIZATION

29
motion update UPDATE FOR MOTION

EXAMPLE: LOCALIZATION

34
measurement MEASUREMENT

EXAMPLE: LOCALIZATION

OTHER APPLICATIONS: DETECTION/TRACKING

